文档库 最新最全的文档下载
当前位置:文档库 › 电阻测量设计与误差分析(精)

电阻测量设计与误差分析(精)

电阻测量设计与误差分析(精)
电阻测量设计与误差分析(精)

难点13 电阻测量设计与误差分析

实验能力是学生终身从事学习、研究的必备能力之一,高考考试说明对此作出过明确要求.随着高考命题思想的转变,考题愈加突出对考生实验能力,尤其是实验设计创新能力的考查

.

1.(★★★★)某电压表的内阻在20 k Ω~50 k Ω之间,现要测量其内阻,实验室提供下列可选用的器材:待测电压表V (量程3 V )、电流表A 1(量程200 μA )、电流表A 2(量程5 mA )、电流表A 3(量程0.6 A ),滑动变阻器R (最大阻值1 k Ω)、电源E (电动势4 V ),电键K .

(1)所提供的电流表中,应选用_______(填写字母代号).

(2)为了尽量减小误差,要求测量多组数据,试在图13-1

中画出符合要求的实验电路图(其中电源和电键及其连接已画出).

2.(★★★★★)(2001全国)图13-2(a )中E 为电源,其

电动势为E ,R 1为滑线变阻器,R 2为电阻箱,A 为电流表.用此电路经以下步骤可近似测得A 的内阻R A ;(1)闭合K 1,断开K 2,

调节R 1,使电流表读数等于其量程I 0;(2)保持R 1不变,闭合K 2,调节R 2,使电流表读数等于2

0I ,然后读出R 2的值,取R A ≈R 2. (1)按图13-2(a )所示电路在图(b )所给出的实物中画出连接导线

.

图13—2

(2)真实值与测量值之差除以真实值叫做测量结果的相对误差,即A

A R R R 2 .试导出它与电源电动势E 、电流表量程I 0及电流表内阻R A 的关系式.

(3)若I 0=10 mA ,真实值R A 约为30 Ω,要想使测量结果的相对误差不大于5%,电源电动势最小应为多少伏?

3.(★★★★★)(1999年全国)图13-3中,图(a )为测量电阻的电路,R x 为待测电阻,R 的阻值已知.R ′为保护电阻,阻值未知.电源E 的电动势未知.K 1、K 2均为单刀双掷开关.A 为电流表,其内阻不计

.

图13—

3

图13-1

(1)按图(a )所示的电路,在图(b )的实物图上连线.

(2)测量R x的步骤为:将K 2向d 闭合,K 1向________闭合,记下电流表读数I 1. 再将K 2向c 闭合,K 1向________闭合,记电流表读数I 2.

计算R x的公式是R x=________

●案例探究

[例1](★★★★★)一电阻额定功率为0.01 W ,阻值不详.用欧姆表粗测其阻值约为40 k Ω.现有下列仪表元件,试设计适当的电路,选择合适的元件,较精确地测定其阻值.

①电流表,量程0~300 μA ,内阻150 Ω;

②电流表,量程0~1000 μA ,内阻45 Ω;

③电压表,量程0~3 V ,内阻6 k Ω;

④电压表,量程0~15 V ,内阻30 k Ω;

⑤电压表,量程0~50 V ,内阻100 k Ω;

⑥干电池两节,每节电动势为1.5 V ;

⑦直流稳压电源,输出电压6 V ,额定电流3 A ;

⑧直流电源,输出电压24 V ,额定电流0.5 A ;

⑨直流电源,输出电压100 V ,额定电流0.1 A ;

⑩滑动变阻器,0~50 Ω,3 W ;

11滑动变阻器,0~2 k Ω,1 W ; ○

12电键一只,连接导线足量. 命题意图:考查综合分析能力、推理能力及实验设计的创新能力,B 级要求.

错解分析:部分考生估算出通过R x 的电流I m =500 μA,据此而选用量程为0~1000 μA 的电流表,而忽视了偶然误差的因素.

解题方法与技巧:由于现有器材中有电流表和电压表,故初步确

定用伏安法测定此电阻的阻值.又因待测电阻为一大电阻,其估计阻值

比现有电压表的内阻大或相近,故应该采用电流表内接法.由于现有滑

动变阻器最大阻值比待测电阻小得多,因此,若用滑动变阻器调节待

测电阻的电流和电压,只能采用分压接法,如图13-4(否则变阻器不

能实现灵敏调节).为了确定各仪表、元件的量程和规格,首先对待测电阻的额定电压和电流作出估算:最大电流为I m =

4000

01.0/ R P A =5×10-4 A =500μA ;最大电压U m =20 V .由于实验中的电流和电压可以小于而不能超过待测电阻的额定电流和额定电压,现有两个电流表内阻相近,由内阻所引起的系统误差相近,而量程0~1000 μA 接入电路时,只能在指针半偏转以下读数,引起的偶然误差较大,故选用量程为0~300 μΑ的电流表.这样选用电流表后,待测电阻上的最大

实际电压约为3×10-4×40×103 V =12 V ,故应选用量程为15 V 的电压表,由于在图13-4

所示的电路中,要实现变阻器在较大范围内灵敏调节,电源电压应比待测电阻的最大实际电压高,故电源应选输出电压为24 V 一种(其额定电流也远大于电路中的最大实际电流,故可用).

关于变阻器的选择,由于采用分压接法,全部电源电压加在变阻器上.若是把0~50 Ω的变阻器接入电路,其上的最小电流(对应于待测电路断开)约为24/50 A =0.5 A ,最小功率约为0.25×50 W =12.5 W ,远大于其额定功率;而0~2 k Ω的变阻器接入电路,其最大电流(对应于滑动键靠近图13-4中变阻器A 端)约为并联电路总电流0.0136 A ,小于其额定电流0.2024 A.故应选0~2 k Ω的变阻器

.

图13-4

[例2](★★★★★)量程为3 V 的电压表V (内阻约3 k Ω),现要求测出该电压表内阻的精确值.实验室中可提供的器材有:电阻箱R ′(阻值范围0~9999.9 Ω),在本实验中,通过电阻箱的电流不会超过所允许的最大电流;滑动变阻器R (阻值范围0~1000 Ω,允许通过的最大电流为0.2 A );电源E (E 为5 V ,内阻忽略不计);电键K ;导线若干.

(1)选用适当器材设计测量的电路,要求在虚线框内画出电路图并标上代号.

(2)叙述操作步骤.

命题意图:考查对电压表原理的理解能力、知识迁移运用能力及实验创新能力,B 级要求.

错解分析:对电压表应用原理理解不深刻,缺乏知识应用的迁移能力,无法将○V 灵活串联入电路,寻找不到设计思路.

解题方法与技巧:(1)如图

13-5

图13—5

(2)①将所选器材按电路图连接好;②把R ′调至最大,接通电路;③调节R ′使电压表指针指在3.0 V 处,记下此时电阻箱的阻值R 1′;④增大R ′的阻值,使指针指在1.5 V 处,记下此时电阻箱的阻值R 2′;⑤计算R g =R 2′-2R 1′.

●锦囊妙计

一、电阻的测量方法

课本上讲解了用伏安法、欧姆表测电阻,除此以外,还有半偏法测电阻、电桥法测电阻、等效法测电阻等等.

二、如何选择电学仪器和实验电路

在测电阻等许多电学实验中,都存在如何选择电学实验器材,如何选择测量电路、控制电路的问题.

正确地选择仪器和电路的问题,有一定的灵活性,解决时应掌握和遵循一些基本的原则,即“安全性”“精确性”“方便性”原则,兼顾“误差小”“仪器少”“耗电少”等各方面因素综合考虑,灵活运用.

1.实验仪器的选择

(1)根据不使电表受损和尽量减少误差的原则选择电表.

首先保证流过电流表的电流和加在电压表上的电压均不超过使用量程,然后合理选择量程,务必使指针有较大偏转(一般取满偏度的3

2左右),以减少测读误差.(2)根据电路中可能出现的电流或电压范围需选择滑动变阻器,注意流过滑动变阻器的电流不超过它的额定值,对大阻值的变阻器,如果是滑动头稍有移动,使电流、电压有很大变化的,不宜采用.

(3

)应根据实验的基本要求来选择仪器,对于这种情况,只有熟悉实验原理,才能作出恰

当的选择.总之,最优选择的原则是:①方法误差尽可能小.②间接测定值尽可能有较多的有效数字位数,直接测定值的测量使误差尽可能小,且不超过仪表的量程.③实现较大范围的灵敏调节.④在大功率装置(电路)中尽可能节省能量;在小功率电路里,在不超过用电器额定值的前提下,适当提高电流、电压值,以提高测试的准确度.

2.实验电路(电流表内外接法)的选择

测量未知电阻的原理是R =I

U ,由于测量所需的电表实际上是非理想的,所以在测量未知电阻两端电压U 和通过的电流I 时,必然存在误差,即系统误差,要在实际测量中有效地减少这种由于电表测量所引起的系统误差,必须依照以下原则:(1)若A x R R >x V R R ,一般选电流表的内接法.如图13-6(a )所示.由于该电路中,电压表的读数U 表示被测电阻R x与电流表A 串联后的总电压,电流表的读数I 表示通过本身和R x的电流,所以使用该电路

所测电阻R 测=I

U =R x+R A ,比真实值R x大了R A ,相对误差a =x A x x R R R R R =-测(2)若A x R R <x

V R R ,一般选电流表外接法.如图13-6(b )所示.由于该电路中电压表的读数U 表示 R x两端电压,电流表的读数I 表示通过R x与R V 并联电路的总电流,所以使用该电流所测电

阻R 测=x V x V R R R R I U +=也比真实值R x略小些,相对误差a =x

V V x x R R R R R R +=-测.

图13—6

3.控制电路的选择(见难点12.滑动变阻两种电路接法的选择)

三、处理实验数据

1.代数法

常见的代数法有:求平均值法和逐差法

2.列表法

在记录和处理数据时,把数据列成表格.数据列表可以简单明确地表示出相关物理量之间对应关系;便于检查和发现实验中的问题;有利于找出相关物理量之间满足的规律,等等.

3.作图法

作图法的优点是可以形象、直观地反映出相关物理量之间的变化规律,找出相关物理量之间的变化规律所对应的函数关系;可以根据图线直接得出实验结果.还可以通过作图发现实验中的问题.

作图时,应该注意以下几点:

a.必须使用坐标纸,并保证测量时的准确数字,在图上也是准确的.

b.图上要标明图名、坐标轴所代表的物理量及其单位、各分度对应的有效数字.

c.尽量使图象充满图纸.

d.各数据点要标明.

e.连线时,要尽量使数据点均匀分布在图线的两侧.

f.明确斜率、截距的物理意义.

必要时,可通过更改坐标轴的方式,改曲线为直线.

●歼灭难点训练

1.(★★★)图13-7所示为用伏安法测电阻的部分电路图.因

为不知道待测电阻R x的大概值,所以不能确定线路的接法.为了减

小误差,可在电路接好以后将电压表的一个接线端K 分别与M 、N

接触,观察电压表和电流表的读数哪一个有明显变化.下列关于观

察到的现象及应选用的接法的叙述中,正确的是

A.若电流表读数有明显变化,K 应接在M 点

B.若电流表读数有明显变化,K 应接在N 点

C.若电压表读数有明显变化,K 应接在M 点

D.若电压表读数有明显变化,K 应接在N 点

2.(★★★★)某学生欲测一未知电阻的阻值,可供选择的器材有

电流表A 1量程0~10 mA

电流表A 2量程0~0.6 A

电压表V 1量程0~3 V

电压表V 2量程0~15 V

滑动变阻器一只,电源4.5 V ,电键2个,如图13-8,当电键

K 2连a 时,两电表的指针偏转角度都在满偏的4/5处;若将K 2接b

时,其中一个电表的指针偏角几乎不变,另一个电表的指针偏转到

满偏的3/4处.该学生所选用的电压表的量程为________,所用的电

流表的量程为________,该电阻的阻值为________.

3.(★★★★)在用伏安法测电阻的实验中,所用电压表的内

阻约为20 k Ω,电流表的内阻约为10 Ω,选择能够尽量减少误差的

电路图接线进行实验,读得的各组数据用实心圆点标于坐标图上,如

图13-9所示:

(1)根据各点表示的数据描出I-U 图线,由此求得该电阻的阻值

R x=_______Ω(保留两位有效数字).

(2)画出此实验的电路原理图.

4.(★★★★★)在测定电流表的内阻的实验中备用的器材有

A.电流表(量程0~100 mA )

B.标准电压表(量程0~5 V )

C.电阻箱(阻值范围0~9999 Ω)

D.电阻箱(阻值范围0~99999 Ω)

E.电源(电动势2 V ,有内阻)

F.电源(电动势6 V ,有内阻)

G.滑动变阻器(阻值范围0~50 Ω,额定电流1.5 A ),还有若干开

关和导线.

(1)如果采用图13-10所示的电路测定电流表G 的内阻,并且要

想得到较高的精确度,那么从以上备用的器件中,可变电阻R 1应选用

________,可变电阻R 2应选用________,电源E 应选用________(用

字母代号填写) 图

13-7

13-8 图13-9 图13-10

(2)如果实验时要进行的步骤有:

A.合上S 1.

B.合上S 2.

C.观察R 1的阻值是否最大,如果不是,将R 1的阻值调至最大.

D.调节R 1的阻值,使电流表指针偏转到满刻度.

E .调节R 2的阻值,使电流表指针偏转到满刻度的一半.

F .记下R 2的阻值.

把以上步骤的字母代号按实验的合理顺序填写在下面横线上:

___________________________________________________

(3)如果在步骤F 中所得R 2的阻值为600 Ω,则被测电流表的内阻r g 的测量值为________Ω.

(4)电流表内阻的测量值r 测与其真实值r 真的大小关系是r测________r 真.(填“>”“<”或“=”)

5.(★★★★★)现有一阻值为10.0 Ω的定值电阻、一个电键,若干根导线和一个电压表,该电压表表面上有刻度但无刻度值,要求设计一个能测定某电源内阻的实验方案.(已知电压表内阻很大,电压表量程大于电源电动势,电源内阻约为几欧)要求:

(1)在所示方框中画出实验电路图.

(2)简要写出完成接线后的实验步骤.

(3)写出用测得的量计算电源内阻的表达式r =________.

6.(★★★★★)(1997年上海)某同学用以下器材测量电阻:①电流计②电阻箱③单刀双掷电键(这种电键在掷刀a 倒向b 时ab 接通,倒向c 时ac 接通)④待测电阻⑤电源⑥限流电阻,如图13-11所示.实验方法是利用单刀双掷电键分别将电阻箱和待测电阻接入电路,用电阻箱替代待测电阻的方法来测定待测电阻的阻值

.

图13—11

(1)在图中完成电路的连接(其中有二条导线已连接好).

(2)本实验中电键应先接通的是含有________________(填“待测电阻”或“电阻箱”)的电路.用电键变换电路,调节电阻箱时,应使两次测量的____________大小相同,这时待测电阻的值可以从__________________上读出.

7.(★★★★★)(2001年上海)要求测量由两节干电池串联而成的电池组的电动势E 和内阻r (约几欧),提供下列器材:电压表V 1(量程3 V ,内阻1 k Ω)、电压表V 2(量程15 V ,内阻2 k Ω)、电阻箱(0~9999 Ω)、电键、导线若干

.

某同学用量程为15 V 的电压表连接成如图13-12所示的电路.实际步骤如下:

图13—12

(1)合上电键S ,将电阻箱R 阻值调到R 1=10 Ω,读得电压表的读数为U 1.

(2)将电阻箱R 阻值调到R 2=20 Ω,读得电压表的读数为U 2.

由方程U 1=E 1-11R U r 、U 2=E -2

2R U r 解出E 、r ,为了减少实验误差,上述实验在选择器材和实验步骤中,应做哪些改进?_____________________.

参考答案:

[难点磁场]

1.(1)A 1 (2)见图13′—

1

图13′—1 图13′—2

2.(1)连线如图13′—2所示

(2)由步骤①连成电路应用全电路欧姆定律得:

I 0=A R R E +1 ①

由步骤②连成电路,根据电路串、并联关系得:

=20I 22221R R R R R R R R E A A A +?+?+ ② ①②式联立解得A A A R E I R R R 02=- ③

(3)由③式代入数据得E =I 0R A /5%=6 V

3.(1)见图13′-3

图13′—3

(2)a ;b ;I 2R /I 1

[歼灭难点训练]

1.BC

2.0~3 V ,0~10 mA,3200 Ω

3.(1)见图13′—4 2.4×103

(2)见图13′—5

图13′—4 图13′—5

解析:I =0.8 mA 的点偏离较大,舍去,将其余各点连成直线,得到过坐标原点U-I 图线.从图线上读取U 、I 值,如取I =1.0 mA,U =2.4 V ,算得R =I U =3

100.14.2-?Ω=2.4×103 Ω. 由于待测电阻较大,R x >>R A ,测量时应取电流表内接法,滑线变阻器取分压接法.

4.(1)D,C,F (2)CADBEF (3)600 (4)<

5.(1)见图13′-6

图13′—6

(2)步骤:a.断开电键,记下电压表偏转格数N 1

b.合上电键,记下电压表偏转格数N 2

(3)r =R 2

21N N N - 6.(1)见图13′-7

图13′—7

(2)待测电阻,电流,电阻箱

解析:①先将电池、电流表、限流电阻、电键组成串联电路,然后将电阻箱一端接R x 不接电键的一端,另一端接电键余下的C 接线柱.

②先接通R x ,记下电流表示数,把电键掷向另一端,接入电阻箱,调整电阻箱,使电流表示数与接入R x 时相同,则电阻箱的阻值与R x 阻值相同,读出其数值即R x 的阻值.

7.应选用量程为3 V 的电压表,改变电阻箱阻值R ,读取若干个U 的值,由I =R

U 计算出电流的值,然后作出U-I 图线,由图线求得E 、r 值.

导线电阻引起应变测量的误差分析及其补偿电路

导线电阻引起应变测量的误差分析及其补偿电路

导线电阻引起应变测量误差分析及其补偿电路 摘要:分析了全桥和半桥式应变测量电路中导线电阻引起测量误差的原因,并根据分析结果提出了一种传感器供桥电压自动补偿电路,以消除导线电阻引起的测量误差。 关键词:应变测量;桥式电路;补偿电路;测量误差 1 概述 应变片电测技术就是利用电阻应变片或由应变片制成的传感器对应力、应变、拉压力、位移、液体压力等物理量进行电测量的一种专门技术。它广泛应用于公路桥梁检测、地基沉陷和土压测量及筑路机械性能参数的测量中,其测量误差大小直接影响到桥梁、道路和机械参数的真实性和准确性,从而导致错误的分析和判断。在应变测量电路中,应变片或传感器与测量放大器用导线连接,由于连接导线具有一定的电阻,因此会引起测量误差,当连接导线较长时,这种误差往往很大而不能被忽略,例如,在桥梁检测中导线可能长达上千米。而本文分析结果表明,当导线长300m时引起的测量误差将超过20%。鉴于测量误差的重要性,本文在分析了导线电阻引起测量误差的基础上,提出了一种简单有效的消除这种误差的电桥电路。 2 导线电阻引起的误差分析 电桥电路具有测量精度高、抗干扰能力强等优点,更重要的是把应变片接成电桥电路可以消除温度变化产生的测量误差,因而得到广泛应用。以下将分别讨论由导线电阻引起的全桥及半桥电路的测量误差。2.1 全桥电路 全桥电路的接法如图1实线部分所示。图中R 1、R 2 、R 3 、R 4 为测量应 变片,r为连接导线的等效电阻,U AC 为测量放大器提供的供桥电压,U A′C′ 为电桥的实际工作电压。在不考虑导线电阻r的影响时,电桥输出给测量放大器的电压 图1 全桥电路接法

水准测量误差来源及控制方法

水准测量的误差来源及控制方法 水准测量是确定公路工程地面点高程的方法之一,是高程测量中精度较高且常用的方法。实施过程中,需要几个人合作才能完成,误差允许范围内的精度由于仪器和人为的影响而不容易控制,而且易出现隐蔽性错误,如果不能及早发现,基础资料是错误的,从而水准点高程不正确,直接影响路线纵断面设计和施工。关键词:水准测量水准仪高程误差 1. 0勘察设计过程中水准测量的问题 水准测量是采用几何原理,利用水平视线测定两点间高差。仪器使用水准仪,工具是水准尺和尺垫。公路工程测量一般使用DS3型微倾式自动安平水准仪,每公里能达到的精度是3mm,水准仪在一个测站使用的基本程序是安置仪器、粗略整平、瞄准水准尺、精确整平和读数。我们在实际勘测过程中按这个顺序施行,在每一水准点段测完后复核结果。 同一条公路采用同一个高程系统,测量方法是基平与中平同时测量,两台水准仪同时观测一个水准尺,间视和转点由两个人立水准尺,但两台水准仪总是同时观测一个水准尺进行读数,一个水准点段测完后检核,在每一测站,没有检查、复核,为误差的积累创造了条件,容易返工,耽误时间、浪费人力。通过工程实践证明,这一方法经常出现错误,节选五个水准点连续错误中的一个测段结果如表1.1和1.2所示:

表1.1经过成果整理,读数差Δh=Σ后视-Σ前视,Δh小于2mm满足规范要求。但是施工过程中,施工单位提出问题,经过表1.2复核补充测量成果证实,外业测量的结果不正确,因此,有必要分析水准测量的误差,找出控制纠正的方法,避免错误的出现,保证项目的顺利施工。 2. 0水准测量的现状 现在应用水准点与中桩分开观测的方法,水准点观测采取往返测量,成果整理要求高差闭合差fh容(fh容=Σh往+Σh返)达到平原微丘区三等水准测量的精度不大于±20·L(1/2)。平原微丘地区影响水准测量精度的主要因素是水准路线的长度,长度越长,精度越低。山区,则是测站,测站越多,精度越低。 3. 0水准测量的误差分析及控制方法 水准测量误差有仪器误差、观测误差和外界条件的影响。 3.1仪器误差之一是水准仪的望远镜视准轴不平行于水准管轴所产生的误差 仪器虽在测量前经过校正,仍会存在残余误差。因此造成水准管气泡居中,水准

伏安法测电阻及误差分析

伏安法测电阻及误差分析 【原理】伏安法测电阻是电学的基础实验之一。它的原理是欧姆定律IR U =。根据欧姆定律的变形公式 I U R= 可知,要测某一电阻 x R的阻值,只要用电压表测出 x R两端的电压,用电流表测出通过 x R的电流,代入公式即 可计算出电阻 x R的阻值。 【内接法与外接法】由于所用电压表和电流表都不是理想电表,即电压表的内阻并非趋近无穷大,电流表也存在内阻,因此实验测量出的电阻值与真实值不同,存在误差。为了减少测量过程中的系统误差,通常伏安法测电阻的电路有两个基本连接方法:电流表内接法和电流表外接法(如图1所示),简称内接法和外接法。 图1 电路图 【误差分析】对于这两个基本电路该如何选择呢?下面从误差入手进行分析。 外接法: 误差分析方法一: 在图2的外接法中,考虑电表内阻的存在,则电压表的测量值U为R两端的电压,电流表的测量值为干路电流,即流过待测电阻的电流与流过电压表的电流之和,此时测得的电阻为R与v R的并联总电阻,即:R R R R I U v v + ? = = 测 R<R(电阻的真实值) 此时给测量带来的系统误差来源于 v R的分流作用,系统的相对误差为: 100% R R 1 1 100% R R v ? ? = + = - 测 R E(1) 误差分析方法二: 当用外接法时,U测=U真,I测=I V+I真>I真 ∴测出电阻值R测= 测 测 I U = 真 真 +I I V U <R真,即电压表起到分流作用,当R越小时,引起误差越小,说明该接法适应于测小电阻。 图2 外接法

内接法: 误差分析方法一: 在图3内接法中,电流表的测量值为流过待测电阻和电流表的电流,电压表的测量值为待测电阻两端的电压与电流表两端的电压之和,即: R R I U A +==测R >R (电阻的真实值) 此时给测量带来的系统误差主要来源于A R 的分压作用,其相对误差为: 100%R R R R R E A ?= -= 测 (2) 误差分析方法二: 当用内接法时,I 测=I 真,U 测=U A +U 真>U 真 ∴测出电阻值R 测=测 涡I U = 真 真 +I U A U >R 真,即电流表起了分压作用。当R A 越小时引起误差越小,说明该接法适应于 测大电阻。 综上所述,当采用电流表内接法时,测量值大于真实值,即“内大”;当采用电流表外接法时,测量值小于真实值,即“外小”。从(1)式可知,只有当V R 》R 时,才有→E 0,进而有R =测R ,否则电表接入误差就不可忽略。同样,从(2)式也可以得到,只有当A R 《R 时,才有→E 0,进而R =测R 。 图3 内接法

水准测量误差分析及注意事项分析

水准测量误差分析及注意事项分析 在測量工作中,高程测量是一项不可缺少基本工作,一般使用的测量方法有三角高程测量与水准测量等,在高程测量中,水准测量具有较高的测量精准度。分析了水准测量误差分析及注意事项,以减弱水准测量误差影响。 标签:水准测量;误差;影响 因为多重因素的影响,如,外界环境及仪器等,不利把控水准测量。产生的错误不容易发现,使得基础资料不准确,进而导致水准点间高差出现错误,对工程施工造成直接影响,带来时间及经济损失。所以,分析水准测量误差的影响影响很重要。 1、水准测量误差分析 测量中难免存有误差,按照水准测量误差产生原因不同,可将误差划分为三个方面:外界条件引起的误差、仪器误差、观测误差。 1.1外界条件引起的误差 1.1.1地球曲率与大气折光误差 地球曲率影响高程测量,这点不能忽略,如果视距为100m,高程方面误差接近1mm,影响较大。该误差类1以于水准管轴不平行视准轴,以前后视距离相等的方法可消除该误差对高差带来的影响。地面上空气密度以梯度呈现,光线进入各密度媒介时,产生折射,通常从疏媒介向密媒介折射,因为水准仪视线不理想。通常大气层上层空气密度疏,下层空气密,视线经过大气层,变成了向下弯曲的曲线,导致尺上读数变小,与水平线出现差值,也就是遮光差。 山地连续下坡或上坡时,前后视线和地面的高度增大,遮光差产生的影响越来越大,体现相应的系统性,需要减少视线长度,提升视线高度,以此,将大气遮光影响减至较低。 如果天气晴朗,接近地面的温度比较高,使得下层空气密度相对较稀,这时视线变成了向上弯曲的曲线,导致尺上读数变大。视线线越接近地面,产生的折射越大,所以,通常视线要高出地面一定高度,比地面高出0.5m,就是为了减弱这种影响。如果地面平坦,地面覆盖的物体大致相同,前视距与后视距是相等的,前视距与后视距具有相同的遮光差方向,大小大致相同,能够很大程度上消除遮光差影响。 1.1.2尺子与仪器下沉误差 在转站过程中,尺垫会下沉,导致下一站后视读数变大,导致测量出现高差

用半偏法测电阻及误差分析报告

江苏省姜堰中学二轮复习教学案 用半偏法测电阻及误差分析 用半偏法可以测量电流表的电阻(含灵敏电流计)、伏特表的电阻和未知电阻的阻值.如何设计实验电路,如何测量,怎样减少实验误差,下面分类解析. 1、用半偏法测电流表的内阻R g 电流表的内阻R g 的测量电路有图1和图2两种电路. 应用图1电路测量电流表的内阻: 步骤: (1)先闭会开关S 1和S 2,调节变阻器R ,使电流表指针指向满偏; (2)再断开开关S 2,仅调节电阻箱R /,使电流表指针指向半偏;(3)电流表的内阻等于电阻箱的阻值R /. 实验仪器的基本要求:R << R /. 表流表内阻误差分析: 图1是串联半偏,因为流过R g 和R / 的电流相等,应比较它们的电压U g 和U 2的大小,S 2闭合时,两者电压之和和U =U g +U 2=U g +0= U g ,S 2断开时,电路的总电阻增大,由闭合电路的欧姆定律得:总电流减少,R 的右端电阻、R 0和电源内阻三者电压之和减少,并联部分的电压U 并增大,即U 并= U g /2 +U 2/ > U g 所以U 2/ > U g /2 ,R / > R g .故测量值偏大. 注:在图1电路中,R / 只能用电阻箱,而不能用滑动变阻器,其阻值只需比灵敏电流计的电阻大一点就可以了.R 一般使用滑动变阻器,其阻值要求较小,要求R << R / ,以减小因闭合S 2而引起总电压的变化,从而减小误差. 应用图2电路测量电流表的内阻:步骤: (1)先将R 调到最左端,闭合S 1,断开S 2,调节R 使电流表满偏; (2)使R 不变,闭合S 2调节电阻箱R ’使电流表指到满 刻度的一半; (3)此时电阻箱R ’的读数即为电流表的内阻R g .实验的基本要求:R >> R /.表流表内阻误差分析 图2是并联半偏,在半偏法测内阻电路中,当闭合S 2时,引起总电阻减小,总电流增大,大于原电流表的满偏电流,而此时电流表半偏,所以流经R ’的电流比电流表电流多,R ’的电阻比电流表的电阻小,但我们就把R / 的读数当成电流表的内阻,故测得的电流表的内阻偏小. 1 图1图2

水准测量误差分析(精)

水准测量误差分析 3.5.1水准测量的误差分析 水准测量误差包括仪器误差,观测误差和外界条件的影响三个方面。 (一) 仪器误差 ① 仪器校正后的残余误差 例如水准管轴与视准轴不平行,虽经校正仍然残存少量误差等。这种误差的影响与距离成正比,只要观测时注意使前、后视距离相等,便可消除或减弱此项误差的影响。 ② 水准尺误差 由于水准尺刻划不正确,尺长变化、弯曲等影响,会影响水准测量的精度,因此,水准尺须经过检验才能使用。至于尺的零点差,可在一水准测段中使测站为偶数的方法予以消除。 (二) 观测误差 ①水准管气泡居中误差 设水准管分划道为τ″,居中误差一般为±0.15τ″,采用符合式水准器时,气泡居中精度可提高一倍,故居中误差为 m =ρτ' '?'''±215.0·D 3-35 式中 D —水准仪到水准尺的距离。 ② 读数误差 在水准尺上估读数毫米数的误差,与人眼的分辨力、望远镜的放大倍率以及视线长度有关,通常按下式计算 m v =ρ' '?''D V 06 3-36 式中 V —望远镜的放大倍率; 60″—人眼的极限分辨能力。 ③ 视差影响 当存在视差时,十字丝平面与水准尺影像不重合,若眼睛观察的位置不同,便读出不同的读数,因而也会产生读数误差。 ④ 水准尺倾斜影响 水准尺倾斜将尺上读数增大,如水准尺倾斜033'?,在水准尺上1m 处读数时,将会产生2mm 的误差;若读数大于1m ,误差将超过2mm 。 (三)外界条件的影响 ① 仪器下沉 由于仪器下沉,使视线降低,从而引起高差误差。若采用“后、前、前、后”观测程序,可减弱其影响。 ② 尺垫下沉 如果在转点发生尺垫下沉,使下一站后视读数增大,这将引起高差误差。采用往返观测的方法,取成果的中数,可以减弱其影响。 ③ 地球曲率及大气折光影响 如式3-25所示 地球曲率与大气折光影响之和为 R D f 2 43.0?= 3-37

伏安法测电阻的误差分析

教材衍生 伏安法测电阻的误差分析 潍坊新华中学 孙晓燕 伏安法测电阻是初中阶段电学中的一个非常重要的实验,它在高中阶段也一样重要,特别是分析误差对学生提出了更高的要求。能分析伏安法测电阻实验中,电流表内接法和外接法的误差主要来源,会选择合适的方法测量电阻。 二、知识讲解: 1、在初中阶段我们认为电流表没有电阻,电压表的电阻无限大。但实际上电流表是有电阻的,只不过电阻比较小,大约0.05欧到几欧。电压表的电阻比较大,大约几千欧。 2、电流表串联在电路中,能分得一部分电压,根据分压定理U x /U A =R x /R A 可知如果R A <<Rx ,则电流表分得的电压就微乎其微,可以忽略不计。采用电流表内置法,电压表测量的电压略微偏大,误差比较小。如果Rx 比较小与R A 接近,则电流表分得的电压就会偏大。用电流表内置法测得的电压会产生很大的误差。 3、电压表与被测部分并联,也会有一部分电流通过。当R u >>Rx ,则通过电压表的电流与通过Rx 的电流相比就小的多,而采用电流表外置法可以使误差比较小。 例题:用伏安法测某电体电阻的实验: 1、实验原理是 。 2、在连接电路的过程中,开关始终是 的。(填“断开”或“闭合”) 3、画出实验的电路图。 4、根据图7-5所示实物连接情况,闭合开关前滑片P 若在B 端,线的M 端应接滑动变阻器的 端。(填“A ”或“B ”,并在图中连接) 图7-5 图7-6

5、滑片P移动到某一位置时,电流表、电压表读数如图7-6所示。 I= 安,U= 伏,导体的电阻R= 欧。 6、这种测法使得测量值(偏大,偏小)。适合于测量阻值比较(大,小)的电阻。 分析:伏安法测电阻是初中测量电阻的常规方法。在实验的过程中开关要处于断开状态,主要是培养学生形成良好的实验习惯,在电路连接的过程中药注意电压表电流表的式样方法,读数时,注意量程的选择以及对应的分度值。这个实验室采用了电流表外接法,电流表测量值偏大,所以电阻值偏小。这种测量方法适合于测量阻值比较小的电阻。 答案:1、伏安法。2、断开。3、4、 A.。5、0.5;偏小;小

水准测量的误差来源及控制

水准测量的误差来源及控制

浅析水准测量的误差来源及控制方法 0勘察设计过程中水准测量的问题 水准测量是采用几何原理,利用水平视线测定两点间高差。仪器使用水准仪,工具是水准尺和尺垫。公路工程测量一般使用DS 3型微倾式自动安平水准仪,每公里能达到的精度是3mm,水准仪在一个测站使用的基本程序是安置仪器、粗略整平、瞄准水准尺、精确整平和读数。我们在实际勘测过程中按这个顺序施行,在每一水准点段测完后复核结果。 同一条公路采用同一个高程系统,测量方法是基平与中平同时测量,两台水准仪同时观测一个水准尺,间视和转点由两个人立水准尺,但两台水准仪总是同时观测一个水准尺进行读数,一个水准点段测完后检核,在每一测站,没有检查、复核,为误差的积累创造了条件,容易返工,耽误时间、浪费人力。通过工程实践证明,这一方法经常出现错误,节选五个水准点连续错误中的一个测段结果如表1.1和1.2所示: 表1.1 廊泊一级公路BM4至BM5水准点外业测量结果 点号 后视 视线高 间视 前视 高程 点号 后视 视线高 间视 前视 高程 BM4 3.300

3.286 15.529 557.8 1.483 15.765 1.450 14.282 254.6 1.442 14.308 600 1.386 14.379

1.424 14.326 650 1.357 14.408 314.6 1.425 15.715 1.460 14.290 700 1.672 16.005

14.333 344.6 1.420 14.295 750 1.482 14.523 374.6 1.387 14.328 800

误差分析-热敏电阻

用非平衡电桥研究热敏电阻 摘要:文本结合用非平衡电桥研究热敏电阻实例来探讨用origin 软件做数据处理的方法, 并分析其优势。 关键词:非平衡电桥,直线拟合 1 热敏电阻 热敏电阻是一种电阻值随其电阻体温度变化呈现显著变化的热敏感电阻。本实验所选择为负温度系数热敏电阻,它的电阻值随温度的升高而减少。其电阻温度特性的通用公式为: T B T Ae R = (1) 式中T 为热敏电阻所处环境的绝对温度值(单位,开尔文),今为热敏电阻在温度T 时的电阻值,A 为常数,B 为与材料有关的常数。将式(l)两边取对数,可得: T B A R T +=ln ln (2) 由实验采集得到T R T -数据,描绘出T R T 1 - ln 的曲线图,由图像得出直线的斜率B ,截距A ln ,则可以将热敏电阻的参数表达式写出来。 2 平衡电桥 电桥是一种用比较法进行测量的仪器,由于它具有很高的测t 灵敏度和准确度,在电 测技术中有较为广泛的应用,不仅能测量多种电学量,如电阻、电感、电容、互感、频率及电介质、磁介质的特性;而且配适当的传感器,还能用来测量某些非电学量,如温度、湿度、压强、微小形变等。在“测量热敏电阻温度特性”实验中用平衡电桥来测量热敏电阻的阻值,其原理如下: 在不同温度下调节电阻3R 的大小,使检流计G 的示数为0,有平衡电桥的性质可知 1 2 3 R R R R x = .在实验时,调节1R 和2R 均为1000欧姆。则x R 的值即为3R 的值。 3 非平衡电桥原理

图1 非平衡电桥的原理图如图1所示。非平衡电桥在结构形式上与平衡电桥相似,但测量方法上有很大差别。非平衡电桥是使1R 2R 3R 保持不变,x R 变化时则检流计G 的示数g I 变化。再根据“g I 与x R 函数关系,通过测量g I 从而测得x R 。由于可以检测连续变化的g I ,从而可以检测连续变化的x R ,进而检测连续变化的非电量。 4 实验条件的确定 当电桥不平衡时,电流计有电流g I 流过,我们用支路电流法求出g I 与热敏电阻x R 的关系。桥路中电流计内阻g R ,桥臂电阻1R 2R 3R 和电源电动势E 为已知量,电源内阻可忽略不计。 根据基尔霍夫第一定律和基尔霍夫第二定律,通过一些列的计算可求得热敏电阻x R E R R R R R R R R R R R I R R R R R R R R R I E R R R g g g g g g x 113213132213232132)()(+++++++-= 5 用非平衡电桥测电阻的实例 已知:微安表量程Ig=100μA ,精度等级f=级,温度计的量程为100 t 100 95 90 85 80 75 70 65 60 55 50 45 40 35 Ig T 373 368 363 358 353 348 343 338 333 328 323 318 313 308 Rt 951 1032 1140 1255 1380 1541 1749 1985 2255 2527 2850 3660 3991 4398

电阻测量的方法及误差分析

电阻测量的方法及误差分析 测量电阻的实验,因其能较好的体现《高中物理教学大纲》中有关实验能力的要求,因此在近几年的高考试题中频繁出现。通过引导学生对电阻测量实验的思考与分析有利于培养和提高学生设计实验能力、创新能力等诸多实验能力。 一、电阻测量的基本——伏安法 伏安法测电阻,其电路结构有两种可能的情况:当R V >>R X 时,采用图1的电路测量R X 会更精确些,但是其测量值I U R x =,仍会小于其真实值 V I I U R -=0;当R X >>R A 时采用图2的电路测量R X 会更精确些,但是其测量值I U R x =仍会大于真实值 I U U R A -=0。这就要求在测量前要先判断是采用安培表内接法,还是采用安培表外接法。由此可知:伏安 法测电阻将无法避免地存在系统误差。 二、测量的基本仪器——欧姆表 欧姆表的工作原理图如图3所示:其满偏电流对 应于R X =0,即g g R r R E I ++=;电流为0时对应于R X →∞;而当R X 为某一值时有X g g R R r R E I +++= :,由此可知I 随R X 的增大而减小,I 与R X 存在着对应的关系,这样如果将G 表中的电流刻度值改刻为对应的电阻值,那么原本为电流计的G 表就成了一个测量电阻的仪器——欧姆表。

由X g g R R r R E I +++=可知,因I 不与RX成反比,故欧姆表上的刻度不可能是均匀的,这样势必带来读数时较大的偶然误差;又因为I 与E 、r 均有关,而当电池用久之后E 、r 都要发生变化,这样必然带来系统误差。 综上可知:上述两种测量电阻的方法虽然是基本的、学生容易掌握的方法,但是都将不可避免的带来系统误差。为了减小误差,从伏安法测电阻的原理出发,引导学生设计一些更为完善的实验方法来测电阻,这样有利于拓展学生的思维,培养学生的创造能力。 三、用伏特表或安培表测电阻 由伏安法测电阻可知:其系统误差来源于安培表、电压表的内阻,因此减少它们的内阻给实验带来的影响成为改进实验的主要思路。 1、 用安培表测电阻。 如图4,根据串、并电路的有关特点,易得: I 1R X +I 1R A1=I 2R+I 2R A2,若R A1= R A2=0,即两表均是 理想表,则有I 1R X = I 2R :。可见,若我们选择相同的 两个理想的安培表,那么图4所示的实验的误差则只 是偶然误差了(1999年高考题19题就是由此而改编的)。 在图4的实验中要找到:R A1= R A2=0的两个理想 安培表是有一定困难的,因此系统误差也是不可避免 的。若必用图5所示的实验,当调节电阻箱R 2的阻 值使G 表的电流为零时,则A 、B 两点的电势相等, 由串、并联电路的特点和性质,易得R 2R X = R 1R 2: 。图 4 图5

伏安法测电阻的误差分析(精)

伏安法测E、r误差分析的三种方法 实验常进行误差分析,下面就伏安法测电源的电动势和内阻实验谈三种误差分析的方法。 一、公式法 伏安法测电源的电动势和内阻实验通常有两种可供选择的电路,如图1、图2所示,若采用图1电路,根据闭合电路欧姆定律,由两次测量列方程有 E测=U1+I1r,E测=U2 +I2r E测= 解得I2U1-I1U2U-U2,r测=1I2-I1I2-I1 若考虑电流表和电压表的内阻,应用闭合电路欧姆定律有: ??U?U?E真=U1+ I1+1?r,E真=U2+ I2+2?rRV?RV??? 解得E真=I2U1-I1U2U1-U2>E测,r真=>r测U1-U2U1-U2I2-I1-I2-I1-RVRV 即测量值均偏小。若采用图2电路,若考虑电流表和电压表的内阻,应用闭合电路欧姆定律有 E真=U+I1(r+RA),E真=U2+I2(r+RA) 解得 E真= I2U1-I1U2U-U2 =E测,r真=1-RA

I真=I测+ 培表的示数)比真实值偏小, 伏特表的内阻)。因对于任意一个 U RV(U为伏特表的示数,RV为 ,总有 U值I真>I测 ,其差值 ?I=I真-I测= U测-I测 图线AB和修正后的电源真实 U RV,随U的减小而减小;当U=0时,△I=0。画出 U真-I真 图线AC,如图3所示, 。 比较直线AB和AC纵轴截距和斜率,不难看出 E测< E真,r测

电桥测电阻误差分析

电桥测电阻误差分析 刘凯歌 (徐州师范大学科文学院08自动) 摘要从惠斯通电桥基本原理出发,讨论了不易桥臂与易桥臂法测电阻的误差计算方法。对检流计的电流灵敏度、电桥调节灵敏度及电桥灵敏度进行了分析。详细介绍了调节误差σRx 的测量方 关键词电桥;误差分析;调节误差 惠斯通电桥测电阻是一种利用比较法精确测量电阻的方法。但要使实验结果有很高的可信度,就必须对实验过程进行分析,分析可能引入的误差,对所测数据进行处理。对此文中将从实验原理出发,分析影响电桥灵敏度的因素。详细分析各种误差,总结得出了电阻箱在新的检定规程下由等级引人误差的计算公式 1电桥原理用惠斯通电桥测电阻常采用不易桥臂与易桥臂两种方法,原理如图1所示。1.1不易桥臂法原理 如图1所示,Rx 为待测电阻,Rs 为选定的调节电阻,实验时根据Rs 的大致范围选定适当的桥臂。比例K=R A /R B ,只调节Rs 使电桥平衡。电桥平衡时有: R A /R B =Rx/Rs (1)根据上式便可计算出Rx 值。 1.2互易桥臂法原理 测量电路如图1,选定适当的桥臂比例k ,调节Rs 为Rs 1时电桥平衡,则根据式(1)有: Rx=R A ÷R B ×Rs 1(2) 将R A 与R B 互易桥臂,但不改变它们的大小,此时电桥平衡被破坏,重新调节R 、至R 二时电桥又处于新的平衡状态,根据式(1)有: Rx=R A ÷R B ×Rs 2(3) R A R B R S Rx

由(2)和(3)式可得: R x^2=Rs1Rs2(4) 2电桥灵敏度M 2.1检流计电流灵敏度S 若内阻为R g:的检流计中有δI电流变化时,检流计指针偏转格数为δθ,则检流计的电流灵敏度s为: S=δθ/δI=Rg·δθ/δV(5) 式中δV为检流计两端电压变化。 2.2电桥调节灵敏度N 若调节电阻Rs变化δRs时,检流计指针偏转格数为δθ,则该电桥的调节灵敏度N为: N=δθ/δRs:(6) 2.3电桥灵敏度M, 电桥调节与检流计的组合灵敏度称为电桥灵敏度,它在数值上等于电桥桥臂有单位相对不平衡值δRs/Rs时,所引起检流计相应偏转格数δθ即: M=δθ/(δRs/Rs)(7) 式(6)代人式(7)有: M=N·Rs(8) 实验时由于电桥灵敏度的限制,当电桥有微小不平衡时,并不能从检流计中观察到,要提高测量结果的准确度,提高电桥的灵敏度是一个很重要的方面。下面分析影响灵敏度的因素。 电桥平衡时,若调节Rs有一增值δRs,电桥平衡就被破坏,如图1示,BD间就会产生一电压δV,检流计指针亦会显示出相应的偏转格数δθ,设电桥的工作电压V AC=V,K2断开时有:

水准测量误差分析及注意事项分析

龙源期刊网 https://www.wendangku.net/doc/702119953.html, 水准测量误差分析及注意事项分析 作者:赵杰 来源:《中国房地产业·下半月》2017年第01期 【摘要】在测量工作中,高程测量是一项不可缺少基本工作,一般使用的测量方法有三角高程测量与水准测量等,在高程测量中,水准测量具有较高的测量精准度。分析了水准测量误差分析及注意事项,以减弱水准测量误差影响。 【关键词】水准测量;误差;影响 因为多重因素的影响,如,外界环境及仪器等,不利把控水准测量。产生的错误不容易发现,使得基础资料不准确,进而导致水准点间高差出现错误,对工程施工造成直接影响,带来时间及经济损失。所以,分析水准测量误差的影响影响很重要。 1、水准测量误差分析 测量中难免存有误差,按照水准测量误差产生原因不同,可将误差划分为三个方面:外界条件引起的误差、仪器误差、观测误差。 1.1外界条件引起的误差 1.1.1地球曲率与大气折光误差 地球曲率影响高程测量,这点不能忽略,如果视距为100m,高程方面误差接近1mm,影响较大。该误差类1以于水准管轴不平行视准轴,以前后视距离相等的方法可消除该误差对高差带来的影响。地面上空气密度以梯度呈现,光线进入各密度媒介时,产生折射,通常从疏媒介向密媒介折射,因为水准仪视线不理想。通常大气层上层空气密度疏,下层空气密,视线经过大气层,变成了向下弯曲的曲线,导致尺上读数变小,与水平线出现差值,也就是遮光差。 山地连续下坡或上坡时,前后视线和地面的高度增大,遮光差产生的影响越来越大,体现相应的系统性,需要减少视线长度,提升视线高度,以此,将大气遮光影响减至较低。 如果天气晴朗,接近地面的温度比较高,使得下层空气密度相对较稀,这时视线变成了向上弯曲的曲线,导致尺上读数变大。视线线越接近地面,产生的折射越大,所以,通常视线要高出地面一定高度,比地面高出0.5m,就是为了减弱这种影响。如果地面平坦,地面覆盖的物体大致相同,前视距与后视距是相等的,前视距与后视距具有相同的遮光差方向,大小大致相同,能够很大程度上消除遮光差影响。 1.1.2尺子与仪器下沉误差

电阻测量方法汇总

电阻测量方法汇总 电阻的测量是恒定电路问题中的重点,也是学生学习中的难点。这就要求学生能够熟练掌握恒定电路的基本知识,并能够灵活运用电阻测量的六种方法,从而提高学生的综合分析问题、解决问题的能力。 一.欧姆表测电阻 1、欧姆表的结构、原理 它的结构如图1,由三个部件组成:G 是内阻为Rg 、 满偏电流为Ig 的电流计。R 是可变电阻,也称调零电阻, 电池的电动势为E ,内阻为r 。 欧姆档测电阻的原理是根据闭合电路欧姆定律制成的。 当红、黑表笔接上待测电阻Rx 时,由闭合电路欧姆定律可知: I = E/(R+Rg+Rx+r )= E/(R 内+R X ) 由电流的表达式可知:通过电流计的电流虽然不与待测电阻成正比,但存在一一对应的关系,即测出相应的电流,就可算出相应的电阻,这就是欧姆表测电阻的基本原理。 2.使用注意事项: (1) 欧姆表的指针偏转角度越大,待测电阻阻值越小,所以它的刻度与电流表、电压表刻度正好相反,即左大右小;电流表、电压表刻度是均匀的,而欧姆表的刻度是不均匀的,左密右稀,这是因为电流和电阻之间并不是正比也不是反比的关系。 (2)多用表上的红黑接线柱,表示+、-两极。黑表笔接电池的正极,红表笔接电池的负极,电流总是从红笔流入,黑笔流出。 (3)测量电阻时,每一次换档都应该进行调零 (4)测量时,应使指针尽可能在满刻度的中央附近。(一般在中值刻度的1/3区域) (5)测量时,被测电阻应和电源、其它的元件断开。 (6)测量时,不能用双手同时接触表笔,因为人体是一个电阻,使用完毕,将选择开关拨离欧姆档,一般旋至交流电压的最高档或OFF 档。 二.伏安法测电阻 1.原理:根据部分电路欧姆定律。 2.控制电路的选择 图 1 图2

公路水准测量中误差分析及减小误差的措施(精)

公路水准测量中误差分析及减小误差的措施 摘要:水准测量是确定公路工程地面点高程的方法之一,是高程测量中精度较高且常用的方法。实施过程中,需要几个人共同合作才能完成,误差允许范围内的精度由于仪器和人为的影响而不容易控制,而且易出现隐蔽性错误,如果不能及早发现,基础资料容易出现错误,从而水准点高程不正确,直接影响路线纵断面设计与施工。 关键词:公路工程水准测量误差高程 公路工程测量贯穿于工程全过程,意义重大,而水准测量是确定公路工程地面点高程的方法之一,是高程测量中精度较高且常用的方法。测量误差影响因素较多且不容易控制,本文通过分析施工过程中水准测量的问题及水准测量误差的影响因素从而提出如何有效控制水准测量误差的措施。 1 水准测量的现状 现在应用水准点与中桩分开观测的方法,水准点观测采取往返测量,成果整理要求高差闭合差fh容(fh容=Σh往+Σh返)达到平原微丘区三等水准测量的精度不大于±20?L(1/2)。平原微丘地区影响水准测量精度的主要因素是水准路线的长度,长度越长,精度越低。山区,则是测站,测站越多,精度越低。 2 施工过程中水准测量的问题 水准测量是采用几何原理,利用水平视线测定两点间高差。仪器使用水准仪,工具是水准尺和尺垫。公路工程测量一般使用DS3型微倾式自动安平水准仪,每公里能达到的精度是3mm,水准仪在一个测站使用的基本程序是安置仪器、粗略整平、瞄准水准尺、精确整平和读数。我们在实际勘测过程中按这个顺序施行,在每一水准点段测完后复核结果。 同一条公路采用同一个高程系统,测量方法是基平与中平同时测量,两台水准仪同时观测一个水准尺,间视和转点由两个人立水准尺,但两台水准仪总是同时观测一个水准尺进行读数,一个水准点段测完后检核,在每一测站,没有检查、复核,为误差的积累创造了条件,容易返工,耽误时间、浪费人力。通过工程实践证明,这一方法经常出现错误,节选五个水准点连续错误中的一个测段结果如表1.1和1.2所示: 表1.1某一级公路BM4至BM5水准点外业测量结果 点号后视视线高间视前视高程点号后视视线高间视前视高程BM4 3.300 15.750 3.286 15.529 557.8 1.483 15.765 1.450 14.282 254.6 1.442 14.308 600 1.386 14.379 284.6 1.424 14.326 650 1.357 14.408 314.6 1.425 15.715 1.460 14.290 700 1.672 16.005 1.432 14.333 344.6 1.420 14.295 750 1.482 14.523 374.6 1.387 14.328 800 1.476 14.529 406.2 1.493 15.716 1.492 14.223 850 1.488 16.021 1.472 14.533 ZD1 1.175 15.732 1.159 14.557 900 1.475 14.546 C6 1.415 14.317 950 1.428 14.593 437.8 1.425 14.307 K4 1.540 16.204 1.357 14.664

(完整word版)伏安法测电阻及误差分析

第二单元 恒定电流 伏安法测电阻及误差分析 【原理】伏安法测电阻是电学的基础实验之一。它的原理是欧姆定律IR U =。根据欧姆定律的变形 公式I U R = 可知,要测某一电阻x R 的阻值,只要用电压表测出x R 两端的电压,用电流表测出通过x R 的电流,代入公式即可计算出电阻x R 的阻值。 【内接法与外接法】由于所用电压表和电流表都不是理想电表,即电压表的内阻并非趋近无穷大,电流表也存在内阻,因此实验测量出的电阻值与真实值不同,存在误差。为了减少测量过程中的系统误差,通常伏安法测电阻的电路有两个基本连接方法:电流表内接法和电流表外接法(如图1所示),简称内接法和外接法。 图1 电路图 【误差分析】对于这两个基本电路该如何选择呢?下面从误差入手进行分析。 外接法: 误差分析方法一: 在图2的外接法中,考虑电表内阻的存在,则电压表的测量值U 为R 两端的电压,电流表的测量值为干路电流,即流过待测电阻的电流与流过电压表的电流之和,此时测得的电阻为R 与v R 的并联总电阻,即: R R R R I U v v +?==测R <R (电阻的真实值) 此时给测量带来的系统误差来源于v R 的分流作用,系统的相对误差为: 100%R R 11 100%R R v ??= + =-测R E (1) 误差分析方法二: 当用外接法时,U 测=U 真,I 测=I V +I 真>I 真 ∴测出电阻值R 测= 测 测I U = 真 真+I I V U <R 真,即电压表起到分流作用,当R 越小时,引起误差越小,说明该 接法适应于测小电阻。 内接法: 误差分析方法一: 在图3内接法中,电流表的测量值为流过待测电阻和电流表的电流,电压表的测量值为待测电阻两端的电压与电流表两端的电压之和,即: R R I U A +==测R >R (电阻的真实值) 此时给测量带来的系统误差主要来源于A R 的分压作用,其相对误差为: 100%R R R R R E A ?= -= 测 (2) 误差分析方法二: 当用内接法时,I 测=I 真,U 测=U A +U 真>U 真 ∴测出电阻值R 测= 测 涡I U = 真 真 +I U A U >R 真,即电流表起了分压作用。当R A 越小时引起误差越小,说明该 接法适应于测大电阻。 综上所述,当采用电流表内接法时,测量值大于真实值,即“内大”;当采用电流表外接法时,测量值小于真实值,即“外小”。从(1)式可知,只有当V R 》R 时,才有→E 0,进而有R =测R ,否则电表接入误差就不可忽略。同样,从(2)式也可以得到,只有当A R 《R 时,才有→E 0,进而R =测R 。 图2 外接法 图3 内接法

测电源电动势和内电阻的三种误差分析

测电源电动势和内电阻的三种误差分析 河南省信阳高级中学 陈庆威 2016.12.14 用电流表和电压表测电源电动势和内电阻的实验是高中物理电学中的一个重要实验,也是电学实验中的一个难点。教材中给出了如图甲所示的实验方案,但同学们对教材中所给的测量电路图体会不深,认为把电流表放在支路中(如图甲所示)和放在滑动变阻器的干路中(如图乙所示)效果是一样的。下面我们从两种实验方法所产生的系统误差角度来加以论述。由于同学们的知识所限,课堂上一般采用定量计算的方法和用图象进行定性分析的方法,对于参加过竞赛培训的同学还可以用戴维宁定理(等效电压源定理)来定量分析。 1.定量计算的方法 设电源的电动势和内电阻的真实值分别为ε和r ,电源的电动势和内电阻的测量值分别为ε'和r '。电流表和电压表的内阻分别为A R 和V R 。滑动变阻器从右向左移动,得到的两组示数分别为(U 1,I 1)和(U 2,I 2)。 对于图甲所示电路: 如果不考虑电压表和电流表的内阻,由闭合电路欧姆定律有: 1122U I r U I r εε''=+??''=+? 解得:12212112 21U I U I I I U U r I I ε-?'=?-??-?'=?-? 这就是电动势和内电阻的测量值。 如果考虑电压表和电流表的内阻,由闭合电路欧姆定律有: 111222()()V V U U I r R U U I r R εε?=++????=++?? 解得:12212121122121V V U I U I U U I I R U U r U U I I R ε-?=?--+???-?=-?-+?? 这就是电动势和内电阻的真实值。

八、电阻测量及误差分析

八.电阻测量方法及误差分析 1.伏安法:(有内接法和外接法) 1)内接法.真真测 测测R R R I U R A >+== 2)外接法.真真真测测沿R R R R R I U R V V <+= 2.安安法:当已知电流表的内阻时可当做电压使用.1 21112A A A A A A V R R I I R I I I U I U R -=-==,无误差 3.伏伏法:当已知电压表内阻时可以当做电流表使用 2 1122111 1221121V V V V V V V V V V V V VA V V R R R U R U R R U R U R U U I I U I U R -= -=-== 无误差. 4..代替法:调节R 1,使得S 2接a 、b 时A 2的读数相同,则R 2=R A1。无误差。 5.半偏法:在R>>R G 的前提条件下,闭合S 2使得电流计的指针偏角减为原来的一半。由于总电流几乎不变,所以G I =1R I '′则R1=R G 。R 1可读,则R G 可测。 误差分析:由于在闭合S 2时总电流增大一点,所以G I 略小于总电流的一半,G I 略小于1R I ',R 1 略小于真实值。 例题;若在闭合S 2时使得电流表指针偏角为原来的1/n ,则R 1与R G 的关系怎样? 6.欧姆表由于E 、r 变化引起的误差: 1)对于标准欧姆表(E 、r 均为准确值) 调零时:内R E R R r E I I g g =++==,g g I E R R r R =++=内 测量R X 时:内 R R E I x X += 2)当E 不变,r 变大为r ′时, 待 ∞ R 中=R 内 0 Ig 3R 内 A Ω

电学实验中电阻测量的误差分析

电学实验中电阻测量的误差分析 罗仲民 (吉安县立中学343100) 在电学实验中,误差分析是实验考查的重点,无论从实验原理、实验电路及实验器材的选取中均要考虑从减小误差的角度入手,更何况一般试题中给定了实验方法后,还需分析误差的来源和比较测量值与真实值之间的关系。因此,电学实验中误差分析着实既是学生学习的重点,也更是处理时的难点。在此,就电学实验中对实验原理误差分析的几种常用方法分析,以供参考。 在解读误差时,关键在于理解实验原理及其表述,下面以闭合电路中测电源电动势及内阻为例分析。 比较以下两种电路对电源电动势和内阻的测量产生的误差。

1、实验原理:闭合电路欧姆定律。 2、误差来源:甲电路中是由于电压表的分流作用; 乙电路中是由于电流表的分压作用。 3、误差分析: (1)图象分析法:理解图象中坐标轴的物理意义 用u I -图象,u 轴表示路端电压,I 轴表示外电路总电流。 ①对甲电路分析:设由测量值作出的u I -图线如图中实线所示(图丙) A .任意取图线上一点P(1I ,1u )分析,1u 为电压表示数,能反映P 状态时路端电压,但1I 只表示了通过R 的电流,实际电流应加上此时通过电压表的电流,'1 1111v u I I I I I R =+?=+>,状态值应由''11(,)P I u 变为P 。 (V R 指电压表内阻) B .又因R 与电流表短路时,电压表不存在分流作用,即电压表内阻并未引起误差。可知短路时应为B 状态。 综合A 、B 两点可知,电源的伏安图线应为过B 和'P 的连线(如图中虚线),比较两图线可得,E E r r <<测测真真 'A 'U A U

水准测量、水平角测量误差分析

水准测量误差分析 水准测量误差误差产生的原因误差消除和消弱的方法 (注意事项) 仪器误差水准仪误差水准管轴与视准轴不平行引 起的 采用前后视距相等的方 法 水准尺误差水准尺分划不准确、尺长变 化、尺身弯曲 选用符合要求的水准尺水准尺零点误差水准尺底部磨损引起的使测段的测站数为偶数 观测误差水准管气泡居中误差水准管气泡没有居中引起的使气泡严格居中 读数误差在水准尺上估读毫米数引起 的 根据观测精度,选择相应 等级的水准仪和视线长 度 视差十字丝平面与水准尺影响不 重合引起的 仔细调节物镜对光螺旋水准尺倾斜误差水准尺没有立直引起的将尺子扶直 外界条件的影响仪器下沉误差在松软的地方安置水准仪,由 于水准仪产生下沉引起的 采用“后、前、前后”的 观测程序 尺垫下沉误差由于尺垫下沉引起的采用往返观测的方法 地球曲率及大气折光误差由于地球曲率及大气折光引 起的 采用前后视距相等的方 法 温度变化误差由温度变化引起的采用撑伞遮阳的方法并 注意选择有利的观测时 间

水平角测量误差分析 水平角测量误差误差产生的原因误差消除和消弱的方法 (注意事项) 仪器误差仪器校 正后的 残余误 差 视准轴误差由于视准轴不垂直于横轴引 起的 采用盘昨、盘右观测取平均 值的方法 横轴误差由于横轴不垂直于竖轴引起 的 采用盘昨、盘右观测取平均 值的方法 竖轴倾斜误 差 由于水准管轴不垂直于竖轴 引起的 测量前应严格检校仪器,观 测时仔细整平 仪器加 工不完 善引起 的误差 度盘偏心差照准部旋转中心与水平度盘 的分划中心不重合 采用盘昨、盘右观测取平均 值的方法 度盘刻划误 差 由度盘刻划不均匀造成的采取各测回变换度盘位置的 方法 观测误差仪器对中误差仪器中心与测站中心不在同 一铅垂线上 严格对中 目标偏心误差由于标杆倾斜引起的标杆应竖直,并尽可能瞄准 底部 照准误差由人眼通过望远镜瞄准目标 引起的 选择适宜的观测标志及有利 的观测时间 读数误差由人眼的鉴别能力及读数设 备引起的 根据观测精度要求选择相应 等级的经纬仪 外界条件影响带来的误差由气候、松软的土质、温度的 变化和大气折光引起的选择有利的观测条件,尽量避免不利因素的影响

相关文档
相关文档 最新文档