文档库 最新最全的文档下载
当前位置:文档库 › 汉恒生物无缝克隆试剂盒使用说明(附原理)

汉恒生物无缝克隆试剂盒使用说明(附原理)

汉恒生物无缝克隆试剂盒使用说明(附原理)
汉恒生物无缝克隆试剂盒使用说明(附原理)

HB-infusion TM无缝克隆试剂盒使用说明

(附原理说明)

一、产品简介

HB-infusion TM无缝克隆试剂盒是一种新型、快速并且高效的Gibson Assembly DNA定向克隆技术,可以在任意载体的任意位置一次插入多个目的基因片段。HB-infusion TM无缝克隆试剂盒操作极其简单,仅需在载体的克隆位点进行线性化,并在插入片段PCR引物的5’端引入与载体克隆位点两端完全一致的15~25 bp同源序列(图1,图3)。将上述线性化的克隆载体和带有同源序列的PCR片段按合适比例混合,并加入HB-infusion TM Master mix,通过反应体系中DNA外切酶、DNA聚合酶以及连接酶的在50℃反应20 min即可快速完成定向克隆,阳性率几近100%。

图1. HB-infusion TM快速克隆试剂盒原理示意图。1. 线性化目的载体(左上);2. PCR获取目的片段。设计的引物5’需要和线性化载体末端有15~25 bp的重叠(图中蓝色和黄色片段,细节可参考图3);3. 按照一定比例把二者混合在HB-infusion TM的2?预混液内,50?C反应20 min后直接转化E.coli即可。

二、HB-infusionTM试剂盒的优点

1. 相比于传统的同源重组的无缝克隆方法进行,HB-infusion TM试剂盒更高效,操作更简单,只需要一次反应即可完成定向克隆;

2. 对酶切位点无要求,可以把目的片段插入到任意载体的任意位点;

3. 连接片段之间不会引入任何其他序列;

4. 可以同时克隆多个片段。

三、产品包装

四、使用说明

汉恒生物建议2-3个片段连接时,DNA片段的使用总量为0.02~0.5 pmols,4~6片段连接时加入的DNA总量为0.2~1.0 pmols。DNA拼接效率随着拼接片段的数量增加或者拼接片段长度的增加逐渐降低。

附:片段摩尔数量计算公式:

pmols=片段质量(ng)?1000/(碱基对数?650 daltons)(碱基数越多,pmols越少;质量越大,pmols越多),举例如下:

注:50 ng的5000 bp(0.015 pmols)的线性化dsDNA和10~25 ng(0.03~0.075 pmols)500 bp的PCR产物体系(PCR产物和线性化载体的摩尔比=2:1~5:1)。

五、操作步骤

1. 制备线性化载体和插入片段

1.1. 载体制备---线性化处理

A.质粒酶切法

在目标载体质粒上选取合适的位点进行单酶切或双酶切,对酶切后的载体进行割胶纯化。

注:1. 为了降低载体自连背景,提高阳性率,建议采用双酶切载体质粒。酶切最好能切出一个较大片段,这样回收的目的条带可以和没有切开的质粒明显分开。

2. 质粒单酶切容易造成载体切割不完全和自连,导致假阳性的产生。因此,必须单酶切的时候建议延长酶切时间并脱磷处理(酶切2h-过夜,CIP处理20 min),同时做好空载的对照。

3. 请务必跑胶回收线性化的载体,否则非线性化质粒会带来极高的背景。

4.一种特殊情况:如果采用双酶切彻底线性化载体,而插入片段又没有双酶切的识别位点,也可以跳过纯化步骤,只需热失活内切酶即可用于下一步拼接反应。

B.质粒PCR法

图2. PCR法线性化载体示意图。在插入位点两侧设计一对方向相反的引物对载体进行扩增,通过跑胶回收获取线性化载体片段。

选取合适的位点,设计正向和反向引物直接进行载体质粒的PCR扩增,一般载体长度均大于3 kb,建议采用高保真的DNA聚合酶扩增。为了避免模板质粒DNA对后续试验的影响,建议对PCR扩增后的线性化载体进行割胶纯化,去除环状模板质粒,提高阳性率。

1.2. 目的插入片段制备

设计引物进行目的片段PCR扩增,引物设计要保证目的片段两端有15~25 bp序列与线性化载体的两端一致(重叠序列的Tm≥48?C,可以简单假设A-T碱基对=2?C,G-C碱基对=4?C)便于拼接反应的进行。PCR引物包括5’端与载体同源的15~25 bp以及目的片段特异性序列20~25bp(见下图3)。PCR产物经跑胶纯化待用。

图3. 采用HB-infiusion TM试剂盒时PCR上下游引物设计示例。针对双酶切法线性化载体设计插入片段的PCR引物,其重叠区域为15~25 bp+酶切位点,这样重组成功的质粒上会完好保留此两个酶切位点。如果是PCR法线性化载体,扩增插入片段的PCR引物5’端直接设计成与线性化载体末端15~25 bp重叠即可。

2. 冰上融化并且充分混匀HB-infusion TM Master mix,配制反应体系

3. 上述反应体系置于50℃孵育20 min(2-3个片段拼接)/60 min(4-6个片段拼接)。反应完成之后如不能马上进行后续操作可将反应样品暂储存于-20℃。

4. 转化感受态菌

4.1. 在冰上融化一支50μl的DH5a感受态菌(配合汉恒生物专门为该试剂盒研制的感受态细胞,效果更佳)。

4.2. 取2 μl第3步中的反应样品加入融化好的感受态菌中,轻轻混匀,不能震荡混匀。将该混合物置于冰上30 min。

4.3. 轻轻摇匀后放入42℃水浴中1~2 min进行热激,然后迅速放回冰中,静置3~5min。

4.4. 在超净工作台中向上述各管中分别加入500 μl LB培养基(不含抗菌素)轻轻混匀,然后固定到摇床的弹簧架上37℃震荡1h,摇床转速250 rpm。

4.5. 在超净工作台中取上述转化混合液100~300 μl,分别滴到含合适抗菌素的固体LB平板培养皿中,用酒精灯烧过的玻璃涂布棒涂布均匀(注意:玻璃涂布棒上的酒精熄灭后稍等片刻,待其冷却后再涂)。37℃培养箱中培养过夜。4.6. 挑取平板上的克隆进行PCR或者酶切鉴定。

GibsonAssembly拼接DNA的原理说明

A

B

C

D

1.包含重叠区域的DNA片段均匀混在一起,Mix内的5‘外切酶可以从5’端消化DNA双链中一条链

(A);

2.重叠区域的DNA形成单链,在50°C配对(这一步不需要酶的参与)(B);同时外切酶的活性在50°

C会逐渐丧失;

3.DNA聚合酶从5‘-3’方向延伸(类似PCR中引物结合之后的延伸步骤)(C);

4.新延伸的链末端(3‘)和之前被5‘外切酶消化的链末端(5’)接触,在DNA连接酶的作用下缺口

连接一起,形成完好的链。至此拼接完成(D)。

分子克隆全过程

本文以大肠杆菌DH10B为例介绍外源基因在大肠杆菌中表达全过程 克隆步骤包括:模板制备(基因组DNA提取)-感受态细胞的制备-PCR-纯化回收-酶切-连接-转化-挑菌摇菌-质粒抽提-酶切鉴定-测序 1) 基因组DNA提取(以家蚕为例) 1. 取家蚕五龄后部丝腺约0.5g,于10ml匀浆器内,加2mlDNA抽提缓冲液,在 冰上充分研磨,转入5ml的离心管; 2. 加入RnaseA(10ul)至终浓度20ug/ml,37℃水浴1h; 3. 加入ProteinaseK(25ul)至终浓度100ug/ml,55℃水浴2h; 4. 分装到1.5ml eppendorff管,0.6ml/管; 5. 加入等体积的平衡酚(pH8.0),充分混匀,5000g,15min,取上清; 6. 重复5,再抽提1次; 7. 用等体积的酚/氯仿(1/1,v/v),氯仿各抽提1次 8. 将上清移入新离心管,加入1/10体积的3mol/L NaAc(pH 5.2),2倍体积的 无水乙醇,充分混匀,4℃过夜 9. 用牙签将絮状沉淀物挑出。用75%冰酒精洗涤3次,37℃控干; 10. 200μl 0.1 TE(pH8.0)溶解DNA; 11. 检测OD值; 12. 做好标记,以供进一步实验之用。 2) 感受态细胞的制备 1. -20℃冻藏的DH10B甘油菌在LB平板上复苏(划板),37℃,8-12小时; 2. 用灭菌牙签挑取单菌落,放入3ml LB培养基中,37℃振荡培养过夜; 3. 取100μl过夜培养物接种到另一3 ml LB培养基中,37℃振荡培养2~2.5 h, 使OD值在0.6左右(把握好浓度,OD值可以不用测);将菌液分装到1.5ml EP 管中(在超净台完成) 4. 5000 g离心4 min收集菌体,将菌体重悬于800 μl 75 mmol/L冷CaCl2中, 冰浴30 min;(CaCl2要用高纯度的,切记!) 5. 4℃,5 000 g离心4 min,弃上清; 6. 加入200μl 75 mmol/L冷CaCl2,轻轻敲打管壁,使混合均匀,冰上放4 h 后用于转化,或加0.1倍体积甘油混匀,-70℃保存备用。可以保存至少6个月。 3) PCR 1、PCR反应体系: ddH2O 37.7 μL 10×PCR buffer 5 μL (25mM) dNTP 4 μL 引物1/2 1μL/1μL Taq酶 0.3μL 模板 1μL PCR反应体系总体积 50 μL 充分混匀,稍离心。 2、PCR反应条件

【高中生物】功能基因的克隆及生物信息学分析

(生物科技行业)功能基因的克隆及生物信息学分析

功能基因的克隆及其生物信息学分析 摘要:随着多种生物全基因组序列的获得,基因组研究正从结构基因组学(structuralgenomics)转向功能基因组学(functionalgenomics)的整体研究。功能基因组学利用结构基因组学研究获得的大量数据与信息评价基因功能(包括生化功能、细胞功能、发育功能、适应功能等),其主要手段结合了高通量的大规模的实验方法、统计和计算机分析技术[1],它代表了基因分析的新阶段,已成为21世纪国际生命科学研究的前沿。功能基因组学是利用基因组测序获得的信息和产物,发展和应用新的实验手段,通过在基因组或系统水平上全面分析基因的功能,使生物学研究从对单一基因或蛋白的研究转向多个基因或蛋白同时进行系统的研究,是在基因组静态的组成序列基础上转入对基因组动态的生物学功能学研究[2]。如何研究功能基因,也成为我们面临的一个课题,本文就克隆和生物信息学分析在研究功能基因方面的应用做一个简要的阐述。 关键词:功能基因、克隆、生物信息学分析。 1.功能基因的克隆 1.1图位克隆方法 图位克隆又称定位克隆,它是根据目标基因在染色体上确切位置,寻找与其紧密连锁的分子标记,筛选BCA克隆,通过染色体步移法逐步逼近目的基因区域,根据测序结果或用BAC、YAC克隆筛选cDNA表达文库寻找候选基因,得到候选基因后再确定目标基因。优点是无需掌握基因产物的任何信息,从突变体开始,逐步找到基因,最后证实该基因就是造成突变的原因。通过图位克隆许多

控制质量性状的单基因得以克隆,最近也有报道某些控制数量性状的主效基因(控制蕃茄果实大小的基因克隆[3]、控制水稻成熟后稻谷脱落基因克隆[4]以及小麦VRN2基因克隆[5]等)也通过图位克隆法获得。 1.2同源序列克隆目的基因 首先根据已知的基因序列设计PCR引物,在已知材料中扩增到该片段,并经克隆测序验证,利用放射性同位素标记或其他非同位素标记该PCR片段作为探针,与待研究材料的cDNA文库杂交,就可以获得该基因cDNA克隆,利用克隆进一步筛选基因组文库,挑选阳性克隆,亚克隆并测序,从中就可以筛选到该基因的完整序列。 1.3结合连锁和连锁不平衡的分析方法 结合连锁和连锁不平衡的分析方法是未知基因克隆研究领域发展的新方向[6]。(Linkagedisequilibrium,LD)。与连锁分析不同,连锁不平衡分析可以利用自然群体中历史发生的重组事件。历史上发生的重组使连锁的标记渐渐分布到不同的同源染色体上,这样就只有相隔很近的标记才能不被重组掉,从而形成大小不同的单倍型片段(Haplotypeblock)。这样经过很多世代的重组,只有相隔很近的基因,才能仍处在相同的原始单倍型片段上,基因间的连锁不平衡才能依然存在。所以基于连锁不平衡分析,可以实现目的基因的精细定位。林木大多为自由授粉的异交物种,所以连锁不平衡程度很低,林木基因组中的LD可能会仅局限于非常小的区域,这就为目的基因的精细定位提供了可能,结合SNP检测技术,科学家甚至可以将效应位点直接与单个的核苷酸突变关联起来,进行数量性状寡核苷酸

分子克隆技术试卷

分子克隆技术 一、填空题 1.PCR反应中加入矿物油的作用是___________________________。 2.分子克隆实验中外源DNA和载体片段连接之前,要对载体进行去磷酸化处理,我 们在本次试验中去磷酸化使用的碱性磷酸酶是___________________________。它 的目的是___________________________。 3.用α互补筛选转化子是,带有外源片段的菌落显___________________________色。 4.Southern杂交中进行与杂交的目的是___________________________。 5.凝胶糖凝胶电泳时加入loading buffer作用是___________________________和 ___________________________。 6.影响琼脂糖凝胶电泳的因素主要有___________________________、 ___________________________、___________________________、 ___________________________、___________________________。 二、简答题 1.简述PCR反应体系中都有哪些成分及各成分的作用。 2.为得到质量较好的水稻RNA,抽提前应做如何准备?RNA抽提过程中、RNA的 保存及以后对RNA的操作过程中应特别注意什么? 3.简述为防止放射性同位素外照射及内照射对人体造成伤害,在操作放射性同位素 时,我们可以采取哪些措施进行防护? 4.简述影响电转化感受态细胞转化效率的因素有哪些? 5.质粒抽提时用到的SolutionI,SolutionII,SolutionIII及异丙醇分别起什么作用?操 作时应注意什么? 三、分析问答题 1.描述并图示pUC19载体DNA及其在HindIII位点克隆了外源DNA片段的质粒DNA 和水稻总DNA及它们的HindIII和BamH1酶切产物在琼脂糖凝胶电泳时的带型。 2.利用质粒载体克隆外源DNA片段主要包括哪些步骤?涉及到哪些工具酶?要获得 理想的结果,各步骤操作中应主要注意哪些事项? 3.在Southern杂交实验中,同一根杂交管内的膜曝光的····(原卷此处不清晰)冲 洗后,有些组X光片信号很强,有些组信号很弱,有的样品点样孔附近有较强的 信号,但是有的地方信号较弱,请分析造成这种结果的可能原因。 4.下面是本次课生物技术班某组β-active基因RT-PCR(反转录前没有对总RNA进 行去除DNA 的处理)试验的琼脂糖凝胶电泳图,凝胶上共点了6个样,PCR使用 的模板从左至右分别是:该组提取的水稻总DNA,该组提取的水稻总RNA,该组 的4个反转录产物。(原卷本题图不清晰) 请问: 提取的RNA的质量如何? RT-PCR是否成功?为什么会出现这样的结果? 有哪些地方需要改进?

分子克隆——主要步骤

笔记3(分子克隆2——主要步骤) 分子克隆可以分为以下几个步骤: 分离制备待克隆的DNA片段————将靶DNA片段与载体在体外进行连接————重组DNA分子转入宿主细胞————筛选、鉴定阳性重组子————重组子的扩增。 1.带有目的基因的DNA片段的获得: 可以用限制内切酶降解基因组DNA,再配合使用其他实验手段得到待定的DNA片段,可以用超速离心的方法分离出具有特定核苷酸组成的DNA片段,可以用mRNA做模板,用反转录酶合成互补DNA,即cDNA,也可以用化学合成的方法直接合成一段DNA。 2.重组DNA分子的构建: 重组DNA分子中包括两部分,一部分是外源DNA,即目的DNA片段,另一部分是载体DNA。用作载体的,有质粒、噬菌体或病毒DNA。它们的基本特征是能够独立复制。如果用同一种限制性内切酶切割这两种DNA,则它们的末端完全相同,由于有互补的单链末端序列存在,在连接酶的作用下,就可以形成重组DNA 分子。在没有互补单链末端的情况下,也可以用酶学方法造成一个互补单链末端之后再进行连接。

3.重组DNA分子的转化和重组克隆的筛选: 重组DNA分子必须进入宿主细胞中,才能得到扩增和表达.这个过程叫做转化。大肠杆菌是目前使用最广泛的宿主细胞。除此以外.其他细菌、酵母、哺乳动物细胞等也可作为宿主细胞,可以根据实验的需要加以选择。在被转化的宿主细胞中,不同的单个细胞(在平板上表现为单个菌落,亦称克隆)中可能含有不同的重组质粒或非重组质粒,因此必须进行筛选,以便确定哪些是重组克隆。筛选可以使用抗菌素抗性或其他方法,依载体的性质而定。 4.特定重组克隆的鉴别: 由于重组克隆往往是较多的,而在某一克隆实验中,我们感兴趣的目的克隆只有一个或几个,所以需要进一步鉴别。使用的方法主要有核酸杂交法和免疫化学法。 此外,找出了目的克隆之后,还需要根据实验的目的,进一步弄清目的克隆中外源DNA片段上的基因的结构和功能。主要有酶切图谱的制定,基因在DNA 片段上的精确定位,确定是否有内含子,DNA序列分析,离体翻译实验,外源基因在某些宿主细胞中的表达及产物的提纯等。

基因图位克隆的策略与途径

基因图位克隆的策略与途径 拟南芥(Arabidopsis thaliana)是一种模式植物,具有基因组小(125 Mbp ) 、生长周期短等特点,而且基因组测序差不多完成 (The Arabidopsis Genomic Initiative, 2000)。同时,拟南芥属十字花科(Cruciferae),具有高等植物的一样特点,拟南芥研究中所取得成果专门容易用于其它高等植物包括农作物的研究,产生重大的经济效益,专门是十字花科中还有许多重要的经济作物,与人类的生产生活紧密有关,因此目前拟南芥的研究越来越多地受到国际植物学及各国政府的重视。 基因(gene是遗传物质的最差不多单位,也是所有生命活动的基础。不论 要揭示某个基因的功能,依旧要改变某个基因的功能,都必须第一将所要研究的基因克隆出来。特定基因的克隆是整个基因工程或分子生物学的起点。本文就基因克隆的几种常用方法介绍如下。 1 、图位克隆 Map-based cloning, also known as positional cloning, first proposed b y Alan Coulson of the University of Cambridge in 1986, Gene isolated b y this method is based on functional genes in the genome has a relativel y stable loci, in the use of genetic linkage analysis or chromosomal abnor malities of separate groups will queue into the chromosome of a specific location, By constructing high-density molecular linkage map, to find mole cular markers tightly linked with the aimed gene, continued to narrow the candidate region and then clone the gene and to clarify its function and biochemical mechanisms. 用该方法分离基因是按照目的基因在染色体上的位置进行的,无需预先明白基因的DNA 序列,也无需预先明白其表达产物的有关信息。它是通过分析突变位点与已知分子标记的连锁关系来确定突变表型的遗传基础。近几年来随着拟南芥基因组测序工作的完成,各种分子标记的日趋丰富和各种数据库的完善,在拟南芥中克隆一个基因所需要的努力差不多大大减少了(图1)。

分子克隆技术步骤

分子克隆技术步骤 在分子水平上提供一种纯化和扩增特定DNA 片段的方法。常含有目的基因,用体外重组方法将它们插入克隆载体,形成重组克隆载体,通过转化与转导的方式,引入适合的寄主体内得到复制与扩增,然后再从筛选的寄主细胞内分离提纯所需的克隆载体,可以得到插入DNA 的许多拷贝,从而获得目的基因的扩增。 克隆在生物学中其名词含义系指一个细胞或个体以无性繁殖的方式产生一群细胞或一群个体,在不发生突变的情况下,具有完全相同的遗传性状,常称无性繁殖( 细胞)系;其动词(clone,cloned,cloning) 含义指在生物体 外用重组技术将特定基因插入载体分子中,即分子克隆技术。 将DNA 片段( 或基因)与载体DNA 分子共价连接,然后引入寄主细胞,再筛选获得重组的克隆,按克隆的目的可分为DNA 和cDNA 克隆两类。 cDNA 克隆是以mRNA 为原材料,经体外反转录合成互补的DNA(cDNA) ,再与载体DNA 分子连接引入寄主细胞。每一cDNA 反映一种mRNA 的结构,cDNA 克隆的分布也反映了mRNA 的分布。特点是:①有些生物,如RNA 病毒没有DNA ,只能用cDNA 克隆; ②cDNA 克隆易筛选,因为cDNA 库中不包含非结构基因的克隆,而且每一cDNA 克隆只含一个mRNA 的信息; ③cDNA 能在细菌中表达。cDNA 仅代表某一发育阶段表达出来的遗传信息,只有基因文库才包含一个生物的完整遗传信息。 1. 方法: (1) DNA 片段的制备:常用以下方法获得DNA 片段:①用限制性核酸内切酶将高分子量DNA 切成一定大小的DNA 片段; ②用物理方法( 如超声波) 取得DNA 随机片段;③在已知蛋白质的氨基酸顺序情况下,用人工方法合成对应的基因片段;④从mRNA 反转录产生cDNA 。 (2) 载体DNA 的选择: ①质粒:质粒是细菌染色体外遗传因子,DNA 呈环状,大小为1-200 千碱基对(kb) 。在细胞中以游离超螺旋状存在,很容易制备。质粒DNA 可通过转化引入寄主菌。在细胞中有两种状态,一是“紧密型”;二是“松驰型”。此外还应具有分子量小,易转化,有一至多个选择标记的特点。质粒型载体一般只能携带10kb 以下的DNA 片段,适用于构建原核生物基因文库,cDNA 库和次级克隆。 ②噬菌体DNA :常用的λ噬菌体的DNA 是双链,长约49kb,约含50 个基因,其中50% 的基因对噬菌体的生长和裂解寄主菌是必需的,分布在噬菌体DNA 两端。中间是非必需区,进行改造后组建一系列具有不同特点的载体分子。λ载体系统最适用于构建真核生物基因文库和cDNA 库。 M13 噬菌体是一种独特的载体系统,它只能侵袭具有 F 基因的大肠杆菌,但不裂解寄主菌。M13DNA(RF) 在 寄主菌内是双链环状分子,象质粒一样自主制复,制备方法同质粒。寄主菌可分泌含单链DNA 的M13 噬菌体,又能方便地制备单链DNA ,用于DNA 顺序分析、定点突变和核酸杂交。 ③拷斯(Cos) 质粒:是一类带有噬菌体DNA 粘性末端顺序的质粒DNA 分子。是噬菌体-质粒混合物。此类载体分子容量大,可携带45kb 的外源DNA 片段。也能象一般质粒一样携带小片段DNA ,直接转化寄主菌。这类载体常被用来构建高等生物基因文库。 (3) DNA 片段与载体连接:DNA 分子与载体分子连接是克隆过程中的重要环节之一,方法有:①粘性末端连接,DNA 片段两端的互补碱基顺序称之为粘性末端,用同一种限制性内切酶消化DNA 可产生相同的粘性末端。在连接酶的作用下可恢复原样,有些限制性内切酶虽然识别不同顺序,却能产生相同末端。②平头末端连接,用物理方法制备的DNA 往往是平头末端,有些酶也可产生平头末端。平头DNA 片段可在某些DNA 连接酶作用下连接起来,但连接效率不如粘性末端高;③同聚寡核苷酸末端连接。④人工接头分子连接,在平头DNA 片段末端加上一段人工合成的、具有某一限制性内切酶识别位点的寡核苷酸片段,经限制性内切酶作用后就会产生粘性末端。 连接反应需注意载体DNA 与DNA 片段的比率。以λ或Cos 质粒为载体时,形成线性多连体DNA 分子,载体与DNA 片段的比率高些为佳。以质粒为载体时,形成环状分子,比率常为1∶1。 (4) 引入寄主细胞:常用两种方法:①转化或转染,方法是将重组质粒DNA 或噬菌体DNA(M13) 与氯化钙处 理过的宿主细胞混合置于冰上,待DNA 被吸收后铺在平板培养基上,再根据实验设计使用选择性培养基筛选重组子,通常重

常用分子克隆实验方法

常用分子克隆实验方法I 一、植物总DNA的小量提取 方法1:提取吸附法。无须巯基乙醇、氯仿等有毒物质,产物无须Rnase处理。 (1)充分研磨。称取约0.2克植物组织,加入液氮充分研磨3-5min,稍后加约1ml溶液 A,继续研磨至略粘稠的组织匀浆,用大口1ml吸头将所有溶液移至1.5ml离心管 中,55℃水浴30min; (2) 高速离心去杂质。10,000rpm离心5min,取约600ul上清至新1.5ml离心管; (3) 核酸吸附。往上清液中加入1倍的异丙醇,轻轻混匀,再加入总体积1/4已混匀的 溶液B,静置3min; (4) 低速离心沉淀。5000rpm离心1min,轻轻倒掉上清,并用吸水纸轻吸离心管口, 再用移液枪吸走大部分残余液体; (5) 75%乙醇清洗。加入1ml75%乙醇,5000rpm离心30s,轻轻倒掉上清,用吸水纸稍 吸离心管口。重复该步骤一次,再5000rpm离心30s,然后用移液枪吸走管底的残 液,晾干5min; (6) 核酸洗脱。加入约55ul TE(PH8.0)至管底,轻轻重悬硅土,静置3min,10,000rpm 离心1min,用小枪头轻轻吸取出50ul管底溶液,冷藏。 方法2:CTAB法,此为在经典方法基础上,经过摸索改进,提高了得率,减少了污染。 (1)充分研磨。称取约0.2克植物组织,加入液氮充分研磨3-5min,稍后加约1ml CTAB 提取液,继续研磨至略粘稠的组织匀浆,用大口1ml吸头移至1.5ml离心管,65℃ 水浴30-60min。 (2) 氯仿抽提。10,000rpm离心3min,取约600ul上清。加入1倍的氯仿,轻轻混匀, 10,000rpm离心3min,取上清再抽提1遍。 (3) 核酸沉淀。加入预冷的1倍异丙醇或2倍乙醇,轻混匀,6000rpm离心3min,弃 上清。 (4) 清洗沉淀。轻加入1ml 75%乙醇,再吸掉上清,重复一次,倒置于吸水纸或横放于 离心管架上晾干5min。 (5) 溶解DNA。加50ul含Rnase A(约10ug/ml)的TE,常温下放置30min。取约3-5ul 电泳检测后,低温冷藏。

拟南芥的图位克隆技术

拟南芥基因的图位克隆技术 浙江大学生命科学学院徐冰 浙江杭州310029 1 国内外研究现状 拟南芥(Arabidopsis thaliana)是一种模式植物,具有基因组小(125 Mbp)、生长周期短等特点,而且基因组测序已经完成(The Arabidopsis Genomic Initiative, 2000)。同时,拟南芥属十字花科(Cruciferae),具有高等植物的一般特点,拟南芥研究中所取得成果很容易用于其它高等植物包括农作物的研究,产生重大的经济效益,特别是十字花科中还有许多重要的经济作物,与人类的生产生活密切相关,因此目前拟南芥的研究越来越多地受到国际植物学及各国ZF的重视。 从遗传学的观点来看,基因克隆的途径可概括为正向遗传学和反向遗传学两种。正向遗传学途径指的是通过被克隆基因的产物或表现型突变去进行;反向遗传学途径则指的是依据被克隆基因在染色体上的位置来实现。虽然一些模式生物(如拟南芥)的基因组测序已经完成,但还有40%的基因(在拟南芥中)的功能还是未知的。 图1 图位克隆所需努力的比较(1995年和2002年)(Jander等,2002) 图位克隆(map-based cloning)又称定位克隆(positional cloning),1986年首先由剑桥大学的Alan Coulson提出(Coulson等,1986),用该方法分离基因是根据目的基因在染色体上的位置进行的,无需预先知道基因的DNA序列,也无需预先知道其表达产物的有关信息。它是通过分析突变位点与已知分子标记的连锁关系来确定突变表型的遗传基础。近几年来随着拟南芥基因组测序工作的完成,各种分子标记的日趋丰富和各种数据库的完善,在拟南芥中克隆一个基因所需要的努力已经大大减少了(图1)。 目前完成整个拟南芥的图位克隆过程大约需要一年时间。在这个过程中,我们从筛选突变体开始,逐渐找到和表型相关的基因。这和反向遗传学的方法正好相反。图位克隆能实现,关键在于全基因组测序计划的完成和各种分子标记的发现。这些数据被储存在专门的数据库中

分子克隆以及蛋白纯化流程

RNA提取 ①取TRIZOL冻存裂解的细胞,室温放5分钟使其完全溶解。 ②两相分离,每1ml的TRIZOL试剂裂解的样品中加入0.2ml的氯仿,盖紧管盖。 手动剧烈振荡管体15秒后,15到30℃孵育2到3分钟。 4℃下12000rpm离心15分钟。离心后混合液体将分为下层的红色酚氯仿相,中间层以及无色水相上层。 RNA全部被分配于水相中。水相上层的体积大约是匀浆时加入的TRIZOL试剂的60%。 ③RNA沉淀:将水相上层转移到一干净无RNA酶的离心管中。 加等体积异丙醇混合以沉淀其中的RNA,混匀后15到30℃孵育10分钟后,于4℃下12000rpm 离心10分钟。 此时离心前不可见的RNA沉淀将在管底部和侧壁上形成胶状沉淀块。 ④RNA清洗:移去上清液,每1mlTRIZOL试剂裂解的样品中加入至少1ml的75%乙醇(75%乙醇用DEPCH2O配制),清洗RNA沉淀。混匀后,4℃下7000rpm离心5分钟。 ⑤RNA干燥:小心吸去大部分乙醇溶液,使RNA沉淀在室温空气中干燥5-10分钟。 ⑥溶解RNA沉淀:溶解RNA时,先加入无RNA酶的水40μl用枪反复吹打几次,使其完全溶解,获得的RNA溶液保存于-80℃待用。 逆转录 1.First-strand cDNA synthesis 体系oligo(DT) 50uM 1ul 10pg-500ng mRNA 10ul Random primer 1ul dNTP mix (10mM) 1ul

2.65°C,5min后冰上孵育至少1min 3. 稍微离心后,加入 5Xfirst-strand buffer 4ul DTT(0.1M) 1ul RNase out Recombinant RNase Inhibitor 1ul Superscript IIIRT 1ul 4.PCR 25°C,10min;42°C,50min;70°C,5min;4°C 10min PCR 1. DNA 模板2ul 正向引物2ul 反向引物2ul 2×Taq PCR star mix 20ul ddH20 14ul 条件 94°C 5min 94°C 30S 55-65°C 30S 72°C 30-60s/kb 72°C 5min 25-30个cycles

分子克隆及细胞培养基本实验方法

分子克隆及细胞培养基本实验方法 1.载体构建实用操作技术 1.1菌种的保存—20%甘油菌 2体积菌液与1体积70%的甘油混合后,储存于-20℃或-70℃备用。(甘油菌中甘油的浓度为20-30%均可) 1.2甘油菌复苏、培养 方法一、挑取甘油菌一环,接种在含100ug/ml Amp的LB固体培养基上(活化菌种),37℃培养过夜(约16小时);挑取一个菌落转接在含100ug/ml Amp 的LB液体培养基中,37℃振荡过夜(约12~16小时)。 方法二、直接吸取10~20ul甘油菌,接种在含100ug/ml Amp的LB液体培养基中,37℃振荡过夜(约12~16小时)。 1.3小规模制备质粒DNA(QIA miniprep kit ) 适于从1~5ml 菌液中制备20ug高拷贝质粒 ⑴收集菌液,离心1000rpm,1分,弃上清 ⑵以250ul P1重悬细菌(P1中已加RNase) ⑶加入250ul P2,颠倒4~6次轻混,约2~3分(轻混以免剪切基因组DNA,并免 长时间消化) ⑷加入350ul N3,迅速颠倒4~6次轻混;离心10分,13 000rpm ⑸上清入QIAprep柱,离心30~60秒,滤液弃之 ⑹加入0.5ml PB洗,离心30~60秒 ⑺加入0.75ml PE洗,离心30~60秒,弃滤液,再离心1分 ⑻换新管,加入50ul EB,静置1分(EB 37℃预热),离心1分。 1.4酶切反应 ⑴体系构成(反应体系尽可能小!) pGEM3ZF-huCTLA4-Ig(ul)pAdTrack-CMV(ul)

①dd.H2O 17 17 ②10×NEbuff 2 3 3 ③10×BSA 3 3 ④底物DNA 5 5 ⑤内切酶HindⅢ 1 1 XbaⅠ 1 1 Total : 30 ul 30ul ⑵37℃水浴1~2小时,必要时延长酶切时间至12小时 ⑶酶切2小时后,取5-10ul 电泳观察酶解是否完全 ⑷65℃灭活内切酶 ⑸-20℃保存备用 1.5回收目的片段(QIAquick Gel extraction Protocol) ⑴胶,尽可能去除多余的胶,称重; ⑵加入适量buff QG(300ul QG /100mg胶);>2%的胶,应加大QG用量(600ul QG /100mg); ⑶水浴50℃,10min,每2-3min混匀一次,使胶完全溶解!必要时延长水浴时间, 胶完全溶解后混合物颜色应为黄色,与buff QG 相似; ⑷当DNA片段在<500bp或>4kb时,应加入异戊醇100ul/100mg胶,以提高产物 量。此步不离心。DNA片段在500bp~4kb时,加入异戊醇并不能提高产量; ⑸结合:将混合物转入QIAquick柱,离心13000rpm,1min;(柱容量800ul/次); ⑹洗:0.75ml buff PE,离心13000rpm,1min;(DNA用于盐敏感操作时,如平 端连接、直接测序,加入PE后静置2-5min);弃离心液,再离心13000rpm, 1min,以去除剩余的乙醇; ⑺将QIAquick柱置于一清洁的1.5ml Ep管,加入30~50ul buff EB或H2O (滴 于QIAquick 膜上!),静置1min,离心15000rpm,1min; ⑻-20℃保存备用。 1.6连接反应

基因图位克隆的策略与途径拟南芥

基因图位克隆的策略与途 径拟南芥 Ting Bao was revised on January 6, 20021

拟南芥基因克隆的策略与途径 拟南芥(Arabidopsis thaliana)是一种模式植物,具有基因组小(125 Mbp)、生长周期短等特点,而且基因组测序已经完成(The Arabidopsis Genomic Initiative, 2000)。同时,拟南芥属十字花科(Cruciferae),具有高等植 物的一般特点,拟南芥研究中所取得成果很容易用于其它高等植物包括农作物的研究,产生重大的经济效益,特别是 十字花科中还有许多重要的经济作物,与人类的生产生活密切相关,因此目前拟南芥的研究越来越多地受到国际植物 学及各国政府的重视。 基因(gene)是遗传物质的最基本单位,也是所有生命活动的基础。不论要揭示某个基因的功能,还是要改变某个基因的 功能,都必须首先将所要研究的基因克隆出来。特定基因的克隆是整个基因工程或分子生物学的起点。本文就基因克隆 的几种常用方法介绍如下。 1、图位克隆 Map-based cloning, also known as positional cloning, first proposed by Alan Coulson of the University of Cambridge in 1986, Gene isolated by this method is based on functional genes in the genome has a relatively stable loci, in the use of genetic linkage analysis or chromosomal abnormalities of separate groups will queue into the chromosome of a specific location, By constructing high-density molecular linkage map, to find molecular markers tightly linked with the aimed gene, continued to narrow the candidate region and then clone the gene and to clarify its function and biochemical mechanisms.图位(map-based clonig)又称克隆(positoinal cloning),1986年首先由剑桥大学的Alan Coulson提出。用该方法分离基因是根据功能基因在中都有相对较稳定的基因座,在利用分离群体的遗传连锁分析或将基因伫到染色体的1 个具体位置的基础上,通过构建高密度的分子连锁图,找到与目的基因紧密连锁的分子标记,不断缩小候选区域进而克隆该基因,并阐明其功能和生化。 用该方法分离基因是根据目的基因在染色体上的位置进行的,无需预先知道基因的DNA序列,也无需预先知道其表达产物的有关信息。它是通过分析突变位点与已知分子标记的连锁关系来确定突变表型的遗传基础。近几年来随着拟南芥基因组测序工作的完成,各种分子标记的日趋丰富和各种数据库的完善,在拟南芥中克隆一个基因所需要的努力已经大大减少了(图1)。

分子克隆实验标准步骤

分子克隆实验标准步骤 一、 常规分子克隆实验流程: 二、 分子克隆实验标准步骤(含实验编号): 1. PCR 扩增目的基因(编号Clone SOP-1) 以本实验室常用酶KOD-Plus-Neo (TOYOBO )为例 体系(50ul ): 10×KOD buf 5ul dNTP(2mM) 5ul Mg 2+ 3ul Primer1 1ul Primer2 1ul Template50-200ng KOD0.5ul ddH 2O up to 50ul 程序: 95℃2min 98℃10s 58℃30s 35cycle 68℃2kb/min 68℃7min 12℃∞

2.PCR产物的琼脂糖凝胶电泳琼脂糖凝胶的制备(编号Clone SOP-2) 琼脂糖溶液的制备:称取琼脂糖,置于三角瓶中,按1%-1.5%的浓度加入相应体积的TBE或TAE缓液,将该三角瓶置于微波炉加热至琼脂糖溶解。 胶板的制备:①取有机玻璃内槽,洗净、晾干;②将有机玻璃内槽置于一水平位置模具上,安好挡板,放好梳子。在距离底板上放置梳子,以便加入琼脂糖后可以形成完好的加样孔。 ③将温热琼脂糖溶液倒入胶膜中,使胶液缓慢地展开,直到在整个有机玻璃板表面形成均匀 的胶层。④室温下静置30min左右,待凝固完全后,轻轻拔出梳子,在胶板上即形成相互隔开的上样孔。制好胶后将铺胶的有机玻璃内槽放在含有0.5~1×TAE(Tris-乙酸)或TBE(Tris-硼酸)工作液的电泳槽中使用,没过胶面1mm以上。 3.试剂盒回收DNA片段(编号Clone SOP-3) 以本实验室常用DNA凝胶回收试剂盒(天根)为例 使用前请先在漂洗液PW中加入无水乙醇,加入体积请参照瓶上的标签。 ①柱平衡步骤:向吸附柱CA2中(吸附柱放入收集管中)加入500μl平衡液BL, 12,000rpm(~13,400×g)离心1min,倒掉收集管中的废液,将吸附柱重新放回收集管中。(请使用当天处理过的柱子) ②将单一的目的DNA条带从琼脂糖凝胶中切下(尽量切除多余部分)放入干净的离心管中, 称取重量。 ③向胶块中加入等倍体积溶液PN(如果凝胶重为0.1g,其体积可视为100μl,则加入100μlPN 溶液),60℃水浴放置,其间不断温和地上下翻转离心管,以确保胶块充分溶解。如果还有未溶的胶块,可继续放置几分钟或再补加一些溶胶液,直至胶块完全溶解(若胶块的体积过大,可事先将胶块切成碎块)。 注意:对于回收<300bp的小片段可在加入PN完全溶胶后再加入1/2胶块体积的异丙醇以提高回收率;胶块完全溶解后最好将溶液温度降至室温再上柱,因为吸附柱在室温时结合DNA 的能力较强。 ④将上一步所得溶液加入一个吸附柱CA2中(吸附柱放入收集管中),室温放置2min, 12,000rpm(~13,400×g)离心30-60sec,倒掉收集管中的废液,将吸附柱CA2放入收集管中。 ⑤向吸附柱CA2中加入600μl漂洗液PW(使用前请先检查是否已加入无水乙醇), 12,000rpm(~13,400×g)离心30-60sec,倒掉收集管中的废液,将吸附柱CA2放入收集管中。 ⑥重复操作步骤⑤。 ⑦将吸附柱CA2放回收集管中,12,000rpm(~13,400×g)离心2min,尽量除尽漂洗液。将吸附 柱CA2置于室温放置数分钟,彻底地晾干,以防止残留的漂洗液影响下一步的实验。 ⑧将吸附柱CA2放到一个干净离心管中,向吸附膜中间位置悬空滴加适量洗脱缓冲液EB或 ddH2O,室温放置2min。12,000rpm(~13,400×g)离心2min收集DNA溶液。 4.酶切反应(编号Clone SOP-4) 以本实验室常用酶FastDigest restriction enzymes(Thermo)为例 双酶切体系(若是单酶切则只用加一种酶): 10×FastDigest? buffer or 10×FastDigest? Green buffer 5ul FastDigest restriction enzyme 1 0.5-1ul FastDigest restriction enzyme 2 0.5-1ul DNAN ddH2Oupto50ul 酶切体系混合均匀后置于37℃条件下反应,反应时间应大于30min,若是载体(2-3ug)至少酶切2小时。 5.酶切产物的回收(编号Clone SOP-5) 以本实验室常用Axygen?AxyPrep?PCRClean-UpKit(Axygen)为例 ①在PCR、酶切、酶标、或测序反应液中,加入3个体积的BufferPCR-A(若BufferPCR-A

图位克隆基因研究进展

图位克隆基因研究进展 宋成标 摘要图位克隆是在不清楚基因产物结构和功能的情况下,根据基因在染色体上都有稳定的基因座实现的。随着各种分子标记技术和高质量基因组文库构建技术的发展,图位克隆现已经成为分离生物体基因的一种常规技术。本文主要概述了图位克隆的一般步骤,包括目的基因的初步定位、精细定位和遗传做图、染色体步行和登陆及利用功能互补实验鉴定目的基因。最后,对图位克隆技术存在的局限和发展前景作了初步的分析。 关键词图位克隆, 分子标记, 精细定位, 基因组文库 Abstract Map-based cloning is based on the functional genes have their particular gene locus on chromosomes,when we know about the structure and function of gene products unclearly.With the rapid development of molecular marker technologies and constructing high quality genomic library technologies, map-based cloning had already become a common bio—technique for gene isolation. This article summarized mainly the processes of the map-based cloning in principle,including first-pass mapping of candidate gene、fine scale-mapping and building genetic map、chromosome walking or landing and finally complement experiment for identifing candidate gene. Finally the problems and the prospects in the map-based cloning are analyzed Keywords Map-based cloning, Molecular marker, Fine maping, Genomic library 从遗传学观点来看,基因克隆有两条途径:正向遗传学途径和反向遗传学途径。正向遗传学途径指的是通过被克隆基因的产物或表型突变去进行,如传统的功能克隆及近年来迅速发展的表型克隆;反向遗传学途径是根据被克隆的目的基因在染色体上都有稳定的位置来实现的。由于在多数情况下,我们并不清楚基因产物的结构和功能,很难通过正向遗传学途径克隆基因,而反向遗传学途径则显示了较好的前景。其中可以利用的主要有三种方法,分别是转座子标签法、随机突变体筛选法和图位克隆法。转座子标签法中受转座子的种类、转座频率及有些植物存在内源转座子等的影响,随机突变体筛选法则随机性较大且不能控制失活基因的种类和数量等,限制了它们的应用。图位克隆(map-based cloning)又称为定位克隆(positional cloning),1986年首先由剑桥大学的Coulson 等提出,用该方法分离基因是根据目的基因在染色体上的位置进行的,无需预先知道基因的DNA序列,也无需预先知道其表达产物的有关信息。它是通过分析突变位点与已知分子标记的连锁关系来确定突变表型的遗传基础。随着模式物种(拟南芥、水稻)全基因组测序的完成,各种分子标记技术的发展促进了高密度分子标记连锁图谱的建立和各种数据库的完善。图位克隆技术越来越成熟,已经成为分离生物基因的一种常规方法。本文将对图位克隆技术的相关策略作一介绍。 1图位克隆的策略 自1992年图位克隆技术首次在拟南芥中克隆到ABI3(Girauda et al., 1992)基因和F AD3 (Arondel et al., 1992)基因以来,图位克隆技术在其它相关技术快速发展的支持下迅速发展起来。它是依据功能基因在生物基因组中都有相对稳定的基因座,在利用分子标记技术对目的基因进行精细定位的基础上,用与目的基因紧密连锁的分子标记筛选已构建的DNA文库(如Cosmid、YAC、BAC等文库),构建出目的基因区域的遗传图谱和物理图谱,再利用此物理图谱通过染色体步行、跳跃或登陆的方式获得含有目的基因的克隆,最后通过遗传转化和功能互补实验来验证所获得的目的基因(图1)。 初步定位(First-pass maping)-------构建遗传图谱(constructing genetic map)-----精细定位(fine maping)---------构建物理图谱( constructing physical map)------染色体步移、登陆(chromosomal walking、landing)-------确定侯选基因(Consider candidate genes)----遗传互补验证目的基因(Through genetic complementation (transformation) to identify candidate gene)(请帮我画一个简易图表,把内容填进去) 图1 图位克隆的主要步骤 Figure 1 Key steps in map-based cloning process

功能基因的克隆及生物信息学分析

功能基因的克隆及其生物信息学分析 摘要:随着多种生物全基因组序列的获得,基因组研究正从结构基因组学(structural genomics)转向功能基因组学(functional genomics)的整体研究。功能基因组学利用结构基因组学研究获得的大量数据与信息评价基因功能(包括生化功能、细胞功能、发育功能、适应功能等),其主要手段结合了高通量的大规模的实验方法、统计和计算机分析技术[1],它代表了基因分析的新阶段,已成为21世纪国际生命科学研究的前沿。功能基因组学是利用基因组测序获得的信息和产物,发展和应用新的实验手段,通过在基因组或系统水平上全面分析基因的功能,使生物学研究从对单一基因或蛋白的研究转向多个基因或蛋白同时进行系统的研究,是在基因组静态的组成序列基础上转入对基因组动态的生物学功能学研究[2]。如何研究功能基因,也成为我们面临的一个课题,本文就克隆和生物信息学分析在研究功能基因方面的应用做一个简要的阐述。 关键词:功能基因、克隆、生物信息学分析。 1.功能基因的克隆 1.1 图位克隆方法 图位克隆又称定位克隆,它是根据目标基因在染色体上确切位置,寻找与其紧密连锁的分子标记,筛选BCA克隆,通过染色体步移法逐步逼近目的基因区域,根据测序结果或用BAC、YAC克隆筛选cDNA表达文库寻找候选基因,得到候选基因后再确定目标基因。优点是无需掌握基因产物的任何信息,从突变体开始,逐步找到基因,最后证实该基因就是造成突变的原因。通过图位克隆许多控制质量性状的单基因得以克隆,最近也有报道某些控制数量性状的主效基因(控制蕃茄果实大小的基因克隆[3]、控制水稻成熟后稻谷脱落基因克隆[4]以及小麦VRN2 基因克隆[5]等)也通过图位克隆法获得。

相关文档