文档库 最新最全的文档下载
当前位置:文档库 › 名校立体几何经典题型 试题(带详细解析答案)

名校立体几何经典题型 试题(带详细解析答案)

名校立体几何经典题型 试题(带详细解析答案)
名校立体几何经典题型 试题(带详细解析答案)

A1

C 1

B1

D

立体几何经典题型(带详细解析答案)

一、填空题

1. 直三棱柱11

A B C A B C -的各顶点都在同一球面上,若1

2A B A C

A A ===,120BAC ∠=?,则此球的表面积等于 。

解:在ABC ?中

2AB AC ==,120BAC ∠=?,可得BC =,由正弦定理,可得

ABC ?外接圆半径

r=2,设此圆圆心为O ',球心为O ,在RT OBO '?中,易得球半

径R 2420R ππ=.

2.体积为8的一个正方体,其全面积与球O 的表面积相等,则球O 的体积等

于 .答案

3.已知三个球的半径1R ,2R ,3R 满足32132R R R =+,则它们的表面积1S ,2S ,

3S ,满足的等量关系是___________.答案

3

2132S S S =+

4.若球O 1、O 2表示面积之比

421=S S ,则它们的半径之比2

1R R

=____________.答案 2

5.一个六棱柱的底面是正六边形,其侧棱垂直底面.已知该六棱柱的顶点都在同

一个球面上,且该六棱柱的体积为9

8

,底面周长为3,则这个球的体积

为 .答案 3

【解析】令球的半径为R ,六棱柱的底面

边长为a ,高为h ,显然

R =,且21

9624863a V a h h a ??==??=?????

??

==??1R ?=3

4433V

R ππ?==.

练习1、一个六棱柱的底面是正六边形,其侧棱垂直底面。已知该六棱柱的顶点都在同一个球面上,且该六棱柱的高为3,那么这个球的体积为_________答案

43

π

【解析】∵正六边形周长为3,得边长为1

2

,故其主对角线为1,从而

球的直径22R =

=

∴1R = ∴球的体积43

V =

π. 6.一个长方体的各顶点均在同一球的球面上,且一个顶点上的三条棱的长分别为1,2,3,则此球的表面积为 .答案 14π

7.如图,在正三棱柱111C B A ABC -中,D 为棱1AA 的中点,若截面D BC 1?是面积为6的直角三角形,则此三棱柱的体积为 .答案 38

8.已知一个球的球心O 到过球面上A 、B 、C 三点的截面的距离等于此球半径的

一半,若3AB BC CA ===,则球的体积为________________。答案 32

3

π 9.如图,用一平面去截球所得截面的面积为π2cm 2,已知 球心到该截面的距离为1 cm ,则该球的体积是 cm 3. 答案 π34

10.如图,在长方形ABCD 中,2AB =,1BC =,E 为DC 的中点,F 为线段EC (端

点除外)上一动点.现将AFD ?沿AF 折起,使平面ABD ⊥平面ABC .在平面

ABD 内过点D 作DK AB ⊥,K 为垂足.设AK t =,则t 的取值范围

是 .

【解析】此题的破解可采用二个极端位置法,即对于F 位于DC 的中点时,1t =,随着 F 点到C 点时,因,,CB AB CB DK CB ⊥⊥∴⊥平面ADB ,即有CB BD ⊥,对于2,1,CD BC BD ==∴,又1,2AD AB ==,因此有AD BD ⊥,则有

12t =

,因此t 的取值范围是1,12??

???

11.在空间直角坐标系中,已知点A (1,0,2),B(1,-3,1),点M 在y 轴上,且M 到A 与到B 的距离相等,则M 的坐标是________。

【解析】设(0,,0)M y 由222141(3)1y y ++=+--+可得1y =-故(0,1,0)M -

【答案】(0,-1,0)

理第9题

解答题:

1.在棱长为2的正方体1111D C B A ABCD -中,(如图)

E 是棱11D C 的中点,

F 是侧面D D AA 11的中心.

(1) 求三棱锥EF D A 11-的体积;

求EF 与底面1111D C B A 所成的角的大小.(结果用反三角函数表示)

(2)求EF 与底面1111D C B A 所成的角。 (1)3

1

11311111=??=

=--F D A E EF D A V V . (2)取11D A 的中点G ,所求的角的大小等于GEF ∠的大小,

GEF Rt ?中2

2

tan =

∠GEF ,所以EF 与底面1111D C B A 所成的角的大小是2

2arctan

. 2.如图,在四棱锥O ABCD -中,底面ABCD 是边长为2的正方形,OA ABCD ⊥底面,2OA =,M 为OA 的中点.

(Ⅰ)求四棱锥O ABCD -的体积;

(Ⅱ)求异面直线OC 与MD 所成角的大小. 解:(Ⅰ)由已知可求得,正方形ABCD 的面积4=S ,

所以,求棱锥ABCD O -的体积3

8

2431=??=V

(Ⅱ)设线段AC 的中点为E ,连接ME ,

则EMD ∠为异面直线OC 与MD 所成的角(或其补角)

由已知,可得5,3,2===MD EM DE ,222)5()3()2(=+

DEM ?∴为直角三角形 32

t a n ==

∠∴EM

DE

EMD ,

32

3arctan =∠∴EMD .

所以,异面直线OC 与MD 所成角的大小3

2

3arctan .

3.如图,在四棱锥P-ABCD 中,PD ⊥平面ABCD ,PD=DC=BC=1,AB=2,AB ∥DC ,∠BCD=900.

A

B

C

D A 1

B 1

C 1

F E

D 1

(1)求证:PC ⊥BC ;

(2)求点A 到平面PBC 的距离

.

4.如图,在直三棱柱111ABC A B C -中,E 、F 分别是1A B 、1AC 的中点,点D 在11B C 上,11A D B C ⊥。求证:(1)EF ∥平面ABC ; (2)平面1A FD ⊥平面11BB C C .

【解析】 本小题主要考查直线与平面、平面与平面得位置关系

5如图所示,PA 垂直矩形ABCD 所在的平面,F E 、分别为PC AB 、的中点。 (Ⅰ)求证PAD EF 平面//

(Ⅱ)求证CD EF ⊥

证明:(Ⅰ)取PD 中点G ,连结AG 、FG ,

因为F E 、分别为PC AB 、的中点,所以

AB AE 2

1=,GF //=DC 21又在矩形ABCD 中AB //=DC

,P

D

B

A E F

G

C

B

所以 AE //=GF ,所以四边形AEFG 是平行四边形,所以AG //=EF

又PAD 平面?AG ,PAD 平面?EF .所以PAD EF 平面//

(Ⅱ)因为BCD A A P 平面⊥,所以CD PA ⊥ 在矩形ABCD 中CD AD ⊥ 又A AD PA = ,所以PAD CD 平面⊥,

因为PAD 平面?AG 所以AG CD ⊥,

因为EF AG //所以CD EF ⊥

6.如图,在直三棱柱111ABC A B C -中,AC =3, BC =4,AB =5,14AA =,点D 是AB 的中点。

(Ⅰ)求证:1AC BC ⊥; (Ⅱ)求证:1AC ∥平面1CDB .

解(1) 直三棱柱111ABC A B C -,底面三边长AC =3,BC =4,AB =5, AC BC ∴⊥,………………………2分

又111ABC A B C -是直三棱柱,所以,1CC AC ⊥ ……………4分

AC ⊥面11BCC B ,1BC ?面1BC …………6分

1AC BC ∴⊥;……7分

(2)设1CB 与1C B 和交点为E ,连结DE ,…………8分

D 是AB 的中点,

E 是1BC 的中点,1//AC DE ∴…….10分

DE ?平面1CDB ,1AC ?平面1CDB ,//1AC ∴平面1CDB ;…13分

7.如图,在四棱锥P ABCD -中,PD ⊥平面ABCD ,

AD CD ⊥,且BD 平

分ADC ∠,E 为PC 的中点,1,,AD CD BC PC DB ====(Ⅰ)求证://PA 平面BDE ; (Ⅱ)求证:AC ⊥平面PBD ; (Ⅲ)求四棱锥P ABCD -的体积. 解:(Ⅰ)证明:设AC BD O = ,连结EO

在ADC ?中,AD CD = ,且DB 平分ADC ∠, O ∴为AC 的中点,且BD AC ⊥又E 为PC 的中点,//OE PA ∴

A 1

C 1

A

C

E

D

B 1

B

OE ? 平面BDE ,PA ?/平面BDE //PA ∴平面BDE

(Ⅱ)证明:PD ⊥ 平面ABCD ,?AC 平面ABCD

PD AC ∴⊥,又,BD AC PD BD D ⊥=

?PD 平面??BD 平面PDB AC ∴⊥平面PBD

(Ⅲ)解:PD ⊥

平面ABCD PD ∴为棱锥的高

在BCD ?中,1,45

DC DB BDC ==

∠= ,

2221215,o BC BC ∴=+-?

?==

在PDC Rt ?C 中,1PC BC DC ===,从而2PD =,

22==?BCD ABCD S S ,故四棱锥P ABCD -的体积14

223

3

p ABCD V -=??= 8

P ABC

-中,

PA ⊥底

,,60,A B C P A

A B A B C

B C A

??=∠=∠=, 点D ,E 分别在棱,PB PC 上,且//DE BC

(Ⅰ)求证:BC ⊥平面PAC ;

(Ⅱ)当D 为PB 的中点时,求AD 与平面PAC 所成的角的大小; (Ⅰ)∵PA ⊥底面ABC ,∴PA ⊥BC . 又90BCA ?∠=,∴AC ⊥BC .∴BC ⊥平面PAC .

(Ⅱ)∵D 为PB 的中点,DE//BC ,

∴1

2

DE BC =,又由(Ⅰ)知,BC ⊥平面PAC ,

∴DE ⊥平面PAC ,垂足为点E .

∴∠DAE 是AD 与平面PAC 所成的角,

∵PA ⊥底面ABC ,∴

PA ⊥AB ,又PA=A B ,∴△ABP 为等腰直角三角形,∴

AD AB =

, ∴在Rt △ABC 中,60ABC ?∠=,∴1

2

B C A B

=

.∴在Rt △ADE 中,s i n 24DE BC DAE AD

AD ∠=

==,∴AD 与平面PAC 所成的角的大小arcsin 4

. 9.如图,四棱锥P ABCD -的底面是正方形,PD ABCD ⊥底面,点E 在棱PB 上. (Ⅰ)求证:平面AEC PDB ⊥平面;

(Ⅱ)当PD =且E 为PB 的中点时,求AE 与平面PDB 所成的角的大小.

(Ⅰ)∵四边形ABCD 是正方形,∴AC ⊥BD ,

∵PD ABCD ⊥底面,

∴PD ⊥AC ,∴AC ⊥平面PDB , ∴平面AEC PDB ⊥平面.

(Ⅱ)设AC∩BD=O ,连接OE ,

由(Ⅰ)知AC ⊥平面PDB 于O , ∴∠AEO 为AE 与平面PDB 所的角, ∴O ,E 分别为DB 、PB 的中点,

∴OE//PD ,1

2

OE PD =,又∵PD ABCD ⊥底面,

∴OE ⊥底面ABCD ,OE ⊥AO , 在Rt △AOE

中,122

OE PD AB AO =

==, ∴45AOE ?∠=,即AE 与平面PDB 所成的角的大小为45?.

10.如图所示,在棱长为2的正方体1111ABCD A B C D -中,E 、F 分别为1DD 、

DB 的中点.

(Ⅰ)求证:EF //平面11ABC D ; (Ⅱ)求证:1EF B C ⊥; (Ⅲ)求三棱锥EFC B V -1的体积.

证明:(Ⅰ)连结1BD ,在B DD 1?中,E 、F 分别为1D D ,DB 的中点,则

11111111////EF D B

D B ABC D EF ABC D EF ABC D ?

?

??????

平面平面平面

(Ⅱ)

1111111,B C AB B C BC AB B C ABC D AB BC B ⊥?

?⊥????

?=?

平面?

111111B C ABC D BD ABC D ⊥?????

平面平面111//B C BD EF BD ⊥???1EF B C ?⊥

(Ⅲ)11CF BDD B ⊥ 平面

1CF EFB ∴⊥平面 且

C F B F

==C

D

B

F

E

D 1

C 1

B 1

A

A 1

A

C

A

C

11

2

EF BD =

=

1B F

==

13B E ===

∴22211EF B F B E += 即190EFB ∠=

11113B EFC C B EF B EF V V S CF --?∴==??=111

32

EF B F

CF ????

=11

132

?= 11.如图,在四棱锥ABCD -P 中,

底面ABCD 是矩形,侧棱PD ⊥底面ABCD ,

DC PD =,E 是PC 的中点,作EF ⊥PB 交PB 于点F . (1)证明:PA ∥平面EDB ; (2)证明:PB ⊥平面EFD . 证明:(1)连结AC 交BD 与O ,连结EO .

∵底面ABCD 是正方形,

∴点O 是AC 的中点. 又∵E 是PC 的中点 ∴在△PAC 中,EO 为中位线

∴PA ∥EO . 而EO ?平面EDB ,PA ?平面EDB , ∴PA ∥平面EDB . (2)由PD ⊥底面ABCD ,得PD ⊥BC . ∵底面ABCD 是正方形, ∴DC ⊥BC ,

∴BC ⊥平面PDC . 而DE ?平面PDC ,

∴BC ⊥DE .① ∵DC PD =,E 是PC 的中点, ∴△PDC 是等腰三角形, DE ⊥PC .② 由①和②得DE ⊥平面PBC .

而PB ?平面PBC ,

∴DE ⊥PB . 又EF ⊥PB 且DE EF =E , ∴PB ⊥平面EFD .

高中数学必修2立体几何专题线面角典型例题求法总结

线面角的求法 1.直接法 :平面的斜线与斜线在平面内的射影所成的角即为直线与平面所成的角。通常是解由斜线段,垂线段,斜线在平面内的射影所组成的直角三角形,垂线段是其中最重要的元素,它可以起到联系各线段的作用。 例1 ( 如图1 )四面体ABCS 中,SA,SB,SC 两两垂直,∠SBA=45°, ∠SBC=60°, M 为 AB 的中点,求(1)BC 与平面SAB 所成的角。(2)SC 与平面ABC 所成的角。 B M H S C A 解:(1) ∵SC ⊥SB,SC ⊥SA, 图1 ∴SC ⊥平面SAB 故 SB 是斜线BC 在平面SAB 上的射影, ∴∠SBC 是直线BC 与平面SAB 所成的角为60°。 (2) 连结SM,CM ,则SM ⊥AB, 又∵SC ⊥AB,∴AB ⊥平面SCM, ∴面ABC ⊥面SCM 过S 作SH ⊥CM 于H, 则SH ⊥平面ABC ∴CH 即为 SC 在面ABC 内的射影。 ∠SCH 为SC 与平面ABC 所成的角。 sin ∠SCH=SH /SC ∴SC 与平面ABC 所成的角的正弦值为√7/7 (“垂线”是相对的,SC 是面 SAB 的垂线,又是面 ABC 的斜线. 作面的垂线常根据面面垂直的性质定理,其思路是:先找出与已知平面垂直的平面,然后一面内找出或作出交线的垂线,则得面的垂线。) 2. 利用公式sin θ=h /ι 其中θ是斜线与平面所成的角, h 是 垂线段的长,ι是斜线段的长,其中求出垂线段的长(即斜线上的点到面的距离)既是关键又是难点,为此可用三棱锥的体积自等来求垂线段的长。 例2 ( 如图2) 长方体ABCD-A 1B 1C 1D 1 , AB=3 ,BC=2, A 1A= 4 ,求AB 与面 AB 1C 1D 所成的角。 A 1 C 1 D 1 H 4 C B 1 23 B A D 解:设点 B 到AB 1C 1D 的距离为h ,∵V B ﹣AB 1C 1 =V A ﹣BB 1C 1 ∴1/3 S △AB 1C 1 ·h= 1/3 S △BB 1C 1 ·AB,易得h=12/5 ,

立体几何新题型的解题技巧

立体几何新题型的解题技巧 立体几何新题型的解题技巧 【命题趋向】 在高考中立体几何命题有如下特点: 1.线面位置关系突出平行和垂直,将侧重于垂直关系. 2.多面体中线面关系论证,空间“角”与“距离”的计算常在解答题中综合出现. 3.多面体及简单多面体的概念、性质多在选择题,填空题出现. 4.有关三棱柱、四棱柱、三棱锥的问题,特别是与球有关的问题将是高考命题的热点. 此类题目分值一般在17---22分之间,题型一般为1个选择题,1个填空题,1个解答题. 【考点透视】 (A)版.掌握两条直线所成的角和距离的概念,对于异面直线的距离,只要求会计算已给出公垂线时的距离.掌握斜线在平面上的射影、直线和平面所成的角、直线和平面的距离的概念.掌握二面角、二面角的平面角、两个平行平面间的距离的概念. (B)版. ①理解空间向量的概念,掌握空间向量的加法、减法和数乘. ②了解空间向量的基本定理,理解空间向量坐标的概念,掌握空间向量的坐标运算. ③掌握空间向量的数量积的定义及其性质,掌握用直角坐标计算空间向量数量积公式. ④理解直线的方向向量、平面的法向量,向量在平面内的射影等概念. ⑤了解多面体、凸多面体、正多面体、棱柱、棱锥、球的概念. ⑥掌握棱柱、棱锥、球的性质,掌握球的表面积、体积公式. ⑦会画直棱柱、正棱锥的直观图. 空间距离和角是高考考查的重点:特别是以两点间距离,点到平面的距离,两异面直线的距离,直线与平面的距离以及两异面直线所成的角,直线与平面所成的角,二面角等作为命题的重点内容,高考试题中常将上述内容综合在一起放在解答题中进行考查,分为多个小问题,也可能作为客观题进行单独考查.考查空间距离和角的试题一般作为整套试卷的中档题,但也可能在最后一问中设置有难度的问题. 不论是求空间距离还是空间角,都要按照“一作,二证,三算”的步骤来完成,即寓证明于运算之中,正是本专题的一大特色. 求解空间距离和角的方法有两种:一是利用传统的几何方法,二是利用空间向量。

立体几何高考真题大题

立体几何高考真题大题 1.(2016 高考新课标 1 卷)如图 , 在以 A,B,C,D,E,F为顶点的五面体中, 面 ABEF为正方形 ,AF=2FD,AFD 90 ,且二面角D-AF-E与二面角C-BE-F都是 60 . D C F (Ⅰ)证明:平面ABEF平面EFDC; (Ⅱ)求二面角E-BC-A 的余弦值. 【答案】(Ⅰ)见解析;(Ⅱ) 2 19 19 【解析】 试题分析:(Ⅰ)先证明 F平面FDC ,结合F平面 F ,可得平面F 平面 FDC .(Ⅱ)建立空间坐标系, 分别求出平面C的法向量 m 及平面 C 的法 向量 n ,再利用 cos n, m n m 求二面角.n m 试题解析:(Ⅰ)由已知可得F DF, F F, 所以F平面 FDC . 又F平面F,故平面 F 平面FDC . (Ⅱ)过 D 作DG F ,垂足为 G ,由(Ⅰ)知 DG平面 F . 以 G 为坐标原点,GF 的方向为 x 轴正方向, GF 为单位长度, 建立如图所示的空间直角坐标系 G xyz . 由(Ⅰ)知DF为二面角D F的平面角,故DF60,则DF 2, DG3,可得1,4,0 ,3,4,0,3,0,0, D0,0, 3 . 由已知 ,// F,所以//平面FDC . 又平面CD平面FDC DC,故//CD , CD// F . 由//F,可得平面FDC ,所以 C F为二面角 C F 的平面角, C F60 .从而可得C2,0,3.

设 n x, y, z 是平面C的法向量,则 n C 0, 即x 3z 0, n0 4 y0 所以可取 n3,0, 3 . 设 m 是平面 m C0 CD 的法向量,则, m0 同理可取 m0, 3, 4 .则 cos n, m n m 2 19. n m19 故二面角C 219的余弦值为. 19 考点:垂直问题的证明及空间向量的应用 【名师点睛】立体几何解答题第一问通常考查线面位置关系的证明, 空间中线面位置关 系的证明主要包括线线、线面、面面三者的平行与垂直关系, 其中推理论证的关键是结 合空间想象能力进行推理, 要防止步骤不完整或考虑不全致推理片面, 该类题目难度不 大 , 以中档题为主.第二问一般考查角度问题, 多用空间向量解决. 2 .( 2016 高考新课标 2 理数)如图,菱形ABCD 的对角线AC 与BD交于点 O , AB 5,AC 6,点 E, F 分别在 AD,CD 上, AE CF 5 ,EF交BD于点H.将4 DEF 沿 EF 折到 D EF 位置,OD10. (Ⅰ)证明: D H平面 ABCD ; (Ⅱ)求二面角 B D A C 的正弦值. 【答案】(Ⅰ)详见解析;(Ⅱ)295 .25

立体几何典型例题精选(含答案)

F E D C B A 立体几何专题复习 热点一:直线与平面所成的角 例1.(2014,广二模理 18) 如图,在五面体ABCDEF 中,四边形ABCD 是边长为2的正方形, EF ∥平面ABCD , 1EF =,,90FB FC BFC ?=∠=,3AE =. (1)求证:AB ⊥平面BCF ; (2)求直线AE 与平面BDE 所成角的正切值. 变式1:(2013湖北8校联考)如左图,四边形ABCD 中,E 是BC 的中点,2,1,5,DB DC BC === 2.AB AD ==将左图沿直线BD 折起,使得二面角A BD C --为60,?如右图. (1)求证:AE ⊥平面;BDC (2)求直线AC 与平面ABD 所成角的余弦值. 变式2:[2014·福建卷] 在平面四边形ABCD 中,AB =BD =CD =1,AB ⊥BD ,CD ⊥BD .将△ABD 沿BD 折起,使得平面ABD ⊥平面BCD ,如图1-5所示. (1)求证:AB ⊥CD ; (2)若M 为AD 中点,求直线AD 与平面MBC 所成角的正弦值.

热点二:二面角 例2.[2014·广东卷] 如图1-4,四边形ABCD为正方形,PD⊥平面ABCD,∠DPC=30°,AF⊥PC于点F,FE∥CD,交PD于点E. (1)证明:CF⊥平面ADF;(2)求二面角D-AF-E的余弦值. 变式3:[2014·浙江卷] 如图1-5,在四棱锥A-BCDE中,平面ABC⊥平面BCDE,∠CDE=∠BED=90°,AB=CD=2,DE=BE=1,AC= 2. (1)证明:DE⊥平面ACD;(2)求二面角B-AD-E的大小. 变式4:[2014·全国19] 如图1-1所示,三棱柱ABC-A1B1C1中,点A1在平面ABC内的射影D在AC 上,∠ACB=90°,BC=1,AC=CC1=2. (1)证明:AC1⊥A1B; (2)设直线AA1与平面BCC1B1的距离为3,求二面角A1 -AB -C的大小.

(经典)高考立体几何题型与方法全归纳文科(精典配套练习)

2019高考立体几何题型与方法全归纳文科 配套练习 1、四棱锥P ABCD -中,PA ⊥底面ABCD ,23PA =,2BC CD ==,3ACB ACD π ∠=∠=. (Ⅰ)求证:BD ⊥平面PAC ; (Ⅱ)若侧棱PC 上的点F 满足7PF FC =,求三棱锥P BDF -的体积。 【答案】 (Ⅰ)证明:因为BC=CD ,即BCD ?为等腰三角形,又ACD ACB ∠=∠,故AC BD ⊥. 因为⊥PA 底面ABCD ,所以BD PA ⊥,从而BD 与平面PAC 内两条相交直线AC PA ,都垂直, 故BD ⊥平面PAC 。 (Ⅱ)解:33 2sin 2221sin 21=??=∠??=?πBCD CD BC S BCD . 由⊥PA 底面ABCD 知23233 131=??=??=?-PA S V BCD BDC P . 由,7FC PF =得三棱锥BDC F -的高为PA 8 1,

故:4 132813318131=???=??=?-PA S V BCD BDC F 4 7412=-=-=---BCD F BCD P BDF P V V V 2、如图,四棱锥P ABCD -中,四边形ABCD 为矩形,PAD ?为等腰三角形,90APD ?∠=,平面PAD ⊥ 平面ABCD ,且1,2AB AD ==,,E F 分别为PC 和BD 的中点. (Ⅰ)证明:EF 平面PAD ; (Ⅱ)证明:平面PDC ⊥平面PAD ; (Ⅲ)求四棱锥P ABCD -的体积.

【答案】 (Ⅰ)证明:如图,连结AC . ∵四边形ABCD 为矩形且F 是BD 的中点.∴F 也是AC 的中点. 又E 是PC 的中点,EF AP ∵EF ?平面PAD ,PA ?平面PAD ,所以EF 平面PAD ; (Ⅱ)证明:∵平面PAD ⊥ 平面ABCD ,CD AD ⊥,平面PAD 平面ABCD AD =, 所以平面CD ⊥ 平面PAD ,又PA ?平面PAD ,所以PA CD ⊥ 又PA PD ⊥,,PD CD 是相交直线,所以PA ⊥面PCD 又PA ?平面PAD ,平面PDC ⊥平面PAD ; (Ⅲ)取AD 中点为O .连结PO ,PAD ?为等腰直角三角形,所以PO AD ⊥, 因为面PAD ⊥面ABCD 且面PAD 面ABCD AD =, 所以,PO ⊥面ABCD , 即PO 为四棱锥P ABCD -的高. 由2AD =得1PO =.又1AB =. ∴四棱锥P ABCD -的体积1233 V PO AB AD =??= 考点:空间中线面的位置关系、空间几何体的体积. 3、如图,在四棱锥P ABCD -中,PD ABCD ⊥平面,CD PA ⊥, DB ADC ∠平分,E PC 为的中点, 45DAC ∠=,AC =

立体几何大题练习题答案

立体几何大题专练 1、如图,已知PA ⊥矩形ABCD 所在平面,M 、N 分别为AB 、PC 的中点; (1)求证:MN//平面PAD (2)若∠PDA=45°,求证:MN ⊥平面PCD 2(本小题满分12分) 如图,在三棱锥P ABC -中,,E F 分别为,AC BC 的中点. (1)求证://EF 平面PAB ; (2)若平面PAC ⊥平面ABC ,且PA PC =,90ABC ∠=?, 求证:平面PEF ⊥平面PBC . P A C E B F

(1)证明:连结EF , E 、F 分别为AC 、BC 的中点, //EF AB ∴. ……………………2分 又?EF 平面PAB ,?AB 平面PAB , ∴ EF ∥平面P AB . ……………………5分 (2)PA PC = ,E 为AC 的中点, PE AC ∴⊥ ……………………6分 又 平面PAC ⊥平面ABC PE ∴⊥面ABC ……………………8分 PE BC ∴⊥……………………9分 又因为F 为BC 的中点, //EF AB ∴ 090,BC EF ABC ⊥∠=∴ ……………………10分 EF PE E = BC ∴⊥面PEF ……………………11分 又BC ? 面PBC ∴面PBC ⊥面PEF ……………………12分 3. 如图,在直三棱柱ABC —A 1B 1C 1中,AC=BC ,点D 是AB 的中点。 (1)求证:BC 1//平面CA 1D ; (2)求证:平面CA 1D⊥平面AA 1B 1B 。 4.已知矩形ABCD 所在平面外一点P ,PA ⊥平面ABCD ,E 、F 分别是 AB 、PC 的中点. (1) 求证:EF ∥平面PAD ; (2) 求证:EF ⊥CD ; (3) 若∠PDA =45°,求EF 与平面ABCD 所成的角的大小.

(完整版)空间向量与立体几何题型归纳

空间向量与立体几何 1, 如图,在四棱锥V-ABCD中,底面ABCD是正方形,侧面VAD是正三角形,平面VADL底面ABC (1)证明AB丄平面VAD (2)求面VAD与面VDB所成的二面角的大小 2, 如图所示,在四棱锥P—ABCD中,底面ABCD为矩形,侧棱PA丄底面ABCD AB骑, BC=1 , PA=2, E为PD的中点. (1)求直线AC与PB所成角的余弦值; (2)在侧面PAB内找一点N使NE!平面PAC并求出N点到AB和AP的距 离.(易错点,建系后,关于N点的坐标的设法,也是自己的弱项)

3. 如图,在长方体 ABCD-ABCD 中,AD=AA=1, AB=2,点E 在棱 AB 上移动. 证明:DE 丄AD; 当E 为AB 的中点时,求点 A 到面ECD 的距离; 7T AE 等于何值时,二面角 D — EC- D 的大小为-(易错点:在找平面DEC 的法向量的时候,本 来法向量就己经存在了 ,就不必要再去找,但是我认为去找应该没有错吧 ,但法向量找出来了 , 和 那个己经存在的法向量有很大的差别 ,而且,计算结果很得杂,到底问题出在哪里?) 4. 如图,直四棱柱 ABCD — A I B I C I D I 中,底面ABCD 是等腰梯形,AB // CD , AB = 2DC =2, E 为BD i 的中点,F 为AB 的中点,/ DAB = 60° (1)求证:EF //平面 ADD 1A 1; ⑵若BB 1 ~2-,求A 1F 与平面DEF 所成角的正弦值. N : 5 题到 11 题都是运用基底思想解题 5. 空间四边形 ABCD 中, AB=BC=CD AB 丄BC, BC 丄CD , AB 与CD 成60度角,求AD 与BC 所 成角的大小。 (1) (2) (3) A B

立体几何经典题型汇总

1.平面 平面的基本性质:掌握三个公理及推论,会说明共点、共线、共面问题。 (1).证明点共线的问题,一般转化为证明这些点是某两个平面的公共点(依据:由点在线上,线在面内 ,推出点在面内), 这样可根据公理2证明这些点都在这两个平面的公共直线上。 (2).证明共点问题,一般是先证明两条直线交于一点,再证明这点在第三条直线上,而这一点是两个平面的公共点,这第三条直线是这两个平面的交线。 (3).证共面问题一般先根据一部分条件确定一个平面,然后再证明其余的也在这个平面内,或者用同一法证明两平面重合 2. 空间直线. (1). 空间直线位置关系三种:相交、平行、异面. 相交直线:共面有且仅有一个公共点;平行直线:共面没有公共点;异面直线:不同在任一平面内,无公共点 [注]:①两条异面直线在同一平面内射影一定是相交的两条直线.(×)(也可能两条直线平行,也可能是点和直线等) ②直线在平面外,指的位置关系是平行或相交 ③若直线a 、b 异面,a 平行于平面α,b 与α的关系是相交、平行、在平面α内. ④两条平行线在同一平面内的射影图形是一条直线或两条平行线或两点. ⑤在平面内射影是直线的图形一定是直线.(×)(射影不一定只有直线,也可以是其他图形) ⑥在同一平面内的射影长相等,则斜线长相等.(×)(并非是从平面外一点.. 向这个平面所引的垂线段和斜线段) ⑦b a ,是夹在两平行平面间的线段,若b a =,则b a ,的位置关系为相交或平行或异面. ⑧异面直线判定定理:过平面外一点与平面内一点的直线和平面内不经过该点的直线是异面直线.(不在 任何一个平面内的两条直线) (2). 平行公理:平行于同一条直线的两条直线互相平行. 等角定理:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等(如右图). (直线与直线所成角]90,0[??∈θ) (向量与向量所成角])180,0[ ∈θ 推论:如果两条相交直线和另两条相交直线分别平行,那么这两组直线所成锐角(或直角)相等. (3). 两异面直线的距离:公垂线段的长度. 空间两条直线垂直的情况:相交(共面)垂直和异面垂直. [注]:21,l l 是异面直线,则过21,l l 外一点P ,过点P 且与21,l l 都平行平面有一个或没有,但与21,l l 距离相等的点在同一平面内. (1L 或2L 在这个做出的平面内不能叫1L 与2L 平行的平面)

关于立体几何解答题一题多解与多题一解的探索

关于立体几何解答题一题多解与多题一解的探索 ──从2011年高考数学谈起 贵州省遵义市习水县第一中学袁嗣林 摘要:纵观近年高考数学试题,可以看出,立体几何解答题是历年高考的必考题型。分值一般12分,难度属容易或中档题。学生得分率较高,但失分率也高。本文就2011年高考数学真题为例,对立体几何解答题作一些归类。关于立体几何解答题可以归类为一题多解与多题一解,即一类题有多种解法,多种题型可以用一种解法完成。 关键词:一题多解;多题一解;立体几何 一、一题多解 例1 (安徽理17)如图,为多面体,平面与平面垂直,点在线段上,△OAB,,△,△,△都是正三角形。 (Ⅰ)证明直线∥; (II)求棱锥F—OBED的体积。 分析:本题考查空间直线与直线,直线与平面、平面与平面的位置关系,空间直线平行的证明,多面体体积的计算等基本知识,考查空间想象能力,推理论证能力和运算求解能力.通常解法是传统法和向量法。 (I)解法一(传统法):证明:设G是线段DA与EB延长线的交点. 由于△OAB与△ODE都是正三角形,所以

∥,OG=OD=2, 同理,设是线段DA与线段FC延长线的交点,有 又由于G和都在线段DA的延长线上,所以G与重合. 在△GED和△GFD中,由∥和OC∥,可知B和C分别是GE和GF 的中点,所以BC是△GEF的中位线,故BC∥EF. 解法二(向量法):过点F作,交AD于点Q,连QE,由平面ABED⊥平 面ADFC,知FQ⊥平面ABED,以Q为坐标原点,为轴正向,为y轴正向,为z轴正向,建立如图所示空间直角坐标系. 由条件知 则有 所以即得BC∥EF. (II)略 评注:向量法和传统法有时可以转换着使用,主要工具是利用三线垂定理及逆定理和面面垂直、线面垂直、线线垂直找出两辆相互垂直的三条直线,进而建立直角坐标系。 例2 (湖北理18)如图,已知正三棱柱的各棱长都是4,是的中点,动点在侧棱上,且不与点重合.

立体几何题型归纳

立体几何题型归纳 题型一线面平行的证明 例 1 如图,高为 1 的等腰梯形 ABCD 中,AM =CD =1 AB =1.现将△AMD 沿 MD 折起,使平面 AMD ⊥ 3 平面 MBCD ,连接 AB ,AC . 试判断:在 AB 边上是否存在点 P ,使 AD ∥平面 MPC ?并说明理由 【答案】当 AP =1 AB 时,有 AD ∥平面 MPC . 3 理由如下: 连接 BD 交 MC 于点 N ,连接 NP . 在梯形 MBCD 中,DC ∥MB ,DN =DC =1 , NB MB 2 在△ADB 中,AP =1 ,∴AD ∥PN . PB 2 ∵AD ?平面 MPC ,PN ?平面 MPC , ∴AD ∥平面 MPC . 【解析】线面平行,可以线线平行或者面面平行推出。此类题的难点就是如何构造辅助线。构造完辅助线, 证明过程只须注意规范的符号语言描述即可。本题用到的是线线平行推出面面平行。 【易错点】不能正确地分析 DN 与 BN 的比例关系,导致结果错误。 【思维点拨】此类题有两大类方法: 1. 构造线线平行,然后推出线面平行。 此类方法的辅助线的构造须要学生理解线面平行的判定定理与线面平行的性质之间的矛盾转化关系。在 此,我们需要借助倒推法进行分析。首先,此类型题目大部分为证明题,结论必定是正确的,我们以此 为前提可以得到线面平行。再次由线面平行的性质可知,过已知直线的平面与已知平面的交线必定平行 于该直线,而交线就是我们要找的线,从而做出辅助线。从这个角度上看我们可以看出线线平行推线面 平行的本质就是过已知直线做一个平面与已知平面相交即可。如本题中即是过 AD 做了一个平面 ADB 与平面 MPC 相交于线 PN 。最后我们只须严格使用正确的符号语言将证明过程反向写一遍即可。即先证AD 平行于 PN ,最后得到结论。构造交线的方法我们可总结为如下三个图形。

高考中常见的立体几何题型和解题方法

高考中常见的立体几何题型和解题方法 黔江中学高三数学教师:付 超 高考立体几何试题一般共有2——3道(选择、填空题1——2道, 解答题1道), 共计总分18——23分左右,考查的知识点在20个以内. 选择填空题考核立几中的 逻辑推理型问题, 而解答题着重考查立几中的计算型问题, 当然, 二者均应以正 确的空间想象为前提. 随着新的课程改革的进一步实施,立体几何考题正朝着“多 一点思考,少一点计算”的方向发展.从历年的考题变化看, 以简单几何体为载体 的线面位置关系的论证,角与距离的探求是常考常新的热门话题. 一、知识整合 1.有关平行与垂直(线线、线面及面面)的问题,是在解决立体几何问题的过 程中,大量的、反复遇到的,而且是以各种各样的问题(包括论证、计算角、与 距离等)中不可缺少的内容,因此在主体几何的总复习中,首先应从解决“平行 与垂直”的有关问题着手,通过较为基本问题,熟悉公理、定理的内容和功能, 通过对问题的分析与概括,掌握立体几何中解决问题的规律——充分利用线线平 行(垂直)、线面平行(垂直)、面面平行(垂直)相互转化的思想,以提高逻辑思维能 力和空间想象能力. 2. 判定两个平面平行的方法: (1)根据定义——证明两平面没有公共点; (2)判定定理——证明一个平面内的两条相交直线都平行于另一个平面; (3)证明两平面同垂直于一条直线。 3.两个平面平行的主要性质: ⑴由定义知:“两平行平面没有公共点”。 ⑵由定义推得:“两个平面平行,其中一个平面内的直线必平行于另一个平 面。 ⑶两个平面平行的性质定理:“如果两个平行平面同时和第三个平面相交, 那 么它们的交线平行”。 ⑷一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面。 ⑸夹在两个平行平面间的平行线段相等。 ⑹经过平面外一点只有一个平面和已知平面平行。 以上性质⑵、⑷、⑸、⑹在课文中虽未直接列为“性质定理”,但在解题过 程中均可直接作为性质定理引用。 4.空间角和距离是空间图形中最基本的数量关系,空间角主要研究射影以 及与射影有关的定理、空间两直线所成的角、直线和平面所成的角、以及二面角 和二面角的平面角等.解这类问题的基本思路是把空间问题转化为平面问题去解 决. 空间角,是对由点、直线、平面所组成的空间图形中各种元素间的位置关系 进行定量分析的一个重要概念,由它们的定义,可得其取值范围,如两异面直线 所成的角θ∈(0,2π],直线与平面所成的角θ∈0,2π?????? ,二面角的大小,可用它们的平面角来度量,其平面角θ∈[0,π].对于空间角的计算,总是通过一定 的手段将其转化为一个平面内的角,并把 它置于一个平面图形,而且是一个三

立体几何大题题库

立体几何解答题题库 1. 如图,在三棱锥P -ABC 中,P A ,PB ,PC 两两垂直,P A =AB =AC =3,平面//α平面P AB ,且α与棱PC ,AC ,BC 分别交于P 1,A 1,B 1三点. (1)过A 作直线l ,使得l BC ⊥,11l P A ⊥,请写出作法并加以证明; (2)若α将三棱锥P -ABC 分成体积之比为8:19的两部分(其中,四面体P 1A 1B 1C 的体积更小),D 为线段B 1C 的中点,求四棱锥A 1-PP 1DB 1的体积. 2. 如图所示是一个几何体的直观图、正视图、俯视图、侧视图(其中正视图为直角梯形,俯视图为正方形,侧视图为直角三角形,尺寸如图所示). (1)求四棱锥P -ABCD 的体积; (2)证明:BD ∥平面PEC ; (3)线段BC 上是否存在点M ,使得AE ⊥PM ?若存在,请说明其位置,并加以证明;若不存在,请说明理由. 3.如图1所示,平面多边形CDEF 中,四边形ABCD 为正方形,EF ∥AB ,AB =2EF =2,沿着AB 将图形折成图2,其中AED ∠90,,AE ED H =?=为AD 的中点. (Ⅰ)求证:EH ⊥BD ;

(Ⅱ)求四棱锥D -ABFE 的体积. 4. 如图,四棱锥P -ABCD 中,侧面PAD 为等边三角形,且平面⊥PAD 底面ABCD ,12 1 == =AD BC AB ,090=∠=∠ABC BAD . (1)证明::AB PD ⊥; (2)点M 在棱PC 上,且CP CM λ=,若三棱锥ACM D -的体积为3 1 ,求实数λ的值. 5. 已知ABCD 是矩形,PD ⊥平面ABCD ,PD =DC =a ,AD =,M 、N 分别是AD 、PB 的中点。 (Ⅰ)求证:平面MNC ⊥平面PBC ; (Ⅱ)求点A 到平面MNC 的距离。 6. 在直三棱柱ABC -A 1B 1C 1中,AB =AC ,E 是BC 的中点. (1)求证:平面AB 1E ⊥平面B 1BCC 1; (2)求证:A 1C ∥平面AB 1E .

立体几何知识点与例题讲解、题型、方法技巧(理科)

啊没立体几何知识点和例题讲解 一、知识点 <一>常用结论 1.证明直线与直线的平行的思考途径:(1)转化为判定共面二直线无交点;(2)转化为二直线同与第三条直线平行;(3)转化为线面平行;(4)转化为线面垂直;(5)转化为面面平行. 2.证明直线与平面的平行的思考途径:(1)转化为直线与平面无公共点;(2)转化为线线平行;(3)转化为面面平行. 3.证明平面与平面平行的思考途径:(1)转化为判定二平面无公共点;(2)转化为线面平行;(3)转化为线面垂直. 4.证明直线与直线的垂直的思考途径:(1)转化为相交垂直;(2)转化为线面垂直;(3)转化为线与另一线的射影垂直;(4)转化为线与形成射影的斜线垂直. 5.证明直线与平面垂直的思考途径:(1)转化为该直线与平面内任一直线垂直;(2)转化为该直线与平面内相交二直线垂直;(3)转化为该直线与平面的一条垂线平行;(4)转化为该直线垂直于另一个平行平面;(5)转化为该直线与两个垂直平面的交线垂直. 6.证明平面与平面的垂直的思考途径:(1)转化为判断二面角是直二面角;(2)转化为线面垂直. 7.夹角公式 :设a =123(,,)a a a ,b =123(,,)b b b ,则cos 〈a ,b 〉112233222222123 123 a a a b b b ++++. 8.异面直线所成角:cos |cos ,|a b θ== 12121222 22 2 2 1 1 1 222 || |||| a b a b x y z x y z ?= ?++?++(其中θ(090θ<≤)为异面直线a b , 所成角,,a b 分别表示异面直线a b ,的方向向量) 9.直线AB 与平面所成角:sin |||| AB m arc AB m β?=(m 为平面α的法向量). 10、空间四点A 、B 、C 、P 共面z y x ++=?,且 x + y + z = 1 11.二面角l αβ--的平面角 cos ||||m n arc m n θ?=或cos |||| m n arc m n π?-(m ,n 为平面α,β的法向量). 12.三余弦定理:设AC 是α内的任一条直线,且BC ⊥AC ,垂足为C ,又设AO 与AB 所成的角为1θ,AB 与AC 所成的角为2θ,AO 与AC 所成的角为θ.则12cos cos cos θθθ=. 13.空间两点间的距离公式 若A 111(,,)x y z ,B 222(,,)x y z ,则 ,A B d =||AB AB AB =?222212121()()()x x y y z z =-+-+- 14.异面直线间的距离: || || CD n d n ?= (12,l l 是两异面直线,其公垂向量为n ,C D 、分别是12,l l 上任一点,d 为12,l l 间的距离). 15.点B 到平面α的距离:|| || AB n d n ?= (n 为平面α的法向量,AB 是经过面α的一条斜线,A α∈). 16.三个向量和的平方公式:2 2 2 2 ()222a b c a b c a b b c c a ++=+++?+?+? 222 2||||cos ,2||||cos ,2||||cos ,a b c a b a b b c b c c a c a =+++?+?+? 17. 长度为l 的线段在三条两两互相垂直的直线上的射影长分别为123l l l 、、,夹角分别为123θθθ、、,

文科立体几何解答题类型总结及其答案

F E C A D B A 1 C 1B 1 B C A D F E A B C M N A 1 B 1 C 1 B C B A 1 C 1 A D C 1 D 1 B 1 A C D A B E 《立体几何》解答题 1.(2008年江苏卷)如图,在四面体ABCD 中,CB =CD , AD ⊥BD ,点E , F 分别是AB , BD 的中点. 求证:(Ⅰ)直线EF ∥平面ACD ; (Ⅱ)平面EFC ⊥平面BCD. 2.(2009年江苏卷)如图,在直三棱柱ABC -A 1B 1C 1中, E 、F 分别是A 1B 、A 1C 的中点,点D 在B 1C 1上,A 1D ⊥B 1C 求证:(Ⅰ)EF ∥平面ABC ; (Ⅱ)平面A 1FD ⊥平面BB 1C 1C. (第1题) (第2题) (第3题) (第4题) 3. 如图,直三棱柱ABC -A 1B 1C 1中,∠ACB =90°,M 、N 分别为A 1B 、B 1C 1的中点. (Ⅰ)求证:BC ∥平面MNB 1; (Ⅱ)求证:平面A 1CB ⊥平面ACC 1A 1. 4. 如图,在直三棱柱ABC -A 1B 1C 1中,AC =BC =CC 1,AC ⊥BC, 点D 是AB 的中点. (Ⅰ)求证:CD ⊥平面A 1ABB 1; (Ⅱ)求证:AC 1∥平面CDB 1; (Ⅲ)线段AB 上是否存在点M ,使得A 1M ⊥平面CDB 1 5. 如图,已知正三棱柱ABC -A 1B 1C 1的所有棱长都为2,D 为CC 1中点,E为BC 的中点. (Ⅰ)求证:BD ⊥平面AB 1E ; (Ⅱ)求直线AB 1与平面BB 1C 1C 所成角的正弦值; (Ⅲ)求三棱锥C -ABD 的体积. 6. 如图,在正方体ABCD -A 1B 1C 1D 1中,F 为AA 1的中点. 求证:(Ⅰ)A 1C ∥平面FBD ; (Ⅱ)平面FBD ⊥平面DC 1B. (第5题) (第6题) (第7题) C 1 D 1 B 1 C D A 1

立体几何常见重要题型归纳-高考立体几何题型归纳

立体几何常见重要题型归纳 阳江一中 利进健 题型一 点到面的距离 常见技巧:等体积法 例1:如图,在直四棱柱ABCD -A 1B 1C 1D 1中,底面ABCD 为等腰梯形,AB ∥CD ,AB =4,BC =CD =2,AA 1=2,E ,E 1分别是棱AD ,AA 1的中点. (1)设F 是棱AB 的中点,证明:直线EE 1∥平面FCC 1; (2)证明:平面D 1AC ⊥平面BB 1C 1C ; (3)求点D 到平面D 1AC 的距离. 解析:(1)11//,,,//,22 CD AB CD AB AF AB CD AF CD AF ==∴= ∴ 四边形AFCD 为平行四边形 ∴//CF AD 又AD ?面11ADD A ,CF ?面11ADD A ∴//CF 面11ADD A 2分 在直四棱柱中,11//CC DD , 又AD ?面11ADD A ,CF ?面11ADD A ∴1//CC 面11ADD A 3分 又11,,CC CF C CC CF ?=?面1CC F ∴面1CC F //面11ADD A 又1EE ?面11ADD A ,1//EE ∴面1CC F 5分 (2)122 BC CD AB === ∴ 平行四边形AFCD 是菱形 DF AC ∴⊥ ,易知//BC DF AC BC ∴⊥ 7分 在直四棱柱中,1CC ⊥面ABCD ,AC ?面ABCD 1AC CC ∴⊥ 又1BC CC C ?= AC ∴⊥面11BCC B 9分 又AC ?面1D AC ∴面1D AC ⊥面11BCC B 10分 (3)易知11D D AC D ADC V V --= 11分 ∴ 设D 到面1D AC 的距离为d ,则

高一立体几何经典例题复习课程

立体几何周练 命题人---王利军 一、选择题(每小题5分,共60分) 1、线段AB 在平面α内,则直线AB 与平面α的位置关系是 A 、A B α? B 、AB α? C 、由线段AB 的长短而定 D 、以上都不对 2、下列说法正确的是 A 、三点确定一个平面 B 、四边形一定是平面图形 C 、梯形一定是平面图形 D 、平面α和平面β有不同在一条直线上的三个交点 3、垂直于同一条直线的两条直线一定 A 、平行 B 、相交 C 、异面 D 、以上都有可能 4、在正方体1111ABCD A B C D -中,下列几种说法正确的是 A 、11AC AD ⊥ B 、11D C AB ⊥ C 、1AC 与DC 成45o 角 D 、11AC 与1B C 成 60o 角 5、若直线l ∥平面α,直线a α?,则l 与a 的位置关系是 A 、l ∥a B 、l 与a 异面 C 、l 与a 相交 D 、l 与a 没有公共点 6、下列命题中:(1)、平行于同一直线的两个平面平行;(2)、平行于同一平面的两个平面平行; (3)、垂直于同一直线的两直线平行;(4)、垂直于同一平面的两直线平行.其中正确的个数有 A 、1 B 、2 C 、3 D 、4 7、在空间四边形ABCD 各边AB BC CD DA 、、、上分别取E F G H 、、、四点,如果与EF GH 、能相交于点P ,那么 A 、点必P 在直线AC 上 B 、点P 必在直线BD 上 C 、点P 必在平面ABC 内 D 、点P 必在平面ABC 外 8、a ,b ,c 表示直线,M 表示平面,给出下列四个命题:①若a ∥M ,b ∥M ,则a ∥b ;②若b ?M , a ∥ b ,则a ∥M ;③若a ⊥ c ,b ⊥c ,则a ∥b ;④若a ⊥M ,b ⊥M ,则a ∥b .其中正确命题的个数有 A 、0个 B 、1个 C 、2个 D 、3个 9、一个棱柱是正四棱柱的条件是 A 、底面是正方形,有两个侧面是矩形 B 、底面是正方形,有两个侧面垂直于底面 C 、底面是菱形,且有一个顶点处的三条棱两两垂直 D 、每个侧面都是全等矩形的四棱柱 10、在棱长为1的正方体上,分别用过共顶点的三条棱中点的平面截该正方体,则截去8个

立体几何题型与方法(文科)

立体几何题型与方法 一、 考点回顾 1.平面 (1)平面的基本性质:掌握三个公理及推论,会说明共点、共线、共面问题。 (2)证明点共线的问题,一般转化为证明这些点是某两个平面的公共点(依据:由点在线上,线在面内 ,推出点在面内), 这样,可根据公理2证明这些点都在这两个平面的公共直线上。 (3)证明共点问题,一般是先证明两条直线交于一点,再证明这点在第三条直线上,而这一点是两个平面的公共点,这第三条直线是这两个平面的交线。 (4)经过不在同一条直线上的三点确定一个面. 2. 空间直线. (1)空间直线位置分三种:相交、平行、异面. 相交直线—共面有反且有一个公共点;平行直线—共面没有公共点;异面直线—不同在任一平面内。 (2)异面直线判定定理:过平面外一点与平面内一点的直线和平面内不经过该点的直线是异面直线.(不在任何一个平面内的两条直线) (3)平行公理:平行于同一条直线的两条直线互相平行. (4)等角定理:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等 推论:如果两条相交直线和另两条相交直线分别平行,那么这两组直线所成锐角(或直角)相等. (5)空间两条直线垂直的情况:相交(共面)垂直和异面垂直. 21,l l 是异面直线,则过21,l l 外一点P ,过点P 且与21,l l 都平行平面有一个或没有,但与 21,l l 距离相等的点在同一平面内. (l 1或l 2在这个做出的平面内不能叫l 1与l 2平行的平面) 3. 直线与平面平行、直线与平面垂直. (1)空间直线与平面位置分三种:相交、平行、在平面内. (2)直线与平面平行判定定理:如果平面外一条直线和这个平面内一条直线平行,那

立体几何常见题型归纳

立体几何常见题型归纳 考点1 概念辨析 例1、设m ,n 是两条不同的直线,,,αβγ是三个不同的平面,给出下列四个说法: ①,//m n m n αα⊥?⊥;②//,//,m m αββγαγ⊥?⊥;③//,////m n m n αα? ④,//αγβγαβ⊥⊥?,说法正确的序号是:_________________ 例2、对于平面α和共面的直线m 、,n 下列命题中真命题是 ( ) (A )若,,m m n α⊥⊥则n α∥ (B )若m αα∥,n ∥,则m ∥n (C )若,m n αα?∥,则m ∥n (D )若m 、n 与α所成的角相等,则m ∥n 辨析: (1)两条异面直线在同一平面内射影一定是相交的两条直线.( ) (2)在平面内射影是直线的图形一定是直线. ( ) (3)直线a 与平面α内一条直线平行,则a ∥α.( ) (4)两条平行线中一条平行于一个平面,那么另一条也平行于这个平面. ( ) (5)平行于同一直线的两个平面平行. ( ) (6)平行于同一个平面的两直线平行. ( ) (7)直线a 与平面α内一条直线相交,则a 与平面α相交. ( ) (8)直线l 与平面α、β所成角相等,则α∥β.( ) (9)垂直于同一平面的两个平面平行. ( ) (10)垂直于同一直线的两个平面平行. ( ) (11)垂直于同一平面的两条直线平行. ( ) (12)若直线a 与平面α平行,则α内必存在无数条直线与a 平行. ( ) (13)有两个侧面是矩形的棱柱是直棱柱. ( )(14)各侧面都是正方形的棱柱一定是正棱柱. ( ) 考点2 三视图 例1、下图是一个多面体的三视图,则其全面积为__________ 例2、如图,一个空间几何体的正(主)视图、侧(左)视图都是面积为32 ,且一个内角为60°的菱形,俯视图为正方形,那么这个几何体的表面积为__________ 例3、已知某个几何体的三视图如下,根据图中标出的尺寸(单位:cm ),那么可得这个几何体的体积是_________ 22 2 2 1 1 正视 左视 俯视(例3图)

历年高考立体几何大题试题(卷)

2015年高考立体几何大题试卷 1. 【2015高考新课标2,理19】 如图,长方体ABCD -A1B1C1D1中,AB=16, BC=10, AA = 8,点E , F 分别在AB , C1D1上,A1E =4 .过点E , F的平面:-与此长方体的面相交,交线围成一个正方形. (1题图) (I )在图中画出这个正方形(不必说出画法和理由) (n )求直线AF与平面〉所成角的正弦值. 2. 【2015江苏高考,16】如图,在直三棱柱ABC—中,已知AC丄BC ,

BC =CC 1,设 AB 1 的中点为 D , BQ BC^ E .求证:(1) DE // 平面 AA 1C 1C ; (2) BC 1 _ AB 1 . (2题图) (3题图) C C 第的题图

3. 【2015高考安徽,理19】如图所示,在多面体 AEDQCBA ,四边形AABB , ADD 1A 1 ,ABCD 均为正方形,E 为Bp 的中点,过 A,D,E 的平面交CD ,于F. (I)证明:EF //BQ ; (□)求二面角E - A ,D - B i 余弦值. 4. 【2015江苏高考,22】如图,在四棱锥P-ABCD 中,已知PA _平面ABCD ,且 四边形 ABCD 为直角梯 形,.ABC =/BAD = —,PA 二 AD =2,AB 二 BC =1 2 (1)求平面PAB 与平面PCD 所成二面角的余弦值; (2)点Q 是线段BP 上的动点,当直线 CQ 与DP 所成角最小时,求线段 BQ 的长 (4题图) 5 .【2015高考福建,理17】如图,在几何体 ABCDE 中,四边形ABCD 是矩形,AB A 平面BEC , BE A EC , AB=BE=EC=2 , G , F 分别是线段 BE , DC 的中点. (I 求证:GF //平面ADE ; (^)求平面AEF 与平面BEC 所成锐二面角的余弦值. 6. 【2015高考浙江,理17】如图,在三棱柱 AB^A 1B 1C 1-中,.BAC =90;, AB = AC=2 , AA = 4 , A 在底面ABC 的射影为BC 的中点,D 为B 1C 1的中点. (5题图) D

立体几何题型总结

立体几何类型题 如图所示,在四棱锥P ABCD -中,PD ⊥平面ABCD , 又 //AD BC ,AD DC ⊥, 且33PD BC AD ===. (Ⅰ)画出四棱准P ABCD -的正视图; (Ⅱ)求证:平面PAD ⊥平面PCD ; 并求 PE EB (Ⅲ)求证:棱PB 上存在一点E ,使得//AE 平面PCD ,的值. (Ⅰ)解:四棱准P ABCD -的正视图如图所示. ………………3分 (Ⅱ)证明:因为 PD ⊥平面ABCD ,AD ?平面ABCD , 所以 PD AD ⊥. ………………5分 因为 AD DC ⊥,PD CD D =I ,PD ?平面PCD ,CD ?平面PCD , 所以AD ⊥平面PCD . ………………7分 因为 AD ?平面PAD , 所以 平面PAD ⊥平面PCD . ………………8分 (Ⅲ)分别延长,CD BA 交于点O ,连接PO ,在棱PB 上取一点E ,使得1 2 PE EB =.下证//AE 平面 PCD . ………………10分 因为 //AD BC ,3BC AD =, 所以 13OA AD OB BC ==,即12OA AB =. 所以 OA PE AB EB = . 所以 //AE OP . ………………12分 因为OP ?平面PCD ,AE ?平面PCD , 所以 //AE 平面PCD . ………………14分 2如图所示,四棱锥P ABCD -的底面ABCD 是直角梯形,AD BC //,AB AD ⊥, AD BC AB 2 1 ==,PA ⊥底面ABCD ,过BC 的平面交PD 于M ,交PA 于 N (M 与D 不重合) . (Ⅰ)求证:BC MN //; (Ⅱ)求证:CD PC ⊥ ; (Ⅲ)如果BM AC ⊥,求此时PM PD 的值. 证明:(Ⅰ)因为梯形ABCD ,且AD BC //, 又因为?BC 平面PAD ,?AD 平面PAD , 所以//BC 平面PAD . 因为平面I BCNM 平面PAD =MN , 所以BC MN //. ……………………4分 (Ⅱ)取AD 的中点Q ,连结CQ . 因为AD BC //,AD BC 2 1 = , 所以AQ BC //,且AQ BC =. 因为AB BC =,且AB AD ⊥, 所以ABCQ 是正方形. 所以BQ AC ⊥. 又因为BCDQ 为平行四边形,所以且//CD BQ 所以⊥CD AC . 又因为PA ⊥底面ABCD , 所以PA ⊥CD . 因为A AC PA =I , 所以⊥CD 平面PAC , 因为PC ?平面PAC , 所以⊥CD PC . (Ⅲ)过M 作//MK PA 交AD 于K ,连结BK . 因为PA ⊥底面ABCD , O E D C B A P C N M P D B A K A B D P M C Q A B D P M C

相关文档
相关文档 最新文档