文档库 最新最全的文档下载
当前位置:文档库 › 铸造模拟软件比较 (1)

铸造模拟软件比较 (1)

铸造模拟软件比较 (1)
铸造模拟软件比较 (1)

Coupled Thermal-fluids-stress Analysis of Castings Authors: Mark Samonds, Ph.D., J. Z. Zhu, Ph.D.

Affiliation: UES Software Inc., Annapolis, MD, USA

Abstract

This paper will consider some of the issues encountered in the application of a combined eulerian-lagrangian finite element method to shape and continuous castings. The stability and accuracy of thermo-mechanical contact algorithms will be discussed. Appropriate selection of constitutive models for casting alloys and mold materials will be treated, as well as topics concerning fluid-mechanical coupling.

Introduction

The importance and range of applicability of stress analysis in casting simulation has been noted by many authors. Accurate stress results, both in a relative and absolute sense, depend on a number of factors. We will focus on three in particular; 1) use of an appropriate material model, 2)the thermal/mechanical contact algorithm, and 3) issues surrounding the coupling of stress with filling.

Material Models

In order to simulate a variety of materials, several mechanical material models have been adopted in ProCAST. For cast parts and molds, the models include a thermo-elasto-viscoplastic model of the Perzyna type [1], a thermo-elastoplastic counterpart and an elastic model. In addition, a rigid body model and a vacant model are also available for mold materials.

The elastoplastic model and elasto-viscoplastic model, in which all the parameters and functions are temperature dependant, are described in the following. We shall start with the constitutive equations of the elastoplastic model. A modification in the flow rule will lead to the elasto-viscoplastic model.Elastoplasticity

The rate representation of the total strain in elastoplastic model is given by

The linear isotropic elastic response is described by

A generalized von Mises yield function,

is used in the numerical computations, where the deviatoric stress is given by T p e εεεε

&&&&++=)(:T p εεE σ

ε&&&&--=ly.

respective rate strain thermal the and rate strain plastic the rate, strain elastic the are tensor, ve constituti elastic the is Where T p e εεε

E &&&,,k --=

x s 2

3f σI σs tr 3

1-=.0,=??=f f p condition,y consistenc the of aid the with determined be to multiplier plastic the is where of form the has rule flow plastic assumed The g g σ

ε

&hardening.

isotropic

zes characteri and hardening kinematic the controls which stress back the is k x

Both isotropic and kinematic hardening rules are available. For isotropic hardening , the rule can be chosen as

The isotropic hardening rule can also have the form of

For kinematic hardening , the Armstrong-Frederick model [2] is adopted and has the form of Elasto-viscoplasticity

The viscoplastic model has a similar structure as the plastic model described above, except that the flow rule is changed. Here, positive values of the yield function are admitted and for f > 0, the plastic multiplier is replaced by a material function.

Therefore, the flow rule has the form

The constitutive equations for both the elastoplastic and elasto-viscoplastic models are solved by a Backward-Euler time integration scheme [3], which is unconditionally stable.

p

H Y e k +=0t e d t

p p p ò=0:3

2εε&&p

e Y Y Y e a k -¥¥-+=)(0x εx

p p b c e &&&-=.parameters material are b and c and where p p p εε&&&:3

2=e )(1f f h

g =σε

??=f f p )(1f h &means notation

The constants. material are m and and where h f m Y f f 0)(=()x x x +=2

1by,

given is strain plastic effective The modulus.plastic the is H and stress yield the is where 0Y parameter.

material a is and stress ultimate the is where a ¥Y

Thermal and Mechanical Contact of Casting and Mold

One of the critical aspects of the calculation is the treatment of the interfaces between the casting and mold, considering both thermal and mechanical aspects.

A multi-body mechanical contact algorithm is employed to compute the contact and gap formation between the casting and mold parts. Contacts between different mold parts is also considered. An augmented Lagrangian type method [4] is used in the contact algorithm. An additional automatic penalty number augmentation technique is implemented in the algorithm to adjust the penalty number and thereby the contact force. Such a technique greatly enhances the stability and robustness of the contact computation algorithm.

The variational form of the equilibrium equation with mechanical contact at any time t is written as ()0)(=G ·++òW òW òG G ·-W ·-W ·òG d g d d d grad c k u n u u t u b u d x l s d d d s

Here a frictionless contact is considered for simplicity. In the above equation, W represents the geometry of casting and all the mold parts, G represents all the contact interface between all parts. Thermal contact between parts is considered by adjusting the interface heat transfer coefficient with respect either to the air gap width or the contact pressure as computed by the mechanical contact algorithm. When the gap width is greater than zero, the adjusted heat transfer coefficient has the form,

If the contact pressure is non-zero, the effective heat transfer is increased linearly with that pressure up to a maximum value. This rather simplistic approach will be refined in the future.

Implementation

The casting process is simulated by a coupled thermal-fluid-stress analysis using the finite element method in an eulerian-lagrangian framework. Different types of elements can be used in the finite element discretization [5]. We refer to [6] for details of the elements used in ProCAST as well as the implementation of the numerical algorithms. ()

rad air eff h h h h ++=111

0t

coefficien transfer heat radiation width

gap vacuum

for 0. or air of ty conductivi t

coefficien transfer heat the of value initial the is where ====rad air air air h g k g

k h h 0()number.penalty the is and multiplier Lagrangian augmented the is quantity The ly.

respective and by denoted are tractions surface and forces body The x x l u t b g k +

A sequential solution strategy, based on operator splitting, is employed in the treatment of the coupled problem. The stress problem is solved by a Newton-Raphson method using a consistent tangent operator. A line search algorithm is adopted to optimize the convergence of the Newton-Raphson iteration. Because of the computational expense, the stress solution may be done at a less frequent interval than the thermal-fluid analysis.

When free surface flow is involved, as in filling, it is of course necessary to skip over the empty elements in the stress analysis. Care also has to be taken in the treatment of the liquid elements. Those elements that are connected by some path to a free surface can also be skipped. The volumetric change in those elements, due to thermal contraction and phase change, will be accounted for by the free surface algorithm. However, those liquid elements that are in a volume enclosed by solid need to be included in the stress calculation because that volumetric change will affect the state of stress in the surrounding elements. For example, a contraction in the liquid elements will result in a tensile stress that can deform a surrounding solid shell.

Numerical Results

The first example demonstrates the importance of using proper material models in the stress analysis. The problem considered is an aluminum casting in a sand mold. The mold material model is chosen as elastoplastic with linear strain hardening. The casting material model is treated with two alternatives, elastic and elasto-viscoplastic. An isotropic linear hardening law is assumed for the elaso-viscoplastic model. The initial temperature of the casting is taken as 650°C and the mold temperature as 25°C. All material data are temperature dependent. The results in Figure 1 show the accumulated plastic strain for both material models. Naturally, with an elastic model for the casting, on the left, the only plastic strain occurs in the mold. Figure 2 depicts the corresponding final effective or von Mises stress. The elastic model results in a maximum stress in the casting more than twice that in the other model. The viscoplastic model can relieve stress through plastic deformation. Thus, if the absolute value of the stress in a casting is desired, it is necessary to utilize one of the nonlinear material models.

In the second example, a simple T shaped casting of A356 in a H13 mold is simulated, as shown in Figure 3. The effective interface heat transfer coefficient at two different points on the casting is plotted in Figure 4. The top curve is from a point experiencing increasing contact pressure as the casting contracts. The middle curve is from a point where a gap is opening up between casting and mold, assuming the presence of air. The bottom curve is from that same point, but assuming a vacuum. The large variation in the coefficient illustrates the importance of accounting for local conditions. In addition, this example illustrates the value of the reverse coupling of the mechanical deformations with the energy solution. This effect can be seen in Figure 4 on the right where the heat flux contours are plotted. The heat flux is greatest where the contact pressure is highest.

The third example is a simple 2D casting, with an insulated riser, that has been specifically designed to produce two fluid regions. One of these is connected to the free surface at the top, which we will call Class 1, and the other becomes enclosed by solid, Class 2. In the result on the left, both Classes of elements are included in the stress analysis at all times, even during filling. In the simulation on the right, the Class 1 elements are not included in the stress calculation until they begin to solidify. The Class 2 elements are included as soon as they are cut off from the riser feeding. This results in a cpu time reduction of approximately 50% and a stress field that is more smooth.

As a practical industrial example, one company was having trouble with cracking in a tilt pouring mold. The simulated results, on the left in Figure 7, showed high stress concentrations exactly where the cracks were appearing. The redesigned mold, on the right in Figure 7, had much lower stress concentrations in the same area and eliminated the cracking problem.

Figure 1: Accumulated Plastic Strain, Elastic Model (left) and Viscoplastic (right)

Figure 2: Effective Stress, Elastic Model (left) and Viscoplastic (right)

Figure 3: Principal Stress 1 and Heat Flux Contours

Figure 4: Interface heat transfer coefficients adjusted for mechanical contact

Figure 5: Treatment of Liquid Elements, Resulting Stress Contours

Figure 6: Fraction Solid Contours

Figure 7. Stress contours in tilt pouring mold, before and after modification

References

1. P.Perzyna, 1966, ‘Fundamental Problems in Viscoplasticity’, Advance in Applied Mechanics,

Vol.9, pp. 243-377.

2. P.J. Armstrong and C.O. Frederick, 1966, ‘A mathematical representation of the multiaxial

Bauschinger effect’, General Electricity Generating Board, Report No. RD/B/N731, Bercley Nuclear Laboratories.

3. J.C. Simo and T.J.R. Hughes, 1998, Computational Inelasticity, Springer.

4. J.C. Simo and T.A. Laursen, 1992, ‘An augmented Lagrangian treatment of contact problems

involving friction’, Comput. & Structures, Vol. 42, pp.97-116.

5. O.C. Zienkiewicz and R.L.Taylor, 1991, The Finite Element Method, Volume 2, McGraw-Hill.

6. ProCAST User Manual & Technical Reference, 1998.

一款化工设计和流程模拟软件ChemCAD

万方数据

48广东化工2005年第8期 2.1画流程图 单击菜单栏FiIe按钮,选择NewJob,在弹出的文件保存对话框中选好路径后单击保存便完成了模块新建任务。此时操作界面会有所改变,菜单栏和工具栏选项都有所增加,且会弹出画流程图的面板,面板上一个符号代表一种设备或工具,如图l所示。左键单击面板,此时鼠标会变成小方框,然后在空白处单击,便可添加相应的设备。将相应的设备连接好,按需画好流程图后,便可开始下一步的操作。画流程图这一步,可以全部由自己画出,也可由附带的模块修改而成,方法是:单击File按钮,选择0penJob,弹出选择模块对话框,在相应的路径中选择相应的模块后,单击打开,便打开了所选模块,然后在菜单栏中选择EditFlowsheet,这个按钮会变为Runsimulation,并弹出如图l右侧的面板,这时便可开始编辑流程图。要改变流程线路时,右键单击要改变线路,选择Reroutestream,将弹出一个跟随鼠标移动的大的十字虚线,便可开始布线;若要改变流程图中的操作单元,右键单击要改变单元,选择Swapunit,然后在面板中选择需要的单元,在相应的位置单击便可完成操作单元的更换;若需在流程图线路中插入操作单元,右键单击相应位置,选择Insertunit,在面板中选择需要的单元,然后在相应位置单击便完成了插入操作。除了以上操作外,还可以删除线路或单元。 图1ChemCAD操作界面 2.2设置单位 在菜单栏中单击Fo珊at,然后单击Engineeringunits,会弹出一个对话框,可选择AltsI、sI等多个单位标准,选好后单击0K,便可完成单位设置。 2.3选择组分 单击菜单栏Thermophysical,选择comp011entlist,这时会弹出一个对话框,在组分数据库右侧选择需要的组分,单击Add,再单击0K,完成组分添加。 2.4选择热力学模型 单击Therm叩hysical,选择K—values,会弹出一个对话框,设置好后单击0K,便完成了K值设置;接着是设置焓,同样是在Thermoph),sicaI菜单下,选择Enthalpy,设置好后单击OK即可完成;然后在Thermophysical菜单中选择K—Valuewizard,这一项可以设置温度、压强等的最大和最小值。在Thermoph),sical菜单中还有电解液等选项,只要按需设置好即司。 2.5指定详细进料物流 每一个物料(包括原料和产品)都必须详细设置。单击菜单栏Specificatjons,在弹出的菜单中选择相应的选项进行设置。单击Specmcatiolls,选择selectStreams,弹出ID号输入对话框,输入ID号,单击0K,弹出编辑对话框,设置好相应的选项后单击OK即可。设置好这一项可以计算相关的泡点或露点值。 2.6详细指定各单元操作 左键双击或在spec溉cations菜单中选择selectUnitops选项,弹出设置对话框,框中有一个Help按键,单击弹出帮助文档,可以查看详细内容。设置好后单击0K,弹出提示对话框,提示错误或警告,因为错误的设置会使系统运行时出现错误或不能运行,不能得到准确的数据。错误提示是为了阻止系统运行,警告是为了提示用户设置要正确,如果不管就可以忽略,系统会照常运行。 2.7运行 可以选择整个系统或单个操作单元运行,也可以选择一个循环线路运行,只需在Run菜单中分别选择RunAll、RunseIectedunits或Recycles即可实现。执行后两个操作时会弹出一个对话框,单击所要运行的单元,单击0K便开始运行。还可设置运行顺序,只需在Run菜单中选择calculationsequence,在弹出的对话框中设置好后单击0K即可。 2.8查看运行结果 单击Results,在弹出的菜单中选择需要查看的选项,就会有一个文档弹出来,里面记有详细的结果。查看运行结果之后,便可计算设备规格,然后按需优化,最后便是生成物料流程图。 3功能扩展 ChemcAD的功能扩展可以通过用户新建流程图来实现。chemCAD内置了强大的数据库,用户可以新建或在已有流程图的基础上进行修改。由于面板中所提供的设备有限,chemcAD提供了画设备的工具,用户可以按照自己的需要画好一个符号,然后设置好相关的参数,便可作为一种设备使用。此外,开发chemcAD的chemstations公司也在不断扩大其数据库,有些现在还不能处理的生产流程,可以将方案提交给chemstatjons公司来处理。相信在不久的将来,ChemCAD的功能将更为强大,应用领域将更加广泛。 参考文献 [1]http://www.chemsta“ons.net. [2]h儿p://www.vmc.com.tw/chinese/c—index.htm. [3]冯权莉,叶咏恒,陈文威.乙醇一水双效精馏模拟研究[J].云南工业大学学报,1999,15(3):49—54. [4]寇业荣.乙烯废液处理塔的核算及改造建议[J],化工设计,2000,lO(2):23—25. [5]贾蓉,罗金生,张立杰,等.应用chemcAD软件模拟反应精馏 过程[J].化工生产与技术,2003,(5):44—46. 万方数据

procast在铸造中的应用

对于我们学铸造专业的学生来说,掌握几款铸造方面的软件是很有必要的,有了一定的软件基础在以后的铸造设计、模拟中都是很有用的。下面介绍下ProCAST软件在铸造中应用。 一、概述 ?ProCAST是为评价和优化铸造产品与铸造工艺而开发的专业CAE系统,借助于ProCAST系统,铸造工程师在完成铸造工艺编制之前,就能够对铸件在形成过程中的流场、温度场和应力场进行仿真分析并预测铸件的质量、优化铸造设备参数和工艺方案。 ?ProCAST可以模拟金属铸造过程中的流动过程,精确显示充填不足、冷隔、裹气和热节的位置以及残余应力与变形,准确地预测缩孔、缩松和铸造过程中微观组织的变化。 ?作为ESI集团热物理综合解决方案的旗舰产品,ProCAST是所有铸造模拟软件中现代CAD/CAE集成化程度最高的。它率先在商用化软件中使用了最先进的有限元技术并配备了功能强大的数据接口和自动网格划分工具。 ?全部模块化设计适合任何铸造过程的模拟; ?采用有限元技术,是目前唯一能对铸造凝固过程进行热-流动-应力完全耦合的铸造模拟软件; ?高度集成。 二、发展历程 ?Procast自1985年开始一直由位于美国马里兰州首府Annapolis的UES Software进行开发,并得到了美国政府和诸多研究机构的大力资助。为了保证模拟的精度,Procast一开始就采用有限元方法作为模拟的技术核心。 ?1990年后,位于瑞士洛桑的Calcom SA和瑞士联邦科技研究院也加入了Procast部分模块的开发工作,基于其强大的材料物理背景,Calcom在Procast 的晶粒计算模块和反求模块开发上贡献良多。 ?2002年,Procast和Calcom SA先后加入ESI集团,并重新组建为Procast Inc. (美国马里兰州)和Calcom ESI (瑞士洛桑)。ESI也重新整合了其原有的热物理模拟队伍如PAM-CAST和SYSWELD,这样Procast(有限元铸造仿真),PAM-CAST(有限差分元铸造仿真), Calcosoft(连续铸造仿真)和SYSWELD (热处理与焊接模拟)一起组成ESI完整的热物理综合解决方案。 三、适用范围 ?砂型铸造、消失模铸造; ?高压、低压铸造; ?重力铸造、倾斜浇铸; ?熔模铸造、壳型铸造; ?挤压铸造; ?触变铸造、触变成型、流变铸造。 由于采用了标准化的、通用的用户界面,任何一种铸造过程都可以用同一软件包ProCASTTM进行分析和优化。它可以用来研究设计结果,例如浇注系统、通气孔和溢流孔的位置,冒口的位置和大小等。实践证明ProCASTTM可以准确地模拟型腔的浇注过程,精确地描述凝固过程。可以精确地计算冷却或加热通道的位置以及加热冒口的使用。 四、材料数据

铸造仿真软件项目建议书

铸造仿真软件项目建议 书 文件编码(008-TTIG-UTITD-GKBTT-PUUTI-WYTUI-8256)

目录 1背景 长期以来,对于铸造工艺的改进主要依靠经验和试验,一直缺乏一套专业的、有效的方法和手段。模拟是控制设计、制造过程并预测产品早期服役可能出现问题的最好解决方法。当前,有限元理论已十分成熟,相应的模拟商业软件也逐步趋于成熟,并在各行各业逐步发挥其巨大的作用。 现代制造工艺越来越复杂,性能、精度要求也越来越高,依赖试验的设计手段设计费用越来越高,周期越来越长,也越来越不容易保证可靠性。而从一些发达国家的经验来看,仿真技术的应用可以大大减少试验的比重,减少了设计的盲目性,节省巨额的设计费用,设计周期也大大缩短。从我院专业发展的角度看,急需在数值仿真这一方面提高一个层次,实现我院研发能力的跨越式发展。 铸造仿真软件的开发是一项技术含量很高、专业性很强的工作,作为一个设计单位,自行开发不切实际。国内一些专业单位开发的同类产品在实用性、规范性和易用性等方面都有不足。ESI集团的ProCAST是业界领先的铸造过程模拟软件,基于强大有限元求解器和高级选项,提供高效和准确的求解来满足铸造业的需求。与传统的尝试-出错-修改方法相比,ProCAST是减少制造成本,缩短开发时间,以及改善铸造过程质量的重要的、完美的解决方案。

2铸造模拟仿真对我院的作用 引进ProCAST软件,从短期来看会提高设计和工艺制造水平,在当前在研项目中立即产生效益;而从长远来看,制造工艺计算和仿真手段的大量应用必将彻底改变我院原有的制造工艺方式,最终提高我院铸造工艺的整体水平。 2.1铸造仿真对xx室的作用 xx室目前有很多钛合金铸件的铸造过程需要模拟来解决,其主要原因是:一、采用传统的试错法,费用昂贵、周期太长;二新产品大多没有经验可以借鉴,院以工艺摸索时间比较长,尤其是一些钛合金材料。 2.2铸造仿真对铸钢厂的作用 铸钢厂目前某些件的铸造出品率不是很高,引进铸造模拟仿真软件将大大节省提高铸钢厂的铸造工艺出品率和工艺水平,大大缩短生产周期,有效的提高劳动生产率。 另外铸造模拟仿真对于我院技术的传承也很有帮助,通过仿真我们可以将铸造技术和经验进行科学的直观的描述和记录,使得过去的一些抽象的经验变为简单明了的纸面文档进行记载和保存,有利于铸造技术的延续和资源共享。 3铸造仿真软件的调研与考核 经过上述分析,铸造仿真软件的引入是十分必要的,它对我院的虚拟制造技术和铸造技术的发展将起到极大的推动作用。因此我们对市面上的铸造仿真软件进行了调研和考核。

材料模拟与计算 Asignment5

完成下面两个练习,提交截图 1.QM/MM calculation of the SW1 defect formation energy for a carbon Purpose: Introduces how to use the QMERA module in Materials Studio. Special attention is paid to preparing the system and which type of embedding scheme to use. Modules: Materials Visualizer, QMERA Time: Prerequisites: None The Stone-Wales (SW) defect is a common defect on carbon nanotubes that is thought to have important implications for their mechanical properties (see Andzelm et al., 2006). The 90° rotation of two carbon atoms around the midpoint of the C-C bond transforms four hexagons into two pentagons and two heptagons. This substructure is known as Stone-Wales defect. In this tutorial you will calculate the formation energy of a nonchiral SW defect (SW1). The following steps will be covered here: Getting started QM region definition QMERA calculation Analysis of results Note: In order to ensure that you can follow this tutorial exactly as intended, you should use the 1. Getting started Begin by starting Materials Studio and creating a new project. Open the New Project dialog and enter Stone-Wales as the project name, click the OK button. The new project is created with Stone-Wales listed in the Project Explorer. 2. Structure preparation The first thing you need to do is prepare the structure of the single-walled nanotube (SWNT). Select Build | Build Nanostructure | Single-Wall Nanotube from the menu bar. Change the N and M indices to 8 and 0 respectively. This corresponds to a nanotube of 6.26 ? diameter.

简述各种化工流程模拟软件的特点及优缺点

简述几种化工流程模拟软件的功能特点及优缺点 化学工艺09级1班 摘要:化工过程模拟是计算机化工应用中最为基础、发展最为成熟的技术。本 文综合介绍了几种主要的化工流程模拟软件的功能及特点,并对其进行了简单的比较。 关键词:化工流程模拟,模拟软件,Aspen Plus, Pro/Ⅱ,HYSYS, ChemCAD l 化工过程概述 化工流程模拟(亦称过程模拟)技术是以工艺过程的机理模型为基础,采用数学方法来描述化工过程,通过应用计算机辅助计算手段,进行过程物料衡算、热量衡算、设备尺寸估算和能量分析,作出环境和经济评价。它是化学工程、化工热力学、系统工程、计算方法以及计算机应用技术的结合产物,是近几十年发展起来的一门新技术[1]。现在化工过程模拟软件应用范围更为广泛,应用于化工过程的设计、测试、优化和过程的整合[2]。 化工过程模拟技术是计算机化工应用中最基础、发展最为成熟的技术之一,化工过程模拟与实验研究的结合是当前最有效和最廉价的化工过程研究方法,它可以大大节约实验成本,加快新产品和新工艺的开发过程。化工过程模拟可以用于完成化工过程及设备的计算、设计、经济评价、操作模拟、寻优分析和故障诊断等多种任务。[3]当前人们对化工流程模拟技术的进展、应用和发展趋势的关注与日俱增。 商品化的化工流程模拟系统出现于上世纪70年代。目前,广泛应用的化工流程模拟系统主要有ASPEN PLUS、Pro/Ⅱ、HYSYS和ChemCAD。 2 Aspen Plus 2.1 Aspen Plus简述 “如果你不能对你的工艺进行建模,你就不能了解它。如果你不了解它,你就不能改进它。而且,如果你不能改进它,你在21世纪就不会具有竞争 力。”----Aspen World 1997 Aspen Plus是大型通用流程模拟系统,源于美国能源部七十年代后期在麻省理工学院(MIT)组织的会战,开发新型第三代流程模拟软件。该项目称为“过

铸造模拟软件MAGMA操作教程

CAD Model Preprocessor Meshing Parameters Postprocessor Analysis Decision 一、基本操作流程 图(1_1) 建构正确的实体模型是进行分析工作的关键。把实体分为不同的组,转换为.stl 档,为MAGMA 分析做好准备。如图(1_1)所示:黑色字体是使用MAGMA 的操作步骤;红色字体是分析的前期工作和后期对策。 二、MAGMA的操作 1、创建专案 建构实体模型 模流前处理 实体切网格 参数设定 模流后处理 结 果 分 析 相 应 对 策

图(2_1) 图(2_2) 图(2_3) 图(2_4) 图(2_5) 说明: 图(2_1)打开桌面图标 project 菜单 create project 出现新对话框 图(2_2)选择Iron casting 铸铁模组 选择结果存放路径(MAGMAsoft 下) 取解析方案名称 回车键 OK 出现新对话框 图(2_3)默认系统选择直接按红框所标的键,直到图(2_4),按OK 键结束创建 专案操作。如图(2_5)的路径,把建立好的.stl 档存在CMD 文件夹下。 2、前处理 2-1 、材质群组介绍 专案名称 .stl 档

图(2_6) 在载入时一定要确保重力方向向上,如图(2_6)所示。一般在实体建模时便给出正确的重力方向。如果方向错误也可在MAGMA 内修改。(见后面说明) 砂模可以在建构实体时绘出,也可以在MAGMA 内绘制出。后面有进一步说明。 2-2、OVERLAY 原理 图(2_7) 图(2_8) 在建构实体时有一些区域重合。如图(2_7),ingate 连接cast 和gating ,其和两者都有交接的部分。我们希望各部分独立不干涉,保证分析的精确。利用overlay 原理切割重合区域。如图(2_8)排在前面的ingate 被排在后面的gating 和cast 切割。在载入.stl 档后需利用此原理进行排序。 2-3、载入.stl 档 接上动把.stl 档存在CMD 文件夹下后,在创建专案的界面(图(2_1))按下preprocess 键, CA VITY INSERT CAST INGATE GATING 1. CAST 2. INGATE 3. GATING 1、 砂模(sandm ) 2、 灌口(inlet ) 3、 浇道(gating ) 4、 浇道(gating ) 5、 冒口(feeder ) 6、 冒口(feeder ) 7、 入水口(ingate ) 8、 入水口(ingate ) 9、 砂芯(core ) 10、 冷铁(chill ) 11、 铸件(cast ) Inlet Gating Gating Feeder Core chill Ingate Z 轴正向 CA VITY INSERT CAST INGATE GATING 1. INGATE 2. GATING 3. CAST 排序

《化工流程模拟实训—Aspen-Plus教程(孙兰义主编)》配套PPS课件第3章-物性方法

第3章物性方法作者:毕欣欣孙兰义

物性方法 3.1 Aspen Plus数据库 3.2 Aspen Plus中的主要物性模型3.3 物性方法的选择 3.4 定义物性集 3.5 物性分析 3.6 物性估算 3.7 物性数据回归 3.8 电解质组分

系统数据库?是Aspen Plus的一部分,适用于每一个程序的运行,包括PURECOMP、SOLIDS、AQUEOUS、INORGANIC、BINARY等数据库 内置数据库?与Aspen Plus的数据库无关,用户自己输入,用户需自己创建并激活 用户数据库?用户需要自己创建并激活,且数据具有针对性,不是对所有用户开放

PURECOMP ?常数参数。例如绝对温度、绝对压力。 ?相变的性质参数。例如沸点、三相点。 ?参考态的性质参数。例如标准生成焓以及标准生成吉布斯自由能。 ?随温度变化的热力学性质参数。例如饱和蒸汽压。 ?传递性质的参数,例如粘度。 ?安全性质的参数。例如闪点、着火点。 ?UNIFAC模型中的集团参数。 ?状态方程中的参数。 ?与石油相关的参数。例如油品的API值、辛烷值、芳烃含量、氢含量及

?IDEAL SYSOP0 理想模型?Lee 方程、PR 方程、RK 方程 状态方程模 型?Pitzer 、NRTL 、UNIFAC 、UNIQUAC 、VANLAAR 、WILSON 活度系数模 型?AMINES 、BK-10、STEAM-TA 特殊模型

?Aspen Plus提供了含有常用的热力学模型的物性方法。 ?物性方法与模型选择不同,模拟结果大相径庭。如精馏 塔模拟的例子。相同的条件计算理论塔板数,用理想方法得到11块,用状态方程得到7块,用活度系数法得42块。显然物性方法和模型选择的是否合适,也直接影响模拟结果是否有意义。 ?《Aspen plus物性方法和模型》 理想模型 理想物性方法K值计算方法 IDEAL Ideal Gas/Raoult's law/Henry's law SYSOP0Release8version of Ideal Gas/Raoult's law

ProCAST软件的特点及其在铸件成形过程中的应用_胡红军

ProCAST软件的特点及其在铸件成形过程中的应用Function of FEM Software ProCAST and Application in Casting 胡红军 (重庆工学院材料科学与工程学院,重庆400050) 摘 要:介绍了商品化有限元软件P ro CA ST的组成模块、功能以及在铸件成形、缺陷预测方面的应用。 关键词:有限元模拟;Pr oCA ST;凝固模拟;缺陷预测 中图分类号:T G244 文献标识码:B 文章编号:1001-3814(2005)01-0070-02  Pr oCAST软件从1985年开始将最先进的有限元技术用在铸造模拟中,有效地提高了铸造工艺的正确性。借助于ProCAST系统,铸造工程师在完成铸造工艺编制之前,就能够对铸件在形成过程中的流场、温度场和应力场进行仿真分析并预测铸件的质量、优化铸造设备参数和工艺方案,通过对金属流动过程的模拟,可以精确显示浇不足、冷隔、裹气和热节的位置及残余应力和变形的大小,准确地预测缩孔缩松和微观组织。 1 ProCAST软件的组成模块 Pro CA ST是针对铸造过程进行流动-传热-应力耦合作出分析的系统,共有8个模块,用户可以比较灵活地租用或购买这些模块。对于普通用户,一般应有传热分析及前后处理、流动分析、应力分析和网格划分等基本模块。对于铸造模拟有更高要求的用户则需要有更多功能的其它模块,例如热辐射分析,显微组织分析,电磁感应分析,反向求解,应力分析等模块。这些模块既可以一起使用,也可以根据用户需要有选择地使用。 2 ProCAST软件的特点 2.1 可重复性 即使一个工艺过程已经平稳运行几个月,意外情况也有可能发生。由于铸造工艺参数繁多而又相互影响,因而在实际操作中长时间连续监控所有的参数是不可能的。任何看起来微不足道的某个参数的变化都有可能影响到整个系统,但又不可能在车间进行全部针对各种参数变化的试验。ProCAST可以让铸造工程师快速检查每个参数的影响,从而得到可重复的、连续平稳生产的参数范围。 2.2 可虚拟试验 在新产品市场定位之后,就应开始进行生产线的开发和优化。ProCAST可以虚拟试验各种革新设计而取之最优。因此大大减少工艺开发时间,同时又把成本降到最低。 2.3 灵活性大 ProCAST采用基于有限元法(FEM)的数值计算方法,与有限差分法相比,具有较大的灵活性,特别适用于模拟复杂铸件成型过程中的各种物理现象。 2.4 模拟功能强大 ProCAST作为针对铸造过程进行流动、传热、应力求解的软件包,能够模拟铸造过程中绝大多数问题和许多物理现象。在铸造过程分析方面,ProCAST提供了能够考虑气体、过滤、高压、旋转等对铸件充型的影响,能够模拟出气化模铸造、低压铸造、压力铸造、离心铸造等几乎所有铸造工艺的充型过程,并且对注塑、压制腊模、压制粉末等的充型过程进行模拟;在传热分析方面,ProCAST能够对热传导、对流和辐射等三种传热方式进行求解,尤其是引入最新“灰体净辐射法”模型,使ProCAST擅长于解决精铸及单晶铸造问题;在应力分析方面,通过采用弹塑性和粘塑性及独有的处理铸件/铸型热和机械接触界面的方法,使其具有分析铸件应力、变形的能力;在电磁分析方面,Pro CA ST 可以分析铸造过程所涉及的感应加热和电磁搅拌等。以上的分析可以获得铸造过程的各种现象、铸造缺陷形成及分布、铸件最终质量的模拟和预测。 2.5 界面人性化 ProCAST的前后处理完全基于Window s的用户界面,通过提供交互菜单、数据库和多种对话框完成用户信息的输入。ProCAST具有全面的在线帮助,具有良好的用户界面;通过提供和通用机械CAD系统的接口,可直接获取铸件实体模型的IGES文件或通用CAE系统的有限元网格文件;可以将模拟结果直接输出到CAD系统接口,尤其可以通过I-DEAS直接读取 70 APPLICATION Hot W orking Technology 2005No.1 收稿日期:2004-10-27 作者简介:胡红军(1976-),男,湖北人,讲师,硕士,现从事材料成型 CAD/CAE软件研究和开发。

Magma铸造CAE模拟

Magma操作 STL导入 点击“preprocessor”进入“MAGMApre”界面,依次导入相应的构件,保存。

Mesh划分网格 如上图所示,Magma共提供以上四种划分网格方法:自动划分、标准划分、高级、高级2。其中,自动划分是指用户自己制定划分的总的网格数,Magma自动进行适当的调整划分实体,标准划分是指铸型等不需要很高精度的部分进行的一种比较粗略的划分,如果需要对某一部分进行更细的划分,那么用户可以在“高级”中进行制定网格大小,甚至可以在“高级2”中对更进一步的某些部分进行更细的网格划分。 自动划分是用户可以制定计算部分的大约网格数、是否生成壳、是否核心划分、是否针对解法5进行划分。 Solver5是一种针对复杂结构铸件的网格划分方法。 1.2.4 网格划分 1.根据网格总量划分 1)打开选择功能表enmeshment,则mesh generation的视窗就出现; 2)选择automatic ,输入网格总数量; 3)选择generate 划分。

按照网格总数划分 2.根据单元网格三维尺寸划分 标准高级更高级 1)操作步骤: (1)选择功能表enmeshment,则mesh generation的视窗即出现;

(2)选择standard模式定义标准的网格化参数(如图 1.2.4-2); (3)若standard模式不符划分需求,选择advanced和advanced2模式 ,来局部区域细分; 依据个人需求,改变预设的参数,参数说明后面3)中叙述。 (4)选择calculate,测试产生网格数; (5)假如接受测试结果,选择generate正式产生网格。 网格数量 2)划分准则 1、Wall thichness— 网格划分最小结构厚度。 2、Accuracy— 精度 3、Element size— 网格大小 4、Option。 其中Wall thichness和Element size一般设成一样大小。 3)参数说明 (1)wall thickness(壁厚) ─粗分网格; 几何中只要有壁厚小于设定值的地方就不会有网格产生,单位是mm 。

化工流程模拟软件大全

工流程模拟软件大全 -------------------------------------------------------------------------------- 1 概要目前,国内主要的化工流程模拟软件美国SimSci-Esscor公司的PRO/II,美国AspenTech公司的Aspen Plus,Hysys,英国PSE公司的gPROMS,美国Chemstations公司ChemCAD和美国WinSim Inc. 公司的Design II,加拿大Virtual Materials Group的VMGSim。现将这几种软件简介归纳如下,供参考学习之用。 2 CHEMCAD, PROII, ASPEN的比较简单总结以下七点: 1 一般认为,PROII在炼油工业应用更为准确些,因其数据库中有不少经验数据;而ASPEN在化工领域表现更好,Aspen Plus与之比较有其它软件不可比拟的优点它基本上覆盖了以上各软件的所有优点。有人比喻:PROII是经验派,ASPEN 是学院派。 2. 学习aspen plus必备 1化工原理;讲化工过程得单元操作 2热力学方法;讲述物性计算方法; 3化工系统工程;讲述如何对化工系统进行建模,分析、求解如果简单掌握, 1、2就可以了,如果想进一步深入,还需看看3,另外有一个有经验得老师辅导也是很重要的。 3.HYSYS主要用于炼油。动态模拟是它的优势。 ASPEN是智能型的,用于化工领域流程模拟,比较大或长的流程,而且数据库比较全,开方式的。它和HYSYS 现在是一家。 PRO/II可以用于设备核算,流程短,或精馏核算。 chemcad由于物性较少,使用不方面,相对较差,网上到处都可以下载,设计院不太使用,高校中有一定市场。 4. 我觉得aspen plus的计算是最精确的,数据库的建设也是最完善的。不过我对它的操作不太适由于它考虑的方面非常全面,所以让我感觉学起来比较费劲。chemcad的界面操作让人感觉非常简单,使用起来比较顺手。但是数据库不是太大,我用的 5.0版本,就只有2000中常用物质的物性数据。PRO/II在这两方面都在中间。 5. 从易收敛性上看,chemcad>hysys>proii。 6. 从贴近工业实际看,proii>hysys>chemcad四个都是工程模拟仿真软件,其中Aspen、PRO/II, HYSYS为国内绝大多数设计院所使用。感觉Aspen适应范围最广,电解质、固体、燃烧等模块是其它软件难以比拟的;PRO/II在石化上应用较多,积累了丰富的经验;HYSYS则在油气工程领域就有着极高的精度和准确性。青岛科技大学(原青岛化工学院)开发了个ECSS,对它的评价只能是“国货”,青岛科技大学自己也不使用它的。 7. 版本介绍: aspen好用的版本是10.2和11.1,其中10.2在winXP上使用会

简述各种化工流程模拟软件的特点及优缺点

简述几种化工流程模拟软件的功能特点及优缺点摘要:化工过程模拟是计算机化工应用中最为基础、发展最为成熟的技术。本文综合介绍了几种主要的化工流程模拟软件的功能及特点,并对其进行了简单的比较。 关键词:化工流程模拟,模拟软件,Aspen Plus, Pro/Ⅱ,HYSYS, ChemCAD l 化工过程概述 化工流程模拟(亦称过程模拟)技术是以工艺过程的机理模型为基础,采用数学方法来描述化工过程,通过应用计算机辅助计算手段,进行过程物料衡算、热量衡算、设备尺寸估算和能量分析,作出环境和经济评价。它是化学工程、化工热力学、系统工程、计算方法以及计算机应用技术的结合产物,是近几十年发展起来的一门新技术[1]。现在化工过程模拟软件应用范围更为广泛,应用于化工过程的设计、测试、优化和过程的整合[2]。 化工过程模拟技术是计算机化工应用中最基础、发展最为成熟的技术之一,化工过程模拟与实验研究的结合是当前最有效和最廉价的化工过程研究方法,它可以大大节约实验成本,加快新产品和新工艺的开发过程。化工过程模拟可以用于完成化工过程及设备的计算、设计、经济评价、操作模拟、寻优分析和故障诊断等多种任务。[3]当前人们对化工流程模拟技术的进展、应用和发展趋势的关注与日俱增。 商品化的化工流程模拟系统出现于上世纪70年代。目前,广泛应用的化工流程模拟系统主要有ASPEN PLUS、Pro/Ⅱ、HYSYS和ChemCAD。 2 Aspen Plus Aspen Plus简述

“如果你不能对你的工艺进行建模,你就不能了解它。如果你不了解它,你就不能改进它。而且,如果你不能改进它,你在21世纪就不会具有竞争力。”----Aspen World 1997 Aspen Plus是大型通用流程模拟系统,源于美国能源部七十年代后期在麻省理工学院(MIT)组织的会战,开发新型第三代流程模拟软件。该项目称为“过程工程的先进系统”(Advanced System for Process Engineering,简称ASPEN),并于1981年底完成。1982年为了将其商品化,成立了AspenTech 公司,并称之为Aspen Plus。该软件经过20多年来不断地改进、扩充和提高,已先后推出了十多个版本,成为举世公认的标准大型流程模拟软件,应用案例数以百万计。全球各大化工、石化、炼油等过程工业制造企业及着名的工程公司都是Aspen Plus的用户。 Aspen Plus特点 (1)产品具有完备的物性数据库物性模型和数据是得到精确可靠的模拟结果的关键。人们普遍认为Aspen Plus 具有最适用于工业、且最完备的物性系统。许多公司为了使其物性计算方法标准化而采用Aspen Plus 的物性系统,并与其自身的工程计算软件相结合。Aspen Plus 数据库包括将近6000种纯组分的物性数据:①纯组分数据库,包括将近6000 种化合物的参数。 ②电解质水溶液数据库,包括约900种离子和分子溶质估算电解质物性所需的参数。③固体数据库,包括约3314种固体的固体模型参数。④ Henry 常数库,包括水溶液中61种化合物的Henry 常数参数。⑤二元交互作用参数库,包括Ridlich-Kwong Soave、Peng Robinson、Lee Kesler Plocker、BWR Lee Starling,以及Hayden O’Connell状态方程的二元交互作用参数

铸造模拟软件讲解

PROCAST ProCAST由法国ESI公司开发的综合的铸造过程软件解决方案,有20多年的历史,提供了很多模块和工程工具来满足铸造工业最富挑战的需求。基于强大的有限元分析,它能够预测严重畸变和残余应力,并能用于半固态成形,吹芯工艺,离心铸造,消失模铸造、连续铸造等特殊工艺。 procast 百科名片 ProCast软件界面 ProCAST由法国ESI公司开发的综合的铸造过程软件解决方案,有20多年的历史,提供了很多模块和工程工具来满足铸造工业最富挑战的需求。基于强大的有限元分析,它能够预测严重畸变和残余应力,并能用于半固态成形,吹芯工艺,离心铸造,消失模铸造、连续铸造等特殊工艺。 目录 适用范围材料数据库 模拟分析能力 分析模块 ProCAST特点 模拟过程 展开 适用范围 材料数据库 模拟分析能力 分析模块 ProCAST特点 模拟过程 展开 ProCast应用(10张) 编辑本段适用范围 ProCAST适用于砂型铸造、消失模铸造、高压铸造、低压铸造、重力铸造、

软件操作界面 倾斜浇铸、熔模铸造、壳型铸造、挤压铸造、触变铸造、触变成形、流变铸造。由于采用了标准化、通用的用户界面,任何一种铸造过程都可以用同一软件包ProCAST进行分析和优化。它可以用来研究设计结果,例如浇注系统、通气孔和溢流孔的位置,冒口的位置和大小等。实践证明,ProCAST可以准确地模拟型腔的浇注过程,精确地描述凝固过程。可以精确地计算冷却或加热通道的位置以及加热冒口的使用。 编辑本段材料数据库 ProCAST可以用来模拟任何合金,从钢和铁到铝基、钴基、铜基、镁基、镍基、钛基和锌基合金,以及非传统合金和聚合体。ESI旗下的热物理仿真研究开发队伍汇集了全球顶尖的五十多位冶金、铸造、物理、数学、计算力学、流体力学和计算机等多学科的专家,专业从事ProCAST和相关热物理模拟产品的开发。得益于长期的联合研究和工业验证,使得通过工业验证的材料数据库不断地扩充和更新,同时,用户本身也可以自行更新和扩展材料数据。除了基本的材料数据库外,ProCAST还拥有基本合金系统的热力学数据库。这个独特的数据库使得用户可以直接输入化学成分,从而自动产生诸如液相线温度、固相线温度、潜热、比热和固相率的变化等热力学参数。 编辑本段模拟分析能力 ProCAST可以分析缩孔、裂纹、裹气、冲砂、冷隔、浇不足、应力、变形、模具寿命、工艺开发及可重复性。ProCAST几乎可以模拟分析任何铸造生产过程中可能出现的问题,为铸造工程师提供新的途径来研究铸造过程,使他们有机会看到型腔内所发生的一切,从而产生新的设计方案。其结果也可以在网络浏览器中显示,这样对比较复杂的铸造过程能够通过网际网络进行讨论和研究。 编辑本段分析模块 ProCAST是针对铸造过程进行流动一传热一应力耦合作出分析的系统。它主要由8个模块组成:有限元网格划分MeshCAST基本模块、传热分析及前后处理(Base License)、流动分析(Fluid flow)、应力分析(Stress)、热辐射分析(Radiation)、显微组织分析(Micromodel)、电磁感应分析(Electromagnetics)、反向求解(Inverse),这些模块既可以一起使用,也可以根据用户需要有选择地使用。对于普通用户,ProCAST应有基本模块、流动分析模块、应力分析模块和网格划分模块。 1)传热分析模块 本模块进行传热计算,并包括ProCAST的所有前后处理功能。传热包括

晶体生长计算与模拟软件之FEMAG

晶体生长计算软件FEMAG 20世纪80年代中期,鲁汶大学Fran?ois Dupret教授带领其团队,开始晶体生长的研究,经过10多年的行业研发及应用,Fran?ois Dupret教授于2003年成立了FEMAGSoft公司(总部设在比利时Louvain-la-Neuve市),正式推出晶体生长数值仿真软件FEMAG。如今,FEMAG软件已成为全球行业用户高度认可的数值仿真工具,在晶体生长数值模拟领域处于国际领先地位。 FEMAG Soft擅长所有类型晶体材料生长方面的工艺模拟专业技术,比如:?直拉法(Czochralski) ?区熔法(Floating Zone) ?适用于铸锭定向凝固过程工艺(DS),Bridgman法 ?物理气相传输法(PVT) 产品模块 1.FEMAG/CZ-Czochralski (CZ) Process 适用于Czochralski直拉法生长工艺和Kyropoulos生长工艺 2.FEMAG/DS-Directional Solidification (DS) Process 适用于铸锭定向凝固过程工艺 3.FEMAG/FZ-Float Zone Process (FZ) 适用于区熔法生长工艺

主要功能 1.全局热传递分析 “全局性”即包涵所有拉晶要素在内,并考虑传热模式的耦合。全局热传递模拟分析,主要考虑:炉内的辐射和传导、熔体对流和炉内气体流量分析。 2.热应力分析 按照经验,一般情况下,晶体位错的产生与晶体生长过程中热应力的变化有着密切的关系。该软件可以进行三维的非轴对称和非各向同性温度场热应力分析计算,可以提出对晶体总的剪切力预估。 “位错”的产生是由于在晶体生长过程中,热剪应力超越临界水平,被称为CRSS(临界分剪应力),而导致的塑性变形。 3.点缺陷预报 该软件可以预知在晶体生长过程中的点缺陷(自裂缝和空缺),该仿真可以很好的预测在晶体生长过程中点缺陷的分布。 4.动态仿真 动态仿真提供了对复杂几何形状对于时间演变的预测。该预测把发生在晶体生长和冷却过程中所有瞬时的影响因素都考虑在内。为了准确地预报晶体点缺陷和氧分,布动态仿真尤其是不可或缺的。 5.固液界面跟踪 在拉晶的过程中准确预测固液界面同样是一个关键问题。对于不同的柑祸旋转速度和不同的提拉高度,其固液界面是不同的。 6.加热器功率预测 利用软件动态仿真反算加热功率对于生长合格晶体也是非常必要的。

(仅供参考)ProCAST-熔模铸造过程数值模拟

熔模铸造过程数值模拟 —国外精铸技术进展述评 北京航空航天大学陈冰 20世纪90年代以来,国外一大批商业化铸造过程数值模拟软件的出现,标志着此项技术已完全成熟并进入实用化阶段,有相当一部分已成功地用于熔模铸造。其中,A FSolid (3D)(美国), PASSAGF/POWERCAST(美国)、MAGMA(德国)、PAM-CAST(法国)、ProCAST(美国)等最具代表性。尤其值得一提的是由美国UES公司开发的ProCAST,和美国铸造师协会(American Foundrymen's Society)开发的 AFSolid(3D),它们代表了二种不同类型的软件系统。 一. 熔模精密铸造过程数值模拟的佼佼者——ProCAST 早在1985年,美国UES Software Co.便以工程工作站/Unix为开发平台,着手开发ProCAST[1]。为了保证模拟结果的准确性,ProCAST一开始就采用有限元方法(FEM)作为模拟的核心技术。自1987年起,开发用于熔模铸造(精铸)的专业模块。1990年后,位于瑞士洛桑的Calcom SA和瑞士联邦科技研究院也参加ProCAST部分模块的开发工作。2002年,UES Software和Calcom SA先后加盟ESI 集团(法国)。通过联合,ESI集团在虚拟制造领域的领先地位进一步增强。 现在,ProCAST也有微机/Windows或Windows NT版本。三维几何造型模块支持IGES、STEP、STL 或Parasolids等标准的CAD文件格式。Meshcast模块能自动生成有限元网格。它的凝固分析模块可以准确计算和显示合金液在凝固过程的温度场、凝固时间,以及固相率变化,同时,从孤立液相区、缩孔/缩松体积分数、缩孔/缩松Nyiama (新山英辅)判据等三方面,帮助铸造工程师分析判断缩孔/缩松产生的可能性和具体位置(见图1) [2]。针对熔模铸造热壳浇注的特点,ProCAST传热分析模块考虑到热辐射对温度场和铸件凝固过程的影响, 这对于经常需要处理热辐射问题的熔模铸造而言特别重要。例如,对不锈钢人体植入物的凝固过程进行模拟时,发现位于模组中部的铸件由于接收到的辐射热比周边铸件多,因而温度偏高,不利于铸件顺序凝固,容易产生缩孔、缩松[1]。特别值得一提的是,ProCAST特有的辐射分析模块,计及辐射线入射角和遮挡物的影响,模拟对象一旦因相互运动导致辐射线入射角改变或产生遮挡, 该软件将重新自动进行计算,特别适用于定向凝固和单晶铸造。 a) 孤立液相区 b) 缩孔/缩松体积分数 c) Nyiama (新山英辅)判据图1 ProCAST缩孔/缩松判据

几种模拟软件的介绍(化工)

几种模拟软件介绍 一、Aspenplus背景介绍 AspenPlus是一种广泛应用于化工过程的研究开发,设计,生产过程的控制,优化及技术改造等方面的性能优良的软件。该模拟系统是麻省理工学院于70年代后期研制开发的。由美国Aspen技术公司80年代初推向市场,它用严格和最新的计算方法,进行单元和全过程的计算,为企业提供准确的单元操作模型,还可以评估已有装置的优化操作或新建,改建装置的优化设计。这套系统功能齐全,规模庞大,可应用于化工,炼油,石油化工,气体加工,煤炭,医药,冶金,环境保护,动力,节能,食品等许多工业领域。 AspenPlus是基于流程图的过程稳态模拟软件,包括56种单元操作模型,含5000种纯组分、5000对二元混合物、3314种固体化合物、40000个二元交互作用参数的数据库。 对于一个模拟过程来说,正确的选择准确无误的物性参数是模拟结果好坏的关键。AspenPlus为单元操作计算提供了热力学性质和传递性质参数,在典型的AspenPlus模拟中常用的物理性质参数有逸度系数,焓,密度,熵和自由能。AspenPlus 自身拥G有两个通用的数据库:Aspen CD——ASPEN TECH公司自己开发的数据库,DIPPR——美国化工协会物性数据设计院设计的数据库。另外还有多个专用的数据库,如电解质,固体,燃料产品,这些数据库结合拥有的一些专用状态方程和专用单元操作模块使得AspenPlus软件可使用于固体加工电解质等特需的领域,极大地拓宽了AspenPlus的应用范围。 二、化工流程模拟PRO/II 流程模拟技术是与实验研究同样可靠和更为有效的一种研究手段,其应用极大地促进化学工业的发展。化工流程模拟能使设计最优化,提高设计效率,结果得到效率较高的工厂;对寻找故障,消除“瓶颈”,优化生产条件和操作参数而进行旧厂改进。另外,模拟仿真在教学培训工作中也具有独特的优越性。PRO/II是一个在世界范围内应用广泛的流程模拟软件。其功能强大,能很容易地建立和模拟包括精馏塔、压缩机、反应器、换A热器等工艺装置在内的工艺流程。适用于油/气加工、化学化工、炼油、聚合物、精细化工、制药等行业。 三、HYSYS 软件 HYSYS 软件是世界著名油气加工模拟软件工程公司开发的大型专家系统软件。该软件分动态和稳态两大部分。其动态和稳态主要用于油田地面工程建设设计和石油石化炼油工程设计计算分析。其动态部分可用于指挥原油生产和储运系统的运行

相关文档
相关文档 最新文档