文档库 最新最全的文档下载
当前位置:文档库 › 同济版高数教学设计完美版多元函数微分法及其应用 (2)

同济版高数教学设计完美版多元函数微分法及其应用 (2)

同济版高数教学设计完美版多元函数微分法及其应用 (2)
同济版高数教学设计完美版多元函数微分法及其应用 (2)

§8. 1 多元函数的基本概念

一、平面点集n维空间

1.平面点集

由平面解析几何知道,当在平面上引入了一个直角坐标系后,平面上的点P与有序二元实数组(x,y)之间就建立了一一对应.于是,我们常把有序实数组(x,y)与平面上的点P视作是等同的.这种建立了坐标系的平面称为坐标平面.

二元的序实数组(x,y)的全体,即R2=R?R={(x,y)|x,y∈R}就表示坐标平面.

坐标平面上具有某种性质P的点的集合,称为平面点集,记作E={(x,y)| (x,y)具有性质P}.

例如,平面上以原点为中心、r为半径的圆内所有点的集合是

C={(x,y)| x2+y2

如果我们以点P表示(x,y),以|OP|表示点P到原点O的距离,那么集合C可表成

C={P| |OP|

邻域:

设P 0(x 0, y 0)是xOy 平面上的一个点, δ是某一正数. 与点P 0(x 0, y 0)距离小于δ的点P (x , y )的全体, 称为点P 0的δ邻域, 记为U (P 0, δ), 即

}|| |{),(00δδ<=PP P P U 或} )()( |) ,{(),(20200δδ<-+-=y y x x y x P

U . 邻域的几何意义: U (P 0, δ)表示xOy 平面上以点P 0(x 0, y 0)为中心、δ >0为半径的圆的内部的点P (x , y )的全体.

点P 0的去心δ邻域, 记作) ,(0δP U

, 即

}||0 |{) ,(00δδ<<=P P P P U .

注: 如果不需要强调邻域的半径δ, 则用U (P 0)表示点P 0的某个邻域, 点P 0的去心邻域记作)(0P U .

点与点集之间的关系:

任意一点P ∈R 2与任意一个点集E ?R 2之间必有以下三种关系中的一种:

(1)内点: 如果存在点P 的某一邻域U (P ), 使得U (P )?E , 则称P 为E 的内点;

(2)外点: 如果存在点P 的某个邻域U (P ), 使得U (P )?E =?, 则称P 为E 的外点;

(3)边界点: 如果点P 的任一邻域内既有属于E 的点, 也有不属于E 的点, 则称P 点为E 的边点.

E的边界点的全体,称为E的边界,记作?E.

E的内点必属于E;E的外点必定不属于E;而E的边界点可能属于E,也可能不属于E.

聚点:如果对于任意给定的δ>0,点P的去心邻域),(δP

U 内总有E 中的点,则称P是E的聚点.

由聚点的定义可知,点集E的聚点P本身,可以属于E,也可能不属于E.

例如,设平面点集

E={(x,y)|1

满足1

开集:如果点集E的点都是内点,则称E为开集.

闭集:如果点集的余集E c为开集,则称E为闭集.

开集的例子:E={(x,y)|1

闭集的例子:E={(x,y)|1≤x2+y2≤2}.

集合{(x,y)|1

连通性:如果点集E内任何两点,都可用折线连结起来,且该折线上的点都属于E,则称E为连通集.

区域(或开区域):连通的开集称为区域或开区域.例如E={(x, y)|1

闭区域:开区域连同它的边界一起所构成的点集称为闭区域.例如E= {(x,y)|1≤x2+y2≤2}.

有界集:对于平面点集E,如果存在某一正数r,使得E?U(O,r),其中O是坐标原点,则称E为有界点集.

无界集:一个集合如果不是有界集,就称这集合为无界集.

例如,集合{(x,y)|1≤x2+y2≤2}是有界闭区域;集合{(x,y)| x+y>1}是无界开区域;

集合{(x,y)| x+y≥1}是无界闭区域.

2.n维空间

设n为取定的一个自然数,我们用R n表示n元有序数组(x1,x2,???, x n)的全体所构成的集合,即

R n=R?R?? ? ??R={(x1,x2,???,x n)| x i∈R,i=1, 2,? ? ?,n}.

R n中的元素(x1,x2,???,x n)有时也用单个字母x来表示,即x=(x1,x2,???, x n).当所有的x i(i=1,2,? ? ?,n)都为零时,称这样的元素为R n中的零元,

记为0或O . 在解析几何中, 通过直角坐标, R 2(或R 3)中的元素分别与平面(或空间)中的点或向量建立一一对应, 因而R n 中的元素x =(x 1, x 2, ? ? ? , x n )也称为R n 中的一个点或一个n 维向量, x i 称为点x 的第i 个坐标或n 维向量x 的第i 个分量. 特别地, R n 中的零元0称为R n 中的坐标原点或n 维零向量.

为了在集合R n 中的元素之间建立联系, 在R n 中定义线性运算如下: 设x =(x 1, x 2, ? ? ? , x n ), y =(y 1, y 2, ? ? ? , y n )为R n 中任意两个元素, λ∈R , 规定

x +y =(x 1+ y 1, x 2+ y 2, ? ? ? , x n + y n ), λx =(λx 1, λx 2, ? ? ? , λx n ). 这样定义了线性运算的集合R n 称为n 维空间.

R n 中点x =(x 1, x 2, ? ? ? , x n )和点 y =(y 1, y 2, ? ? ? , y n )间的距离, 记作ρ(x , y ), 规定

2222211)( )()(),(n n y x y x y x -+???+-+-=y x ρ.

显然, n =1, 2, 3时, 上述规定与数轴上、直角坐标系下平面及空间中两点间的距离一至.

R n 中元素x =(x 1, x 2, ? ? ? , x n )与零元0之间的距离ρ(x , 0)记作||x ||(在R 1、R 2、R 3中, 通常将||x ||记作|x |), 即

22221 ||||n

x x x ???++=x .

采用这一记号, 结合向量的线性运算, 便得

),()( )()(||||2222211y x y x ρ=-+???+-+-=-n n y x y x y x .

在n 维空间R n 中定义了距离以后, 就可以定义R n 中变元的极限: 设x =(x 1, x 2, ? ? ? , x n ), a =(a 1, a 2, ? ? ? , a n )∈R n .

如果

||x -a ||→0,

则称变元x 在R n 中趋于固定元a , 记作x →a .

显然,

x →a ? x 1→a 1, x 2→a 2, ? ? ? , x n →a n .

在R n 中线性运算和距离的引入, 使得前面讨论过的有关平面点集的一系列概念, 可以方便地引入到n (n ≥3)维空间中来, 例如, 设a =(a 1, a 2, ? ? ? , a n )∈R n , δ是某一正数, 则n 维空间内的点集 U (a , δ)={x | x ∈ R n , ρ(x , a )<δ}

就定义为R n 中点a 的δ邻域. 以邻域为基础, 可以定义点集的内点、外点、边界点和聚点, 以及开集、闭集、区域等一系列概念.

二. 多元函数概念

例1 圆柱体的体积V 和它的底半径r 、高h 之间具有关系 V =πr 2h .

这里, 当r 、h 在集合{(r , h ) | r >0, h >0}内取定一对值(r , h )时, V 对应的值就随之确定.

例2 一定量的理想气体的压强p 、体积V 和绝对温度T 之间具有关系

RT P V

=, 其中R 为常数. 这里, 当V 、T 在集合{(V ,T ) | V >0, T >0}内取定一对值(V , T )时, p 的对应值就随之确定.

例3 设R 是电阻R 1、R 2并联后的总电阻, 由电学知道, 它们之间具有关系

2

121R R R R R +=. 这里, 当R 1、R 2在集合{( R 1, R 2) | R 1>0, R 2>0}内取定一对值( R 1 , R 2)时, R 的对应值就随之确定.

定义1 设D 是R 2的一个非空子集, 称映射f : D →R 为定义在D 上的二元函数, 通常记为

z =f (x , y ), (x , y )∈D (或z =f (P ), P ∈D )

其中点集D 称为该函数的定义域, x , y 称为自变量, z 称为因变量.

上述定义中, 与自变量x 、y 的一对值(x , y )相对应的因变量z 的值,

也称为f在点(x,y)处的函数值,记作f(x,y),即z=f(x,y).

值域:f(D)={z| z=f(x,y), (x,y)∈D}.

函数的其它符号:z=z(x,y),z=g(x,y)等.

类似地可定义三元函数u=f(x,y,z), (x,y,z)∈D以及三元以上的函数.

一般地,把定义1中的平面点集D换成n维空间R n内的点集D,映射f:D→R就称为定义在D上的n元函数,通常记为

u=f(x1,x2,???,x n), (x1,x2,???,x n)∈D,

或简记为

u=f(x),x=(x1,x2,???,x n)∈D,

也可记为

u=f(P),P(x1,x2,???,x n)∈D.

关于函数定义域的约定:在一般地讨论用算式表达的多元函数u=f(x)时,就以使这个算式有意义的变元x的值所组成的点集为这个多元函数的自然定义域.因而,对这类函数,它的定义域不再特别标出.例如,

函数z=ln(x+y)的定义域为{(x,y)|x+y>0}(无界开区域);

函数z=arcsin(x2+y2)的定义域为{(x,y)|x2+y2≤1}(有界闭区域).

高等数学习题详解-第7章 多元函数微分学

1. 指出下列各点所在的坐标轴、坐标面或卦限: A (2,1,-6), B (0,2,0), C (-3,0,5), D (1,-1,-7). 解:A 在V 卦限,B 在y 轴上,C 在xOz 平面上,D 在VIII 卦限。 2. 已知点M (-1,2,3),求点M 关于坐标原点、各坐标轴及各坐标面的对称点的坐标. 解:设所求对称点的坐标为(x ,y ,z ),则 (1) 由x -1=0,y +2=0,z +3=0,得到点M 关于坐标原点的对称点的坐标为:(1,-2,-3). (2) 由x =-1,y +2=0,z +3=0,得到点M 关于x 轴的对称点的坐标为:(-1,-2,-3). 同理可得:点M 关于y 轴的对称点的坐标为:(1, 2,-3);关于z 轴的对称点的坐标为:(1,-2,3). (3)由x =-1,y =2,z +3=0,得到点M 关于xOy 面的对称点的坐标为:(-1, 2,-3). 同理,M 关于yOz 面的对称点的坐标为:(1, 2,3);M 关于zOx 面的对称点的坐标为:(-1,-2,3). 3. 在z 轴上求与两点A (-4,1,7)和B (3,5,-2)等距离的点. 解: 设所求的点为M (0,0,z ),依题意有|MA |2=|MB |2,即 (-4-0)2+(1-0)2+(7-z)2=(3-0)2+(5-0)2+(-2-z)2. 解之得z =11,故所求的点为M (0,0, 149 ). 4. 证明以M 1(4,3,1),M 2(7,1,2),M 3(5,2,3)三点为顶点的三角形是一个等腰三角形. 解:由两点距离公式可得2 12 14M M =,2 2 13236,6M M M M == 所以以M 1(4,3,1),M 2(7,1,2),M 3(5,2,3)三点为顶点的三角形是一个等腰三角形. 5. 设平面在坐标轴上的截距分别为a =2,b =-3,c =5,求这个平面的方程. 解:所求平面方程为1y x z ++=。 6. 求通过x 轴和点(4,-3,-1)的平面方程. 解:因所求平面经过x 轴,故可设其方程为 Ay +Bz =0. 又点(4,-3,-1)在平面上,所以-3A -B =0.即B=-3 A 代入并化简可得 y -3z =0. 7. 求平行于y 轴且过M 1(1,0,0),M 2(0,0,1)两点的平面方程. 解:因所求平面平行于y 轴,故可设其方程为 Ax +Cz +D =0. 又点M 1和M 2都在平面上,于是 0A D C D +=?? +=? 可得关系式:A =C =-D ,代入方程得:-Dx -Dz +D =0. 显然D ≠0,消去D 并整理可得所求的平面方程为x +z -1=0. 8. 方程x 2+y 2+z 2-2x +4y =0表示怎样的曲面? 解:表示以点(1,-2,0 9. 指出下列方程在平面解析几何与空间解析几何中分别表示什么几何图形? (1) x -2y =1; (2) x 2+y 2=1; (3) 2x 2+3y 2=1; (4) y =x 2. 解:(1)表示直线、平面。(2)表示圆、圆柱面。(3)表示椭圆、椭圆柱面。 (4)表示抛物线、抛物柱面。

多元函数微分学知识点梳理

第九章 多元函数微分学 内容复习 一、基本概念 1、知道:多元函数的一些基本概念(n 维空间,n 元函数,二重极限,连续等);理解:偏导数;全微分. 2、重要定理 (1)二元函数中,可导、连续、可微三者的关系 偏导数连续?可微???函数偏导数存在 ?连续 (2)(二元函数)极值的必要、充分条件 二、基本计算 (一) 偏导数的计算 1、 偏导数值的计算(计算),(00y x f x ') (1)先代后求法 ),(00y x f x '=0),(0x x y x f dx d = (2)先求后代法(),(00y x f x '=00),(y y x x x y x f ==') (3)定义法(),(00y x f x '=x y x f y x x f x ?-?+→?),(),(lim 00000)(分段函数在分段点处的偏导数) 2、偏导函数的计算(计算(,)x f x y ') (1) 简单的多元初等函数——将其他自变量固定,转化为一元函数求导 (2) 复杂的多元初等函数——多元复合函数求导的链式法则(画树形图,写求导公式) (3) 隐函数求导 求方程0),,(=z y x F 确定的隐函数),(y x f z =的一阶导数,z z x y ???? ,,,(),,y x z z F F z z x y z x F y F x y x y z ''???=-=-?''????? 公式法:(地位平等)直接法:方程两边同时对或求导(地位不平等) 注:若求隐函数的二阶导数,在一阶导数的基础上,用直接法求。 3、高阶导数的计算 注意记号表示,以及求导顺序 (二) 全微分的计算 1、 叠加原理

隐函数的求导方法总结

河北地质大学 课程设计(论文)题目:隐函数求偏导的方法 学院:信息工程学院 专业名称:电子信息类 小组成员:史秀丽 角子威 季小琪 2016年05月27日

摘要 (3) 一.隐函数的概念 (3) 二.隐函数求偏导 (3) 1.隐函数存在定理1 (3) 2.隐函数存在定理2 (4) 3.隐函数存在定理3 (4) 三. 隐函数求偏导的方法 (5) 1.公式法 (5) 2.直接法 (6) 3.全微分法 (6) 参考文献 (8)

摘要 本文讨论了一元隐函数,多元隐函数的存在条件及相关结论,总结出隐函数求偏导的方法和全微分法等方法和相应实例,目的是更好的计算隐函数的求导 关键字:隐函数 偏导数 方法 一.隐函数的概念 一般地,如果变量y x 和满足方程()0,=y x F ,在一定条件下,当x 取某区间的任一 值时,相应地总有满足这方程的唯一的y 值存在,那么就说方程()0,=y x F 在该区间内确 定了一个隐函数。例如,方程013 =-+y x 表示一个函数,因为当变量x 在()∞+∞-, 内取值时,变量y 有确定的值与其对应。如等时时321,10=-===y x y x 。 二.隐函数求偏导 1.隐函数存在定理1 设函数0),(=y x F 在P (x 。,y 。)在某一领域内具有连续偏导数, 且0),(=οοy x F ,0),(≠οοy x F y ,则方程0),(=y x F 在点(x 。,y 。)的某一领域内恒能唯一确定一个连续且具有连续导数的函数)(x f y =,它满足条件)(οοx f y =,并有 y x y F F d d x - =。 例1:验证方程2x -2 y =0在点(1,1)的某一邻域内能唯一确定一个具有连续导数,且当x=1时y=1的隐函数y=)(x f ,并求该函数的导数dx dy 在x=1处的值。 解 令),(y x F =2x -2 y ,则 x F =2x ,y F =-2y ,)1,1(F =0,)1,1(y F =-2≠0 由定理1可知,方程2x -2y =0在点(1,1)的某一邻域内能唯一确定一个连续可导的隐函数,当x=1时,y=1的隐函数为y=x ,且有 dx dy =y x F F -=y x 22=y x

数学分析教案_(华东师大版)第十七章__多元函数微分学

第十七章多元函数微分学 教学目的:1.理解多元函数微分学的概念,特别应掌握偏导数、全微分、连续及 偏导存在、偏导连续等之间的关系;2.掌握多元函数特别是二元函数可微性及其应用。 教学重点难点:本章的重点是全微分的概念、偏导数的计算以及应用;难点是复合函数偏导数的计算及二元函数的泰勒公式。 教学时数:18学时 § 1 可微性 一.可微性与全微分: 1.可微性:由一元函数引入. 亦可写为, 时. 2.全微分: 例1 考查函数在点处的可微性 . P107例1 二.偏导数: 1.偏导数的定义、记法: 2.偏导数的几何意义: P109 图案17—1.

3.求偏导数: 例2 , 3 , 4 . P109—110例2 , 3 , 4 . 例5. 求偏导数. 例6. 求偏导数. 例7. 求偏导数, 并求. 例8. 求和. 解=, =. 例9 证明函数在点连续 , 并求和. 证 . 在点连续 . ,

不存在 . 三.可微条件: 1.必要条件: Th 1 设为函数定义域的内点.在点可微 , 和存在 , 且 . ( 证 ) 由于, 微分记为 . 定理1给出了计算可微函数全微分的方法. 两个偏导数存在是可微的必要条件 , 但不充分. 例10考查函数 在原点的可微性 . [1]P110 例5 . 2.充分条件:

Th 2 若函数的偏导数在的某邻域内存在 , 且和在点处连续 . 则函数在点可微 . ( 证 ) P111 Th 3 若在点处连续, 点存在 , 则函数在点可微 . 证 . 即在点可微 . 要求至少有一个偏导数连续并不是可微的必要条件 . 例11 验证函数在点可微 , 但和在点处不连续 . (简证,留为作业) 证

高等数学多元函数微分法

第 八 章 多元函数微分法及其应用 第 一 节 多元函数的基本概念 教学目的:学习并掌握关于多元函数的区域、极限以及多元函数 概念,掌握多元函数的连续性定理,能够判断多元函数的连续性,能够求出连续函数在连续点的极限。 教学重点:多元函数概念和极限,多元函数的连续性定理。 教学难点:计算多元函数的极限。 教学内容: 一、 区域 1. 邻域 设),(000y x p 是xoy 平面上的一个点,δ是某一正数。与点),(000y x p 距离小于δ的点(,)p x y 的全体,称为点0P 的δ邻域,记为),(0δP U ,即 ),(0δP U =}{0δδ为半径的圆内部的点),(y x P 的全体。 2. 区域 设E 是平面上的一个点集,P 是平面上的一个点。如果存在点P 的某一邻域E P U ?)(,则称P 为E 的内点。显然,E 的内点属于E 。 如果E 的点都是内点,则称E 为开集。例如,集合 }41),{(221<+<=y x y x E 中每个点都是E 1的内点,因此E 1为开集。

如果点P 的任一邻域内既有属于E 的点,也有不属于E 的点(点P 本身可以属于E ,也可以不属于E ),则称P 为E 的边界点。E 的边界点的全体称为E 的边界。例如上例中,E 1的边界是圆周12 2 =+y x 和 22y x +=4。 设D 是点集。如果对于D 内任何两点,都可用折线连结起来,且该折线上的点都属于D ,则称点集D 是连通的。 连通的开集称为区域或开区域。例如,}0),{(>+y x y x 及 }41),{(22<+0}是无界开区域。 二、多元函数概念 在很多自然现象以及实际问题中,经常遇到多个变量之间的依赖关系,举例如下: 例1 圆柱体的体积V 和它的底半径r 、高h 之间具有关系 h r V 2 π=。 这里,当r 、h 在集合}0,0),{(>>h r h r 内取定一对值),(h r 时,V 的对应值就随之确定。

高数多元函数微分学教案 第五讲 隐函数的求导公式

第五讲 隐函数的求导公式 授课题目: §8.4 隐函数的求导公式 教学目的与要求: 会求隐函数(包括由两个方程组成的方程组确定的隐函数)的偏导数。 教学重点与难点: 重点:求由一个方程确定的隐函数的偏导数。 难点:求隐函数(包括由两个方程组成的方程组确定的隐函数)的偏导数。 讲授内容: 一、一个方程的情形 隐函数存在定理1 设函数F (x , y )在点P (x 0, y 0)的某一邻域内具有连续偏导数, F (x 0, y 0)=0, F y (x 0, y 0)≠0, 则方程F (x , y )=0在点(x 0, y 0)的某一邻域内恒能唯一确定一个连续且具有连续导数的函数y =f (x ), 它满足条件y 0=f (x 0), 并有 y x F F dx dy -=. (2) 公式(2)的推导:将y =f (x )代入F (x , y )=0, 得恒等式 F 【x , f (x )】≡0, 等式两边对x 求导得 0=???+??dx dy y F x F , 由于F y 连续, 且F y (x 0, y 0)≠0, 所以存在(x 0, y 0)的一个邻域, 在这个邻域同F y ≠0, 于是得 y x F F dx dy -= 例1 验证方程x 2+y 2-1=0在点(0, 1)的某一邻域内能唯一确定一个有连续导数、当x =0时y =1的隐函数y =f (x ), 并求这函数的一阶与二阶导数在x =0的值. 解 设F (x , y )=x 2+y 2-1, 则F x =2x , F y =2y , F (0, 1)=0, F y (0, 1)=2≠0. 因此由

高等数学题库第08章(多元函数微分学)

第八章 多元函数微积分 习题一 一、填空题 1. 设2 23),(y x y x y x f +-= ,则.________ )2,1(_______,)1,2(=-=-f f 2. 已知12),(22++=y x y x f ,则._________________ )2,(=x x f 二、求下列函数的定义域并作出定义域的图形 1.x y z -= 2. y x z -+-=11 3. 224y x z --= 4. xy z 2log = 习题二 一、是非题 1. 设y x z ln 2 +=,则 y x x z 1 2+=?? ( ) 2. 若函数),(y x f z =在),(00y x P 处的两个偏导数),(00y x f x 与),(00y x f y 均存在,则 该函数在P 点处一定连续 ( ) 3. 函数),(y x f z =在),(00y x P 处一定有),(00y x f xy ),(00y x f yx = ( ) 4. 函数?? ? ?? =+≠++=0,00,),(222222y x y x y x xy y x f 在点)0,0(处有0)0,0(=x f 及 0)0,0(=y f ( ) 5. 函数22y x z += 在点)0,0(处连续,但该函数在点)0,0(处的两个偏导数 )0,0(x z )0,0(,y z 均不存在。 ( ) 二、填空题

1. 设2 ln y x z = ,则_;___________; __________1 2=??=??==y x y z x z 2. 设),(y x f 在点),(b a 处的偏导数),(b a f x 和),(b a f y 均存在,则 ._________) 2,(),(lim =--+→h h b a f b h a f h 三、求下列函数的偏导数: 1. ;133+-=x y y x z 2. ;) sin(22y e x xy xy z ++= 3. ;)1(y xy z += 4. ;tan ln y x z = 5. 222zx yz xy u ++= 四、求下列函数的,22x z ??22y z ??和y x z ???2: 1. ;234 23+++=y y x x z 2. y x z arctan = 五、计算下列各题 1. 设),2(),(sin y x e y x f x +=-求);1,0(),1,0(y x f f 2. 设)ln(),(y x x y x f +=,求,2 12 2==??y x x z , 2 122==??y x y z .2 12==???y x y x z 六、设)ln(3 13 1y x z +=,证明:.3 1=??+??y z y x z x 习题三 一、填空题 1.xy e y x z +=2在点),(y x 处的._______________ =dz 2.2 2 y x x z += 在点)1,0(处的._______________ =dz

高数多元函数微分学教案 第一讲 多元函数的基本概念

第八章 多元函数微分法及其应用 第一讲 多元函数的基本概念 授课题目: §8.1多元函数的基本概念 教学目的与要求: 1、理解多元函数的概念. 2、了解二元函数的极限与连续性的概念,以及有界闭区域上连续函数的性质. 教学重点与难点: 重点:多元函数的概念、二元函数的极限和连续的概念. 讲授内容: 一、平面点集 n 维空间 1、平面点集 平面上一切点的集合称为二维空间, 记为R 2 即 R 2=R ?R={(x , y ):x , y ∈R } 坐标平面上具有某种性质P 的点的集合, 称为平面点集,记作 E ={(x , y ):(x , y )具有性质P }. 例如,平面上以原点为中心、r 为半径的圆内所有点的集合是 C ={(x , y ):x 2+y 2

如果不需要强调邻域的半径δ, 则用U (P 0)表示点P 0的某个邻域, 点P 0的去心邻域记作)(0P U .. 点与点集之间的关系: 任意一点P ∈R 2与任意一个点集E ?R 2之间必有以下三种关系中的一种: (1)内点:如果存在点P 的某一邻域U (P ), 使得U (P )?E , 则称P 为E 的内点. (2)外点:如果存在点P 的某个邻域U (P ), 使得U (P )?E =?, 则称P 为E 的外点. (3)边界点:如果点P 的任一邻域内既有属于E 的点, 也有不属于E 的点, 则称P 点为E 的边点. E 的边界点的全体, 称为E 的边界, 记作?E . E 的内点必属于E ; E 的外点必定不属于E ; 而E 的边界点可能属于E , 也可能不属于E . (4)聚点:如果对于任意给定的δ>0, 点P 的去心邻域),(δP U 内总有E 中的点, 则称P 是E 的聚点. 由聚点的定义可知, 点集E 的聚点P 本身, 可以属于E , 也可能不属于E . 例如, 设平面点集E ={(x , y )|1

第九章多元函数微分法及其应用教案

第九章多元函数微分法及其应用 【教学目标与要求】 1、理解多元函数的概念和二元函数的几何意义。 2、了解二元函数的极限与连续性的概念,以及有界闭区域上的连续函数的性质。 3、理解多元函数偏导数和全微分的概念,会求全微分,了解全微分存在的必要条件和充分条件, 了解全微分形式的不变性。 4、理解方向导数与梯度的概念并掌握其计算方法。 5、掌握多元复合函数偏导数的求法。 6、会求隐函数(包括由方程组确定的隐函数)的偏导数。 7、了解曲线的切线和法平面及曲面的切平面和法线的概念,会求它们的方程。 8、了解二元函数的二阶泰勒公式。 9、理解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格郎日乘数法求条件极值,会求简多元函数的最大值和最小值,并会解决一些简单的应用问题。 【教学重点】 1、二元函数的极限与连续性; 2、函数的偏导数和全微分; 3、方向导数与梯度的概念及其计算; 4、多元复合函数偏导数; 5、隐函数的偏导数;多元函数极值和条件极值的求法; 6、曲线的切线和法平面及曲面的切平面和法线; 【教学难点】 1、二元函数的极限与连续性的概念; 2、全微分形式的不变性; 3、复合函数偏导数的求法; 4、二元函数的二阶泰勒公式; 5、隐函数(包括由方程组确定的隐函数)的偏导数; 6、拉格郎日乘数法,多元函数的最大值和最小值。 【教学课时分配】 (18学时) 第1 次课§1第2 次课§2 第3 次课§3 第4 次课§4 第5次课§5 第6次课§6 第7次课§7 第8次课§8 第9次课习题课 【参考书】 [1]同济大学数学系.《高等数学(下)》,第五版.高等教育出版社. [2] 同济大学数学系.《高等数学学习辅导与习题选解》,第六版.高等教育出版社. [3] 同济大学数学系.《高等数学习题全解指南(下)》,第六版.高等教育出版社

多元函数微分学及其应用

第8章 多元函数微分学及其应用 参考解答 1、设22 , y f x y x y x ??+=- ??? ,求(),f x y ,(),f x y xy -。 解:()()()()2 21, 1y y x y x f x y x y x y x y x y y x x y x - -??+=+-=+=+ ?+? ? + ,故得 ()2 1,1y f x y x y -=+,()()21,1xy f x y xy x y xy --=-+ 2、求下列各极限: 2242222 2220000 cos sin 1(1) lim lim lim sin 204x r r y x y r r x y r θθθ→→→→===+ 注意:在利用极坐标变换cos , sin x r y r θθ==来求极限时,θ也是变量。本题中,0r →时,2r 为无穷小量,而2 sin 2θ为有界变量,故所求极限为零。 ()00sin sin (2) lim lim 1x t y a xy t xy t →→→== 3、证明极限2 2400 lim x y xy x y →→+不存在。 证明:当2 y kx =时,()2242,1xy k f x y x y k ==++,故2 22420 lim 1y kx x xy k x y k =→=++与k 有关。可见,(),x y 沿不同的路径趋于()0,0时,函数极限不同,故极限不存在。(两路径判别法) 4、讨论下列函数在()0,0点处的连续性: (1)()()()222222 22 ln , 0 ,0, 0 x y x y x y f x y x y ?+++≠?=?+=?? 解: ()() ()()() ()()()2 222,0,0,0,0 lim ,lim ln lim ln 00,0x y x y t f x y x y x y t t f →→→= ++=== 故原函数在()0,0点处连续。

隐函数的求导方法总结

百度文库- 让每个人平等地提升自我 河北地质大学 课程设计(论文)题目:隐函数求偏导的方法 学院:信息工程学院 专业名称:电子信息类 小组成员:史秀丽 角子威 季小琪 2016年05月27日

摘要 (3) 一.隐函数的概念 (3) 二.隐函数求偏导 (3) 1.隐函数存在定理1 (3) 2.隐函数存在定理2 (4) 3.隐函数存在定理3 (4) 三. 隐函数求偏导的方法 (5) 1.公式法 (5) 2.直接法 (6) 3.全微分法 (6) 参考文献 (8)

摘要 本文讨论了一元隐函数,多元隐函数的存在条件及相关结论,总结出隐函数求偏导的方法和全微分法等方法和相应实例,目的是更好的计算隐函数的求导 关键字:隐函数 偏导数 方法 一.隐函数的概念 一般地,如果变量y x 和满足方程()0,=y x F ,在一定条件下,当x 取某区间的任一 值时,相应地总有满足这方程的唯一的y 值存在,那么就说方程()0,=y x F 在该区间内确 定了一个隐函数。例如,方程013 =-+y x 表示一个函数,因为当变量x 在()∞+∞-, 内取值时,变量y 有确定的值与其对应。如等时时321,10=-===y x y x 。 二.隐函数求偏导 1.隐函数存在定理1 设函数0),(=y x F 在P (x 。,y 。)在某一领域内具有连续偏导数, 且0),(= y x F ,0),(≠ y x F y ,则方程0),(=y x F 在点(x 。,y 。)的某一领域内恒能唯一确定一个连续且具有连续导数的函数)(x f y =,它满足条件)( x f y =,并有 y x y F F d d x - =。 例1:验证方程2x -2 y =0在点(1,1)的某一邻域内能唯一确定一个具有连续导数,且当x=1时y=1的隐函数y=)(x f ,并求该函数的导数dx dy 在x=1处的值。 解 令),(y x F =2x -2 y ,则 x F =2x ,y F =-2y ,)1,1(F =0,)1,1(y F =-2≠0 由定理1可知,方程2x -2y =0在点(1,1)的某一邻域内能唯一确定一个连续可导的隐函数,当x=1时,y=1的隐函数为y=x ,且有 dx dy =y x F F -=y x 22=y x

高等数学教案ch 8 多元函数微分法及其应用

第八章多元函数微分法及其应用 教学目的: 1、理解多元函数的概念和二元函数的几何意义。 2、了解二元函数的极限与连续性的概念,以及有界闭区域上的连续函数的性质。 3、理解多元函数偏导数和全微分的概念,会求全微分,了解全微分存在的必要条件和充分条件,了解全微分形式的不变性。 4、理解方向导数与梯度的概念并掌握其计算方法。 5、掌握多元复合函数偏导数的求法。 6、会求隐函数(包括由方程组确定的隐函数)的偏导数。 7、了解曲线的切线和法平面及曲面的切平面和法线的概念,会求它们的方程。 8、了解二元函数的二阶泰勒公式。 9、理解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格郎日乘数法求条件极值,会求简多元函数的最大值和最小值,并会解决一些简单的应用问题。 教学重点: 1、二元函数的极限与连续性; 2、函数的偏导数和全微分; 3、方向导数与梯度的概念及其计算; 4、多元复合函数偏导数; 5、隐函数的偏导数 6、曲线的切线和法平面及曲面的切平面和法线; 7、多元函数极值和条件极值的求法。 教学难点: 1、二元函数的极限与连续性的概念; 2、全微分形式的不变性; 3、复合函数偏导数的求法; 4、二元函数的二阶泰勒公式; 5、隐函数(包括由方程组确定的隐函数)的偏导数; 6、拉格郎日乘数法; 7、多元函数的最大值和最小值。

§8. 1 多元函数的基本概念 一、平面点集n 维空间 1.平面点集 由平面解析几何知道, 当在平面上引入了一个直角坐标系后, 平面上的点P 与有序二元实数组(x , y )之间就建立了一一对应. 于是, 我们常把有序实数组(x , y )与平面上的点P 视作是等同的. 这种建立了坐标系的平面称为坐标平面. 二元的序实数组(x , y )的全体, 即R 2=R ?R ={(x , y )|x , y ∈R }就表示坐标平面. 坐标平面上具有某种性质P 的点的集合, 称为平面点集, 记作 E ={(x , y )| (x , y )具有性质P }. 例如, 平面上以原点为中心、r 为半径的圆内所有点的集合是 C ={(x , y )| x 2+y 20为半径的圆的内部的点P (x , y )的全体. 点P 0的去心δ邻域, 记作) ,(0δP U , 即 }||0 |{) ,(00δδ<<=P P P P U . 注: 如果不需要强调邻域的半径δ, 则用U (P 0)表示点P 0的某个邻域, 点P 0的去心邻域记作)(0P U . 点与点集之间的关系: 任意一点P ∈R 2与任意一个点集E ?R 2之间必有以下三种关系中的一种: (1)内点: 如果存在点P 的某一邻域U (P ), 使得U (P )?E , 则称P 为E 的内点; (2)外点: 如果存在点P 的某个邻域U (P ), 使得U (P )?E =?, 则称P 为E 的外点; (3)边界点: 如果点P 的任一邻域内既有属于E 的点, 也有不属于E 的点, 则称P 点为E 的边点. E 的边界点的全体, 称为E 的边界, 记作?E .

高等数学(同济第五版)第八章-多元函数微分学-练习题册

. 第八章 多元函数微分法及其应用 第 一 节 作 业 一、填空题: . sin lim .4. )](),([,sin )(,cos )(,),(.3arccos ),,(.21)1ln(.102 2 2 2 322= ===-=+=+++-+-=→→x xy x x f x x x x y x y x f y x z z y x f y x x y x z a y x ψ?ψ?则设的定义域为 函数的定义域为函数 二、选择题(单选): 1. 函数 y x sin sin 1 的所有间断点是: (A) x=y=2n π(n=1,2,3,…); (B) x=y=n π(n=1,2,3,…); (C) x=y=m π(m=0,±1,±2,…); (D) x=n π,y=m π(n=0,±1,±2,…,m=0,±1,±2,…)。 答:( ) 2. 函数?? ???=+≠+++=0,20,(2sin ),(22222 22 2y x y x y x y x y x f 在点(0,0)处: (A )无定义; (B )无极限; (C )有极限但不连续; (D )连续。 答:( )

. 三、求.4 2lim 0xy xy a y x +-→→ 四、证明极限2222 20 0)(lim y x y x y x y x -+→→不存在。

第 二 节 作 业 一、填空题: . )1,(,arcsin )1(),(.2. )1,0(,0,0 ),sin(1),(.122 =-+== ?????=≠=x f y x y x y x f f xy x xy y x xy y x f x x 则设则设 二、选择题(单选): . 4 2)(;)(2)(;4ln 2)()(;4ln 2 )(:,22 2 2 2 2 2y x y x y x y y x y D e y x y C y y x B y A z z ++++?+?+??=等于则设 答:( ) 三、试解下列各题: .,arctan .2. ,,tan ln .12y x z x y z y z x z y x z ???=????=求设求设 四、验证.2 2222222 2 2 r z r y r x r z y x r =??+??+??++=满足 第 三 节 作 业 一、填空题:

(完整word版)(整理)数学分析教案(华东师大版)第十七章多元函数微分学

第十七章多元函数微分学 教学目的: 1.理解多元函数微分学的概念,特别应掌握偏导数、全微分、连续及偏导存在、偏导连续等之间的关系; 2.掌握多元函数特别是二元函数可微性及其应用。 教学重点难点:本章的重点是全微分的概念、偏导数的计算以及应用;难点是复合函数偏导数的计算及二元函数的泰勒公式。 教学时数:18 学时 § 1 可微性 一.可微性与全微分: 1.可微性:由一元函数引入. 亦可写为, 时. 2 .全微分: 例 1 考查函数在点处的可微性. P107 例 1 二. 偏导数: 1.偏导数的定义、记法: 2.偏导数的几何意义: P109 图案17 —1.

3.求偏导数: 例 2 , 3 , 4 . P109 —110 例 2 , 3 , 4 . 例 5 . 求偏导数. 例 6 . 求偏导数. 例7 . 求偏导数, 并求. 例8 . 求和. =. 例9 证明函数在点连续, 并求和. . 在点连续.

三. 可微条件 : 1. 必要条件 : Th 1 设 为函数 定义域的内点 . 在点 可微 和 存在 , 且 . ( 证 ) 由于 , 微分记为 定理 1 给出了计算可微函数全微分的方法 例 10 考查函数 2. 充分条件 : 不存在 两个偏导数存在是可微的必要条件 , 但不充分 . 在原点的可微性 [1]P110 例 5 .

Th 2 若函数的偏导数在的某邻域内存在, 且和在 点处连续. 则函数在点可微. (证) P111 Th 3 若在点处连续, 点存在 则函数在点可微. . 即在点可微. 要求至少有一个偏导数连续并不是可微的必要条件. 验证函数在点可微, 但和在点处不连续. (简证, 留为作业) 证

隐函数的微分法习题

隐函数的微分法习题 1. 书上习题8 33. 2. 设2),,(yz e z y x f x =,其中),(y x z z =是由 0=+++xyz z y x 确定的隐函数,求)1,1,0(-'x f 。 3. 设),,(z y x f u =有连续偏导数,)(x y y =和)(x z z =,分别由0=-y e xy 和0=-xz e z 所确定,求dx du 。 4. 设),,(z y x f u =有连续的一阶偏导数,又函数)(x y y =及)(x z z =分别由下列两式确定: 2=-xy e xy 和dt t t e z x x ?-=0sin ,求dx du 。 5. 设),,(z y x f u =有连续偏导数,且),(y x z z =由方程z y x ze ye xe =-所确定,求du 。 6. ),(y x z z =由隐函数0),,(=+++x z z y y x F 确定,求dz 。

1. 书上习题8 33. 证明由方程组所???'=+-=++) (cos sin )(ln sin cos ααααααf y x f z y x ⑴确定的函数),(y x z z =满足方程式222)()(z y z x z =??+??,其中),(y x αα=,)(αf 为任意可微分的函数。 在(1)两边同时对x 求偏导数: x f x z z x y x x ??'=???+???+???-ααααααα)(1cos sin cos 把)(αf '代入得到: αcos 1-=???x z z 即αc o s z x z -=?? α222cos )(z x z =??, 同理 可得 α222s i n )(z y z =??, 故 222)()(z y z x z =??+??。

(完整版)高等数学(同济版)多元函数微分学练习题册

第八章 多元函数微分法及其应用 第 一 节 作 业 一、填空题: . sin lim .4. )](),([,sin )(,cos )(,),(.3arccos ),,(.21)1ln(.102 2 2 2 322= ===-=+=+++-+-=→→x xy x x f x x x x y x y x f y x z z y x f y x x y x z a y x ψ?ψ?则设的定义域为 函数的定义域为函数 二、选择题(单选): 1. 函数 y x sin sin 1 的所有间断点是: (A) x=y=2n π(n=1,2,3,…); (B) x=y=n π(n=1,2,3,…); (C) x=y=m π(m=0,±1,±2,…); (D) x=n π,y=m π(n=0,±1,±2,…,m=0,±1,±2,…)。 答:( ) 2. 函数?? ???=+≠+++=0,20,(2sin ),(22222 22 2y x y x y x y x y x f 在点(0,0)处: (A )无定义; (B )无极限; (C )有极限但不连续; (D )连续。 答:( ) 三、求.4 2lim 0xy xy a y x +-→→ 四、证明极限2222 20 0)(lim y x y x y x y x -+→→不存在。

第 二 节 作 业 一、填空题: . )1,(,arcsin )1(),(.2. )1,0(,0,0 ),sin(1),(.122 =-+== ?????=≠=x f y x y x y x f f xy x xy y x xy y x f x x 则设则设 二、选择题(单选): . 4 2)(;)(2)(;4ln 2)()(;4ln 2 )(:,22 2 2 2 2 2y x y x y x y y x y D e y x y C y y x B y A z z ++++?+?+??=等于则设 答:( ) 三、试解下列各题: .,arctan .2. ,,tan ln .12y x z x y z y z x z y x z ???=????=求设求设 四、验证.2 2222222 2 2 r z r y r x r z y x r =??+??+??++=满足 第 三 节 作 业 一、填空题: . ,.2. 2.0,1.0,1,2.1= == =?-=?=?===dz e z dz z y x y x x y z x y 则设全微分值 时的全增量当函数 二、选择题(单选): 1. 函数z=f(x,y)在点P 0(x 0,y 0)两偏导数存在是函数在该点全微分存在的: (A )充分条件; (B )充要条件; (C )必要条件; (D )无关条件。 答:( )

第九章多元函数微分法及其应用教案

第九章 多元函数微分法及其应用
【教学目标与要求】
1、 理解多元函数的概念和二元函数的几何意义。
2、 了解二元函数的极限与连续性的概念,以及有界闭区域上的连续函数的性质。
3、 理解多元函数偏导数和全微分的概念,会求全微分,了解全微分存在的必要条件和充分条件,
了解全微分形式的不变性。
4、 理解方向导数与梯度的概念并掌握其计算方法。
5、掌握多元复合函数偏导数的求法。
6、会求隐函数(包括由方程组确定的隐函数)的偏导数。
7、了解曲线的切线和法平面及曲面的切平面和法线的概念,会求它们的方程。
8、了解二元函数的二阶泰勒公式。
9、理解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极
值存在的充分条件,会求二元函数的极值,会用拉格郎日乘数法求条件极值,会求简多元函数的最大
值和最小值,并会解决一些简单的应用问题。
【教学重点】
1、 二元函数的极限与连续性;
2、 函数的偏导数和全微分;
3、 方向导数与梯度的概念及其计算;
4、 多元复合函数偏导数;
5、 隐函数的偏导数;多元函数极值和条件极值的求法;
6、 曲线的切线和法平面及曲面的切平面和法线;
【教学难点】
1、 二元函数的极限与连续性的概念;
2、全微分形式的不变性;
3、复合函数偏导数的求法;
4、二元函数的二阶泰勒公式;
5、隐函数(包括由方程组确定的隐函数)的偏导数;
6、 拉格郎日乘数法,多元函数的最大值和最小值。
【教学课时分配】 (18 学时)
第 1 次课 §1 第 2 次课 §2
第 3 次课 §3
第 4 次课 §4
第 5 次课 §5
第 6 次课
§6
第 7 次课 §7
第 8 次课 §8
第 9 次课
习题课
【参考书】
[1]同济大学数学系.《高等数学(下)》,第五版.高等教育出版社.
[2] 同济大学数学系.《高等数学学习辅导与习题选解》,第六版.高等教育出版社.
[3] 同济大学数学系.《高等数学习题全解指南(下)》,第六版.高等教育出版社

多元函数微分学及其应用

《高等数学》课程学习指导与讨论题 第五章多元函数微分学及其应用 在理论研究和实际应用中,经常遇到具有两个或两个以上自变量取值为数量或向量的函数,就是多元数量值函数与多元向量值函数,统称为多元函数,本章研究多元函数微分学的基本概念、理论和方法以及它们的应用,包括多元函数的极限与连续性。导数(方向导数,偏导数与梯度)与全微分等基本概念,多元函数微分法、极值问题以及多元函数微分学的一些几何应用。多元函数微分学中的基本概念、理论和方法是一元函数相应概念、理论和方法的推广和发展,因此它们之间既有相同之处,又有许多本质上的不同,同学们在学习这部分内容的时候,既要注意它们的相同点和互相联系,更要注意它们之间的不同点,善于将它们进行比较,研究推广到多元函数之后出现的新情况和新问题以及为什么会出现这些差异,有能力的同学还应注意推广的方法,以提高自己分析和解决问题的能力。 本章教学实施方案(总计30学时) 讲课:24学时分 1.n维Enclid空间中点集的初步知识(2学时)2.多元函数的极限与连续性(2学时) 3.多元数量值函数的导数与微分(7学时) 4.多元函数的Taylor公式与极值问题(4学时);5.多元向量值函数的导数与微分(3学时);6.多元函数微分学的几何应用(3学时) 7.空间曲线的曲率与挠率(3学时)。 习题课:4学时 1.多元函数极限、连续、偏导数与全微分(2学时);2.多元函数的极值与多元微分在几何中的应用(2学时)。 讨论课:2学时多元函数极限、连续、偏导数、方向导数、梯度、全微分的概念及联系;;多元函数在极值问题中与几何方面的应用。 第一节 n维Enclid空间中点集的初步知识 一、教学内容与重点 n R中点列的极限与点集的初步知识。 二、教学要求 1. 理解n维欧氏空间n R中点列极限的概念及性质,了解它们与一维空间中

相关文档
相关文档 最新文档