文档库 最新最全的文档下载
当前位置:文档库 › 200ps脉冲激发的MBEGaAs-Ga_(1-x)Al_xAs多量子阱异质结的光致发光特性

200ps脉冲激发的MBEGaAs-Ga_(1-x)Al_xAs多量子阱异质结的光致发光特性

200ps脉冲激发的MBEGaAs-Ga_(1-x)Al_xAs多量子阱异质结的光致发光特性
200ps脉冲激发的MBEGaAs-Ga_(1-x)Al_xAs多量子阱异质结的光致发光特性

量子力学发展简史

量子力学发展简史 摘要: 相对论是在普朗克为了克服经典理论解释黑体辐射规律的困难,引入能量子概念的基础上发展起来的,爱因斯坦提出光量子假说、运用能量子概念使量子理论得到进一步发展。玻尔、德布罗意、薛定谔、玻恩、狄拉克等人为解决量子理论遇到的困难,进行了开创性的工作,先后提出电子自旋概念,创立矩阵力学、波动力学,诠释波函数进行物理以及提出测不准原理和互补原理。终于在1925 年到1928年形成了完整的量子力学理论,与爱因斯坦的相对论并肩形成现代物理学的两大理论支柱。 关键词:量子力学,量子理论,矩阵力学,波动力学,测不准原理 量子力学是研究微观粒子(如电子、原子、分子等)的运动规律的物理学分 支学科,它主要研究原子、分子、凝聚态物质,以及原子核和基本粒子的结构、性质的基础理论,它与相对论一起构成了现代物理学的理论基础,是现代物理学的两大基本支柱。经典力学奠定了现代物理学的基础,但对于高速运动的物体和微观条件下的物体,牛顿定律不再适用,相对论解决了高速运动问题;量子力学解决了微观亚原子条件下的问题。量子力学认为在亚原子条件下,粒子的运动速度和位置不可能同时得到精确的测量,微观粒子的动量、电荷、能量、粒子数等特性都是分立不连续的,量子力学定律不能描述粒子运动的轨道细节,只能给出相对机率,为此爱因斯坦和玻尔产生激烈争论,并直至去世时仍不承认量子力学理论的哥本哈根诠释。 量子力学是一个物理学的理论框架,是对经典物理学在微观领域的一次革命。 它有很多基本特征,如不确定性、量子涨落、波粒二象性等,在原子和亚原子的微观尺度上将变的极为显著。爱因斯坦、海森堡、玻尔、薛定谔、狄拉克等人对其理论发展做出了重要贡献。原子核和固体的性质以及其他微观现象,目前已基本上能从以量子力学为基础的现代理论中得到说明。现在量子力学不仅是物理学中的基础理论之一,而且在化学和许多近代技术中也得到了广泛的应用。上世纪末和本世纪初,物理学的研究领域从宏观世界逐渐深入到微观世界;许多新的实验结果用经典理论已不能得到解释。大量的实验事实和量子论的发展,表明微观粒子不仅具有粒子性,同时还具有波动性(参见波粒二象性),微观粒子的运动不能用通常的宏观物体运动规律来描写。德布罗意、薛定谔、海森堡,玻尔和狄拉克等人逐步建立和发展了量子力学的基本理论。应用这理论去解决原子和分子范围内的问题时,得到与实验符合的结果。因此量子力学的建立大大促进了原子物理。固体物理和原子核物理等学科的发展,它还标志着人们对客观规律的认识从宏观世界深入到了微观世界。量子力学是用波函数描写微观粒子的运动状态,以薛定谔方程确定波函数的变化规律,并用算符或矩阵方法对各物理量进行计算。因此量子力学在早期也称为波动力学或矩阵力学。量子力学的规律用于宏观物体或质量和能量相当大的粒子时,也能得出经典力学的结论。在解决原子核和基本粒子的某些问题时,量子力学必须与狭义相对论结合起来(相对论量子力学),并由此逐步建立了现代的量子场论。

多目标进化算法总结

MOGA i x 是第t 代种群中个体,其rank 值定义为: () (,)1t i i rank x t p =+ ()t i p 为第t 代种群中所有支配i x 的个体数目 适应值(fitness value )分配算法: 1、 将所有个体依照rank 值大小排序分类; 2、 利用插值函数给所有个体分配适应值(从rank1到 rank * n N ≤),一般采用线性函数 3、 适应值共享:rank 值相同的个体拥有相同的适应值, 保证后期选择时同一rank 值的个体概率相同 最后采用共享适应值随机选取的方法选择个体进入下一代 一种改进的排序机制(ranking scheme ): 向量,1,(,,)a a a q y y y =???和,1,(,,)b b b q y y y =???比较 goal vector :() 1,,q g g g =??? 分为以下三种情况:

1、 ()() ,,1,,1; 1,,; 1,,; a i i a j j k q i k j k q y g y g ?=???-?=????=+???>∧≤ 2、() ,1,,; a i i i q y g ?=???> 当a y 支配b y 时,选择a y 3、() ,1,,; a j j j q y g ?=???≤ 当b y 支配a y 时,选择b y 优点:算法思想容易,效率优良 缺点:算法容易受到小生境的大小影响 理论上给出了参数share σ的计算方法

NPGA 基本思想: 1、初始化种群Pop 2、锦标赛选择机制:随机选取两个个体1x 和2x 和一个Pop 的 子集CS(Comparison Set)做参照系。若1x 被CS 中不少于一 个个体支配,而2x 没有被CS 中任一个体支配,则选择2x 。 3、其他情况一律称为死结(Tie ),采用适应度共享机制选择。 个体适应度:i f 小生境计数(Niche Count ):(),i j Pop m Sh d i j ∈= ????∑ 共享函数:1-,()0,share share share d d Sh d d σσσ? ≤?=??>? 共享适应度(the shared fitness ): i i f m 选择共享适应度较大的个体进入下一代 优点:能够快速找到一些好的非支配最优解域 能够维持一个较长的种群更新期 缺点:需要设置共享参数

《关于量子通信》非连续文本阅读练习及答案

阅读下面的文字,完成7~9题。 材料一: 日前,中国科学院在京召开新闻发布会对外宣布,“墨子号”量子科学实验卫星提前并圆满实现全部既定科学目标,为我国在未来继续引领世界量子通信研究奠定了坚实的基础。 通信安全是国家信息安全和人类经济社会生活的基本需求。千百年来,人们对于通信安全的追求从未停止。然而,基于计算复杂性的传统加密技术,在原理上存着着被破译的可能性,随着数学和计算能力的不断提升,经典密码被破译的可能性与日俱增。中国科学技术大学潘建伟教授说:“通过量子通信可以解决这个问题,把量子物理与信息技术相结合,用一种革命性的方式对信息进行编码、存储、传输和操纵,从而在确保信息安全、提高运算速度、提升测量精度等方面突破经典信息技术的瓶颈。” 量子通信主要研究内容包括量子密钥分发和量子隐形传态。量于密钥分发通过量子 态的传输,使遥远两地的用户可以共享无条件安全的密钥,利用该密钥对信息进行一次 一密的严格加密。这是目前人类唯一已知的不可窃听、不可破译的无条件安全的通信方式,量子通信的另一重要内客量子隐形传态,是利用量子纠缠特性,将物质的未知量子 态精确传递到遥远地点,而不用传递物质本身,通过隐形传输实现信息传递。(摘 编自吴月辉《“墨子号”,抢占量子科技创新制高点),《人民日报》2017年8月10日) 材料二: 潘建伟的导师安东·蔡林格说,潘建伟的团队在量子互联网的发展方面冲到了领先地位。量子互联网是由卫星和地面设备构成的能够在全球范围分享量子信息的网络。这将使不可破解的全球加密通信成为可能,同时也使我们可以开展一些新的控制远距离量子联系的实验。目前,潘建伟的团队计划发射第二颗卫星,他们还在中国的天宫二号空间站上进行着一项太空量子实验。潘建伟说,未来五年“还会取得很多精彩的成果,一个新的时代已经到来”。 潘建伟是一个有着无穷热情的乐观主义者。他低调地表达了自己的信心,称中国政府将会支持下一个宏伟计划——一项投资20亿美元的量子通信、量子计量和量子计算的五年计划,与此形成对照的是欧洲2016年宣布的旗舰项目,投资额为12亿美元。 (摘编自伊丽莎白·吉布尼《一位把量子通信带到太空又带回地球的物理学家》,《自然》2017年12月) 材料三: 日本《读卖新闻》5月2日报道:中国实验设施瞄准一流(记者:莳田一彦,船越翔)在中国南部广东省东莞市郊外的丘陵地带,中国刚刚建成了大型实施设施“中国散裂中子

浅谈量子力学的哲学含义

浅谈量子力学的哲学含义 【摘要】量子力学的产生和发展受到经济生活的多方面影响,量子力学的产生也相应地对于政治、经济生活提供积极因素影响,量子力学中包含的量子场理论和微观粒子的提出,微观世界物质的特性等提出都在一定程度上包含一定的哲学含义。 【关键词】量子力学;哲学含义 1.量子力学的主要表述 量子力学确立了普遍的量子场实在理论。宇宙最基本的物理是量子场,量子场是第一性的,而实物粒子是第二性的。微观粒子没有经典物理学中的决定论表述,只有非决定论论述。量子力学的微观粒子理论中,包含具有叠加态的波函数,秉有波粒二象性和非定论的远程联系。特定的测量方式造成波函数的失落,越来越显露出它的本质特征。量子场实在论证明了宇宙的实在性,不同于德谟克里特所说的宇宙存在,宇宙更多如毕达哥拉斯和柏拉图描述的:宇宙是用数学公式表达的波函数以及所显示的各种图形的组合。 量子力学对于波粒二象性的揭示和微观粒子中反粒子存在的表述,阐释着物质和反物质的辩证存在关系。量子力学的多世界论认为世界大系统由多个平行世界构成,世界论中也存在反世界物质。无论是物质和反物质还是世界论中的反世界物质都表现着哲学中黑格尔和马克思主义哲学的正确性和真理性成分。其中物质与反物质是一对矛盾体,物质相对于反物质而存在。矛盾的普遍性阐释了时时刻刻存在矛盾的真理性。宇宙世界的基本属性是矛盾性和对立统一性。矛盾的特殊性要求必须正确把握主要矛盾和次要矛盾以及矛盾的主要方面和次要方面。主要矛盾的主要方面决定事物的根本性质。然而,在矛盾的哲学理论体系中,矛盾的双方是相对立而存在的,所谓物质和反物质的矛盾性从表象上分析是对立的存在,对立关系就是阐释着物质和反物质的相对应。在某一特殊世界领域中,各种客观实在具有方面上的相对关系。历史经验告诫区分“现实矛盾”和“逻辑矛盾”。 2.量子力学包含的矛盾哲理 其中逻辑矛盾表现在概念提出中的逻辑关系的对立;现实矛盾是隐藏在逻辑矛盾之下更深层次的以客观事实为导向的矛盾。任何话语系统不允许逻辑矛盾,A是B与A是-B同时为真,正如“正粒子”与“反粒子”碰撞,这两个命题是可以互相抵消为无的。然而,现实的矛盾,如“正电荷”和“负电荷”,“正粒子”和“反粒子”的相互矛盾关系,是长期存在的,共同构成了物质世界的矛盾客体。可以说矛盾的存在是世界物质性发展和产生的基本推动力。世界是充满矛盾的世界,矛盾构成了世界的真实存在。矛盾具有同一性和斗争性,在量子力学理论体系中正电荷和负电荷是在同一和斗争中不断转化的,正电荷和负电荷的交汇形成电荷的不带电中和性质,正负电荷在同一的过程中各自改变其特性以适应向新物质存在的客观转化。正负粒子的斗争性体现于正负粒子的正负电子相互碰撞和作用,不

量子力学的发展综述

量子力学的发展综述 量子力学是对经典物理学在微观领域内的一次革命,是现代物理学的基础,它从根本上否定了牛顿物理学。本文带大家再次回到那个伟大的年代,再次简要回顾下那场史诗般壮丽的革命。 标签:量子力学发展量子多世界解释 量子理论的中心思想是一切东西都是由不可预言的量子构成,但这些粒子的统计行为遵循一种可以预言的波动图样。简简单单的一句话,深入研究起来确实那样令人困惑,整个20世纪的物理学家们就是在不断的量子的迷雾中摸索着。现在我们也要沿着他们的航线领略一下量子理论奇。 一、量子的创生 19世纪末,物理学界取得了一系列举世瞩目的成就,当人们为所谓的物理学大厦已经根深蒂而感到皆大欢喜时,几个悬而未决的谜题却一直困扰着高瞻远虑的物理学家们[1]。“在物理学阳光灿烂的天空中飘浮着两朵小乌云”这句话在几乎每一本关于物理学史的书籍中被反复提到,具体一些的话,指的是人们在迈克尔—莫雷实验和黑体辐射研究中的困境。这两朵乌云带来的狂风暴雨,远远超出了人们的想象:第一朵乌云,最终导致了相对论革命的爆发;第二朵乌云,最终导致了量子论革命的爆发。1900年,普朗克在解决黑体辐射问题时,做了一个假定,“必须假定,能量在发射和吸收的时候,不是连续不断,而是分成一份一份的。”普通的一个假设,却推翻自牛顿以来200多年,曾被认为坚固不可摧毁的物理世界。这与有史以来的一切物理学家的观念截然相反,自牛顿和伽利略以来,一切自然的过程都被当成是连续不间断的,是微积分的根本基础,牛顿、麦克斯韦那庞大的体系,都是建立在这个基础之上,从没有人怀疑过这个物理学的根基。1900年12月14日,量子的诞辰,这一天,量子这个幽灵从普朗克的方程中脱胎而出。这个幽灵拥有彻底的革命性和无边的破坏力,物理学构成的精密体系被摧毁成断壁残垣,甚至推动量子论的某些科学家最终也站到了它的对立面。量子论这场前所未有的革命,从这个叫马克思·普朗克的男人这里开始了。 二、量子力学的建立和论战 量子这个概念已经诞生了,然而他的创造者普朗克却抛弃了它,不断地告诫人们,不到万不得已不要使用,不要胡思乱想。不怪普朗克本人畏首畏尾,实在是量子这个概念太过惊世骇俗,但是接下来一系列的成就证明了它的价值:1.为了解释光电效应,1905年爱因斯坦提出光量子论,揭示了光的波粒二象性;2.玻尔结合原子的核式结构模型和量子论,1913年提出了氢原子理论;3.德布罗意从光量子理论得到启发,于1923年提出物质波假说;4.海森堡抛弃了玻尔的轨道概念,建立了矩阵力学(1925年)[2]。海森堡建立矩阵力学标志着量子力学的建立,但是刚诞生的矩阵力学立刻受到了挑战:薛定谔于1926年把物质波的思想加以发展,建立了波动力学。矩阵力学?波动力学?全新的量子论建立不到一

最新高维多目标进化算法总结

高维多目标进化算法 二、文献选读内容分析及思考 (一)Borg算法 Borg算法是基于ε-MOEA算法(Deb,2003)的一种全新改进算法[32],下面将从创新点、原理、算法流程和启发思考四方面进行阐述。 1.创新点 1)在ε支配关系的基础上提出ε盒支配的概念,具有能同时保证算法收敛性与多样性的特点。 2)提出了ε归档进程,能提高算法计算效率和防止早熟。 3)种群大小的自适应调整。 4)交叉算子的自适应选择。由于处理实际问题时,是不知道目标函数具有什么特性,前沿面如何,在具有多个交叉算子的池子里,根据进程反馈,选择不同的交叉算子,使产生的后代具有更好的特性针对要研究的问题。 2. Borg算法原理 1)ε盒支配:通过对目标空间向量的每一维除以一个较小的ε,然后取整后进行pareto支配比较。这样的支配关系达到的效果是把目标空间划分成以ε为边长的网格(2目标时),当点处于不同的网格时,按pareto支配关系比较;当处于同一网格时,比较哪个点距离中心点(网格最左下角)最近。这样一来,网格内都只有一个点。 2)ε归档进程 如图1所示,黑点表示已经归档的,想要添加到档案集的新解用×表示,阴影表示归档解支配的区域。当新解的性能提升量超过阈值ε才属于ε归档进程。比如解1、解2加入归档集属于ε归档进程,解3加入归档集就不属于ε归档进程。 图1 ε支配网格 在这个过程中设置了一个参数c,表示每一代中加入归档集解得个数,每隔一定迭代次数检测c有没有增加,如果没有增加表明算法停滞,重启机制启动。 3)重启 自适应种群大小:重启后的种群大小是根据归档集的大小设置。γ表示种群大小与归档集大小的比值,这个值也用于第二步中,如果γ值没超过1.25,重启机制也启动。启动后,γ人为设定为固定值,种群被清空,填充归档集的所有个体,不足的个体是随机选取归档集中个体变异所得。与之相匹配的锦标赛比较集大小是归档集大小乘以固定比值τ。 4)交叉算子的自适应选择 摒弃以往采用单一的交叉算子,采用包含各类交叉算子的池子,比如有K

经验与理性在量子诠释中的嬗变关于量子力学多世界解释的哲学审视的进一步阐释

第29卷,第1期科学技术哲学研究Vol.29No.1 2012年2月Studies in Philosophy of Science and Technology Feb.,2012 经验与理性:在量子诠释中的嬗变 ———关于《量子力学多世界解释的哲学审视》的进一步阐释 贺天平,卫江 (山西大学科学技术哲学研究中心,太原030006) 摘要:量子力学是20世纪非常重要且成功的物理学理论,导致了经验的支配地位的衰弱,量子力学诠释的演化凸显了理性的作用和价值。通过对量子测量诠释中经验和理性嬗变的分析,为二者最终完美融合找到 了一个对话平台,多世界解释将成为量子力学哲学研究的热点。 关键词:多世界解释;经验;理性 中图分类号:N02文献标识码:A文章编号:1674-7062(2012)01-0021-06 量子力学是20世纪非常重要且成功的物理学理论,引发了物理学的伟大革命,颠覆了300多年来经典物理学的统治地位,动摇了传统物理学家的世界观。然而,伴随量子力学始末的测量难题一直是物理学家和科学哲学家挥之不去的“梦魇”和“灾难”。 为了排除测量难题所带来的困惑,物理学家一直在努力寻求着合理的方案。根据埃里则的研究表明,截止2005年有影响的量子力学诠释至少有13种之多[1],但却没有一种诠释有足够的影响力和说服力能够成为量子力学测量难题的终极答案,因而对量子力学各种诠释进行梳理,挖掘出其本体论、认识论和方法论层面经验和理性的发展脉络,便显得十分重要。经验与理性始终是科学发展中的一对孪生概念,二者在科学哲学中也经历了长期的角逐。作为《中国社会科学》2012年第1期的拙文《量子力学多世界解释的哲学审视》的进一步阐释,本文认为测量难题的发展实质上也是经验与理性反复检验的过程。 一经验在量子力学中地位的衰弱 经验在科学哲学中发挥着至关重要的作用。尤其是在正统科学哲学学派逻辑经验主义那里,经验是检验真理的唯一标准,是判断认知有无意义的唯一手段;批判理性主义同样重视经验的作用,只有可以被经验证伪的理论才是科学的理论。经验在科学哲学中曾占有绝对支配的地位。 测量是经验映射到自然科学中的具体表现之一。在物理学史上,测量是一个经典的且意义深远的概念,同时又是科学家检验真理最常用的科学行为方式。可以说,测量对物理学以及自然科学的发展有着不可磨灭的贡献。 经典物理学家通过测量准确地得出物理过程的实验数据和经验依据,并和物理学理论的预言完美吻合,在对客观世界的探索和对真理的追求中大步地向前迈进,在经典物理学的范畴内,测量一直扮演着一种直观、清晰、准确无误的桥梁和纽带的角色,连接着作为主体的观察者和相对于主体的研究对象 【收稿日期】2011-10-21 【基金项目】国家社会科学基金项目(10BZX023);教育部新世纪优秀人才支持计划项目(KCET-08-0884);教育部人文社会科学重点研究基地重大项目(07JJD720050);山西省高校人文社科基地项目(2011303);山西省回国留学基金 项目(1105909) 【作者简介】贺天平(1976-),男,山西蒲县人,山西大学科学技术哲学研究中心教授,研究方向为物理学哲学; 卫江(1986-),男,山西运城人,山西大学科学技术哲学研究中心硕士研究生,研究方向为物理学哲学。 12

量子力学的哲学启示

量子力学的哲学启示 编辑整理:正心 世界的本源是什么?宇宙是怎样形成的?生命是如何产生的?意识是怎么回事?这些问题应该是我们大多数人曾经冥思苦想过的问题。 对人类来说,以上问题不可能有直观和确定不疑的答案,因为没有人曾经见证过宇宙的形成,生命产生时也还没进化到人类,这些问题也不可能通过科学验证的方法找到答案。所以,人类对以上问题的解答,主要还是依靠宗教和哲学。当一种理论能够圆满地解释所有与它相关的现象时,那我们就认为这种理论接近了真理。 曾经,科学是作为神学的对立面出现的。科学的发展,解释了很多人们以为很神秘的现象,破除了人们的各种迷信。科学的观念是如此地深入人心,也使人们对建立在经典物理学(相对量子力学而言,经典物理学主要研究宏观世界)之上的唯物主义深信不疑。在中国,经常是受教育程度越高,越是相信世界是物质的、意识是物质派生的,因为唯物主义是中国的官方思想,唯物主义教材是学校的官方法定课本。 如果说唯物主义是真理,那它必须符合真理的条件,即对所有与它相关的现象都能给出圆满的合理的令人信服的解释。但是,目前来看,下面的两个问题是唯物主义很难解释的。 首先,科学对客观物质世界的解释就是它的“规律性”,或者说是“确定性”,也就是说:一个系统的所有参数都确定的话,下一刻的状态也是确定的。那么如果我们把整个宇宙看做一个系统,宇宙这一刻的状态是由上一刻的状态决定的,继续往前不停

地推,可以得出的结论是:宇宙这一刻的状态从宇宙诞生那刻起就已经决定了。然后我们再往后推,宇宙未来每时每刻的状态早在宇宙诞生时就已经确定好了,我们生活在一个早已设计好的世界里。 再接着想,世界是物质的,生命也是物质的一种形式,那是不是说从出生那刻起,我们的命运就已经注定了?继续往前推,是不是宇宙诞生那刻起,我们的命运就已经注定了? 再接着想,意识是物质派生的,也是物质的一种形式,那人的意志必定是不自由的,一个人的所思所想其实不是自己的所思所想,你今天的所思所想从你出生那刻便确定了,甚至可以说从宇宙诞生那刻就确定了。 生命毫无意义和价值,一切都是宿命,你同意吗? 第二个问题,物质世界是运动的,物质世界的运动是遵循能量守恒定律的,推动物质世界运动的第一个推动力从何而来呢?作为经典物理的创始人,牛顿是世界上一位伟大的科学家。牛顿正是因为无法解释上面这个问题,晚年转向了神学研究。现在,有人能回答这个问题吗? 显然,建立在经典物理学基础之上的唯物主义不能对以上两个问题给出合理的解释。19世纪末,量子力学诞生。量子力学经过一百多年的发展,已经使物理学最底层的基础理论出现了非常多的变化,对科技树上层的影响可以用匪夷所思来形容。自牛顿以来建立的经典物理学大厦,早已轰然倒塌,而建立在经典物理学基础之上的唯物主义必须拿来重新审视。 量子力学带给我们的哲学启示大多都与唯物主义思想有关,下面分别论述。

2018~2019年度广东省重大科技专项量子科学与工程申

附件1 2018~2019年度广东省重大科技专项 “量子科学与工程”申报指南 (征求意见稿) 本专项依据国家和省有关科技发展规划,完善政产学研用协同创新的体制机制,统筹相关高校、科研院所和相关企业的创新要素和优势资源,着力突破以量子信息为主导的第二次量子革命的前沿科学和核心关键技术,培育形成量子计算、量子通信、量子领域重大科学仪器等战略性新兴产业。 2018~2019年度将针对国家和广东战略需求,在量子通信、量子计算与量子模拟、量子领域重大科学仪器研发等方面进行布局,开发三维多比特集成量子计算芯片,研制基于固态量子计算芯片的专用量子计算机,搭建广东星—地一体量子通信试验示范网,开展量子通信系统的集成化技术及量子计算初期技术和重大科学仪器研发。部分技术指标略。 专题一:城域量子安全通信时频网络及关键技术(专题编号:0324) (一)研究内容。 建设广州市量子安全通信时频网络,覆盖主要经济区域,研究高精度时间同步技术、安全量子时间同步网络关键技术、固态

量子存储技术、量子通信系统的集成化技术。具体内容包括:1.建设覆盖天河区、白云区和番禺区的量子安全通信时频环网。2.研究城域网范围内的高精度时间同步技术,并在此基础上完成高精度位置定位。3.研究安全的量子时间同步方案,探索量子力学原理在时间同步中的应用,并利用量子手段保证时间传输的安全性。探索利用人工智能及大数据技术进行量子保密时频传输的设计与分析。4.完成窄脉冲纠缠源、低抖动单光子探测器等关键器件的研究设计。5.研制针对量子卫星与量子中继器的固态存储器6.研发可替代量子通信系统分立光学元件的集成光子器件,包括量子通信发射、接收端芯片、高速稳定的移相器等。 (二)考核指标。 1.建设量子通信环网,成码速率不低于相同等级干线或城域网络指标,实现迂回路由切换和多个用户同时接入使用网络,和量子时频网络共用物理资源。 2.节点之间实现高精度的量子时间同步实验,并在此基础上完成高精度位置定位应用示范。 3.节点之间实现高精度的量子安全时频同步实验,可以抵御多种不同的中间人攻击。 4.研发窄脉冲纠缠源和低抖动单光子探测器,发射脉宽器件、探测器单次时间测量抖动达到国际先进水平。 5.研发非通信波长和通信波长的固态存储器,存储的相干时间达到国际先进水平。 6.研发低损耗和高速的量子通信集成器件。 专题二:基于超导量子芯片的专用量子计算机研发(专题编号:0325)

这个世界其实是你想象出来地恐怖地量子力学正彻底颠覆人类地物理世界观

这个世界其实是你想象出来的——恐怖的量子力学正彻底 颠覆人类的物理世界观 朱清时,中国科学技术大学前校长、中国科学院院士、国务院学位委员会委员、第三世界科学院院士、中国绿色化学的主要倡导者和组织者、南方科技大学创校校长、1994年获海外华人物理学会亚洲成就奖和汤普逊纪念奖。量子力学的诡异现象量子力学也是自然科学史上被实验证明最精确的一个理论,但是量子的观念,没有人能够理解。我说的没有人能够理解,绝不是指像我们这个层次的人,而是说连量子力学的创始人都不能理解。 那么量子力学最不好懂的是些什么问题呢?我先把量子力学中人们最不好懂的东西介绍给大家,而最不好懂的东西最后恰好是证明了:意识不能被排除在客观世界之外。一定要把意识加进去你才能够认识搞懂它。 - 1 - 态叠加与坍缩量子力学的第一个诡异现象叫做态叠加原理和坍缩。 为了解释量子力学观念,我先说说普通人的日常经验。一般人认为客观物体一定要有一个确定的空间位置,这种存在,是不以人的意志为转移的、是客观的。比如说,我的女儿现在在客厅里面,或者说我的女儿现在不在客厅里面,两者必居其一。

【女儿可以既在又不在客厅里吗?】但在量子力学里就不一样了。量子力学就像说你的女儿既在客厅又不在客厅,你要去看这个女儿在不在,你就实施了观察的动作。你一观察,这个女儿的存在状态就坍缩了,她就从原来的,在客厅又不在客厅的叠加状态,一下子变成在客厅或者不在客厅的唯一的状态了。 所以量子力学怪就怪在这儿:你不观察它,它就处于叠加态,也就是一个电子既在A点又不在A点。你一观察,它这种叠加状态就崩溃了,它就真的只在A点或者真的只在B点了,只出现一个。 那有人就会说了:这是诡辩,你怎么知道电子不观察它的时候,它既在A点又不在A点呢? 好,这就是量子力学发展过程中,很多实验确证的事情,其中一个最著名最重要的实验,就是干涉实验证实。【电子同时在两处】电子在没有观测的时候,没有确定的状态。所以这件事是量子力学最诡异的事情。懂了这个,就懂了量子力学最诡异的东西,而且随后我们就能来证明:量子力学离不开意识,意识是量子力学的基础。 - 2 -单体的叠加态:薛定谔的猫刚才说的是量子力学第一个诡异之点,现在我们来看看这个诡异之点往下推论,能够推出什么结果。最后结果会使大家认识到,意识是量子力学的基础,物质世界和意识不可分开。这个实验是量子力学的创

多目标进化算法总结

x 是第 t 代种群中个体,其 rank 值定义为: rank (x ,t ) =1+p (t ) p (t )为第t 代种群中所有支配x 的个体数目 适应值 (fitness value )分配算法: 1、 将所有个体依照 rank 值大小排序分类; 2、 利用插值函数给所有个体分配适应值(从 rank1 到 rank n * N ),一般采用线性函数 3、 适应值共享:rank 值相同的个体拥有相同的适应值, 保证后期选择时同一 rank 值的个体概率相同 最后采用共享适应值随机选取的方法选择个体进入下一代 一种改进的排序机制(ranking scheme ): 向量y a =(y a ,1,,y a ,q )和y b =(y b ,1,,y b ,q )比较 分为以下三种情况: k =1,,q -1; i =1,,k ; j =k +1,,q ; (y a ,i g i )(y a ,j g j ) i =1, ,q ; (y a ,i g i ) 当 y a 支配 y b 时,选择 y a 3、j =1, ,q ; (y a ,j g j ) 当 y b 支配 y a 时,选择 y b 优点:算法思想容易,效率优良 缺点:算法容易受到小生境的 大小影响 理论上给出了参数share 的计算方法 goal vector : g = (g 1, ,g q ) 1、 2、

基本思想: 1、初始化种群 Pop 2、锦标赛选择机制:随机选取两个个体 x 和 x 和一个 Pop 的 子集 CS(Comparison Set)做参照系。若 x 被 CS 中不少于一 个个体支配,而 x 没有被 CS 中任一个体支配,则选择 x 。 3、其他情况一律称为死结(Tie ),采用适应度共享机制选择。 个体适应度: f i 小生境计数(Niche Count ): m =j Pop Sh d (i , j ) 共享适应度(the shared fitness ): 选择共享适应度较大的个体进入下一代 优点:能够快速找到一 些好的非支配最优解域 能够维持一个较长的种群更新期 缺 点:需要设置共享参数 需要选择一个适当的锦标赛机制 限制 了该算法的实际应用效果 1- 共享函数: Sh (d ) = d share 0, d share d share

这个世界其实是你想象出来的恐怖的量子力学

这个世界其实是你想象出来的恐怖的量子力学正彻底颠覆 人类的物理世界观ημ 朱清时,中国科学技术大学前校长、中国科学院院士、国务院学位委员会委员、第三世界科学院院士、中国绿色化学的主要倡导者和组织者、南方科技大学创校校长、1994年获海外华人物理学会亚洲成就奖和汤普逊纪念奖。量子力学的诡异现象量子力学也是自然科学史上被实验证明最精确的一个理论,但是量子的观念,没有人能够理解。我说的没有人能够理解,绝不是指像我们这个层次的人,而是说连量子力学的创始人都不能理解。 那么量子力学最不好懂的是些什么问题呢?我先把量子力学中人们最不好懂的东西介绍给大家,而最不好懂的东西最后恰好是证明了:意识不能被排除在客观世界之外。一定要把意识加进去你才能够认识搞懂它。 - 1 - 态叠加与坍缩量子力学的第一个诡异现象叫做态叠加原理和坍缩。 为了解释量子力学观念,我先说说普通人的日常经验。一般人认为客观物体一定要有一个确定的空间位置,这种存在,是不以人的意志为移的、是客观的。比如说,我的女儿现在在客厅里面,或者说我的女儿现在不在客厅里面,两者必居其一。

【女儿可以既在又不在客厅里吗?】但在量子力学里就不一样了。量子力学就像说你的女儿既在客厅又不在客厅,你要去看这个女儿在不在,你就实施了观察的动作。你一观察,这个女儿的存在状态就坍缩了,她就从原来的,在客厅又不在客厅的叠加状态,一下子变成在客厅或者不在客厅的唯一的状态了。 所以量子力学怪就怪在这儿:你不观察它,它就处于叠加态,也就是一个电子既在A点又不在A点。你一观察,它这种叠加状态就崩溃了,它就真的只在A点或者真的只在B点了,只出现一个。 那有人就会说了:这是诡辩,你怎么知道电子不观察它的时候,它既在A点又不在A点呢? 好,这就是量子力学发展过程中,很多实验确证的事情,其中一个最著名最重要的实验,就是干涉实验证实。【电子同时在两处】电子在没有观测的时候,没有确定的状态。所以这件事是量子力学最诡异的事情。懂了这个,就懂了量子力学最诡异的东西,而且随后我们就能来证明:量子力学离不开意识,意识是量子力学的基础。 - 2 -单体的叠加态:薛定谔的猫刚才说的是量子力学第一个诡异之点,现在我们来看看这个诡异之点往下推论,能够推出什么结果。最后结果会使大家认识到,意识是量子力学的基础,物质世界和意识不可分开。这个实验是量子力学的创

MOEAD(基于分解的多目标进化算法)

摘要:在传统的多目标优化问题上常常使用分解策略。但是,这项策略还没有被广泛的应用到多目标进化优化中。本文提出了一种基于分解的多目标进化算法。该算法将一个多目标优化问题分解为一组单目标优化问题并对它们同时优化。通过利用与每一个子问题相邻的子问题的优化信息来优化它本身,这是的该算法比MOGLS和非支配排序遗传算法NSGA-Ⅱ相比有更低的计算复杂度。实验结果证明:在0-1背包问题和连续的多目标优化问题上,利用一些简单的分解方法本算法就可以比MOGLS和NSGA-Ⅱ表现的更加出色或者表现相近。实验也表明目标正态化的MOEA/D算法可以解决规模范围相异的多目标问题,同时使用一个先进分解方法的MOEA/D可以产生一组分别非常均匀的解对于有3个目标问题的测试样例。最后,MOEA/D在较小种群数量是的性能,还有可扩展性和敏感性都在本篇论文中通过实验经行了相应的研究。 I.介绍 多目标优化问题可以用下面式子表示: Maximize F(x)=((f1(f)…...f f(f))f subject to x∈Ω 其中Ω是决策空间,F:Ω→f f,包含了m个实值目标方法,f f被称为目标区间。对于 可以得到的目标集合成为{F(x)|x∈Ω}。 如果x∈R m,并且所有的目标函数都是连续的,那么Ω则可以用 Ω={x∈f f|h f(x)≤0,j=1……m} 其中hj是连续的函数,我们可以称(1)为一个连续的多目标优化问题。 如果目标函数互斥,那么同时对所有目标函数求最优解往往是无意义的。有意义的是获得一个能维持他们之间平衡的解。这些在目标之间获得最佳平衡的以租借被定义Pareto最优。 令u, v∈Rm,如果f f≥f f对于任意的i,并且至少存在一个f f≥f f(i,j∈{1…..m}),那么u支配v。如果在决策空间中,没有一个点F(y)能够支配F(x)点,那么x就是Pareto最优,F(x)则被称为Pareto最优向量。换句话说,对于Pareto最优点在某一个目标函数上的提高,都会造成至少一个其余目标函数的退化。所有Pareto最优解的集合称为Pareto集合,所有最优向量的集合被称为Pareto前沿。 在许多多目标优化的实际应用中,通过选择器选择一个接近Pareto最优前沿的解作为最后的解。大多数多目标优化问题都有许多甚至是无穷个Pareto最优向量,如果想要获得一个完整的最优前沿,将是一件非常耗时的事情。另一方面,选择器可能不会专注于获得一个过于庞大的最优解向量集合来解决问题,因为信息的溢出。因此,许多多目标优化算法往往是获得一个均匀分布在Pareto最优前沿周围的最优解向量,这样就具有更好的代表性。许多研究人员也致力于使用数学模型来获得一个近似的最优前沿。 一般来说,在温和控制下多目标优化问题的Pareto最优解,可以看做是一个标量优化问题的最优解(其中目标函数是fi的集合)。因此,Pareto最优前沿的近似求解可以被分解为一组标量目标优化子问题。这个想法是建立在许多传统的对最优前沿求近似解的数学编程方法上的。现在有许多的聚合方法,最流行的是切比雪夫法和加权法。最近,边界交叉方法也引起了许多的关注。 如今多目标进化算法并没有将分解这一概念引入当前的主要发展领域。这些算法将多目标优化问题看成一个整体。他们并没有通过任何特别的标量优化将每一个解相互联系在一起。在一个标量目标优化问题中,所有的解都可以通过他们的目标函数值进行对比,而挑战

量子通信中的信息安全技术及比较

量子通信中的信息安全技术及比较 量子通信是近二十年发展起来的新型交叉学 科,是量子论和信息论相结合的新的研究领域。它主要是利用量子纠缠效应进行信息传 递,其研究主要涉及量子密码通信、量子远程传态和量子密集编码等等。而量子通信安全性是将保密通信建立在量子客观规律基础上的,是一个具有重要意义的研究课 题。 随着对数学难题求解的经典算法和量子算法的深入研 究,基于数学上计算复杂性的经典 安全通信面临着严峻的挑战。而经典计算机技术的飞速发展和量子计算机的实验进 展,导致 破译数学密码的难度逐渐降 低。与量子通信安全性相比,目前经典密码体制面临三个方面 的 威胁。首先,经典密码体制安全性是建立在没有严格证明的数学难题之 上。数学难题的突破必将给经典密码算法带来毁灭性打 击。其次,计算机科学的飞速发展导致其计算能力的快速 提高,始终冲击着经典密码。再次,量子计算理论的发展使得数学难题具有量子可解性。 在 1994年Shor提出了多项式时间内求解大数因子和离散对数的量子算法使得目前常用的基于 大数分解困难性提出的RSA公钥密码体制和ELGamal公钥密码体制受到极大威 胁。1998年, Grove提出了量子搜索算法,即在N个记录的无序数据库中搜索记录的时间复杂度为 对N开 平方根,可以提高量子计算机利用蛮力攻击方法破解经典密码的效率,使得经典密码体制 受 到威胁。仅仅因为量子计算机的应用仍处于初级阶 段,量子计算理论成果目前还没有影响经典密码体制系统的使用。但以量子力学为基础发展的安全通信是不可能被攻破的,它以量子力学为基础,利用系统所具有的量子性质,使得“一次一密”密码真正能应用于实际。量子 密码学的安全性是由“海森堡测不准原理”,或量子相干性以及“单量子不可克隆定理” 来 保证的,具有可证明的无条件安全性和对窃取者的可检测 性,完全可以对抗以量子计算机为 工具的密码破译。从而保证了密码本的绝对安全,也保证了加密信息的绝对安 全,故以量子 为载体的通信,具有以往经典通信所没有的安全优 势。 谈到量子安全通信就不得不介绍一下量子密码学。量子密码学的思想最早是由美 国人 S.Wiesner在1969年提出。后来 IBM的S.H.Bennett和Montreal大学的G.Brassard在此基础 上提出了量子密码学的概念,并于1984年提出了第一个量子密钥分发协议,简称议。1991年Ekert依据量子缠绕态而提出了一种基于EPR关联光子对的E91协议,BB84 1992 协 年 Bennet t 又进一步提出 了 B92量子密码协议。 一、量子密码保密通信的物理原理: 1、互补性以及测不准原理:在量子力学中具有互补性的两组物理量是指在进行观测时,对

量子力学的多世界解释

量子力学的多世界解释 中文摘要 量子力学自从诞生以来关于其完备性的争论便一直存在,论文通过对量子力学的发现和其基本内容以及其发展过程、发展现状的描述引出量子力学的完备性争论。继而通过以爱因斯坦为代表的EPR一派和以玻尔为代表的哥本哈根一派的争论,直至50年代初期出现的以玻姆为代表的关于“隐变量”的描述来了解各种关于量子力学完备性解释的理论。 在EPR一派和哥本哈根一派的解释之外,1957年休·艾弗雷特(Hugh Everett)提出了量子力学的多世界解释,多世界解释的出现为量子力学解释的完备性做出了巨大的贡献,论文通过多世界解释的出现、低潮、再次发展以及发展壮大的近半世纪的历史过程来详细阐述多世界解释的核心理论、多世界解释的意义、科学界对多世界解释的看法以及多世界解释所存在的缺陷,通过多世界解释来进一步加深对量子力学解释完备性的理解与认识。 关键词:量子力学的完备性,哥本哈根解释,EPR佯谬,多世界解释 第一章引言 1.1课题的背景和意义 量子力学从产生到现在大约经历了百年的时间,在这百年之中,它的发展促使了人类社会和人类科学的进步。目前量子力学相继应用于基本粒子、原子核、原子和分子、固体和液体等各种物理系统,都取得了巨大的成功。最引人注目的就是量子计算机的产生和发展,它将彻底改变人们的有关计算的理解。关于量子信息的前沿研究工作表明,量子力学的基本概念有可能改变人们对信息存储、提取和传输过程的理解。量子力学不仅是近代物理学的基础理论之一,而且在化学等有关学科和许多近代技术中也得到了广泛的应用。可以毫不夸张的说,20世纪的科学是量子力学的科学。 相对于在社会发展中所取得的巨大成就,量子力学在其自身理论的完善上总是无法取得多数科学家的一致认同。 在量子力学发展过程中,以玻尔等为代表的哥本哈根解释有着举足轻重的作用,近年来的系列实验也进一步证明哥本哈根解释确实有一定的正确性,但是许多令人疑惑的问题依然存在。而量子力学的完备性也一直备受一部分科学家所诟病,于是在哥本哈根解释之外,一

MOEAD(基于分解的多目标进化算法)

基于分解的多目标进化算法
摘要:在传统的多目标优化问题上常常使用分解策略。但是,这项策略还没有被广泛的 应用到多目标进化优化中。本文提出了一种基于分解的多目标进化算法。该算法将一个多目 标优化问题分解为一组???单目标优化问题并对它们同时优化。通过利用与每一个子问题 相邻的子问题的优化信息来优化它本身,这是的该算法比 MOGLS 和非支配排序遗传算法 NSGA-Ⅱ相比有更低的计算复杂度。实验结果证明:在 0-1 背包问题和连续的多目标优化问 题上,利用一些简单的分解方法本算法就可以比 MOGLS 和 NSGA-Ⅱ表现的更加出色或者 表现相近。实验也表明目标正态化的 MOEA/D 算法可以解决规模围相异的多目标问题,同 时使用一个先进分解方法的 MOEA/D 可以产生一组分别非常均匀的解对于有 3 个目标问题 的测试样例。最后,MOEA/D 在较小种群数量是的性能,还有可扩展性和敏感性都在本篇 论文过实验经行了相应的研究。
I. 介绍
多目标优化问题可以用下面式子表示:
其中 Ω 是决策空间, 以得到的目标集合成为
,包含了 m 个实值目标方法, 被称为目标区间。对于可 。
如果
,并且所有的目标函数都是连续的,那么 Ω 则可以用
其中 hj 是连续的函数,我们可以称(1)为一个连续的多目标优化问题。 如果目标函数互斥,那么同时对所有目标函数求最优解往往是无意义的。有意义的是获
得一个能维持他们之间平衡的解。这些在目标之间获得最佳平衡的以租借被定义 Pareto 最 优。
令 u, v∈Rm,如果
对于任意的 i,并且至少存在一个
,那
么 u 支配 v。如果在决策空间中,没有一个点 F(y)能够支配 F(x)点,那么 x 就是 Pareto 最优, F(x)则被称为 Pareto 最优向量。换句话说,对于 Pareto 最优点在某一个目标函数上的提高, 都会造成至少一个其余目标函数的退化。所有 Pareto 最优解的集合称为 Pareto 集合,所有 最优向量的集合被称为 Pareto 前沿。
在许多多目标优化的实际应用中,通过选择器选择一个接近 Pareto 最优前沿的解作为 最后的解。大多数多目标优化问题都有许多甚至是无穷个 Pareto 最优向量,如果想要获得 一个完整的最优前沿,将是一件非常耗时的事情。另一方面,选择器可能不会专注于获得一 个过于庞大的最优解向量集合来解决问题,因为信息的溢出。因此,许多多目标优化算法往 往是获得一个均匀分布在 Pareto 最优前沿周围的最优解向量,这样就具有更好的代表性。 许多研究人员也致力于使用数学模型来获得一个近似的最优前沿。
一般来说,在温和控制下多目标优化问题的 Pareto 最优解,可以看做是一个标量优化 问题的最优解(其中目标函数是 fi 的集合)。因此,Pareto 最优前沿的近似求解可以被分解为

物理学术语:平行宇宙

平行宇宙 平行宇宙(parallel universes)是指多元宇宙中所包含的各个宇宙。多元宇宙是一个理论上的无限可能存在的宇宙集合,包括了一切存在和可能存在的事物:所有的空间、时间、物质、能量以及描述它们的物理法则和物理常数。 存在两个宇宙 加州大学圣芭芭拉分校的量子物理学家将一个人类头发丝宽度的微型“划桨”放入到一 个真空罐中,随后他们拨动“划桨”,它同时出现了振动和静止两种量子状态(quantum state)。 从本质上说,那就意味着物体可以同时存在两种状态(或者说存在两个宇宙)。 概念 从广义上讲:平行宇宙就是宇宙在高一维度的空间中多出来的方向上有差值的平行时空。相邻的宇宙在多出来的维度【坐标】上有着不为零的最小差距。多出来的维度便是相对于宇宙的虚时间,可以通过穿越平行宇宙穿越虚时间。 如果只站在宇宙空间【我们的宇宙是三维】的高度看问题,那么平行宇宙不存在。 可以轻松回到过去的时间 了解时间对于物理学来说,是其中一个最大的开放性问题,历史之中哲学家们一直以来也备感困惑。时间是什么?为什么它有方向?这个概念被定义为"时间之矢"(arrow of time),通常直指时间的不对称性,虽然宇宙中大多数的定律是绝对地对称。 这个问题现在有了更进一步具可能性的解释。加州理工学院物理学家Sean Carroll以及麻省理工学院宇宙学家Alan Guth做了一个模拟实验,发现时间箭头可以自然地来自一个完美对称的方程式系统。 Carroll和Guth的实验结果尚未发表,但他们终于在《New Scientist》中提出讨论。在他们的模拟实验中,包含了大量的粒子在引力之下相互作用,并任意方向的移动。有些粒子自然的聚集在一起,而这个聚集区的熵值低,且之后会在特定的时间方向分开和扩张。而出人意外的是,当你把整个系统镜像化时,熵值仍然在增加,而这也显示出时间的两个方向都是可行的。 像这样的研究调查已经不是第一次,2014年一个国际性的物理学家团队研发出一个简易模式,透过它可以呈现出物理对称定律而只有"明显的"时间之矢。他们的调查结果刊登在《物理评论快报》( Physical Review Letters )当中。他们注意到有时间之矢,但这仅只是从这个系统中的粒子的观点而来,而对于外部观察者而言,时间里则没有特别的方向。

相关文档