文档库 最新最全的文档下载
当前位置:文档库 › 3D测量系统中的高精度摄像机标定算法

3D测量系统中的高精度摄像机标定算法

3D测量系统中的高精度摄像机标定算法
3D测量系统中的高精度摄像机标定算法

色差仪的分类_原理及测量方法

色差仪的分类,原理及测量方法 1.分类 根据性能参数、精度范围和使用要求,色差仪可分为3种:第一种是手持 式色差仪,又称色彩色差计,其能直接读取数据,不用连接电脑,不配带软件,使用方便,价格便宜,但精度较低,在颜色管理的一般领域使用广泛;第二种 是便携式色差仪,又称便携式分光测色仪,其除了能直接读取数据外,还能连 接电脑,配带软件,体积较小,便于携带,精度较高,价格适中;第三种是台 式色差仪,又称台式分光测色配色仪,其具有读数窗口,连接电脑时需要使用 测色、配色软件,具有高精度的测色和配色功能,体积较大,性能稳定,价格 较高。目前,国内印刷企业使用较广的是便携式色差仪。 2.原理 色差仪是模拟人眼对红、绿、蓝光感应的光学测量仪器,可以对被测物体 进行五角度分析,其中习惯选择15°、45°、110°的角度进行分析。 所有的颜色都可以通过任何一种Lab颜色标尺被感知并测量,L轴为亮度轴,0为黑,100为白;a轴为红绿轴,正值为红,负值为绿,0为中性色;b 轴为黄蓝轴,正值为黄,负值为蓝,0为中性色。这些标尺可以用来表示试样 与标样的颜色差异,通常以Δa、Δb、ΔL为标识符,ΔE被定义为样品的总色差,但其不能表示出试样色差的偏移方向,ΔE数值越大,说明色差越大。色差仪可以根据CIE色度空间的Lab、Lch原理,测量显示出试样与标样的色差ΔE及Δa、Δb、ΔL值。

ΔE通常按如下公式计算: ΔE*=[(ΔL*)+(Δa*)+(Δb*)]1/2 有时一些公司会要求总色差小于2,有的还会要求达到Lab值。如果ΔE≤2.0,建议Δa、Δb、ΔL均≤1.5,一般ΔE为1.5时目视是可以分辨的。由于Δa、Δb、ΔL一般情况下均没有定值,在要求过于严格的情况下,往往对总色差ΔE 和色差Δc(不考虑亮度影响)都有要求,此时可按如下公式计算:ΔE*=[(ΔL*)+(Δa*)+(Δb*)]1/2 Δc*=[(Δa*)+(Δb*)]1/2 具体测量方法 在实际操作中,我们将测量出的数据在图1上标示为一个静态的坐标点(称为起始点)。在印刷过程中要想保证印刷品色相的稳定性,就需要调墨工 人随时调整油墨配比和黏度,这样在每次调整后再测量,就可以在坐标图上标 示出另外的一些坐标点(冲淡点、点黑加重点等),每次调整前后形成的两个 不同的坐标点之间都会有一定的移动方向和距离(沿坐标a轴、b轴距离不等,因产品而定)。如果我们将这个数值与色差仪上显示的Δa、Δb、ΔL、ΔE等数据结合在一起,在图1上就会显示成一系列动态的点,那么,这些动态点之间 的方向和距离在实际操作中就成了调墨工人调色时所应添加哪一种或哪几种色 墨及其添加量的定性和定量参考,相当于日常调墨工作中的指南针和测量尺。

摄像机标定方法综述

摄像机标定方法综述 摘要:首先根据不同的分类方法对对摄像机标定方法进行分类,并对传统摄像机标定方法、摄像机自标定方法等各种方法进行了优缺点对比,最后就如何提高摄像机标定精度提出几种可行性方法。 关键字:摄像机标定,传统标定法,自标定法,主动视觉 引言 计算机视觉的研究目标是使计算机能通过二维图像认知三维环境,并从中获取需要的信息用于重建和识别物体。摄像机便是3D 空间和2D 图像之间的一种映射,其中两空间之间的相互关系是由摄像机的几何模型决定的,即通常所称的摄像机参数,是表征摄像机映射的具体性质的矩阵。求解这些参数的过程被称为摄像机标定[1]。近20 多年,摄像机标定已成为计算机视觉领域的研究热点之一,目前已广泛应用于三维测量、三维物体重建、机器导航、视觉监控、物体识别、工业检测、生物医学等诸多领域。 从定义上看,摄像机标定实质上是确定摄像机内外参数的一个过程,其中内部参数的标定是指确定摄像机固有的、与位置参数无关的内部几何与光学参数,包括图像中心坐标、焦距、比例因子和镜头畸变等;而外部参数的标定是指确定摄像机坐标系相对于某一世界坐标系的三维位置和方向关系,可用3 ×3 的旋转矩阵R 和一个平移向量t 来表示。 摄像机标定起源于早前摄影测量中的镜头校正,对镜头校正的研究在十九世纪就已出现,二战后镜头校正成为研究的热点问题,一是因为二战中使用大量飞机,在作战考察中要进行大量的地图测绘和航空摄影,二是为满足三维测量需要立体测绘仪器开始出现,为了保证测量结果的精度足够高,就必须首先对校正相机镜头。在这期间,一些镜头像差的表达式陆续提出并被普遍认同和采用,建立起了较多的镜头像差模型,D.C.Brown等对此作出了较大贡献,包括推导了近焦距情况下给定位置处径向畸变的表达式及证明了近焦距情况下测得镜头两个位置处的径向畸变情况就可求得任意位置的径向畸变等[2]。这些径向与切向像差表达式正是后来各种摄像机标定非线性模型的基础。随着CCD器件的发展,现有的数码摄像机逐渐代替原有的照相机,同时随着像素等数字化概念的出现,在实际应用中,在参数表达式上采用这样的相对量单位会显得更加方便,摄像机标定一词也就代替了最初的镜头校正。

高精度时间间隔测量方法

高精度时间间隔测量方法综述 孙杰潘继飞 (解放军电子工程学院,安徽合肥,230037) 摘要:时间间隔测量技术在众多领域已经获得了应用,如何提高其测量精度是一个迫切需要解决的问题。在分析电子计数法测量原理与误差的基础上,重点介绍了国内外高精度时间间隔测量方法,这些方法都是对电子计数法的原理误差进行测量,并且取得了非常好的效果。文章的最后给出了高精度时间间隔测量方法的发展方向及应用前景。 关键词:时间间隔;原理误差;内插;时间数字转换;时间幅度转换 Methods of High Precision Time-Interval Measurement SUN Jie , PAN Ji-fei (Electronic Engineering Institute of PLA, HeFei 230037, China) Abstract: Technology of time-interval measurement has been applied in many fields. How to improve its precision is an emergent question. On the bases of analyzing electronic counter’s principle and error, this paper puts emphasis upon introducing high precision time-interval measurements all over the world. All these methods aim at electronic counter’s principle error, and obtain special effect. Lastly, the progress direction and application foreground of high precision time-interval measurement methods are predicted. Key Words: time interval; principle error; interpolating; time-to-digital conversion; time-to-amplitude conversion 0引言 时间有两种含义,一种是指时间坐标系中的某一刻;另一种是指时间间隔,即在时间坐标系中两个时刻之间的持续时间,因此,时间间隔测量属于时间测量的范畴。 时间间隔测量技术在通信、雷达、卫星及导航定位等领域都有着非常重要的作用,因此,如何高精度测量出时间间隔是测量领域一直关注的问题。本文详细分析了目前国内外所采用的高精度时间间隔测量方法,指出其发展趋势,为研究新的测量方法指明了方向。 1 电子计数法 1.1 测量原理与误差分析 在测量精度要求不高的前提下,电子计数法是一种非常好的时间间隔测量方法,已经在许多领域获得了实际应用,其测量原理如图1所示:

电子测量仪器的各种分类方法和测量方式

电子测量仪器的各种分类方法和测量方式 1 按测量手段分类 1.1 直接测量:在测量过程中,能够直接将被测量与同类标准量进行比较,或能够直接用事先刻度好的测量仪器对被测量进行测量,直接获得数值的测量称为直接测量。 1. 2 间接测量:当被测 量由于某种原因不能直接测量时可以通过直接测量与被测量有一定函数关系的物理量,然后按函数关系计算被测量的数值,这种间接获得测量结果的方式称为间接测量。 1.3 组合测量:当某项测量结果需要用多个未知参数表 达时,可通过改变测量条件进行多次测量,根据函数关系列出方程组求解,从而得到未知量的测量,称为组合测量。 2 按测量方式分类 2.1 直读法:用直接指出被测量大小的指示仪表进行测量,能够直接从仪表刻度盘商或从显示器上读取被测量数值的测量方法,称为直读法。 2.2 比较法:将被测量与标准量在比较仪器中直接比较,从而获得被测量数值的方法,称为比较法。 3 按测量性质分类 3.1 时域测量:时域测量也叫作瞬时测量,主要是测量被测量随时间的变化规律。如用示波器观察脉冲信号的上升沿、下降沿、平顶降落等脉冲参数以及动态电路的暂态过程。真空表| 硬度计| 探伤仪| 电子称| 热像仪 3.2 频域测量:频域测量也称为稳态测量,主要目的是获取待测量与频率之间的关系。如用频谱分析仪分析信号的频谱,测量放大器的幅频特性、相频特性等。 3.3 数据域测量:数据域测量 也称逻辑量测量,主要是对数字信号或电路的逻辑状态进行测量,如用逻辑分析仪等设备测量计数器的状态。 3.4 随机测量:随机测量又叫做统计 测量,主要是对各类噪声信号进行动态测量和统计分析。这是一项新的测量技术,尤其在通信领域有着广泛应用。tips:感谢大家的阅读,本文由我司收集整编。仅供参阅!

摄像机标定程序使用方法

摄像机内部参数标定 一、材料准备 1 准备靶标: 根据摄像头的工作距离,设计靶标大小。使靶标在规定距离范围里,尽量全屏显示在摄像头图像内。 注意:靶标设计、打印要清晰。 2图像采集: 将靶标摆放成各种不同姿态,使用左摄像头采集N幅图像。尽量保存到程序的debug->data文件夹内,便于集中处理。 二、角点处理(Process菜单) 1 准备工作: 在程序debug文件夹下,建立data,left,right文件夹,将角探测器模板文件target.txt复制到data文件夹下,便于后续处理。 2 调入图像: File->Open 打开靶标图像 3 选取角点,保存角点: 点击Process->Prepare Extrcor ,点击鼠标左键进行四个角点的选取,要求四个角点在最外侧,且能围成一个正方形区域。每点击一个角点,跳出一个显示角点坐标的提示框。当点击完第四个角点时,跳出显示四个定位点坐标的提示框。 点击Process->Extract Corners ,对该幅图的角点数据进行保存,最好保存到debug->data-> left 文件夹下。命名时,最好命名为cornerdata*.txt,*代表编号。 对其余N-1幅图像进行角点处理,保存在相同文件夹下。这样在left文件夹会出现N个角点txt 文件。 三、计算内部参数(Calibration菜单) 1 准备工作: 在left文件夹中挑出5个靶标姿态差异较大的角点数据txt,将其归为一组。将该组数据复制到data文件夹下,重新顺序编号,此时,文件名必须为cornerdata*,因为计算参数时,只识别该类文件名。 2 参数计算: 点击Calibration->Cameral Calibrating,跳出该组图像算得的摄像机内部参数alpha、beta、gama、u0、v0、k1、k2七个内部参数和两组靶标姿态矩阵,且程序默认保存为文件CameraCalibrateResult.txt。 3 处理其余角点数据文件 在原来N个角点数据文件中重新取出靶标姿态较大的5个数据文档,重复步骤1和2;反复取上M组数据,保存各组数据。 注意:在对下一组图像进行计算时,需要将上一组在data文件夹下的5个数据删除。 四、数据精选 1 将各组内部参数计算结果进行列表统计,要求|gama|<2,且gama为负,删掉不符合条件的数据。 挑出出现次数最高的一组数据。2 摄像机外部参数标定

基于OpenCV的CCD摄像机标定方法_雷铭哲_孙少杰_陈晋良_陶磊_魏坤

MethodofCCDCameraCalibrationBasedOnOpenCV LEIMing-zhe1,SUNShao-jie2,CHENJin-liang1,TAOLei1,WEIKun1 (1.North Automation Control Technology Institute ,Taiyuan 030006,China ; 2.Navy Submarine Academy ,Qingdao 266042,China )Abstract: Computervisionhasbeenwidelyusedinindustry,agriculture,military,transportationareaandsoon.Cameracalibrationisveryimportantandalsothekeyresearchfieldofvisionsystem.ThispapermainlyresearchesonthemethodofCCDcameracalibration,thepin-holemodelhasbeenintroducedandappliedinprocessofcalibration.Specially,inordertoimprovetheaccuracy,bothradialandtangentiallensdistortionhavebeentakenintoaccountduringtheimplementofcalibrationbasedonOpenCV.Thiskindofarithmetichaspracticalvalueontheapplicationdesignofimageprocessingandcomputervision,andexperimentresultsshowgoodprecision,whichcanmeettheapplicationneedofvisualinspectionorothervisionsystemswell. Keywords: pin-holemodel,cameracalibration,lensdistortion,OpenCV摘要: 计算机视觉在工业,农业,军事,交通等领域都有着广泛应用。摄像机标定是视觉系统的重要环节,也是研究的关键领域。以摄像机标定技术为研究对象,选取针孔成像模型,简述了世界坐标系、摄像机坐标系和图像坐标系及其相互间的位置关系,对标定过程进行了深入研究。特别地,为提高标定精度,充分考虑了透镜径向和切向畸变影响及其求解方法,制作了棋盘格平面标定模板,基于开放计算机视觉函数库(OpenCV)实现了摄像机标定。该标定算法能够充分发挥OpenCV函数库功能,对于图像处理与计算机视觉方面的应用设计具有实用价值。实验结果表明该方法取得了较高精度,能够满足视觉检测或其他计算机视觉系统的应用需要。 关键词:针孔模型,摄像机标定,透镜畸变,OpenCV中图分类号:S219 文献标识码:A 基于OpenCV的CCD摄像机标定方法 雷铭哲1,孙少杰2,陈晋良1,陶 磊1,魏坤1 (1.北方自动控制技术研究所,太原030006;2.海军潜艇学院,山东青岛266042 )文章编号:1002-0640(2014) 增刊-0049-03Vol.39,Supplement Jul,2014 火力与指挥控制 FireControl&CommandControl第39卷增刊 引言 摄像机标定是计算机视觉系统的前提和基础,其目的是 确定摄像机内部的几何和光学特性(内部参数)以及摄像机 在三维世界中的坐标关系(外部系数) [1] 。考虑到摄像机标定在理论和实践应用中的重要价值,学术界近年来进行了广泛的研究。 摄像机标定方法可以分为线性标定和非线性标定,前者简单快速,精度低,不考虑镜头畸变;后者由于引入畸变参数而使精度提高,但计算繁琐,速度慢,对初值选择和噪声敏感。本文将两者结合起来,采用由粗到精策略,以实现精确标定。 1摄像机模型 本文选取摄像机模型中常用的针孔模型[2-3],分别建立三维世界坐标系(O w X w Y w Z w ),摄像机坐标系(O c X c Y c Z c )及图像平面坐标系(O 1xy ) 如下页图1所示。其中摄像机坐标系原点O c 为摄像机光心,Z c 轴与光轴重合且与图像平面垂直,O c O 1为摄像机焦距f 。图像坐标系原点O 1为光轴与图像平面的交点,x ,y 轴分别平行于摄像机坐标系X c 、Y c 轴。设世界坐标系中物点P 的三维坐标为(X w ,Y w ,Z w ),它在理想的针孔成像模型下图像坐标为P (X u ,Y u ),但由于透镜畸变引起偏离[4-5],其实际图像坐标为P (X d ,Y d )。图像收稿日期:2013-09-20修回日期:2013-11-10 作者简介:雷铭哲(1977-),男,湖北咸宁人,硕士。研究方向:故障诊断系统。 49··

测量误差的分类以及解决方法

测量误差的分类以及解决方法 1、系统误差 能够保持恒定不变或按照一定规律变化的测量误差,称为系统误差。系统误差主要是由于测量设备、测量方法的不完善和测量条件的不稳定而引起的。由于系统误差表示了测量结果偏离其真实值的程度,即反映了测量结果的准确度,所以在误差理论中,经常用准确度来表示系统误差的大小。系统误差越小,测量结果的准确度就越高。 2、偶然误差 偶然误差又称随机误差,是一种大小和符号都不确定的误差,即在同一条件下对同一被测量重复测量时,各次测量结果服从某种统计分布;这种误差的处理依据概率统计方法。产生偶然误差的原因很多,如温度、磁场、电源频率等的偶然变化等都可能引起这种误差;另一方面观测者本身感官分辨能力的限制,也是偶然误差的一个来源。偶然误差反映了测量的精密度,偶然误差越小,精密度就越高,反之则精密度越低。 系统误差和偶然误差是两类性质完全不同的误差。系统误差反映在一定条件下误差出现的必然性;而偶然则反映在一定条件下误差出现的可能性。 3、疏失误差 疏失误差是测量过程中操作、读数、记录和计算等方面的错误所引起的误差。显然,凡是含有疏失误差的测量结果都是应该摈弃的。 解决方法: 仪表测量误差是不可能绝对消除的,但要尽可能减小误差对测量结果的影响,使其减小到允许的范围内。 消除测量误差,应根据误差的来源和性质,采取相应的措施和方法。必须指出,一个测量结果中既存在系统误差,又存在偶然误差,要截然区分两者是不容易的。所以应根据测量的要

求和两者对测量结果的影响程度,选择消除方法。一般情况下,在对精密度要求不高的工程测量中,主要考虑对系统误差的消除;而在科研、计量等对测量准确度和精密度要求较高的测量中,必须同时考虑消除上述两种误差。 1、系统误差的消除方法 (1)对测量仪表进行校正在准确度要求较高的测量结果中,引入校正值进行修正。 (2)消除产生误差的根源即正确选择测量方法和测量仪器,尽量使测量仪表在规定的使用条件下工作,消除各种外界因素造成的影响。 采用特殊的测量方法如正负误差补偿法、替代法等。例如,用电流表测量电流时,考虑到外磁场对读数的影响,可以把电流表转动180度,进行两次测量。在两次测量中,必然出现一次读数偏大,而另一次读数偏小,取两次读数的平均值作为测量结果,其正负误差抵消,可以有效地消除外磁场对测量的影响。 2、偶然误差的消除方法 消除偶然误差可采用在同一条件下,对被测量进行足够多次的重复测量,取其平均值作为测量结果的方法。根据统计学原理可知,在足够多次的重复测量中,正误差和负误差出现的可能性几乎相同,因此偶然误差的平均值几乎为零。所以,在测量仪器仪表选定以后,测量次数是保证测量精密度的前提。 . 容:

三维重建综述

三维重建综述 三维重建方法大致分为两个部分1、基于结构光的(如杨宇师兄做的)2、基于图片的。这里主要对基于图片的三维重建的发展做一下总结。 基于图片的三维重建方法: 基于图片的三维重建方法又分为双目立体视觉;单目立体视觉。 A双目立体视觉: 这种方法使用两台摄像机从两个(通常是左右平行对齐的,也可以是上下竖直对齐的)视点观测同一物体,获取在物体不同视角下的感知图像,通过三角测量的方法将匹配点的视差信息转换为深度,一般的双目视觉方法都是利用对极几何将问题变换到欧式几何条件下,然后再使用三角测量的方法估计深度信息这种方法可以大致分为图像获取、摄像机标定、特征提取与匹配、摄像机校正、立体匹配和三维建模六个步骤。王涛的毕业论文就是做的这方面的工作。双目立体视觉法的优点是方法成熟,能够稳定地获得较好的重建效果,实际应用情况优于其他基于视觉的三维重建方法,也逐渐出现在一部分商业化产品上;不足的是运算量仍然偏大,而且在基线距离较大的情况下重建效果明显降低。 代表文章:AKIMOIO T Automatic creation of3D facial models1993 CHEN C L Visual binocular vison systems to solid model reconstruction 2007 B基于单目视觉的三维重建方法: 单目视觉方法是指使用一台摄像机进行三维重建的方法所使用的图像可以是单视点的单幅或多幅图像,也可以是多视点的多幅图像前者主要通过图像的二维特征推导出深度信息,这些二维特征包括明暗度、纹理、焦点、轮廓等,因此也被统称为恢复形状法(shape from X) 1、明暗度(shape from shading SFS) 通过分析图像中的明暗度信息,运用反射光照模型,恢复出物体表面法向量信息进行三维重建。SFS方法还要基于三个假设a、反射模型为朗伯特模型,即从各个角度观察,同一点的明暗度都相同的;b、光源为无限远处点光源;c、成像关系为正交投影。 提出:Horn shape from shading:a method for obtaining the shape of a smooth opaque object from one view1970(该篇文章被引用了376次) 发展:Vogel2008年提出了非朗伯特的SFS模型。 优势:可以从单幅图片中恢复出较精确的三维模型。 缺点:重建单纯依赖数学运算,由于对光照条件要求比较苛刻,需要精确知道光源的位置及方向等信息,使得明暗度法很难应用在室外场景等光线情况复杂的三维重建上。 2、光度立体视觉(photometric stereo) 该方法通过多个不共线的光源获得物体的多幅图像,再将不同图像的亮度方程联立,求解出物体表面法向量的方向,最终实现物体形状的恢复。 提出:Woodham对SFS进行改进(1980年):photometric method for determining surface orientation from multiple images(该文章被引用了891次) 发展:Noakes:非线性与噪声减除2003年; Horocitz:梯度场合控制点2004年; Tang:可信度传递与马尔科夫随机场2005年; Basri:光源条件未知情况下的三维重建2007年; Sun:非朗伯特2007年; Hernandez:彩色光线进行重建方法2007年;

高精度车载定位系统方案设计

高精度车载定位系统

目录 第1章系统概述 (2) 1.1系统建设背景 (2) 1.2系统实现目标 (4) 第2章高精度车载定位系统解决方案 (5) 2.1系统架构 (5) 第3章实施本方案需考虑要素 (10)

第1章系统概述 1.1 系统建设背景 随着国家信息化程度的提高及计算机网络和通信技术的飞速发展,电子政务、电子商务、数字城市、数字省区和数字地球的工程化和现实化,需要采集多种实时地理空间数据,因此,中国发展CORS系统的紧迫性和必要性越来越突出。几年来,国内不同行业已经陆续建立了一些专业性的卫星定位连续运行网络,目前,为满足国民经济建设信息化的需要,一大批城市、省区和行业正在筹划建立类似的连续运行网络系统,一个连续运行参考站网络系统的建设高潮正在到来。 广东省深圳市建立了我国第一个连续运行参考站系统(SZCORS),目前已开始全面的测量应用。全国部分省、市也已初步建成或正在建立类似的省、市级CORS系统,如:广东省、江苏省、北京、天津、上海、广州、东莞、成都、武汉、昆明、重庆等。 四川地震局建立的CDCORS,已经运行三年多,原本主要目标是用来做监控四川地区地震灾害,但是通过对其潜在功能的挖掘,在GPS大地测量方面开发利用,通过授权拨号登录,对外开放网络使用权,实现用户GPS实时高精度差分定位,取得了一定的收益。 建立CORS的必要性和意义“空间数据基础设施”是信息社会、知识经济时代的必备的基础设施。城市连续运行参考站系统(CORS)是“空间数据基础设施”最为重要的组成部分,可以获取各类空间的位置、时间信息及其相关的动态变化。通过建设若干永久性连续运行的GPS基准站,提供国际通用各式的基准站站点坐标和GPS测量数据,以满足各类不同行业用户对精度定位,快速和实时定位、导航的要求,及时地满足城市规划、国土测绘、地籍管理、城乡建设、环境监测、防灾减灾、交通监控,矿山测量等多种现代化信息化管理的社会要求。建立CORS的必要性和意义主要体现在以下几个方面: 1、CORS的建立可以大大提高测绘精度、速度与效率, 降低测绘劳动强度和成本, 省去测量标志保护与修复的费用, 节省各项测绘工程实施过程中约30% 的控制测量费用。由于城市建设速度加快,对GPS-C、D、E级控制点破坏较大,一般在5-8年需重新布设,至于在路面的图根控制更不用说,一二年就基本没有了,各测绘单位不是花大量的人力重新布设,就是仍以支站方式,这不但保证不了精度,还造成了人力物力财力的大量浪费。随着CORS基站的建设和连续运行,就形成了一个以永久基站为控制点的网络。所以,可以利

测试方法分类

一、基本概念 1、测试用例(案例)主要记录:测试步骤、方法、数据、预期结果的文档,由测试人员在执行测试之前编写的 2、编写用例的方法 (1)等价类划分 (2)边界值 (3)因果图 (4)判定表 (5)正交排列法 (6)场景法 (7)测试大纲法 (8)状态转换图 3、写用例参考什么? (1)文档:需求、开发文档、用户手册 (2)参考已经开发出来的软件 (3)讨论 二、等价类划分 1、应用场合 只要有数据输入的地方,就可以使用等价类划分 把无限多的数据根据需求,划分成多个区域(有效、无效),

从每个区域中选取一个代表性数据进行测试即可 说明: 穷举测试是最全面的测试,但是是不能采用的方法,时间成本太高,编写用例的方法主要解决的问题是如何使用最少的数据,达到最大的覆盖 2、核心概念 (1)有效等价类 对程序规格有效的、合理的输入数据的集合 程序接收到有效等价类,可以正确计算、执行 (2)无效等价类 对程序规格无效的、不合理的输入数据的集合 程序接收到无效等价类,应该给出错误提示,或者根本不允许输入 3、如何使用? 首先明确测试对象—第一个数文本框 说明:在测试第一个数的时候,保证第二个数正确 (1)根据需求,划分等价类 ①有效等价类 -99—99之间的整数 ②无效等价类

A、非整数 B、<-99的整数 C、>99的整数 (2)细化等价类 往往依据的不是字面的需求,而是基于对数据存储方式的深入理解以及数据格式的理解 ①正负数补码计算不一样,有必要把正数、负数单独测试-99—0整数 0—99整数 ②非整数可以进一步细分 小数 字母 汉字 符号 (3)建立等价类表(熟练后直接做该步)

摄像机标定程序使用方法

一、材料准备 1 准备靶标: 根据摄像头的工作距离,设计靶标大小。使靶标在规定距离范围里,尽量全屏显示在摄像头图像内。 注意:靶标设计、打印要清晰。 2图像采集: 将靶标摆放成各种不同姿态,使用左摄像头采集N幅图像。尽量保存到程序的debug->data文件夹内,便于集中处理。 二、角点处理(Process菜单) 1 准备工作: 在程序debug文件夹下,建立data,left,right文件夹,将角探测器模板文件target.txt 复制到data文件夹下,便于后续处理。 2 调入图像: File->Open 打开靶标图像 3 选取角点,保存角点: 点击Process->Prepare Extrcor ,点击鼠标左键进行四个角点的选取,要求四个角点在最外侧,且能围成一个正方形区域。每点击一个角点,跳出一个显示角点坐标的提示框。当点击完第四个角点时,跳出显示四个定位点坐标的提示框。 点击Process->Extract Corners ,对该幅图的角点数据进行保存,最好保存到debug->data-> left文件夹下。命名时,最好命名为cornerdata*.txt,*代表编号。 对其余N-1幅图像进行角点处理,保存在相同文件夹下。这样在left文件夹会出现N 个角点txt文件。 三、计算内部参数(Calibration菜单) 1 准备工作: 在left文件夹中挑出5个靶标姿态差异较大的角点数据txt,将其归为一组。将该组数据复制到data文件夹下,重新顺序编号,此时,文件名必须为cornerdata*,因为计算参数时,只识别该类文件名。 2 参数计算: 点击Calibration->Cameral Calibrating,跳出该组图像算得的摄像机内部参数alpha、beta、gama、u0、v0、k1、k2七个内部参数和两组靶标姿态矩阵,且程序默认保存为文件CameraCalibrateResult.txt。 3 处理其余角点数据文件 在原来N个角点数据文件中重新取出靶标姿态较大的5个数据文档,重复步骤1和2;反复取上M组数据,保存各组数据。 注意:在对下一组图像进行计算时,需要将上一组在data文件夹下的5个数据删除。 四、数据精选 1 将各组内部参数计算结果进行列表统计,要求|gama|<2,且gama为负,删掉不符合条件的数据。 2 挑出出现次数最高的一组数据。

高精度人员定位系统

从移动互联到物联网,位置是一个基础的不可或缺的信息,但是从精细化的行业应用需求来说,只有更高精度的定位信息才能带来更高的价值,人们可以更加精确地知道事物所处的位置,知道人员具体位置在哪儿,更好的管理企业、人员或物资。 一、系统简介 本系统采用物联专网进行数据传输,室内利用蓝牙定位技术,室外利用GPS定位技术,通过人员位置管理系统、视频监控系统对生产现场进行全天候的实时监控,做到全面可视化管理,并能及时发现险情。 二、系统特点 1、通信距离是传统技术的10倍,可以实现10-20公里范围内覆盖。 2、功耗是传统无线技术的1/10。 3、信号穿透性强,适用于环境复杂的应用场景。 4、抗干扰能力强。 5、大规模组建私有物联网络。 三、系统功能 1、实时定位及轨迹跟踪

每个进入指定区域内的人员都会随身佩戴定位卡或定位手环,在管理平台的电子地图上会实时显示每个人员的动态,并且可以对某个人员进行轨迹跟踪。 2、历史轨迹动态回放 管理平台上会保存每个人员的运动轨迹,若有突发情况发生,想查看某人的历史轨迹,可通过选择时间段及人员信息进行查看。 3、一键报警&视频联动 每个人员佩戴的电子定位标签上都配有一键报警按钮,若遇到紧急情况,可通过报警按钮进行求救。管理平台会收到求救信息,并联动视频监控画面,管理员可立即通过视频监控画面查看现场情况,派救援人员前去现场处理。 常州市场景信息科技有限公司是一家成立于2015年,自主研发室内外高精度人、物、车定位物联网产品和工业企业安全生产信息化管理平台,致力于打造以智慧工厂、智慧园区、智慧医疗、智慧工地、智慧城市为核心的五大智慧体系,为客户提供优质的整体解决方案。

仪器、仪表的测量方法分类

仪器、仪表的测量方法分类 (1)直接测量直接测量指的是被测量与度量器直接进行比较,或者采用事先刻好刻度数的仪器进行测量,从而在测量过程中直接求出被测量的数值的测量方式。这种方式的特点是测出的数值就是被测量本身的值。例如,用电流表测量电流,用电桥测量电阻等。这种方法简便、迅速,但它的准确程度受所用仪表误差的限制。(2)间接测量如果被测量不便于直接测定,或直接测量该被测量的仪器不够准确,那么就可以利用被测量与某种中间量之间的函数关系,先测出中间量,然后通过计算公式,算出被测量的值,这种方式称为闾接测量。例如,用伏安法测电阻,就是利用测出的电压与电流的值,用欧姆定律间接算出电阻的值。 (3)组合测量如果被测量有很多个,虽然被测量(未知量)与某种中间量存在一定函数关系,但由于函数式中有多个未知量,对中间量的一次测量是不可能求得被测量的值的。这时可以通过改变测量条件来获得某些可测量的不同组合,然后测出这些组合的数值,解联立方程求出未知的被测量。 (4)比较测量比较法是指被测量与已知的同类度量器在比较仪器上进行比较,从而求得被测量的一种方法。这种方法用于高准确度的测量,当然,为了保证测量的准确度,要用较准确的比较仪器,要求保持较严格的实验条件,如温度、湿度、振动、防电磁干扰等,这种测量方法的特点是已知的同类度量器量限必须大于未知的被测量。根据比较时的具体特点,比较法又分为以下三种。 ①零值法。将被测量与已知量进行比较,使两者之间的差值为零,这种方法称为零值法。由于电测量指示仪表只用于指零,所以仪表误差不会影响测量准确度。使用电桥测电阻、电位差计测电势、天平测质量都是零值法的例子。

机器视觉中的摄像机定标方法综述

机器视觉中的摄像机定标方法综述 吴文琪,孙增圻 (清华大学计算机系智能技术与系统国家重点实验室,北京100084) 摘要:回顾了机器视觉中的各种摄像机定标方法,对各种方法进行介绍、分析,并提出了定标方法的发展方向的新思路。 关键词:机器视觉;摄像机定标;三维重建;镜头畸变 中国法分类号:TP387文献标识码:A文章编号:1001-3695(2004)02-0004-03 Overvie w of Camera Calibration Methods for Machine Vision WU Wen-qi,SUN Zeng-qi (State Key L aborato ry o f Intellige nt Tec hnology&Syste ms,Dept.o f Co mpute r Science&Technology,Tsinghua Universit y,Bei jing100084,China) Abstract:In this paper,themethods for camera calibration are reviewed,anal yzed and compared.Furthermore,the develop ment of the camera calibration is discussed. Key w ords:Machine Vision;Camera Calibration;3D Reconstruction;Lens Distortion 1引言 在机器视觉的应用中,如基于地图生成的视觉、移动机器人的自定位、视觉伺服等的应用中,从二维图像信息推知三维世界物体的位姿信息是很重要的。目前已经出现了一些自定标和免定标的方法,这些方法在比较灵活的同时,尚不成熟[1],难以获得可靠的结果。通过摄像机的定标重建目标物三维世界目标物体仍然是重要的方法。 摄像机定标在机器视觉中决定: (1)内部参数给出摄像机的光学和几何学特性% %%焦距,比例因子和镜头畸变。 (2)外部参数给出摄像机坐标相对于世界坐标系的位置和方向,如旋转和平移。 在机器人的视觉应用中,目标物位姿信息获取通常有一定的精度要求,机器人视觉系统的性能很大程度上依赖于定标精度。 随着计算机性能的快速提高,低价位CCD摄像机的大量使用,计算机定标方法也得到了不断的改进。 2摄像机模型 摄像机的投影几何模型可以看作这样一个过程,把三维世界透视投影到一个球面(视球),然后把球面上影像投射到一个平面P,理想情况下,平面P关于光轴中心对称。从图像中心点出发到投射平面点的距离r(A)与光轴夹角A的关系有五种模型,每种都有其自己有用的特性[2]。 其成像简图如图1所示。 图1成像简图 2.1透视模型 透视模型公式为 r(A)=k tan A 理想状况下可以等价为小孔成像。许多最近的算法和判断不同算法的优劣的依据都是基于这个假设。但是,透视投影只是表示了视球的前半部。要是不在光轴的附近,物体的形状和密度都会发生畸变。这种模型符合人的视觉感受,理想情况下,直线投影仍为直线。透视模型在定标方法中被广泛采用,在视角不大的镜头情况下比较符合实际情况。 在视角比较大时,透视模型通过对镜头畸变进行校正来修正模型。根据镜头光学成像原理,畸变的模型为D x (x,y)=k1x(x2+y2)+(p1(3x2+y2)+2p2xy)+s1(x2+y2) D y (x,y)=k2x(x2+y2)+(p2(3x2+y2)+2p1xy)+s2(x2+y2) 式中,D x,D y是非线性畸变值,D x,D y的第一项称为径向畸 # 4 #计算机应用研究2004年 收稿日期:2002-11-18;修返日期:2003-03-22

工业设备安装中高精度测量方法

工业设备安装中高精度测量方法 摘要:随着科学技术的发展,工业设备安装工程中的安装精度要求越来越高,尤其是大跨度、长距离、高速运转的自动化生产线的设备安装,如造纸生产线设备的安装,其水平度及垂直度的允许偏差均仅为0.3mm。 关键词:工业设备安装;安装精度要求;精度测量;地脚螺栓;测量放线;自动化生产线 随着科学技术的发展,工业设备安装工程中设备安装精度要求越来越高,尤其是大跨度、长距离、高速运转的自动化生产线的设备安装,如造纸生产线设备的安装,其水平度及垂直度的允许偏差均为0.3mm。 设备安装的精度取决于地脚螺栓的预埋精度,而在较大范围内的地脚螺栓预埋精度则由测量放线的精确度所决定。因此掌握整套的高精度测量放线技术是保证设备安装精度的基础。 1、主要技术特点 1.1使用本工法,建立基准线网络,各基准线之间的平等度、垂直度均能达到很高的精度要求。 1.2 网格基准线贯穿于整个厂房,无论是整条生产线,还是单体设备均能借助该基准线,利用精密仪器保证其安装精度。 1.3 利用网格基线来控制设备地脚螺栓的预埋偏差,减少误差传播量,从而保证设备安装精度。 1.4 利用网格基准线上基准点(线)的永久保存性,更方便于将来生产运行过程中的设备维修。 2、适用范围 本工法适用于安装精度要求较高、大跨度、长距离、高速度运转的自动生产线设备安装。例如造纸机生产线安装,厂区钢结构管架安装等。 3、施工准备 利用厂房原始的纵、横向的控制点,借助精密测量仪器(如T2经纬仪、GTS-311全站仪等)测设出厂房内设备的成条中心线,以及平等和垂直此中心线的纵、横辅助中心线,并在其纵向辅助中心线上设立各控制点,从而建立一基准线网格。

4、常用高精度温度测量方法

常用湿度采集传感器及湿度测量原理 湿度传感器,基本形式都为利用湿敏材料对水分子的吸附能力或对水分子产生物理效应的方法测量湿度。有关湿度测量,早在16世纪就有记载。许多古老的测量方法,如干湿球温度计、毛发湿度计和露点计等至今仍被广泛采用。现代工业技术要求高精度、高可靠和连续地测量湿度,因而陆续出现了种类繁多的湿敏元件。 湿敏元件主要分为二大类:水分子亲和力型湿敏元件和非水分子亲和力型湿敏元件。利用水分子有较大的偶极矩,易于附着并渗透入固体表面的特性制成的湿敏元件称为水分子亲和力型湿敏元件。例如,利用水分子附着或浸入某些物质后,其电气性能(电阻值、介电常数等)发生变化的特性可制成电阻式湿敏元件、电容式湿敏元件;利用水分子附着后引起材料长度变化,可制成尺寸变化式湿敏元件,如毛发湿度计。金属氧化物是离子型结合物质,有较强的吸水性能,不仅有物理吸附,而且有化学吸附,可制成金属氧化物湿敏元件。这类元件在应用时附着或浸入被测的水蒸气分子,与材料发生化学反应生成氢氧化物,或一经浸入就有一部分残留在元件上而难以全部脱出,使重复使用时元件的特性不稳定,测量时有较大的滞后误差和较慢的反应速度。目前应用较多的均属于这类湿敏元件。另一类非亲和力型湿敏元件利用其与水分子接触产生的物理效应来测量湿度。例如,利用热力学方法测量的热敏电阻式湿度传感器,利用水蒸气能吸收某波长段的红外线的特性制成的红外线吸收式湿度传感器等。 测量空气湿度的方式很多,其原理是根据某种物质从其周围的空气中吸收水分后引起的物理化学性质的变化,间接地获得该物质的吸水量及周围空气的湿度。电容式、电阻式和湿涨式湿敏元件分别是根据其高分子材料吸收后的介电常量、电阻率和体积随之发生变化而进行湿度测量的。 湿度传感器是由湿敏元件和转换电路等组成,它是将环境湿度变换为电信号的装置。湿度传感器在工业、农业、气象、医疗以及日常生活等方面都得到了广泛的应用,尤其是随着科学技术的发展,对于湿度的检测和控制越来越受到人们的重视并进行了大量的研制工作。通常,理想的湿度传感器的特性要求是,适合于在宽温、湿范围内使用,测量精度要高;使用寿命长,稳定性好;响应速度快,湿滞回差小,重现性好;灵敏度高,线性好,温度系数小;制造工艺简单,易于

基于OpenCV的摄像机标定的应用研究

38562009,30(16)计算机工程与设计Computer Engineering and Design 0引言 机器视觉的基本任务之一是从摄像机获取的图像信息出发计算三维空间中物体的几何信息,并由此重建和识别物体,而空间物体表面某点的三维几何位置与其在图像中对应点之间的相互关系是由摄像机成像的几何模型决定的,这些几何模型参数就是摄像机参数。在大多数条件下,这些参数必须通过实验与计算才能得到,这个过程称为摄像机标定(或定标)。标定过程就是确定摄像机的几何和光学参数,摄像机相对于世界坐标系的方位。标定精度的大小,直接影响着机器视觉的精度。迄今为止,对于摄像机标定问题已提出了很多方法,摄像机标定的理论问题已得到较好的解决[1-5]。对摄像机标定的研究来说,当前的研究工作应该集中在如何针对具体的实际应用问题,采用特定的简便、实用、快速、准确的标定方法。 OpenCV是Intel公司资助的开源计算机视觉(open source computer vision)库,由一系列C函数和少量C++类构成,可实现图像处理和计算机视觉方面的很多通用算法。OpenCV有以下特点: (1)开放C源码; (2)基于Intel处理器指令集开发的优化代码; (3)统一的结构和功能定义; (4)强大的图像和矩阵运算能力; (5)方便灵活的用户接口; (6)同时支持Windows和Linux平台。 作为一个基本的计算机视觉、图像处理和模式识别的开源项目,OpenCV可以直接应用于很多领域,是二次开发的理想工具。目前,OpenCV的最新版本是2006年发布的OpenCV 1.0版,它加入了对GCC4.X和Visual https://www.wendangku.net/doc/7214440336.html,2005的支持。 1摄像机标定原理 1.1世界、摄像机与图像坐标系 摄像机标定中有3个不同层次的坐标系统:世界坐标系、摄像机坐标系和图像坐标系(图像像素坐标系和图像物理坐标系)。 如图1所示,在图像上定义直角坐标系 开发与应用

相关文档