文档库 最新最全的文档下载
当前位置:文档库 › 钴钼系催化剂反硫化的处理

钴钼系催化剂反硫化的处理

钴钼系催化剂反硫化的处理
钴钼系催化剂反硫化的处理

钴钼系催化剂的硫化

硫化成功的必备条件有三个:0 _; X" s0 j6 }8 b+ N! } 1)要有足够高的硫化温度,一般不大于500 ℃;2)要有足够的强制硫化时间,并且最好有数小时的闷炉;3)强制硫化时,原料气中的硫化氢越高越好,一般不低于15 g/Nm3 。硫化时要防止催化剂超温,超过550 ℃对催化剂造成危害,但短时间超温对催化剂活性影响不大。 一、硫化条件) q8 j* @- |7 J3 C1 y& U 1、温度对硫化反应深度的影响很大,一般入口温度控制在230~260℃,床层温度控制在250~280℃。硫化反应后期应尽量提温,适当的高温(~425℃)既可以保证催化剂的活性,又可缩短硫化时间。7 K& X* R7 H+ c! }* o 2、硫化压力对硫化深度的影响不是很大,可根据装置的实际情况来确定压力,一般不低于1.0MPa(表压)。 3、H2S的浓度过低(体积分数≤0.2%)时,还原后的催化剂活性较差;H2S的较高时,对催化剂的影响不大。出于安全考虑,H2S的浓度不宜提的太高。/ W9 q8 h) o0 ?% I% h 4、系统中H2的体积分数尽量控制在10%~20%,过低会影响CS2的氢解,过高则有可能发生还原反应。 CS2在200℃以上时才发生氢解反应,所以添加CS2要等到温度达230℃左右开始添加。过早添加容易使CS2氢解不完全,在系统内冷凝和吸附。当达到温度时,就会突然发生氢解反应,放出大量的反应热导致床层温度暴涨。但超过250℃再加CS2,就可能发生CoO和MoO3的还原反应,使催化剂失活。运行过程中要保持H2的体积分数在10%~35%之间,因为当H2的浓度过低时,亦有可能造成CS2氢解不完全,在系统内冷凝和吸附。当H2含量提高时,CS2大量氢解,释放过多的反应热,从而导致催化剂床层温度暴涨。串联硫化时要防止“提温提硫”的同时发生,因为当上段硫穿透时,较高的热点温度和上段穿透的硫进入下一段,造成下段“提温提硫”,很容易造成超温。

催化原理

一、催化剂的定义与催化作用的特征 1.定义:凡能加速化学反应趋向平衡,而在反应前后其化学组成和数量不发生变化的物质。2.特征:①加快反应速率;②反应前后催化剂不发生化学变化(催化剂的化学组成--不变化物理状态---变化(晶体、颗粒、孔道、分散))③不改变化学平衡④同时催化正、逆反应。⑤对化学反应有定向选择性。 二、催化剂的评价指标 工业催化剂的四个基本指标:选择性、稳定性、活性、成本。 对工业催化剂的性能要求:活性、选择性、生产能力、稳定性、寿命、机械强度、导热性能、形貌和粒度、再生性。 1.活性催化剂使原料转化的速率:a=-(1/w)d(nA)/dt 2.生产能力--时空收率:单位体积(或单位质量)催化剂在单位时间内所生产的目的产物量Y v,t=n p/v.t or Y W,t=n p/w.t 3.选择性:目的产物在总产物中的比例S=Δn A→P/Δn A=(p/a).(n P/Δn A) =r P/Σr i 4.稳定性:指催化剂的活性随时间变化 5.寿命:是指催化剂从运行至不适合继续使用所经历的时间 三、固体催化剂催化剂的组成部分 主催化剂---活性组份:起催化作用的根本性物质,即催化剂的活性组分,如合成氨催化剂中的Fe。其作用是:化学活性,参与中间反应。 共催化剂:和主催化剂同时起作用的组分,如脱氢催化剂Cr2O3-Al2O3中的Al2O3。甲醇氧化的Mo-Fe催化剂。 助催化剂:它本身对某一反应无活性,但加入催化剂后(一般小于催化剂总量10%)能使催化剂的活性或选择性或稳定性增加。加助催化剂的目的:助活性组份或助载体。 载体:提高活性组份分散度,对活性分支多作用,满足工业反应器操作要求,满足传热传质要求。 四、固体催化剂的层次结构 初级粒子:内部具有紧密结构的原始粒子; 次级粒子:初级粒子以较弱的附着力聚集而成-----造成固体催化剂的细孔; 催化剂颗粒:次级粒子聚集而成-----造成固体催化剂的粗孔; 多孔催化剂的效率因子:η=K多孔/K消除内扩散=内表面利用率<1 五、催化剂的孔内扩散模型 物理吸附:分子靠范德华力吸附,类似于凝聚,分子结构变化不大,不发生电子转移与化学键破坏。 努森扩散(微孔扩散):当气体浓度很低或催化剂孔径很小时,分子与孔壁的碰撞远比分子间的碰撞频繁,扩散阻力主要来自分子与孔壁的碰撞。散系数D K=9700R(T/M)0.5 式中:R是孔半径,cm; T是温度,K;M是吸附质相对分子量。 体相扩散(容积扩散):固体孔径足够大,扩散阻力与孔道无关,扩散阻力是由于分子间的碰撞,又称分子扩散。体相扩散系数D K=νγθ/(3τ)式中ν、γ 分别是气体分子的平均速率和平均自由程;θ 固体孔隙率;τ 孔道弯曲因子,一般在2~7。 过渡区扩散:介于Knudsen扩散与体相扩散间的过渡区。分子间的碰撞及分之与孔道的碰撞都不可忽略 构型扩散:催化剂孔径尺寸与反应物分子大小接近,处于同一数量级时,分子大小发生微小变化就会引起扩散系数发生很大变化。例如:分子筛择形催化 六、催化过程的分类 均相催化:反应物和催化剂处于同一相

含钼催化剂研究进展

含钼催化剂研究新进展 摘要含钼催化剂广泛用于多种化工生产过程,在含钼精细化学品的研究与开 发中占有重要地位。简要介绍了我国近年来一些含钼催化剂的研究进展和有关文献1前言 催化是现代十分重要的化工技术,据统计,发达国家近三分之一的国民经济总 产值来自催化技术。含钼催化剂在催化领域占有重要地位,广泛用于石油加工和化 工生产,如合成气制造、基本有机合成和精细化工产品等的的生产。因此,长期以 来国内外对含钼催化剂的创新和改进不断进行。这也引起我国钼业界的广泛关注, 逐渐成为我国钼深加工领域的一个新的发展方向。现仅就我国近年来含钼催化剂的 一些新进展作简要介绍。 2烷烃的化学加工催化剂 2.1烷烃芳构化催化剂 四烷无氧脱氢芳构化,为甲烷活化和转化的一个新的研究热点。王林胜等在1 993年首次报道一种以HZSM-5分子筛为载体的含钼催化剂使甲烷于无氧条件下高选择性地转化为苯。该催化剂是甲烷芳构化反应的典型催化剂。此后,对这种催化剂 的研究活跃。舒玉瑛等用机械混合、机械混合后焙烧、机械混合后微波处理等方法 制备这种催化剂,并考察了其对甲烷芳构化反应的催化性能。结果表明:机械混合 法、固相反应法和微波处理法制备的Mo/HZSM-5催化剂,比一般浸渍法能明显提高 芳烃的选择性和减少积碳生成;在不同制法的Mo/HZSM-5催化剂上,Mo物种落位不同,机械混合法、固相反应法和微波处理法能使Mo物种较多地落位于分子筛外表面 ,这对甲烷芳构化反应有利,并明显减少积碳的生成。 王军威等用浸渍法、机械混合法和水热法制备了Mo/HZSM-5催化剂,并考察了 钼含量和反应时间对丙烷芳构化反应的影响,深入研究了Mo物种对HZSM-5分子筛结构和酸性的作用。 最近,田丙伦等报道了对Mo/MCM-22催化剂用于甲烷无氧芳构化的研究结果。MCM-22为晶粒呈片状、含两种孔道结构的高硅沸石分子筛。同Mo/HZSM-5催化剂相比,Mo/MCM-22催化剂稳定性更好,苯产物的选择性较高 。用浸渍法制备的Mo担载量为6%的Mo/MCM-22催化剂性能最佳。此外,还研究了添加钴对Mo/MCM-22催化反应性能和催化剂积碳性质的影响。 2.2烷烃选择氧化催化剂 甲基丙烯酸(MAA)是重要的有机化工原料,当前主要用烯烃为原料生产。然而,饱和烃较烯烃来源广泛,更经济易得,故近年来由异丁烷氧化制MAA已成研究 与开发的新方向。采用一般热表面催化法由异丁烷选择氧化制取MAA主要存在的问 题是MAA选择性低,浓度反应产物(COx)高达40%。激光促进表面反应法是很有应用前景的光催化合成新技术。最近,陶跃武等分别采用在铋钼复合氧化物、钒钼复 合氧化物表面上激光促进异丁烷选择氧化制MAA,取得选择性达到90%和无COx产生的良好结果。

合成氨催化剂的生产和技术

合成氨催化剂的生产和技术 钱伯章 (金秋石化科技传播工作室,上海200127) 摘 要 介绍了世界合成氨催化剂发展历程、新开发的合成氨催化剂种类,同时评述了我国化肥催化剂研发和生产近况,对我国化肥催化剂性能进行了评价。 关键词 合成氨 催化剂 化肥 生产 技术 进展 收稿日期:2003-07-14。 作者简介:钱伯章,高级工程师,1963~1996年任职于中国石化上海高桥分公司,2001年创立金秋石化科技传播工作室,从事石油化工技术和经济信息调研和传播工作,获各种各级荣誉奖60余项,出版著作3部,发表论文500余篇。 1 合成氨催化剂的开发历程 世界需求氮肥(折氮量)将从2001年11060亿吨增加到2003年11112亿吨,世界氮肥(折氮量)能力现为11327亿吨/年(合成氨能力116亿吨/年)。 2005年前,全世界将有约6150Mt/a 合成氨装置投产。沙特阿拉伯化肥公司(SAFCO)(沙特基础工业公司子公司)兴建的世界最大单系列合成氨装置将于2005年投产,该装置能力为3kt/d(约110Mt/a),它比现有的最大装置大50%。另外,4kt/d 规模的装置也已完成初步设计。 现在,世界最大单系列新建装置为阿根廷Profertil 公司的2105kt/d 装置,采用海尔德-托普索技术。印度尼西亚博廷拥有2kt/d 装置。巴斯夫在比利时拥有2106kt/d 装置,由乌德公司建设。KBR 公司在特立尼达建有3套1185kt/d 装置,第4套装置正在建设中,第3套装置由加勒比氮肥公司运作,产能已达2kt/d,所有这几套装置都采用KBR 公司KAAP 技术(KB R 先进合成氨工艺)用于氨合成。 大型装置可实现经济规模,单系列装置规模翻番,可减少投资费用约20%,按照当今技术,放大到313kt/d 也是可行的。KBR 己设计了4kt/d 装置,除主转化器和氨转化器为并列设置外,所有其他设备均为单系列。 世界大约10%的能源用于合成氨生产,所以,合成氨工艺和催化剂的改进将对矿物燃料的消费量产生重大影响。 自上个世纪80年代后期以来,合成氨技术继续向前发展,并建设了规模更大的装置,每吨合成氨生产的能耗也降到了28GJ 。一种铁钴催化剂引入了ICI 公司的LC A 流程,LC A 工艺中合成内件 的操作压力为8MPa 。1992年,第一个无铁的氨合 成催化剂由凯洛格公司(现KB R 公司)应用于其KAAP(Kellogg 高级氨合成工艺)工艺中。这种钌催化剂以一种石墨化的碳作为载体。据称其活性是传统的熔铁催化剂的10~20倍。在反应中,这种催化剂具有不同的动力学特征,内件可在低于化学计量的氢/氮比及约9MPa 压力下操作。 自从Haber 和Mittasch 研究之后,几乎没有发现高活性的催化剂,因此熔铁催化剂仍是广泛应用的催化剂。它具有高内在活性,长使用寿命和高密度特点,除这些优点外,它最公认的优点是价格便宜。 尽管熔铁催化剂有很多优点,但人们一直在努力开发新型催化剂,并对无铁类催化剂产生了浓厚兴趣。上个世纪70~80,日本积极寻求开发钌基催化剂。继在ICI AMV 和LCA 工艺中推出铁-钴系催化剂后,在KAAP 工艺中采用的以碳为载体的钌催化剂推动了氨合成催化剂的发展。完全不含铁、不含钌的催化剂(如Cs/Co 3Mo 3N 催化剂),其活性介于熔铁类和钌系催化剂之间,活性低于钌系催化剂。Cs/Co 3Mo 3N 催化剂、KM1R 催化剂(托普索的熔铁催化剂)和以碳为载体的含钡6%、含钌617%的催化剂在氢/氮比各为3B 1和1B 1的工艺条件下作出的对比可以看出,Cs/Co 3Mo 3N 催化剂的动力学特征介于熔铁和钌基催化剂之间,但它在600e 空气中焚烧时可再生成

合成催化剂钝化方案

京宝新奥合成催化剂钝化方案 编制 批准: 河南京宝新奥新能源有限公司 2014年5月26日 合成催化剂钝化方案 京宝新奥合成催化剂钝化方案 由于一、三段反应器内部的催化剂活性下降比较明显,已经满足不了长周期稳定运行,根据新一段反应器准备情况和生产实际情况,决定在这次大修中将一三段反应器的催化剂进行更换,由于二段反应器中的催化剂不更换,要对二段反应器的催化剂进行保护,所以给一三段反应器催化剂钝化带来了难度,为了保证二段反应器催化剂不受氧化,一三段催化剂顺利进行钝化,特制订次钝化方案。 1. 准备工作: 1.1合成系统置换降温结束 1.2对二段反应器进、出口和循环气进口加上盲板 1.3精脱硫出口阀后加盲板 1.4钝化用的氮气、仪表空气等已准备完毕

1.5确认分析条件具备每30 分钟分析一次反应器进出口气体的能力。 2. 钝化步骤 2.1将反应器R0302隔离出系统,氮气吹扫置换R301和R303,检测反应器出口气体 CO+H含量,确定CO+H含量冬0. 5%之后才进行钝化。 2.2建立反应器到循环压缩机的循环圈,合成系统开始做氮气循环,此时系统压力保持在0.5Mpa 以下。 2.3利用仪表空气向系统内补入氧气。开始通入氧气时,反应器进口处取样中 氧含量应低于0.2%,密切观察反应器床层温度变化,如有温度上升,在床层温度略有下降或稳定时才可以继续加大氧气加入量。在反应器进口氧气含量小于1%之前,每次以0.2%的速度递增氧气含量。 2.4整个钝化过程中,应该保持反应器床层温度低于60 C,每次增加氧气含量 的时候,应保持催化剂床层瞬时温升小于5°C。 2.5密切注意反应器床层热点下移的情况。当反应器进口处氧气含量高于8-10% 时,可以适当提高氧气补入速度,但仍要注意上述要求。 2.6逐步提高反应器进口氧气含量,直至反应器出口氧气含量大于20%,进出口氧气含量相同时,钝化结束。 2.7催化剂钝化过程中可以保持一定排放量,以控制系统压力稳定,钝化后期可以适当减少氮气用量。

钴钼系耐硫变换催化剂使用注意事项

K8-11系列催化剂使用注意事项 一、催化剂的使用 1.1 催化剂的装填 装填催化剂之前,必须认真检查反应器,保持清洁干净,支撑栅格正常牢固。为了避免在高的蒸汽分压和高温条件下损坏失去强度,催化剂床层底部支撑催化剂的金属部件应选用耐高温和耐腐蚀的惰性金属材料。惰性材料应不含硅,防止高温、高水汽分压下释放出硅。 催化剂装填时,通常没有必要对催化剂进行过筛,如果在运输及装卸过程中,由于不正确地作业使催化剂损坏,发现有磨损或破碎现象必须过筛。催化剂的装填无论采取从桶内直接倒入,还是使用溜槽或充填管都可以。但无论采用哪一种装填方式,都必须避免催化剂自由下落高度超过1米,并且要分层装填,每层都要整平之后再装下一层,防止疏密不均,在装填期间,如需要在催化剂上走动,为了避免直接踩在催化剂上,应垫上木版,使身体重量分散在木版的面积上。 一般情况下,催化剂床层顶部应覆盖金属网和/或惰性材料,主要是为了防止在装置开车或停车期间因高的气体流速可能发生催化剂被吹出或湍动,可能由于气体分布不均发生催化剂床层湍动,损坏催化剂。 由于高压,原料气密度较大,为了尽可能的减小床层阻力降,应严格控制催化剂床层高度和催化剂床层高径比。通常催化剂床层高度应控制在3~5m;催化剂床层高径比控制在1.0~1.8。 1.2 开车 1.2.1 升温 为防止水蒸气在催化剂上冷凝,首次开车升温时,应使用惰性气体(N 2、H 2 、 空气或天然气)把催化剂加热到工艺气露点以上温度,最好使用N 2 。 采用≤50℃/h的升温速度加热催化剂,根据最大可获得流量来设定压力,从而确保气体在催化剂上能很好分布。在通常情况下,气体的有效线速度不应小于设计值的50%,但也不应超过设计值。 当催化剂床层温度达到100℃~130℃时,恒温2~3小时排除吸附的物理水,然后继续升温至200℃~230℃时,进行下一步的硫化程度。如果最初加热选用的是空气,在引入硫化气之前,必须用氮气或蒸汽吹扫系统,以置换残余氧气。硫化气的切换基本上在常压或较高压力下进行,这取决于气流的方便。 1.2.2 硫化 与铁铬系催化剂的还原相似,钴钼系耐硫变换催化剂使用前一般需要经过活化(硫化)方能使用,硫化的好坏对硫化后催化剂的活性有着重要作用。 如果工艺气中的硫含量较高,一般使用工艺气直接硫化时,硫化过程中可能发生下述反应: CoO+H 2S ? CoS+H 2 O ?H0 298 =-13.4KJ/mol (1) MoO 3+2H 2 S+H 2 ? MoS 2 +3H 2 O ?H0 298 =-48.1KJ/mol (2) CO+H 2O ? CO 2 +H 2 ?H0 298 =-41.4KJ/mol (3) CO+3H 2? CH 4 +H 2 O ?H0 298 =-206.2KJ/mol (4) 硫化过程为了使产生的热量尽可能小,便于硫化温度控制,在硫化过程中应尽可能地抑制这后两个反应,特别是反应(4),通常催化剂转化成硫化态后,对反应(3)是有利的,但催化剂为氧化态时,并在较高的压力下,即开车的初期

配位催化剂的应用

配位催化剂的应用前景 某某* (单位名称地址邮编) 摘要;本文介绍了材料的类型和常用的合成方法,综述了近年来材料在催化领域的应用,特别是以材料中骨架金属作为活性中心骨架有机配体作为活性中心和负载催化活性组分的催化反应,以期对材料的催化性能较全面的认识。 关键词; 金属-有机骨架类型合成催化应用;负载型金催化剂;催化性能 1前言 金属-有机骨架材料是由金属离子与有机配体通过自组装过化生成的一类具有周期性多维网状结构的多孔晶体材料,具有纳米级的骨架型规整的孔道结构,大的表面积和孔隙率以及小的固体密度,在吸附、分离、催化等方面均表现出了优异的性能,已成为新材料领域的研究热点与前沿。材料的出现可以追溯到1989年为主要代表的工作在硝基甲烷中制备出了具有类似金刚石结构的三维网状配位聚合物同时预测了该材料可能产生出比沸石分子筛更大的孔道和空穴,从此开始了材料的研究热潮。但早期合成的材料的骨架和孔结构不够稳定,容易变形。直到1995年等合成出了具有稳定孔结构的,才使其具有了实用由于材料具有大的比表面积和规整的孔道结构,并且孔尺寸的可调控性强,骨架金属离子和有机配体易实现功能化,气体吸附[1]、磁学性能[2]、生物医学[3]以及光电材[4]等领域得到了广泛应用。这些特性貌似与现有的沸石和介孔分子筛很相似,但实际上却有较大的差别,材料还可负载高分散的纳米金属活性组分等,因此材料具有区别于其他催化剂材料的独特结构特征。 2 含钼催化剂的应用 2. 1 钴钼、镍钼催化剂 钴钼、镍钼催化剂主要用于石油加工过程中的加氢精制,如加氢脱硫( HDS)、加氢脱氮、加氢饱和等。其特点是不易中毒,使用寿命长在催化反应过程中具有很高的活性、良好的选择性和机械强度;不仅可处理一般原油,而且对品质低劣的重质油也很有效。制备钴钼催化剂主要有湿混、干混、浸渍等三种方法。湿混法是将硝酸钴和钼酸铵与有机酸配成均匀透明溶液,然后与拟薄水铝石一起经*作者简介:某某,女,(1991—),甘肃酒泉,现为,,,,,,,

变换触媒钝化新方案

变换触媒氧化降温方案 变换氧化降温任务是将变换炉通入空气,使一、二、三段高活性触媒Fe3O4表面氧化生成Fe2O3,可以从炉内卸出,筛去粉末后装入变换炉还原后重新使用。为了仍能重新利用变换触媒,在触媒卸出前必须将其彻底钝化,根据以往经验和公司的装备情况,特制定以下中变触媒钝化降温方案。 一、钝化组织机构 总负责人: 负责人: 设备负责人: 工艺负责人: 电气负责人: 仪表负责人: 分析负责人: 操作工: 二、设备的准备工作: 1、 2、低变进出口加盲板,且挂标志牌。 3、变换饱和塔出口加一个“U”型汞柱测压表。脱硫准备1#罗茨鼓风机,给钝化触媒时提供空气,拆除罗茨风机进口管加消音器,出口加装盲板,配置Ф325管道利用大近路管线至静电除焦进口,使之与脱硫塔以前的系统和进气系统隔离(脱硫净氨塔加满水形成水

封)。 4、配热交进口大阀降温进路阀,煤气付线阀关死挂禁动牌。 5、低变触媒保护用氮气10瓶。 6、操作记录报表,记录本。 三、停车后的工作 1、停车后变换系统立即打开低变近路阀,关其进、出口阀门,然后中低变系统分别进行卸压,待压力卸完后,低变炉进、出口阀加盲板,低变内加氮气保护。 2、压缩2台压缩机拆除一二段活门(一二段各4只),作为钝化空气的通道(一台阻力大)。 3、脱硫系统置换、配管道、加盲板和净氨塔加水。 四、变换蒸汽置换降温(约3~4小时) 1、变换系统加蒸汽静止置换,向前置换至压缩二段出口,向后置换至碳化进口放空(该放空钝化降温期间应长开),到CO+H2≤0.5%为止; 2、然后打开三段后放、热交后放及系统后放空变换进入蒸汽降温阶段。降温速率为每小时50℃,当触媒层温度降至230℃~250℃左右时,变换转入空气钝化阶段。 六、空气钝化(30小时) 待确认脱硫、变换、二出管线、三进管线、压缩机蒸汽置换合格后,通知脱硫岗位开启1#罗茨鼓风机,打开4#压缩机的一进阀门和二出阀门,其余阀门全部关闭,将空气引人变换岗位关闭热交前的进

变换催化剂性能和控制工艺指标

QCS―11催化剂的技术性能介绍 QCS―11是钴钼系一氧化碳耐硫变换催化剂,是我公司专门为高CO、高水气比研究开发的催化剂。已经在两个壳牌气化工艺一变使用。和QCS-03/QCS-01催化剂相比,耐热温度高、活性稳定性好、孔结构更加合理,另外,颗粒度均匀、装填效果好,能够有效的保证装填均匀、阻力减小。镁-铝-钛三元尖晶石载体及特殊的加工制作工艺是确保QCS-11催化剂具备上述特性的基础和必备条件。 目前高CO、高水气比工艺包括壳牌炉气化、航天炉气化、GSP气化等,其中神华宁煤使用GSP是目前CO和水气比最高的工艺,对催化剂的要求也最高。我公司的QCS系列催化剂采用镁-铝-钛三元载体、稀土助剂,其活性稳定性、工况适应性是最好的,在与国外、国内催化剂对比使用过程中得到很多验证,获得中国、美国、德国、日本、印度、南非等国家的专利。 QCS―11钴钼系一氧化碳耐硫变换催化剂,适用于以重油、渣油部分氧化法或煤气化法造气的变换工艺,促进含硫气体的变换反应,是一种适应宽温(220℃~550℃)、宽硫(工艺气硫含量≥0.01% v/v)和高水气比(0.2~2.0)。该催化剂具有机械强度高,结构稳定性好,脱氧能力强等特点,能有效地脱除与吸附原料气中的氧和焦油等杂质或毒物。对高空速,高水气比的适应能力强,稳定性好,操作弹性较大。具有稳定的变换活性,可延长一氧化碳耐硫变换催化剂的使用寿命。 新鲜催化剂活性组份钴、钼以氧化钴、氧化钼的形式存在,使用时应首先进行硫化,使金属氧化物转变为硫化物。可以用含硫工艺气体硫化,也可用硫化剂单独硫化。 QCS―11耐硫变换催化剂不含对设备和人体有危害的物质,硫化时也只有少量的水生成并随工艺气排出,对设备无危害。 主要特点为: ●耐热温度高、活性稳定性好、孔结构更加合理。 ●颗粒度均匀、装填效果好,能够有效的保证装填均匀、阻力减小。 ●镁-铝-钛三元尖晶石载体及特殊的加工制作工艺是确保QCS-11催化剂具备独特性 能的基础和必备条件。 ●抗水合性能好,适用高水气比:0.2-2.0,可耐5.0MPa水蒸气分压。 ●耐热稳定性好,适合宽温变换:200-550℃。

合金催化剂及其催化作用和机理

合金催化剂及其催化作用 金属的特性会因为加入别的金属形成合金而改变,它们对化学吸附的强度、催化活性和选择性等效应,都会改变。 (1)合金催化剂的重要性及其类型 炼油工业中Pt-Re及Pt-Ir重整催化剂的应用,开创了无铅汽油的主要来源。汽车废气催化燃烧所用的Pt-Rh及Pt-Pd催化剂,为防止空气污染作出了重要贡献。这两类催化剂的应用,对改善人类生活环境起着极为重要的作用。 双金属系中作为合金催化剂主要有三大类。第一类为第VIII族和IB族元素所组成的双金属系,如Ni-Cu、Pd-Au等;第二类为两种第IB族元素所组成的,如Au-Ag、Cu-Au等;第三类为两种第VIII族元素所组成的,如Pt-Ir、Pt-Fe等。第一类催化剂用于烃的氢解、加氢和脱氢等反应;第二类曾用来改善部分氧化反应的选择性;第三类曾用于增加催化剂的活性和稳定性。 (2)合金催化剂的特征及其理论解释 由于较单金属催化剂性质复杂得多,对合金催化剂的催化特征了解甚少。这主要来自组合成分间的协同效应(Synergetic effect),不能用加和的原则由单组分推测合金催化剂的催化性能。例如Ni-Cu催化剂可用于乙烷的氢解,也可用于环己烷脱氢。只要加入5%的Cu,该催化剂对乙烷的氢解活性,较纯Ni的约小1000倍。继续加入Cu,活性继续下降,但速率较缓慢。这现象说明了Ni与Cu之间发生了合金化相互作用,如若不然,两种金属的微晶粒独立存在而彼此不影响,则加入少量Cu后,催化剂的活性与Ni的单独活性相近。 由此可以看出,金属催化剂对反应的选择性,可通过合金化加以调变。以环己烷转化为例,用Ni催化剂可使之脱氢生成苯(目的产物);也可以经由副反应生成甲烷等低碳烃。当加入Cu后,氢解活性大幅度下降,而脱氢影响甚少,因此造成良好的脱氢选择性。 合金化不仅能改善催化剂的选择性,也能促进稳定性。例如,轻油重整的Pt-Ir催化剂,较之Pt催化剂稳定性大为提高。其主要原因是Pt-Ir形成合金,避免或减少了表面烧结。Ir有很强的氢解活性,抑制了表面积炭的生成,维持和促进了活性。

方案十四(注氨钝化方案)

注氨钝化方案 1、催化剂钝化目的 新的加氢裂化催化剂经过硫化后具有较高的裂化活性。为了适度抑制其使用初期的高活性,减少催化剂在开工初期的活性损失,提高催化剂的稳定性,防止和避免反应系统进油过程中可能出现的温度飞升现象,在反应系统引进设计原料油前用低氮油和注入液氨对催化剂进行钝化,以确保催化剂和生产的安全。引低氮油和注入无水液氨是有效抑制催化剂初活性的钝化方法。注入的无水液氨被催化剂吸附后,会抑制催化剂的初活性,随着反应温度的升高和运转时间的延续,催化剂吸附的氨会逐渐的解吸流失,催化剂又能恢复其正常活性。2、准备工作 2.1、D-111收液氨工作已经完成。 2.2、确认P-106单机试运合格。 2.3、新氢压缩机、循环氢压缩机、反应进料泵、注水泵等关键设备应处于好用状态。 2.4、装置全部仪表、控制系统已投用,冷氢调节阀开关灵活。 2.5、与调度联系好再准备一定数量的开工柴油,数量约3000吨,要求总氮量含<100μg/g,含水量<0.01w%,干点<350℃。 2.6、催化剂硫化结束。 2.7、分馏系统长循环热油运,具备接受反应生成油的条件,且循环油含水量<0.01w%。 3 、引开工低氮油 3.1引低氮油入装置条件 R101入口温度:150℃ R102入口温度:150℃ D105压力:14.0MPa D105温度:<50℃ F101流量:200000Nm3/h(氢油比700:1),纯度不小于85%(V),硫化氢浓度不小于0.1%(V)。 3.2引油步骤 3.2.1催化剂硫化结束后,调节好钝化所需工艺条件。必须保证不断注入硫化剂,直至装置进料中设计原料油占75%,以维持循环氢中H2S含量≮0.1%(V)。 3.2.2确认分馏系统保持热油运,各液面平稳。 3.2.3联系罐区向装置引钝化用低氮油,控制D102液位60%。 3.2.4启动反应进料泵P-102,最小流量控制阀投用,反应系统进油,催化剂润湿。开始的进料流率约35 t/h。同时注意控制F-101出口温度控制平稳。开工油进入反应器与催化剂接触,由于吸附热会使反应器里催化剂床层产生温度波,有时温升可高达30℃以上,因此在开始引进低氮油时,进料速率不能太快。在温波已通过各反应器后,而且在高压分离器出现一定液位后,把进料率逐渐增加至70 t/h。调节加热炉的燃烧条件,保持R101的入口温度为150℃,增开A101风机,保持D105温度为<50℃。将R-101、R-102各路急冷氢投自动,设定控制温度150℃。 3.2.5注意观察热高分D103液面,D103出现液面后,反应进料速率提至140t/h,并逐渐把D103压力提至正常操作压力(提量的同时,调整加热炉炉膛温度,保证R101入口温度为150℃。调整E101温控旁路阀,保证热高分入口温度>121℃。) 3.2.6分馏部分循环正常,随时能接收进料。当D-103液位达到60%后,切断过滤器后至低分的原料油循环线,关闭D-104冲压氮气阀门(加好盲板),通过D103液控阀向D-104切油,当D104液位达到60%后,向C-201减油。启动热低分气空冷A102,控制低压闪蒸罐D110入口温度<50℃,关闭D110顶充氮气线,并家盲板隔离。当D110液位达到60%时

合成氨催化剂升温还原方案

合成催化剂升温还原方案 一、催化剂还原前的准备工作 1、合成单元的气密试验工作已结束。甲烷化升温还原结束。 2 、各设备、调节阀、仪表元件等均处于良好状态。 3、合成回路进行氮气置换合格,合成塔吹除后,压缩机采用氮气进行系统循环,并清除过滤器中的催化剂灰。 4、排氨水的临时管道配置结束,稀氨水接收装置具备接收氨水的条件。 5 、化验室具备分析还原水汽浓度和气体成分等条件各分析仪器齐备;水汽浓度取样接管、出水取样点接管畅通。 6 、开工加热电炉具备投入运行的条件。电加热器和调压设备要处于完好状态,使用时要选派专业人员监护。 7 、对所有连接处进行检查,确认无泄漏。 8、公布升温还原方案,宣布升温还原的临时专门组织领导机构。 9、合成圈内检测仪表符合开车要求,内套管插入以前必须用化学溶剂(无水酒精等)擦洗,确保测温准确无误。 10、向已经置换并做了气密试验的系统充氨,使循环气中氨含量>1%。 11、向系统补入合格的新鲜气,压力5.0MPa。 二、催化剂的升温还原 1、第一床层为轴向层,从常温升至350℃,用8小时,每小时40~45℃,合成回路的操作压力为5MPa左右。 2、气量由压缩机和合成塔前的主阀、放空阀等控制,在满足升温速率的情况下,尽量提高空速,只要电炉功率允许,循环机最多开4台17m3/min机。 3、热负荷由开工加热电炉提供,应根据设计单位提出的对加热电炉安全气量的要求进行操作,在容许的条件下加大电路功率,提高床层温度。 4、一层催化剂温度达到350℃,开始分析水汽浓度,每小时一次,严格控制出口气体中水汽浓度小于1.5g/m3 三、还原初期 从350-420℃为催化剂还原初期 1、当催化剂床层温度达到300℃左右,催化剂便进入还原初期。此时催化剂开始出水。当达到350℃以上,出水已十分明显。应加大水汽浓度分析频率,建议每半个小时分析一次。并每两个小时测定一次进口气体中水汽含量。入塔气体水汽浓度越低越好,最大不得超过0.2g/m3。 2 、从300℃逐渐升至360℃,控制升温速率为10~15℃/h,合成回路压力

合成催化剂钝化方案

合成催化剂钝化方案 Document number:PBGCG-0857-BTDO-0089-PTT1998

京宝新奥合成催化剂钝化方案 编制 批准: 河南京宝新奥新能源有限公司 2014年5月26日 合成催化剂钝化方案 京宝新奥合成催化剂钝化方案由于一、三段反应器内部的催化剂活性下降比较明显,已经满足不了长周期稳定运行,根据新一段反应器准备情况和生产实际情况,决定在这次大修中将一三段反应器的催化剂进行更换,由于二段反应器中的催化剂不更换,要对二段反应器的催化剂进行保护,所以给一三段反应器催化剂钝化带来了难度,为了保证二段反应器催化剂不受氧化,一三段催化剂顺利进行钝化,特制订次钝化方案。 1.准备工作: 合成系统置换降温结束 对二段反应器进、出口和循环气进口加上盲板 精脱硫出口阀后加盲板 钝化用的氮气、仪表空气等已准备完毕

确认分析条件具备每30分钟分析一次反应器进出口气体的能力。 2.钝化步骤 将反应器R0302隔离出系统,氮气吹扫置换R301和 R303,检测反应器出口气体CO+H2含量,确定CO+H2含量≤0. 5%之后才进行钝化。 建立反应器到循环压缩机的循环圈,合成系统开始做氮气循环,此时系统压力保持在以下。 利用仪表空气向系统内补入氧气。开始通入氧气时,反应器进口处取样中氧含量应低于%,密切观察反应器床层温度变化,如有温度上升,在床层温度略有下降或稳定时才可以继续加大氧气加入量。在反应器进口氧气含量小于1%之前,每次以%的速度递增氧气含量。 整个钝化过程中,应该保持反应器床层温度低于60℃,每次增加氧气含量的时候,应保持催化剂床层瞬时温升小于5℃。 密切注意反应器床层热点下移的情况。当反应器进口处氧气含量高于8-10%时,可以适当提高氧气补入速度,但仍要注意上述要求。 逐步提高反应器进口氧气含量,直至反应器出口氧气含量大于20%,进出口氧气含量相同时,钝化结束。

钴系催化剂研究进展

钴系催化剂的研究和发展 ---含钼催化剂的研究和发展 摘要:含钼催化剂广泛用于多种化工生产过程,在含钼精细化学品的研究与开发中占有重要地位。简要介绍了我国近年来一些含钼催化剂的研究进展和有关文献。催化是现代十分重要的化工技术,据统计,发达国家近三分之一的国民经济总产值来自初花技术。含钼催化剂在催化领域占有重要地位,广泛用于石油加工和化工生产,如合成气制造,基本有机合成和精细化工产品等的生产。因此,长期以来国内外对含钼催化剂的创新和改进不断进行。这也引起我国钼业界的广泛关注,逐渐成为我国钼深加工领域的一个新的发展方向。 关键字:含钼催化剂、合成醇催化剂 (1)烷烃芳构化催化剂 四烷无氧脱氢芳构化,为甲烷活化和转化的一个新的研究热点。王林胜等在1993年首次报道一种以HZSM-5分子筛为载体的含钼催化剂使甲烷于无氧条件下高选择性地转化为苯。该催化剂是甲烷芳构化反应的典型催化剂。此后,对这种催化剂的研究活跃。舒玉瑛等用机械混合、机械混合后焙烧、机械混合后微波处理等方法制备这种催化剂,并考察了其对甲烷芳构化反应的催化性能。结果表明:机械混合法、固相反应

法和微波处理法制备。Mo/HZSM-5催化剂,比一般浸渍法能明显提高芳烃的选择性和减少积碳生成;在不同制法的Mo/HZSM-5催化剂上,Mo 物种落位不同,机械混合法、固相反应法和微波处理法能使Mo物种较多地落位于分子筛外表面,这对甲烷芳构化反应有利,并明显减少积碳的生成。 最近,田丙伦等报道了对Mo/MCM-22催化剂用于甲烷无氧芳构化的研究结果。MCM-22为晶粒呈片状、含两种孔道结构的高硅沸石分子筛。同Mo/HZSM-5催化剂相 比,Mo/MCM-22催化剂稳定性更好,苯产物的选择性较高 。用浸渍法制备的Mo担载量为6%的Mo/MCM-22催化剂性能最佳。此外,还研究了添加钴对Mo/MCM-22催化反应性能和催化剂积碳性质的影响。(2)烷烃选择氧化催化剂 甲基丙烯酸(MAA)是重要的有机化工原料,当前主要用烯烃为原料生产。然而,饱和烃较烯烃来源广泛,更经济易得,故近年来由异丁烷氧化制MAA已成研究与开发的新方向。采用一般热表面催化法由异丁烷选择氧化制取MAA主要存在的问题是MAA选择性低,浓度反应产物(COx)高达40%。激光促进表面反应法是很有应 用前景的光催化合成新技术。最近,陶跃武等分别采用在铋钼复合氧化物、钒钼复合氧化物表面上激光促进异丁烷选择氧化制MAA,取得选择性达到90%和无COx产生的良好结果。 (3)加氢处理催化剂

触媒钝化方案

催化剂的钝化 1 钝化机理 由于硫化态的催化剂在卸出变换炉后,很快会与空气中的氧气反应并放出大量的热量,这样会造成催化剂烧坏并使扒卸工作困难,故硫化态的催化剂在卸出之前需要进行钝化:使硫化态的催化剂依次和水蒸汽、空气在控制下缓慢反应以使其成为氧化态。 CoS+H2O→CoO+H2S ⊿H=+13.5 KJ/mol MoS2+3H2O→MoO3+2H2S+H2⊿H=+48.3 KJ/mol 2MoS2+7O2→2MoO3+4SO2 -Q 2CoS+3O2→2CoO+2SO2 -Q 由于硫化态的催化剂与氧气反应会放出大量的热量而使反应难以控制,故使其先和水蒸汽反应(吸热),以使大多数催化剂变为氧化态,然后剩余的催化剂再和空气反应(放热)便可在催化剂床层温度可控的条件下缓慢全部氧化。 2除硫钝化前的工作: (1)首先按短期停车方案将变换系统处理完成后,用0.4Mpa氮气进行系统置换,T2001出口取样分析CO+H2<0.5%为合格。 (2)系统由PV2005泄压至0.2MPa左右保压。 (3)将需要钝化的变换炉隔离。 3 催化剂的除硫和降温: (1)拆除升温流程各阀上的盲板,循环系统充氮至0.4MPag开C2001系统氮气循环,启动电加热炉F2001。 (2)打通入升温系统的低压蒸汽,处于备用状态。 (3)待加热炉F2301出口温度接近催化剂床层温度时,配入0.5Mpag、 158oC 的低压蒸汽进行除硫,将PV2005设定0.4MPa保压放空。 (4)除硫过程中因反应床温出现下降可减小蒸汽量通过调节电加热炉F2001出口温度维持床温的稳定。 (5)分析循环气中H2S含量小于80ppm为除硫结束。 3氧化(钝化): (1)除硫结束后,可停止向氮气循环系统加蒸汽。当电加热炉F2001出口气

钴钼系变换催化剂的硫化步骤和方法

硫化步骤: 触媒升温硫化曲线表: 阶段执行时间 (hr) 空速 (h-1 ) 床层各点 温度(℃) 入炉H2S含量(g/Nm3 ) 备注 1.升温12~14 200~300 常温~210 用煤气将系统置换合格后推电炉升温 2.硫化期20~24 100~200 210~300 10~15 待出口气的H2S含量≥3g/Nm3 ,床层穿透 3.强化期10 9 100~200 300~350 350~450 15~20 变换炉出口H2S含量≥10g/Nm3 4.降温置换~8 200~300 180~200 0.05 出口H2S含量≤0.5g/Nm3 ,并入系统生产 1、煤气升温阶段 (1) 常温~120℃(6~8h),120℃恒温2 h,120~200℃(4h)。 (2) 按升温硫化流程调节好有关阀门,压缩机1台三出送气压力<0.2MPa,最大循环气量15000Nm3/h。 (3) 待电加热器、变换炉各处煤气置换O2<0.5%,电加热器通气正常后,启3组电炉丝开始煤气升温。 (4) 打开循环气体出口阀,关低变炉出口DN150放空阀,将循环气体导入压机一入煤气总管,开始循环升温。 (5) 电加热器升温时,采取必要措施严格按升温曲线进行。升温期间视各段温升情况及时增减电炉丝组数,调节各段进气阀开度、气量或煤气换热器进出口煤气副线阀等。当两变换炉床层温差较大时,可用进两炉的升温煤气阀调节不同入炉点的气量。 (6) 升温期间,严格控制煤气中O2<0.5%,防止电加热器起火**,严格控制煤气系统压力不得超过0.3MPa。 (7) 恒温前应先降低热煤气温度。 (8) 在煤气升温结束前3h,两硫化罐应按要求灌装好CS2,并连接好N2瓶,升压至0.45~0.5MPa、并排水后备用。 (9) 升温期间,要注意及时排放油分离器和活性炭滤油器导淋,严防油水带入系统。 (10) 循环升温时,不必开放空,待硫化开始后,可在系统出口处打开放空置换一部分气体,以补充氢气含量。 2、催化剂硫化阶段 (1) 12-16h,210-300℃,入炉煤气中H2S 10-15g/Nm3,300℃恒温8h。 (2) 升温至床层进口温度达210℃,硫化罐排水后,即可用N2将CS2压人系统,用硫化罐出口阀,控制CS2加入量,保证入炉H2S浓度为10-15 g/m3,开始硫化并稍开系统出口放空阀。 (3) 硫化时,密切注意硫化罐液位,当快加完时,应立即切断,倒换另一台继续加入CS2,退出的一台要立即灌装CS2并加压、排水后备用,两CS2罐交替使用,专人负责。 (4) 密切注意床层温度,用电加热器组数、煤气量、煤气换热器进出口煤气副线阀、CS2加入量或进两炉的升温煤气阀等调节,维持床层温度在210-300℃。

催化剂制备

纳米金属催化剂的制备方法 摘要:纳米金属催化剂的制备方法包括化学法和物理法。化学法中主要有溶胶-凝胶法、沉淀法、溶剂热合成法、微乳法和水解法等;物理法主要有气相凝聚法、溅射法和机械研磨法等。其中化学法中的溶胶-凝胶法及沉淀法应用最广。对纳米金属催化剂的制备方法进行了比较,并简要论述了制备及应用过程中存在的主要问题。 关键词:纳米;催化剂;制备方法 引言 纳米催化材料由于其特有的量子尺寸效应、宏观量子隧道效应等性能,显现出许多特有性质,在催化领域的应用为广大催化工作者开拓了一个广阔空间,国际上已把纳米粒子催化剂称为第四代催化剂,因此纳米材料在催化领域的应用日益受到重视。许多发达国家都相继投入大量人力、财力开展纳米粒子作为高性能催化剂的研究,如美国的Nano 中心,日本的Nano ST 均把纳米材料催化剂的研究列为重点开发项目。我国对纳米材料的研究也给以高度重视,国家“863”计划、“973”计划大力支持纳米材料及纳米催化剂的研究,已取得了可喜成果。目前,国内外纳米催化剂的制备和应用逐步拓展到催化加氢、脱氢、聚合、酯化、化学能源、污水处理等方面。纳米金属催化剂制备方法分为化学法及物理法:化学法包括溶胶-凝胶法、沉淀法、溶剂热合成法、微乳法和水解法等;物理法包括气相凝聚法、溅射法和机械研磨法等。 1 化学法制备金属纳米催化剂 1.1 溶胶-凝胶法 该法一般是以金属盐或半金属盐作前驱体,将适当的烷氧化物如四甲氧基硅烷与水、酸性或碱性催化剂与共熔剂,在搅拌超声下进行水解和缩聚反应形成SiO2 三维网络结构。在成胶过程中引入的金属组分包埋在三维网络结构中,再进行凝胶老化过程,即将凝胶浸于液体中,继续聚合反应,凝胶强度增加。最后通过干燥,将溶剂从相互关联的多孔网格中蒸发掉,即可得到纳米尺寸的网格结构。溶胶-凝胶技术已成为实现化学剪裁合成纳米材料的主要手段。但该法使用的原料价格较昂贵;通常整个溶胶-凝胶过程所需时间较长,有时长达几天或几周;而且凝胶中存在大量微孔,在干燥过程中将逸出许多气体及有机物,并产生收缩。溶胶-凝胶法还被用来制备复合纳米金属催化剂,如KeijiHashimoto等人利用溶胶-凝胶工艺制备了K+[Zn3(SiO3Al)10(OH)2]- 纳米粒子用于醇脱氢反应。李永丹等人还利用溶胶-凝胶法制备了镍基催化剂,并对其进行了甲烷分解制备碳纳米管的研究,所制备的纳米管直径为10~20nm。雷翠月也利用此法,直接制备出了高比表面积、低堆积密度的纤维状纳米级负载CuO-Al2O3 超细粒子,活性组分以远低于纳米级的微晶粒子簇状态均匀地分散在纳米级氧化铝载体表面,在500℃内具有较高的稳定性,晶粒未聚集长大,在十二醇催化胺化反应中表现出了较高的催化活性。陈立功等人在醇催化胺化反应研究中开发了一种改进的溶胶-凝胶法,利用这种方法制备的铜基纳米催化剂的活性和稳定性都有了显著提高。 1.2 沉淀法

催化剂及其作用机理

1基本概念 金属氧化物催化剂常为复合氧化物(Complex oxides),即多组分氧化物。如VO5-MoO3,Bi2O3-MoO3,TiO2-V2O5-P2O5,V2O5-MoO3-Al2O3,MoO3-Bi2O3-Fe2O3-CoO-K2O-P2O5-SiO2(即7组分的代号为C14的第三代生产丙烯腈催化剂)。组分中至少有一种是过渡金属氧化物。组分与组分之间可能相互作用,作用的情况常因条件而异。复合氧化物系常是多相共存,如Bi2O3-MoO3,就有α、β和γ相。有所谓活性相概念。它们的结构十分复杂,有固溶体,有杂多酸,有混晶等。 就催化剂作用和功能来说,有的组分是主催化剂,有的为助催化剂或者载体。主催化剂单独存在时就有活性,如MoO3-Bi2O3中的MoO3;助催化剂单独存在时无活性或很少活性,但能使主催化剂活性增强,如Bi2O3就是。助催化剂可以调变生成新相,或调控电子迁移速率,或促进活性相的形成等。依其对催化剂性能改善的不同,有结构助剂,抗烧结助剂,有增强机械强度和促进分散等不同的助催功能。调变的目的总是放在对活性、选择性或稳定性的促进上。 金属氧化物主要催化烃类的选择性氧化。其特点是:反应系高放热的,有效的传热、传质十分重要,要考虑催化剂的飞温;有反应爆炸区存在,故在条件上有所谓“燃料过剩型”或“空气过剩型”两种;这类反应的产物,相对于原料或中间物要稳定,故有所谓“急冷措施”,以防止进一步反应或分解;为了保持高选择性,常在低转化率下操作,用第二反应器或原料循环等。 这类作为氧化用的氧化物催化剂,可分为三类:①过渡金属氧化物,易从其晶格中传递出氧给反应物分子,组成含2种以上且价态可变的阳离子,属非计量化合物,晶格中阳离子常能交叉互溶,形成相当复杂的结构。②金属氧化物,用于氧化的活性组分为化学吸附型氧物种,吸附态可以是分子态、原子态乃至间隙氧(Interstitial Oxygen)。③原态不是氧化物,而是金属,但其表面吸附氧形成氧化层,如Ag对乙烯的氧化,对甲醇的氧化,Pt对氨的氧化等即是。 金属硫化物催化剂也有单组分和复合体系。主要用于重油的加氢精制,加氢脱硫(HDS)、加氢脱氮(HDN)、加氢脱金属(HDM)等过程。金属氧化物和金属硫化物都是半导体型催化剂。因此由必要了解有关半导体的一些基本概念和术语。 2半导体的能带结构及其催化活性 催化中重要的半导体是过渡金属氧化物或硫化物。半导体分为三类:本征半导体、n-型半导体和p型半导体。具有电子和空穴两种载流子传导的半导体,叫本征半导体。这类半导体在催化并不重要,因为化学变化过程的温度,一般在300~700℃,不足以产生这种电子跃迁。靠与金属原子结合的电子导电,叫n-型(Negative Type)半导体。靠晶格中正离子空穴传递而导电,叫p-型(Positive Type)半导体。 属n-型半导体的有ZnO、Fe2O3、TiO2、CdO、V2O5、CrO3、CuO等,在空气中受热时失去氧,阳离子氧化数降低,直至变成原子态。属于p-型半导体的有NiO、CoO、Cu2O、PbO、Cr2O3等,在空气中

相关文档