文档库 最新最全的文档下载
当前位置:文档库 › 浆体管道输送装置专利技术综述

浆体管道输送装置专利技术综述

龙源期刊网 https://www.wendangku.net/doc/731236558.html,

浆体管道输送装置专利技术综述

作者:冯冰霞吴佩珍

来源:《河南科技》2019年第15期

油气输送管道的运行特点及常见事故通用范本

内部编号:AN-QP-HT851 版本/ 修改状态:01 / 00 When Carrying Out Various Production T asks, We Should Constantly Improve Product Quality, Ensure Safe Production, Conduct Economic Accounting At The Same Time, And Win More Business Opportunities By Reducing Product Cost, So As T o Realize The Overall Management Of Safe Production. 编辑:__________________ 审核:__________________ 单位:__________________ 油气输送管道的运行特点及常见事故 通用范本

油气输送管道的运行特点及常见事故通 用范本 使用指引:本安全管理文件可用于贯彻执行各项生产任务时,不断提高产品质量,保证安全生产,同时进行经济核算,通过降低产品成本来赢得更多商业机会,最终实现对安全生产工作全面管理。资料下载后可以进行自定义修改,可按照所需进行删减和使用。 1.油气输送管道的运行特点 长距离输油(气)管道是一个复杂的工程系统,它的安全运行与国民经济发展和城市居民生活用气息息相关。长距离输油(气)管道除了具有管径大、输送距离长、工作压力高、输油(气)量大和长年连续运行的特点外,还具有如下的特点: 长距离输油(气)管道除了少数跨越河流、铁路和公路的管段为架空敷设外,绝大部分管段为埋地敷设。管道埋地敷设的优点是受地形地物的限制小,管道不易遭受外部机械作用的损

关于油气输送管线干线钢管选用

关于油气输送管线干线钢管选用的若干问题油气输送管线干线钢管选用一般应考虑五个问题:1.钢管标准的选用2.钢管的化学成分要求3.钢管的机械力学性能4.钢管韧性要求5.制管技术要求。现就这几个问题简述如下,由于时间紧迫可能错漏短缺不少,仅供参考。 一.关于钢管标准 在油气输送用钢管标准的选用中,几乎在较大的产油国与发达国家都有自己的标准。我国油气输送用管道多采用美国API Spec 5L《管线管》的标准.国标《石油天然气工业输送钢管交货技术条件第一部分A级钢管》(GB9711.1.97)及《石油天然气工业输送钢管交货技术条件第二部分 B 级钢管》(GB9711.2-99)。由于API Spec 5L是一个通用的最基本的必须技术条件,考虑到各条管线的自然条件差别很大,因此管线的业主往往根据API Spec 5L指明的钢级化学成分和机械性能由购方和制管厂商定,再结合管线的具体情况,对选用的钢管提出一些补充技术规定,其要求比API Spec 5L高。此外,国际标准化组织ISO/TC67技术委员会也制定了管线管交货技术条件,即ISO3183-1 ISO3183-2 ISO3183-3 。这些标准是根据管线服役条件,将钢管分为A.B.C.三类,A类为符合API Spec 5L 的钢管,B类为有韧性要求和特殊无损检验的钢管,C类为输送酸性介质或有低温要求的钢管。 俄罗斯由于大部分地区气候严寒,管线服役条件苛刻,对钢管质量要求除部分内容参照API Spec 5L,如弯曲实验.超声检测等外,关键质量指标

要求较高,而且标准较多较细。 具体标准有:ГOCT20295-85《油气输送干线管道用钢制焊接钢管技术规范》.TY75-86《工作压力7.4MPa带外防腐层的直径530,720,1020,1220和1420MM直缝和螺旋缝电焊钢管技术条件》.TY1104-138100-357-02-96《工作压力7.4MPa带外防腐层螺旋缝电焊钢管技术条件》,TY14-3-1970-97《20号优质碳素钢制增强耐蚀性和抗低温的螺旋缝管电焊钢技术条件》,TY14-3P-04-94,〈北极地区输送石油天然气用直径530-1220MM直缝电焊管钢技术条件》TY322-8-21-96《直径820,920和1220MM直缝电焊管钢技术条件》等。 我国的钢管标准基本上是等效采用API Spec 5L的标准,但在针对各管线的具体情况提出的补充技术条件中比API Spec 5L要求高,也不比俄罗斯钢管质量要求底,如陕京线。涩-宁-兰线,兰-成-渝线,忠-武线,西气东输干线等。而且我国的钢卷板冶炼技术在X70级以内的强度等级均可满足技术要求,螺旋管的制管质量也可满足技术要求。当然,我国对螺旋管的焊缝残余应力消除上不如俄罗斯的整体热处理或焊缝热处理,也没有API Spec 5L提出的冷扩处理。我国只是在制管过程中用先成型后焊接的办法,保证焊接处切开后的弹复量小于1.5%D,从而减小焊缝残余的应力。 哈萨克斯坦的自然环境条件接近我国新疆地区,可以参照鄯乌线,西气东输线选管技术条件来制定钢管标准。 钢管的化学性能影响到钢管的强度,韧性,可焊接性,耐腐蚀性.过去采用增C(碳)的办法增加强度,但降低了韧性和可焊性.五十年代以后采

油气管道输送习题

天然气管道输送 第一章天然气输送概述 1、什么是天然气虚拟临界常数,在实际中有何应用? 2、根据热力学稳定判据,推导RK、SRK和PR状态方程的2个参数a、b的表达式。 3、按照压缩系数方程RK、SRK、PR和BWRS,编程计算不同压力和温度下的压缩系数,并说明它们的大致使用范围。 4、什么是气体的对比态原理,在实际中有何应用? 5、根据气体焓和熵的热力学关系,利用RK、SRK、PR状态方程分别推导实际气体焓和熵的计算公式。 6、根据表1-1和表1-2所提供的不同气田天然气组分,分别按照式1-95和1-102计算不同压力和温度下的气体焓和熵,并与按照图法得到的结果进行比较。 7、根据热力学关系,证明气体质量定压热容和质量定容热容满足式1-108。 8、根据气体热力学关系,证明气体焦耳-汤姆逊系数满足式1-119。 9、如何用RK、SRK、PR状态方程来计算气体的质量定压热容、质量定容热容和焦耳-汤姆逊系数? 10、什么是燃气的燃烧值?在实际生产中为什么采用低热值而不是高热值? 11、什么是燃气的爆炸极限?惰性气体含量对爆炸极限有何影响? 12、定性说明温度对液体和气体粘度的不同影响。 13、根据粘度计算方法,编程计算天然气在不同压力和温度下的粘度。 14、什么是气体的导热系数?给出计算实际气体导热系数的步骤并编程。 15、什么是天然气的水露点和烃露点?说明确定水露点和烃露点的几种方法。 16、如何根据平成常数列线图计算天然气的烃露点? 17、试说明气体流动连续方程1-159、运动方程1-161和能量方程1-163的物理意义和适用条件。 第二章输气管水力计算 1、在什么情况下,输气管的流量计算公式中可以忽略速度变化对流量的影响? 2、为什么管道沿线地形起伏、高差超过200m以上,要考虑地形对工艺参数Q或P 的影响? 3、公式2-53~2-62适用于何种流态?若管内实际流动偏离该液态,应如何处理? 4、为什么干线输气管道采用高压输气较为经济? 5、对于已建成的一条输气管道,若要增大输气量,其扩建工程可以采用哪些措施? 6、流量系数法能解决哪些复杂输气管道的设计计算?

油气管道输送技术课程设计

目录 1 总论 (1) 1.1 设计依据及原则 (1) 1.1.1 设计依据 (1) 1.1.2 设计原则 (1) 1.2总体技术水平 (1) 2 设计参数 (2) 3 工艺计算 (3) 3.1 管道规格 (3) 3.1.1 天然气相对分子质量 (3) 3.1.2 天然气密度及相对密度 (3) 3.1.3 天然气运动黏度 (3) 3.2 管道内径的计算 (4) 3.3 确定管壁厚度 (4) 3.4 确定各管段管道外径及壁厚 (5) 3.5 末段长度和管径确定 (6) 3.5.1 假设末段长度, 内径d=1086.2mm (7) 3.5.2 计算各个参量 (7) 3.5.3 计算储气量 (8) 4 压缩机的位置及校核 (9) 4.1 压缩机站数 (9) 4.1.1 压缩机站的位置 (9) 4.1.2 压缩机站位置的校核 (10) 参考文献 (11)

多气源多用户输气管道工艺设计 1 总论 1.1 设计依据及原则 本设计主要根据设计任务书,查询相关的国家标准和规范,以布置合理的长距离输气干线。 1.1.1 设计依据 (1)国家的相关标准、行业的有关标准、规范; (2)相似管道的设计经验; (3)设计任务书。 1.1.2 设计原则 (1)严格执行现行国家、行业的有关标准、规范。 (2)采用先进、实用、可靠的新工艺、新技术、新设备、新材料,建立新的管理体制,保证工程项目的高水平、高效益,确保管道安全可靠,长期平稳运行。 (3)节约用地,不占或少占良田,合理布站,站线结合。站场的布置要与油区内各区块发展紧密结合。 (4)在保证管线通信可靠的基础上,进一步优化通信网络结构,降低工程投资。提高自控水平,实现主要安全性保护设施远程操作。 (5)以经济效益为中心,充分合理利用资金,减少风险投资,力争节约基建投资,提高经济效益。 1.2总体技术水平 (1)采用高压长距离全密闭输送工艺; (2)输气管线采用先进的SCADA系统,使各站场主生产系统达到有人监护、

油气输送管道穿越工程设计要求规范(GB50423-2015)

油气输送管道穿越工程设计规范(GB50423-2007) 3.1 基础资料 3.1.1 穿越工程设计前,应取得所输介质物性资料及输送工艺参数。其要求应按现行国家标准《输油管道工程设计规范》GB 50253和《输气管道工程设计规范》GB 50251的规定执行。 3.1.2 穿越工程设计前,应根据有关部门对管道工程的环境影响评估报告、灾害性地质评估报告、地震安全评估报告及其他涉及工程的有关法律法规,合理地选定穿越位置。穿越有防洪要求的重要河段,应根据水务部门的防洪评价报告,选定穿越位置及穿越方案。 3.1.3 选定穿越位置后,应按照国家现行标准《长距离输油输气管道测量规范》SY/T 0055和《油气田及管道岩土工程勘察规范》SY/T 00 53,根据设计阶段的要求,取得下列测量和工程地质所需资料: 1 工程测量资料,包括1:200~1:2000,平面地形图(大、中型工程)与断面图; 2 工程地质报告,包括1:200~1:2000地质剖面图、柱状图、岩土力学指标、地震、水文地质及工程地质的结论意见。 3.1.4 应根据下列钻孔布置要求获取地质资料: 1 挖沟埋设穿越管段,应布置在穿越中线上。 2 水平定向钻、顶管或隧道敷设穿越管段,应交叉布置在穿越中线两侧各距15~50m处。在岩性变化多时,局部钻孔密度孔距可布置为20~30m。 3.1.5 根据现行国家标准《中国地震动参数区划图》GB 18306,位于地震动峰值加速度a≥0.19地区的大中型穿越工程,应查清下列四种情况,并取得量化指标: 1 有无断层及断层活动性质、一次性最大可能错动量。 2 地震时两岸或水床是否会出现开裂或错动。 3 地震时是否会发生基土液化。 4 地震时是否会引起两岸滑坡或深层滑动。 3.1.6 穿越管段应有防腐控制的设计资料。 3.2 材料 3.2.1 穿越工程用于输送油气的钢管,应符合现行国家标准《石油天然气工业输送钢管交货技术条件第1部分:A级钢管》GB/T 97 11.1或《石油天然气工业输送钢管交货技术条件第2部分:B 级钢管》GB/T 9711.2的规定,并应根据所输介质、钢管直径、钢管壁厚、使用应力与设计使用温度等补充有关技术条件要求。对于管径小于DN300,设计压力小于6.4MPa的输油钢管或设计压力小于 4.0MP a的输气钢管,可采用符合现行国家标准《输送流体用无缝钢管》GB/

油气输送管道的运行特点及常见事故正式版

Through the reasonable organization of the production process, effective use of production resources to carry out production activities, to achieve the desired goal. 油气输送管道的运行特点及常见事故正式版

油气输送管道的运行特点及常见事故 正式版 下载提示:此安全管理资料适用于生产计划、生产组织以及生产控制环境中,通过合理组织生产过程,有效利用生产资源,经济合理地进行生产活动,以达到预期的生产目标和实现管理工作结果的把控。文档可以直接使用,也可根据实际需要修订后使用。 1.油气输送管道的运行特点 长距离输油(气)管道是一个复杂的工程系统,它的安全运行与国民经济发展和城市居民生活用气息息相关。长距离输油(气)管道除了具有管径大、输送距离长、工作压力高、输油(气)量大和长年连续运行的特点外,还具有如下的特点: 长距离输油(气)管道除了少数跨越河流、铁路和公路的管段为架空敷设外,绝大部分管段为埋地敷设。管道埋地敷设的优点是受地形地物的限制小,管道不易遭受外部机械作用的损坏,而且土壤能对加

热输送的管道起到较好的保温作用,使管道基本不受恶劣气候的影响。其缺点是管道一旦发生泄漏事故,不容易被发现。 长距离输油(气)管道的站间管路只有一条,没有备用管路,一处发生事故而导致输送中断,就要全线停输。采用加热输送的原油管道,如果停输时间过长,还有可能造成重大的凝管事故。 长距离输油(气)管道多在野外,处理线路上的事故时,大部分在远离基地的野外进行。抢修作业施工条件差,工作量大,机械化水平要求高,交通运输不便,因而管道事故抢修作业的难度很大。 长距离输油(气)管道的输送距离长,线路可能经过不同的地形和地质构造,地

油气管道技术现状与发展趋势

油气管道技术现状与发展趋势 王功礼王莉 中国石油天然气股份有限公司规划总院 摘要 近几十年来,中国长输管道技术不断发展,水平逐渐提高。特别是高凝含腊原油的加热输送、原油热处理及加剂综合处理工艺、天然气管道的设计和施工技术已达到或接近国际先进水平。文章简要论述了国内外在原油、成品油、天然气输送管道方面的技术现状及发展趋势,结合国内外管道技术发展的实际情况和未来趋势,提出了我国油气管道行业应加强对油气输送工艺、油气储存技术、油气管道完整性评价及配套技术、油气管道运行管理、管道信息管理系统、管道施工技术6 个方面的研究。 关键词 世界范围原油天然气成品油管道设计技术发展趋势分析评价 世界能源需求的扩大和发展加速了世界长距离油气管道的建设步伐。据统计,2003 年全球正在建设和规划建设的油气管道总长约7.6万km;今后15 年内世界管道的长度将以每年7%的增长率增长,其中天然气管道的建设将占据主导地位。未来世界将新增东北亚、东南亚、南美洲3 大输气管网。 原油管道技术现状及发展趋势 1世界原油管道技术现状 目前原油管道普遍采用密闭输送工艺,出现了冷热原油顺序输送、原油/成品油顺序输送工艺;对高凝、高黏原油采用热处理和加剂处理工艺。降凝剂和减阻剂种类多、效果好、应用普遍;采用环保、高效、节能型管道设备,泵效达85%以上;多采用直接式加热炉,炉效超过90%;运用高度自动化的计算机仿真系统模拟管道运行和事故工况,进行泄漏检测,优化管道的调度管理;对现役管道进行完整性评价及管理。 例如:美国的全美管道是目前世界上最先进的一条热输原油管道,全长2 715 km,管径760 mm,全线采用计算机监控和管理系统(SCSS)。在控制中心的调度人员通过计算机可实现管道流量、压力及泵、炉、阀等设备的自动控制,仿真系统软件可完成泄漏检测、定位、设备优化配置、运行模拟等功能。 2世界原油管道技术发展趋势 目前,世界各国尤其是盛产含蜡黏性原油的大国,都在大力进行长距离管道常温输送工艺的试验研究。随着含蜡高黏原油开采量的增加以及原油开采向深海发展,各国都特别重视含蜡高黏原油输送及流动保障技术研究。挪威、法国、英国、美国等石油工业发达国家在含蜡高黏原油流变性及其机理、管道蜡沉积预测等方面达到很高水平,并将带来应用技术的新突破。

浆体的物理特性与管道输送流速

浆体的物理特性与管道输送流速 费祥俊 清华大学水电系北京市100084 =摘要>浆体管道的输送流速直接影响管道运输的安全与经济。以往由于没有把浆体的物理特性(即固体颗粒组成及浆体粘性)作为一个影响管道输送参数的重要因素来考虑,所以迄今为止,很多管道不淤流速公式未能摆脱纯经验性质而缺乏普遍的实用意义。本文通过分析及大量试验资料验证,系统研究了影响管道不淤流速的各项因素及浆体粘性的明显作用,因而阐明了一定条件下浆体浓度的提高,有利于降低管道输送流速,从而可以进一步提高管道输送浆体的综合效益。 关键词:浆体管道粘性不淤流速固体浓度 The Physical Property of S lu rry and its Velocity of Pip eline T ransportation Fei Xiangjun Tsing hua Uni versity,Beiji ng100084 A bstract:T he velocity of sl urry in pipe effect the economy and safety of transportati on.In recent years many formulas of nonsettling velocity for slurry were developed without considering the characteristic of slurry as an important parameter,hence the application of these formulas is limited.In thi s paper based on the theory of suspension rheology and by using a great amount of ex-perimental material,a new expression of nonsettling velocity i s developed.the i nfluence of slurry viscosity,solid concentration and the diameter of pipe on the nonsettling velocity is analysed in detail.T he results of study indicate that in a given condition the in-crement of solid concentration and slurry will bring to decrease the critcal velocity i n pipe.and It i s favourable to increase the com-prehensive efficiency of slurry transport by pipeline. Key Words:Slurry Pipelin,Viscosity,Nonsettling Velocity,Solid Concentration 1引言 浆体管道输送以其经济效益高于传统的运输方式, 70年代开始已应用于燃料(煤)及原材料(精矿、建材等)的远距离输送。此外各类选矿厂的尾矿,电厂粉煤灰等工业固体废料以及河道的泥沙清淤,采用管道输送也以其工艺较简单,符合环保要求,在我国早已普遍应用。但这类浆体管道一般距离较短,对输送工艺参数的选择不够重视因而输送能耗及水耗较大,其效益明显偏低,据我国20个较大选矿厂1983年统计,管道输送尾矿总量4300万吨,输送的重量比浆体平均浓度14.2%,每吨干矿输送耗水量达6m3,而国外一般为1m3,输送能耗也远大于国外。这对资源相对缺乏的我国,不能不说是一种浪费。近年来情况有所改善,但仍然存在很大差距,更突出的问题是设备及管壁的磨损十分严重,这不仅增加运行费用,还会影响正常生产及对环境的污染,至于河道清淤的管道输送,其工艺更加粗放,效益也更低,造成以上原因是多方面的,其中对输送参数缺少研究是重要原因。 2浆体在管道中的流动状态与临界流速 工业浆体管道绝大部分属于非均质流输送,即垂向固体浓度分布存在一定梯度,管道输送最重要的参数是/不淤流速0,浆体由固体颗粒与水组成,输送流速太低,固体颗粒将分选沉降,以致堵塞管道,输送流速过高,虽可使颗粒充分悬浮,但将使一定管径的阻力随流速的平方成比例而上升,图1所示为一定管道内径下不同粒径d,按流速U而区分的几个流区。 在(1)区内,由于流速太低,固体颗粒沉在管底,基本不动,实线表示的是颗粒起动流速与粒径的关系。在(2)区内流速较高,颗粒开始运动。因为水流脉动的随机性,即使是均匀颗粒,也有不同的运动状态,即一部分颗粒沿管道底部作推移运动,一部分颗粒在管道中悬起作悬移运动,图中虚线表示的是绝大部分颗粒 1 第1期#设计与研究#

油气输送管道与铁路交汇工程技术及规定(新版)

When the lives of employees or national property are endangered, production activities are stopped to rectify and eliminate dangerous factors. (安全管理) 单位:___________________ 姓名:___________________ 日期:___________________ 油气输送管道与铁路交汇工程技 术及规定(新版)

油气输送管道与铁路交汇工程技术及规定 (新版) 导语:生产有了安全保障,才能持续、稳定发展。生产活动中事故层出不穷,生产势必陷于混乱、甚至瘫痪状态。当生产与安全发生矛盾、危及职工生命或国家财产时,生产活动停下来整治、消除危险因素以后,生产形势会变得更好。"安全第一" 的提法,决非把安全摆到生产之上;忽视安全自然是一种错误。 第一章总则 第一条为统一油气输送管道(以下简称“管道”)与铁路相互交叉、并行工程的技术和管理要求,保障管道和铁路设施的安全,依据《中华人民共和国石油天然气管道保护法》、《中华人民共和国铁路法》和《铁路安全管理条例》,制定本规定。 第二条本规定适用于管道与铁路相互交叉、并行的工程(以下统称“交汇工程”)。油、气田集输管道与铁路相互交叉、并行,其条件相近时可参照执行。 第三条管道与铁路交汇时应遵循以下原则: 1.安全第一、预防为主。交汇工程应确保铁路运输安全和管道运行安全,特别是高速铁路、城际铁路等旅客列车的运输安全。 2.后建服从先建,尽量减少对既有设施的改建。 3.综合考虑铁路和管道行业规划。

垃圾气力管道输送系统概述

垃圾气力管道输送系统概述 一、前言 近年来我国城市生活垃圾产生量一直呈逐年上升趋势,十一五期间垃圾清运量平均每年增长率约为4.2%,2005年全国生活垃圾清运量达15602万吨。对于如此大量的垃圾清运,我国各地仍主要以传统的人工混合收集运输为主,垃圾收运效率及技术水平低,对环境造成较大影响。今后我国城市垃圾收运的发展方向必然是从非压缩式转运向压缩式转运、开敞式转运向密闭式转运、分散转运向集中转运方式发展。垃圾气力管道输送系统是当今世界上可对生活垃圾实行全封闭化、压缩化、集装化收运的现代化垃圾收集方式,可大大提高垃圾收集效率、杜绝对环境的二次污染。 二、垃圾气力管道输送系统发展历史 垃圾气力管道输送系统是从工业上用运动的气流为介质输送物料的运输方法(即气力输送)发展而来的。早先在工业上运用于输送烟丝、茶叶、纤维材料等轻质物料,以后又发展到运送谷物及仓库、港口对于粉、粒状物料的装运作业,又进而用来输送型砂、煤粉、矿砂,它的运用已几乎遍及各个工业部门。二十世纪五十年代西方国家开始研究采用真空输送方式来运送城市垃圾。1961年,瑞典ENVAC公司发明了全球第一套垃圾气力管道输送系统,安装在斯德哥尔摩市郊的一家医院,至今仍保持良好运行,从此翻开了垃圾收运的新的一页。1967年,第一套供住宅使用的垃圾气力管道输送系统在斯德哥尔摩建成,服务于一个拥有2400户住宅单位的新住宅区;1992年,巴塞罗那奥运村的垃圾气力管道输送系统落成,投入运行;1998年,里斯本世博园的垃圾气力管道输送系统落成,并不断扩展成为全球最大的垃圾气力管道输送系统;后又在日本、新加坡、香港和中国大陆陆续应用。目前全球共有近千套垃圾气力管道输送系统在投入使用。这种系统对提高环境质量的作用已逐渐被认同。 三、垃圾气力管道输送系统工作流程及组成 垃圾气力管道输送系统主要流程是:在垃圾收集区域如街道、广场、建筑内部等处设置室内或室外垃圾投放口,垃圾被投入垃圾投放口后(可以通过增设投放口或智能识别控制,实现垃圾分类),暂时存放在排放阀顶部的存贮间内。系统风机运行产生真空负压,所有垃圾以70公里/小时的速度,在风力的作用下经管道被抽运至收集站,在收集站与空气分离,经压缩后进入集装箱,由专用车辆运往处理厂。传送废物的气流经过除尘、除臭装置后排出。整个垃圾清空过程通过电脑程序控制完全实现自动化操作。

陆上油气输送管道建设项目安全审查要点(试行)

陆上油气输送管道建设项目安全审查要点 (试行) 1 适用范围 本要点适用于中华人民共和国境内主要遵循《输气管道工程设计规范》(GB50251)或《输油管道工程设计规范》(GB50253)等标准设计的新建、改建、扩建陆上油气输送管道(以下简称油气管道)建设项目的安全审查。 2 术语和定义 2.1 油气管道 油气管道是指输送符合有关标准质量要求的石油、天然气管道及管道附属设施,其中石油是指原油和成品油,天然气是指常规天然气、页岩气、煤层气和煤制气等。 不包括油气海底管道、城镇燃气管道、油气田集输管道和炼油、化工等企业厂区内管道。 2.2 安全设施 安全设施是指在油气管道输送过程中用于预防、控制、减少和消除事故所采用的设备、设施及其他技术措施的总称。包括但不限于附件中所列安全设施。 3 安全条件审查主要内容 3.1 评价范围 是否准确说明安全评价范围。是否说明与上下游衔接的工程界面与评价界面。如分期建设,要说明分期建设界面。改(扩)建工程要说明其与在役工程的界面与评价界面。 3.2 评价依据 审核评价报告所依据的法律、法规、规章、规范性文件、标准规范是否有效、准确,相关支持性文件是否有效。 3.3 评价程序 安全评价程序是否符合通用安全评价程序。 3.4 评价资质 3.4.1 建设单位 是否说明建设单位基本情况、经营范围和建设项目隶属关系等。 3.4.2 可行性研究报告编制单位 可行性研究报告编制单位是否具备油气管道建设项目可行性研究、设计的资质。

3.5建设项目概况 3.5.1基本概况 是否说明建设项目基本概况,无重大缺项、漏项和缺失,包括以下内容: a)建设项目名称、线路起止点、线路长度、站场和阀室的数量及类型、总投资等。 b)输送介质的组分和物性。 c)油气管道线路总体走向、沿线行政区域划分等。 d)输送工艺,设计压力、设计输量、管径、壁厚、管材等基本参数。 3.5.2 自然及社会环境 是否说明沿线地貌、气象、水文、地震及断裂带,以及沿线经济、交通道路等情况。 3.5.3 线路工程 是否说明线路走向、线路用管、管道敷设、阀室设置等油气管道线路工程情况。重点关注特殊地段油气管道路由选择和敷设方式,包括以下内容: a)阀室设置情况,包括阀室设置与地区等级划分(输气管道)、阀室所在地周边环境等。 b)油气管道敷设方式,包括与已有管道、高压输电线路、电气化铁路等并行或交叉情况及敷设方式。 c)油气管道沿线附近有相互影响的主要敏感区域分布情况及敷设方式,包括医院、学校、客运站、城镇规划区、工业园区、飞机场、海(河)港码头、军事禁区等。 d)油气管道河流大、中型穿(跨)越,山岭隧道穿越,公路(二级以上)穿(跨)越、铁路穿(跨)越情况。 e)油气管道沿线滑坡、崩塌、泥石流、盐渍土、湿陷性黄土、淤泥质软土、多年冻土、季节性冻土等主要不良地质段分布情况及敷设方式。 f)油气管道沿线山区、沟谷、沙漠、水网等特殊地段分布情况及敷设方式。 g)油气管道经过地震强震区及地震断裂带特别是全新世地震断裂带情况及敷设方式。 h)油气管道经过矿山采空区情况及敷设方式。 i)油气管道标识和伴行道路设置情况。 3.5.4 站场工程 是否说明站场工程基本情况,包括站场设置及等级划分、站场功能及工艺流程、站场区域位置和总平面布置、主要设备设施等。输气站场要说明放空系统设计及与周边设施间距。

垃圾气力管道输送系统概述

垃圾气力管道输送系统概述 2007-8-9 1. 垃圾气力管道输送系统在国内外的应用 真空管道垃圾收集系统在国外应用十分广泛且技术已经相对成熟。该系统在欧洲城市新建区及卫星城、世博会、体育运动村等大型城市发展区较为普遍使用,西班牙、葡萄牙两国使用气力管道输送生活垃圾的普及率都已达到10%-20%,在亚洲的应用主要集中在日本、新加坡和香港。日本主要采用三菱的系统,将焚烧厂周边地区的垃圾直接输送到焚烧厂,例如东京湾和横滨;新加坡和香港都采用瑞典Envac系统,新加坡应用了7套,香港应用了9套;国内上海浦东国际机场和广州市白云新国际机场厨房也都采用的该系统,北京国际中心、上海泰晤士小镇住宅区、广州金沙洲居住区和花园酒店的垃圾气力管道输送系统也正在建设中。 目前全球共有近千套垃圾气力管道输送系统在投入使用。这种系统对提高环境质量的作用已逐渐被认同。 2. 垃圾气力管道输送系统的工作原理 垃圾被丢入投放口内(室内投放口或室外投放口),电脑程序控制清空过程,风机运行产生真空负压,所有垃圾以70公里/小时的速度,通过管道网络传输,将垃圾抽吸到收集中心。每次清空一类垃圾。垃圾被导入相应类别集装箱内,由卡车运走。传送垃圾的气流经过过滤清洁,达到环保标准后排出。这套系统还可以通过增设投放口,实现垃圾分类。 垃圾气力输送系统组成主要有:垃圾投放口、垃圾管道及管道附属设施、吸气阀、排放阀,垃圾收集中心、电力和控制系统等。 3. 垃圾气力管道输送系统的特点 气力管道输送系统是一个高效的、现代化的和卫生的固废收运系统。该系统以空气为动力,经地下管网运输,将固体废弃物从建筑物运输到中央收集站。整个系统完全封闭,具有以下特点: (1)环境优雅。气力输送系统垃圾完全密闭收集与运输,可以使整个区域环境得到有效改善。小区内可取消手推车、垃圾桶、垃圾箱房等传统的收集工具与设施,有效的减少了二次污染。系统能基本避免人力车等垃圾运输工具穿行于居住区,有利于保持清爽的居住环境。 (2)清运及时。对于人流量的场所和时期,例如世博会期间、交通枢纽地区,垃圾

油气输送管道与铁路交汇工程技术及管理规定《国能油气﹝2015﹞392号》

油气输送管道与铁路交汇工程技术及管理规定 第一章总则 第一条为统一油气输送管道(以下简称“管道”)与铁路相互交叉、并行工程的技术和管理要求,保障管道和铁路设施的安全,依据《中华人民共和国石油天然气管道保护法》、《中华人民共和国铁路法》和《铁路安全管理条例》,制定本规定。 第二条本规定适用于管道与铁路相互交叉、并行的工程(以下统称“交汇工程”)。油、气田集输管道与铁路相互交叉、并行,其条件相近时可参照执行。 第三条管道与铁路交汇时应遵循以下原则: 1. 安全第一、预防为主。交汇工程应确保铁路运输安全和管道运行安全,特别是高速铁路、城际铁路等旅客列车的运输安全。 2. 后建服从先建,尽量减少对既有设施的改建。 3. 综合考虑铁路和管道行业规划。 4. 保护环境,节约资源,经济合理。 5. 平等协商、互相支持。 第四条交汇工程除应执行本规定外,尚应符合国家相关法律、法规和强制性标准的规定。

第二章管道与铁路交叉 第五条管道与铁路交叉位置选择应符合下列规定: 1. 管道不应在既有铁路的无砟轨道路基地段穿越,特殊条件下穿越时应进行专项设计,满足路基沉降的限制指标。 2. 管道和铁路不应在旅客车站、编组站两端咽喉区范围内交叉,不应在牵引变电所、动车段(所)、机务段(所)、车辆段(所)围墙内交叉。 3. 管道和铁路不宜在其他铁路站场、道口等建筑物和设备处交叉,不宜在设计时速200公里及以上铁路及动车组走行线的有砟轨道路基地段、各类过渡段、铁路桥跨越河流主河道区段交叉。确需交叉时,管道和铁路设备应采取必要的防护措施。 4. 管道宜选择在铁路桥梁、预留管道涵洞等既有设施处穿越,尽量减少在路基地段直接穿越。 第六条管道与铁路交叉宜采用垂直交叉或大角度斜交,交叉角度不宜小于30°。 当铁路桥梁与管道交叉条件受限时,在采取安全措施的情况下交叉角度可小于30°。 当管道采用顶进套管、顶进防护涵穿越既有铁路路基时,交叉角度不宜小于45°。 第七条当管道穿越铁路有砟轨道路基地段时,可采用顶进套管、顶进防护涵、定向钻、隧道等方式。

油气管道输送

《天然气管道输送》 1、天然气从井口到用户经过五大环节:采气、净、输、储、供。三套管网:集气管网、输气干线、城市配气。集输管道系统、长输管道系统、配气管道系统是一个统一、密闭的水力系统。 2、输气管道发展趋势:大口径、高压力、网络化; 高强度、高韧性管材; 地下储气库储气和调峰; 数字化技术应用 采用高压富气输送; 3、长输管线工程设计程序分为规划、项目建议书、可行性研究、初步设计、施工图设计。线路勘察和测量:踏勘、初步勘察、详细勘察。 4、天然气气质指标:发热量、硫化氢含量、总硫含量、二氧化碳含量、水露点。水露点比最低环境温度低5℃。 5、由于输气管道沿线压力的变化,气体的密度也随之变化,压力高,密度大;压力低,密度小。因此消耗于克服上坡管道的能量损失无法被在下坡管道中的气体获得的位能补偿。(为什么地形起伏会对输气工艺参数有影响) 6、输气管道的效率系数E一般小于1。E越小,输气管道越脏,管内沉积物越多,流量越小。 7、输气管道水力计算计算段长度为两个压缩机站间的距离。倍增压缩机站,输气量增加41%。 8、在进行复杂输气管道计算时,可将其化为简单输气管道。两种方法:当量管法(只适用于平行管)、流量系数法。 (1)简单输气管道的流量系数计算公式为: (2)把副管与管道系统中其它管道连接起来的短管称为连通管,用其连通后输气管道系统的流量与连通前流量之比称为连通管的效率 9、输气管道的平均温度:输气管道温降曲线与沿线坐标所包的面积和某一温度与沿线坐标所包的面积相等时,称该温度为平均温度——T cp。T cp越高,输气能力越小。在进行管线设计时,应将夏季低温T0作为水力计算的依据。 10、天然气水合物形成条件:①天然气处于合适的温度和压力;②天然气必须处于或低于水汽的露点温度(天然气的水露点),出现“自由水”。 防止措施:①提高天然气流动温度;②降压;③添加抑制剂;④干燥脱水(根本方法) 11、离心式压缩机的特性曲线是指压缩机的压缩比ε、效率ηn、功率N、压头H、流量Q和转速n的关系曲线。 12、压缩机转速不变时,压缩比随流量的增加而减小;功率随流量的增大而

油气集输工艺标准技术现状与展望-第二章长距离输油管道输送工艺标准技术

第二章长距离输油管道输送工艺技术 1. 概述 长距离输油管道通常是指距离长、管径大、输量高的原油管道,输送压力高而且平稳。由输油站和管路两部分组成,输油站分为首站、若干中间加压站、若干中间加热站及末站,其任务是供给油流一定的压力能和热能,将原油安全、经济地输送给用户;管路上每隔一定距离设有为减少事故危害、便于抢修,可紧急关闭的若干截断阀室以及阴极保护站。 输送原油的粘度和凝固点比较低,可以采用不加热直接输送的方式,但是具有较高凝固点和粘度的原油,就需要经过加热后输送,或者经过改性,采用不加热的常温输送方式。北美国家的输油管道多是输送低凝点、低粘度原油,所以多为不加热输送。对于凝点和粘度较高的原油均采用加热输送(如美国全美管道和科林加管道)。随着原油流变性的研究,原油添加化学降凝剂后常温输送技术也应用于一些原油管道运行管理中。由于实际生产需要和常温输送的工艺优越性,促使此项技术日趋成熟。近20年来,我国有10多条原油管道试验研究了添加化学降凝剂输送技术,取得的技术成果和经济效益是十分明显的。 1.1 高凝点、高粘原油的输送 我国生产的原油多属高含蜡、高凝固点、高粘度原油,对于凝固点、粘度较高的原油来说,输送工艺可分为两种类型,一是加热输送,另一是常温输送。我们在加热输送高凝、高粘原油方面积累了丰富非经验,但加热输送有其弱点,一

是低输量受到热力条件的制约,二是一旦发生事故停输,必须立即抢修,及时恢复运行,否则,较长时间的停输会酿成凝管事故。 1.1.1 加热输送工艺 加热输送是指将原油加热后进入管道加压输送,通过提高原油输送温度降低其粘度,来减少管路摩阻损失。原油管道加热输送存在两方面的能量损失,散热损失和摩阻损失。热油向下站输送过程中,由于其温度高于管路周围的环境温度,存在径向温差,热油携带的热能将不断地往管外散失,因而使油流温度在向前输送过程中逐渐降低,引起轴向散热损失,油流温度下降,粘度上升,单位长度管路的压降逐渐增大。需要重视的是油流温度接近凝固点时,单位长度管路的压降会急剧上升,容易出现管道事故。我国原油大多具有粘度大、凝固点高的性质,加热输送工艺是国内原油管道常用的一种输送工艺。 还有两种不常用的加热方式,一是以阿拉斯加管道为代表,该各管线原油流速达3.13m/s,原油在高速下摩擦所产生的热能足以弥补沿程热损失,这种方式一般来说不经济,只能在特定场合下使用。另一种是利用电集肤效应加热,以印尼贝鲁克到米那斯管线为代表,长114km。 1.1.2 常温输送工艺 对于高含蜡原油管道输送,通常采用化学添加剂(降凝剂或流动改进剂、蜡晶抑制剂)、进行热处理、用轻烃馏份稀释原油、用水作成乳化液或形成水环等方式。

稠油常温输送现状分析

稠油常温输送现状分析X 唐 奕,黄 坤,吴国霈 (西南石油大学,四川成都 610500) 摘 要:分析了稠油常温输送中目前常用的降粘方法(包括掺稀油降粘、加减阻剂及化学降粘等)的降粘原理及其优缺点,并且举出这些降粘方法在国内外的一些应用情况。 关键词:稠油;降粘方法;稠油掺稀;水环输送;减阻剂;乳化降粘 1 前言 1.1 稠油资源 世界稠油资源蕴藏丰富,估计有4000~9000亿t,可采储量达1800亿t,而普通原油资源只有3600亿t,可采储量为1350亿t。我国工业开采稠油始于50年代末,随着采油技术的发展,稠油产量越来越大。目前中国石油天然气总公司稠油日产量约为15万桶。国内稠油产量大约占原油总产量的30%~35%,但开采集输能耗占60%以上〔1〕。因此,大力开发稠油资源并且研发更加节省能耗的集输方式必将成为我国油气领域的发展趋势。 1.2 稠油输送的国内外现状及趋势 经过近几十年石油科技工作者的不懈努力,稠油开采及输送技术取得了长足的进步。目前原油集输工艺主要包括:加热法、稀释法、掺热水或活性水法、乳化降粘法、低粘液环法、改质降粘法等。其中加热输送方法是传统的方法,目前也仍是国内外原油主要集输方法,但其能耗高,输量1%以上的原油被烧掉和损耗,经济损失大,此外还存在停输再启动困难、存在最低输量等问题。因此,世界各国原油集输研究工作都在致力于用其它非加热输送方式,逐渐减少或取代加热输送方式。 2 各种稠油常温输送方法 2.1 稠油掺稀输送方法 原理:就是将稠油稀释,降低稠油的粘度,以混合物的形式进行输送的一种方法。常规的稀释方法是,在稠油进入管道之前,先将稠油与一些低粘液态碳氢化合物混合在一起,这样就可以降低稠油的输送粘度。掺入轻质油(包括天然气凝析液、原油的馏分油、石脑油等)稀释一直是稠油降粘减阻输送的主要方法。轻质油来源方便并且充足时,稀释降粘减阻技术是最简单且有效的。目前,新疆、胜利、河南等国内油田对距离较远的接转站,均采用掺稀油降粘流程〔2〕。 优点:1可以直接利用常规的原油输送系统来输送稠油;o在停输期间不会发生稠油凝固现象。 缺点:1稀油来源必须要有保障;o需要建专门的管线把稀油从产地输至油田与稠油掺混;?稠油中掺入稀油,对稠油和稀油的油质都有较大的影响,很难最有效地利用稠油和稀油资源。稠油掺稀输送方法已在加拿大、美国、委内瑞拉和我国得到了广泛的应用〔3〕。 应用情况:苏联秋明油田是使用了凝析油作稀释剂来解决矿场集输的。由于凝析油是从凝析油矿产出的,故本方法是经济的而且效果也很好。比如当温度1.5℃时,原油粘度为4456cP,而当加入10%凝析油后,粘度降为356cP,当加入20%凝析油后,粘度降为78.7cP。当温度10℃时,原油粘度为1,635cP,可是若加入10%凝析油后,粘度下降为198cP。而加入20%凝析油后,粘度降至50cP〔5〕。 实践证实.加入烃类稀释剂可大大降低原油粘度,而原油粘度降低的程度,随着稀释剂粘度的降低和温度的降低而增加。 2.2 掺热水法或活性水输送方法 所谓伴水悬浮输送就是在伴水中把高含蜡原油形成凝油粒的水包油悬浮液(不是乳状液),从而使高含蜡原油的有效粘度降低,达到管输的目的。此法对于高凝固点高含蜡原油,以及在气温较低的地区输送稠油是很适宜的。 原油性质是使用这种方法的决定因素。根据1922年杰弗雷创立的最小能量散失理论:在管路中流动的液体球会从管壁向中心移动。外层水环中有着很大的速度梯度并进而产生了类似“滑动”的现象,使有效粘度显著地降低。在悬浮液的主流中存在较小的速度。伴水悬浮输送的液流属于非牛顿型的,其有效粘度不仅与剪切速度有关,还随温度降低而升高。悬浮流的流动性质与外层水环的滑动、剪速、时间及温度有关〔2〕。 缺点:该工艺存在管线结垢严重、管道腐蚀严重、掺水量大、掺水温度高、油水易分层、脱水负荷大、设计难度大等问题。 应用情况:美国加州中途日塔油田采取注蒸汽二次采油法,所采原油属于重质高粘原油,其相对密度为0.9930,粘度在37.78℃时比水粘度大50000倍。 从井口到集油站是加热输送,收集的原油储存在4770m3罐内。从集油站到10区脱水站采用伴水悬浮输油法,这段管线长38.6km,管径152mm,日输液量4293m3,其中油占70%,水占30%〔5〕。 2.3 低粘液环(水环)输送方法 原理:是指向稠油中掺入一定量的低粘度不相溶液体(一般为水),在输送过程中,将油流的速度控制在某一范围内(0.84~1.3m/s),可形成环状流,粘度大的稠油作为芯流引入输送管道中被水包围, 78内蒙古石油化工 2008年第10期 X收稿日期:2007-08-12

油气输送管道高后果区识别与评价释义

油气输送管道高后果区识别与评价释义 河南汇龙合金材料有限公司 2018年3月整理

高后果区是政府监管、社会关注的对象,也是企业管理的重点。国家安监总局等八部门联合印发《关于加强油气输送管道途经人员密集场所高后果区安全管理工作的通知》(安监总管三〔2017〕138号)要求,各管道企业按照管道完整性管理规范,全面开展人员密集型高后果区识别和风险评价工作,各有关部门要建立人员密集型高后果区更新机制。 1高后果区定义 《油气输送管道完整性管理规范》(GB32167―2015)将“高后果区”明确定义为“管道泄漏后可能对公众和环境造成较大不良影响的区域”,是指油气管道发生泄漏失效后,可能造成严重人员伤亡或者严重环境破坏的区域。 2高后果区识别 按照GB32167的规定,高后果区分为三级,严重程度由高到低依次为III级、II级、I级。 2.1输油管道高后果区 (1)管道中心线两侧各200m范围内,任意划分成长度2km并能包括最大聚居户数的若干段,四层及四层以上楼房(不计地下室层数)普遍集中、交通频繁、地下设施多的区段(III级高后果区) 该条款定义的III级高后果区为人口密集型高后果区。规定了管道中心线两侧的距离为200m,长度为包括最大聚居户数的2km,当满足“四层及四层以上楼房(不计地下室层数)普遍集中”的条件时,就可以识别为III级高后果区。其中,“普遍集中”应理解为不少于2栋。同时,因为定义该类型III 级高后果区是按照居民(建筑物)密度指数来划分的,对于管道穿越交通频繁和地下设施多的区域,可以不作为该类型III级高后果区进行识别。

(2)管道两侧各200m内有水源、河流、大中型水库(III级高后果区) 该条款定义的III级高后果区属于环境敏感型高后果区。规定了在管道两侧各200m范围内存在水源、河流和大中型水库时,就可以识别为III 级高后果区。同时需要注意,如果通过环境敏感性分析,虽然在管道某一侧200 m范围内存在敏感的受体(包括水源、河流和大中型水库),但是确定了管道发生泄漏后不可能进入附近的受体,可不作为高后果区进行管理,但需在高后果区识别过程中做好分析和说明。 在识别该类型高后果区时,不仅考虑管道两侧200m,还需要综合考虑GB32167中6.2.4“当输油管道附近地形起伏较大时,可依据地形地貌条件、地下管涵等判断泄漏油品可能的流动方向,对表1中c)、d)、e)、f)中的距离进行调整。” (3)管道中心线两侧各200m范围内任意划分2km长度并能包括最大聚居户数的若干地段,户数在100户以上的区段,包括市郊居住区、商业区、工业区、发展区以及不够四级地区条件的人口稠密区(II级高后果区) 该条款定义的II级高后果区属于人口密集型高后果区。规定了管道中心线两侧的距离为200m,长度为包括最大聚居户数的2km,除III级高后果区外,当满足居民(建筑物)密度指数超过125户/km2的条件时,就可以识别为II级高后果区。 (4)管道两侧各200m内有聚居户数在50户或以上的村庄、乡镇等(II级高后果区) 该条款定义的II级高后果区属于其他人口型高后果区。规定了居民(建筑物)密度指数超过62.5户/km2,而小于125户/km2的条件时,就可以识别为II级高后果区。该类型高后果区不仅仅是管道两侧200m,还需要综合考虑GB32167中6.2.4“当输油管道附近地形起伏较大时,可依据地形地貌条件、地下管涵等判断泄漏油品可能的流动方向,对表1中c)、d)、e)、f)中的距离进行调整”。 对于居民(建筑物)密度指数低于62.5户/km2的住宅区可不作为该条款的II级高后果区进行识别。

相关文档
相关文档 最新文档