文档库 最新最全的文档下载
当前位置:文档库 › 金属基复合材料的发展与研究现状_李凤平

金属基复合材料的发展与研究现状_李凤平

金属基复合材料的发展与研究现状_李凤平
金属基复合材料的发展与研究现状_李凤平

收稿日期:2003207221

作者简介:李凤平(1956-),男,副教授,从事产品造型设计。

金属基复合材料的发展与研究现状

李凤平

(辽宁工程技术大学机械学院,辽宁阜新 123000)

摘要: 本文对金属基复合材料的分类、制造方法进行了综述,阐述了国内外研究现状,提出了在重金属基复合材料的研究中存在的问题,探讨了重金属基复合材料的研究方向。

关键词: 金属基复合材料;制造方法;分类;研究现状;研究方向

中图分类号:TB331 文献标识码:A 文章编号:1003-0999(2004)01-0048

近20年来,伴随航空航天工业和宇宙空间技术及民用行业技术的进步,金属基复合材料获得惊人的发展。在航天、机器人、核反应堆等高技术领域,镁基、铝基、钛基等轻质复合材料起到了支撑作用[1],SiC 晶须增强的铝基复合材料薄板将用于先进战斗机的蒙皮和机尾的加强筋,钨纤维增强高温合金基复合材料可用于飞机发动机部件,石墨/铝、石墨/镁复合材料具有很高的比刚度和抗热变形性,是卫星和宇宙飞行器用的良好的结构材料。美国航天航空局采用石墨/铝复合材料作为航天飞机中部长20m 的货舱架。此外,金属基复合材料还可以用于光学与精密仪器,美国把金属基复合材料高性能反光镜用于红外探测系统,航天激光系统及超轻量太空望远镜,通过改变SiC 强化颗粒占铝基合金的比例,能使反光镀层的热膨胀系数与复合材料相同,有助于提高跟踪和命中率。

在民用工业中,复合材料的应用领域十分广阔。以碳氮化物或金属间化合物颗粒为强化剂的钢基复合材料,能明显提高强度、韧性、耐磨、耐蚀和切削性能。美国在各类合金钢中用适当工艺加入TiC ,称之为TiC 2铁基复合材料,前苏联称这类复合材料为碳化物钢。这类材料的特点是重量轻、尺寸稳定、硬度高、摩擦系数小。根据不同基钢,可使复合材料具有耐蚀、耐磨、耐热性能,也可做成无磁材料。尤其是工具、模具钢、高温合金、夹具和耐磨件,采用这类复合材料能有效提高寿命和性能,日本和前苏联将用粉末冶金制取得这类材料称为新型硬质合金。用Al 2O 3或SiC 晶须或纤维强化的复合材料,由于耐

高温和高强度,可用于发动机和泵的叶轮,也可加工成模具。如果工程机械用刮板及铲斗和冶金行业用磨损件由普通耐磨钢改为陶瓷复合材料,则可明显

提高材料使用寿命。在汽车制造行业中,20~60%

的零件可以用碳纤维复合材料制造,一般可减重40~80%[1]。氧化铝增强铝合金已成功地制成镶圈,用于活塞环槽及顶部,以代替含镍奥氏体铸铁,不仅耐磨性相当,而且还可以减轻重量,简化工艺和降低成本。另外,发动机钢套、连杆、连销、刹车盘等也在使用金属基复合材料制造,如果能打开市场,将会有较大的产量。其他方面,如运动器材、自行车架、各种型材以及装甲车履带、轻质防弹装甲车等也初步应用复合材料。

1 金属基复合材料的分类

金属基复合材料可分为宏观组合型和微观强化型两大类[2]。宏观组合型指其组分能用肉眼识别和具备两组分性能的材料(如双金属、包履板等);微观强化型指其组分需用显微镜才能分辨的以提高强度为主要目的的材料。根据复合材料基体可划分为铝基、镁基、钢基、铁基及铝合金基复合材料等。按增强相形态的不同可划分为颗粒增强金属复合材料、晶须或短纤维增强金属基复合材料及连续纤维增强金属基复合材料。颗粒增强金属基复合材料是利用颗粒自身的强度,基体起着把颗粒组合在一起的作

用,颗粒平均直径在1

μm 以上,强化相的容积比(Vf )可达90%[4]。纤维增强金属基复合材料是利用无机纤维(或晶须)及金属细线等增强金属得到轻

而强的材料,纤维直径从3

μm 到150μm (晶须直径小于1

μm ),纵横比(长度/直径)在102以上。2 金属基复合材料的制备方法

金属基复合材料的复合工艺相对比较复杂和困难。这是由于金属熔点较高,需要在高温下操作;同时不少金属对增强体表面润湿性很差,甚至不润湿,加上金属在高温下很活泼,易与多种增强体发生反

FRP/CM 2004.No.1

应。目前虽然已经研制出不少复合工艺,但各自存在一些问题。现在较普遍的制造方法可分为扩散粘结法、铸造法及叠层复合法。本文又可根据增强相的不同把制备方法分别分类。

211 颗粒增强金属基复合材料的制备方法

根据制备过程中基体的温度可将制备工艺分为液相工艺、固相工艺和液2固两相工艺[5]。针对不同工艺可以分出不同的制备方法。

(1)液态金属/陶瓷颗粒搅拌铸造法

Surappa和Rohtgi[3]最早采用搅拌法制备PRMMCs,通过机械搅拌在熔体中产生涡流引入颗粒。还可采用其它方法引入颗粒,如离心铸造法、气流喷射分散法及零动力工艺等。Loyd DJ[3]采用涡流法制备了SiCp/2L108复合材料,其颗粒分布均匀。研究结果还显示了对SiC颗粒进行预处理有利于制备PRMMCs。搅拌工艺取得最重要的突破来自于Skibo和Schuster开发的Duralcan工艺[9]。这种工艺使用普通的铝合金和未涂覆处理的陶瓷颗粒,采用搅拌法引入增强相,颗粒尺寸可小到10μm,增强相体积分数可达25%。Duralcan工艺在产业化进程中处于领先地位。另外,Hydro Aluminum AS公司和Comala公司可制备与Duralcan工艺相媲美的复合材料。尽管搅拌铸造法的开发取得了令人鼓舞的成果,但是一些问题仍然存在,有待进一步解决,包括搅拌过程的陶瓷颗粒偏聚、颗粒在液体中的分散和界面反应等。此外体积分数还受到一定的限制。

(2)熔体浸渗法

熔体浸渗工艺包括压力浸渗和无压浸渗。当前是利用惰性气体和机械装置作为压力媒体将金属熔体浸渗进多气孔的陶瓷预制块中,可制备体积分数高达50%的复合材料,随后采用稀释的方法降低体积分数。这种方法被广泛采用,已用于制造Toyoto 发动机活塞(Al2O3/短纤维/Al合金)。东南大学的朱光明研制了Al2O3短纤维局部增强铝活塞,成果于1989年获得鉴定。最新的液相工艺是Primex无压浸渗工艺,在氮气气氛下不需施加任何压力,Al2 Mg合金熔体就能良好的浸渗陶瓷粉末堆积体,可制备体积分数高达55%的复合材料,增强相可是SiC和Al2O3,颗粒尺寸可小至1μm。液态金属浸渗法是一种制备大体积分数复合材料的好方法,但是也存在缺点,如预制块的变形、微观结构不均匀、晶粒尺寸粗大和界面反应等。

(3)固相工艺2PM法

PM(粉末冶金)法是最早开发制备PRMMCs的工艺之一,一般包括混粉、冷压、除气、热压和挤压过程。它的优点是任何金属都可以作为基体材料;允许使用所有种类的增强相;可以使用非平衡合金,如快凝合金和快淬粉末可以制备大体积分的复合材料;最大限度地提高材料的弹性模量,降低热膨胀系数。但是它也存在许多缺点,如需要存储大量具有高反应性和易爆炸的微细粉末,复杂的生产过程,产品的形状受到限制,生产成本很高等,使得这种方法很难在生产中获得广泛的应用。

高能高速工艺实质上也是一种PM工艺。它通过在短时间内利用高电能和机械能快速固结金属-陶瓷混合物,短时快速加热可以控制相转变和显微结构粗化,这是通常PM工艺不能达到的。

(4)流变铸造法

流变铸造法是对处于固2液两相区的熔体施加强烈搅拌形成低粘度的半固态浆液,同时引入陶瓷颗粒,利用半固态浆液的触变特性分散增强相,但存在搅拌工艺所有的问题。

(5)喷射沉积技术

喷射沉积技术(Spray deposition)最初是Singer 开发的,由Osprey Metals公司投入生产应用。它是在雾化器内将陶瓷颗粒与金属熔体相混合,随后被雾化喷射到水冷基底上形成激冷复合颗粒,需随后进行固结才能制成大块复合材料。可变多相共积技术(VCM)是Osprey的一种改进型,其区别在于陶瓷颗粒是喷射到已雾化的金属熔滴流中,金属熔滴与陶瓷颗粒同时沉积。VCM工艺的沉积率可达6~10kg/min。Alcan公司对此工艺进行产业开发,可生产200kg的铸锭。Cuptal et al采用VCM制备了体积分数为20%的SiC/Al2Li复合材料。喷射沉积技术用于制备PRMMCs具有以下优点:所得基体组织属于快凝范畴;陶瓷颗粒与金属熔滴接触的时间极短,界面化学反应得到有效控制;控制工艺气氛可以最大地减少氧化;几乎适合任何基体/陶瓷体系。采用此技术生产PRMMCs的成本介于粉末冶金法与液相搅拌法之间。

(6)XD技术

这是由Martin Marietta公司开发的专利技术,利用金属2金属之间或金属2化合物之间发生的放热反应在金属熔体中原位产生新的所希望获得的金属间化合物2陶瓷增强相,例如:

FRP/CM 2004.No.1

2B+Ti+Al→TiB2+Al

3B2O3+3TiO2+10Al→3TiB2+5Al2O3

3SiO2+4Al→2Al2O3+3Si

C+Ti+Al→TiC+Al

另外一种原位反应合成方法是向金属液中喷入氨气或含碳气体而成:

N2(气体)+Al→AlN+Al

C(含碳气体)+Ti+Al→TiC+Al

原位反应产生的增强相颗粒尺寸一般为012~1μm,也有报道在0125~115μm范围内。采用此工艺技术制备复合材料,增强相被液态金属润湿,界面结合牢固,因而非常具有吸引力,成为当前复合材料研究的一个热点。但过于细小的颗粒会显著增加熔体的粘度,难以进一步铸造成型。

用于PRMMCs的制备技术有各种各样,这里仅就几种较为先进的,有可能转化为产业生产的制备技术进行了介绍。铸造法同其它工艺相比,制备简单,可实现近净成型,制备成本最低,因而铸造法是最有可能转化为产业化的技术。目前最趋于产业化生产的是Duralcan工艺。Duralcan工艺提供的复合材料锭的价格为6美元/kg。但真正实现产业化还需要解决增强相与金属基体之间的界面反应与控制、颗粒微观分布均匀性问题、组织与性能的再现性、进一步降低生产成本,而这些问题又是相互关联相互影响的。

212 纤维增强金属基复合材料的制备方法

FRM的制造方法有固相扩散结合法、粉末冶金法、铸造法及定向凝固法等几大类。铸造法根据增强材料的加入方法分为熔浸法和事先混合法两类[4]。

对长纤维和连续纤维增强,为控制好纤维分布状态,往往先制出纤维预成型体,把纤维预成型体下到铸型中,然后浇金属液,这是制备FRM的最简单方法。但此方法获得的材料中存在大量孔洞,原因是金属液对纤维的润湿性不好。故制造FRM的关键是采取措施、使金属液浸透到增强纤维的间隙内,从而确定复合材料的致密性和结合强度。常用的方法有真空吸铸、加压凝固铸造及压铸等。

对短纤维和颗粒增强材料随机均匀分布的MMC来说,多采用事先混合法。该法按复合时金属液状态分为液相法和半固态法。液相法系采用搅拌器搅动金属液出旋涡后加入增强材料,从而使增强材料在金属液中均匀分布。半固态法是把增强材料加入到半固态金属中后搅拌。显然事先混合法不适于制造连续纤维增强FRM。

(1)真空铸造法

用真空铸造法制造FRM时,先把连续纤维缠绕在绕线机上,用聚甲丙烯酸等能加热分解的有机高分子化合物粘结剂制成半固化带,再把数片半固化带叠加在一起压制成预成型体。把预成型体放入铸型中,加热到500℃使有机高分子分解去除。铸型的一端浸入基体金属液中,另一端抽真空,将金属夜吸入铸型内浸透纤维,待冷却凝固后从铸型内取出。

(2)加压凝固铸造法

该法是将金属液浇注铸型后,加压使金属液在压力下凝固。金属从液态到凝固均处于高压下,故能充分浸渗、补缩并防止产生气孔,得到致密铸件。铸、锻相结合的方法又称挤压铸造、液态模锻、锻铸法。此法最适于制造纤维增强MMC。加压凝固铸造法可制造较复杂的异型MMC零件,亦可局部增强。由于复合材料是在熔融状态于压力下复合,故结合十分牢固,可获得力学性能很高的零部件。这种高温下制成的复合坯,二次成型比较方便,可实施各种热处理,达到对材料的多种要求。

(3)压铸法

压铸法是把金属液压射到铸模内,在压力下凝固的方法。所面临的实际问题是如何把纤维加到金属液中,还有随静止时间加长,纤维或上浮或沉淀,难于在铸型内均匀分布。

(4)半固态复合铸造法

此法是从半固态铸造法发展而来的。半固态合金具有流变性,可进行流变铸造;半固态浆液具有触变性,可将流变铸造锭重新加热到所要求的固相组分的软化度,送到压铸机中压铸,由于压铸时浇口处的剪切作用,可恢复其流变性而充满铸型,此称作触变铸造。颗粒或短纤维增强材料加入到强烈搅拌的半固态合金中。由于半固态浆液中球状碎晶粒子对添加粒子的分散和捕捉作用,既防止了添加粒子的上浮、下沉和凝聚,又使添加粒子在浆液中均匀分散。可使润湿性改善,促进界面结合。

(5)定向凝固

FRM按其制法可分为两大类。一类是将纤维掺入基体中的人工合成法;另一类是使纤维在基体中生长出来,即自身生长出各向异性的纤维组织,得到原位型复合材料。该法是把熔融共晶成分或近共晶成分的合金以大的温度梯度及适当的冷却速度按

FRP/CM 2004.No.1

一定方向凝固,第二相金属间化合物就按一定的方向长成晶须状,得到晶须增强金属。

(6)离心铸造法

该方法是将增强体颗粒或短纤维预先置入离心机内,靠离心力甩出预成型套,然后浇入液态金属,利用增强相与基体密度不同,而得到复合材料,但是该方法还存在增强体在基体中分布及界面问题。

3 金属基复合材料的研究现状

受航天工业的影响,轻金属基复合材料有了很大的发展,已开发出很多成型制造工艺。另外,目前大多学者都投入到轻金属基复合材料的研究中,而对钢、铁等重金属基复合材料的研究微乎其微。从民用行业考虑,有必要对重金属基复合材料进行深入研究,下文主要介绍重金属基复合材料的研究现状。

311 国外重金属基复合材料的研究[1]

美国Alloy Technology International公司开发了热等静压法制造TiC复合材料。例如Cs240是以含20%Cr的不锈钢为基体,掺和45%(体积)TiC的复合材料,可以用于制造标准件、阀座和机械密封件。它在油中或惰性气体下淬火,硬度达到HRC68,此类材料对食品加工所需要的环境具有良好的横向破断强度,可用作工具及承受很高的弯曲和拉伸应力的制品,最易切削加工,并具有良好的耐热震性。另据报道,Ferro2TiC复合材料在磨损条件下使用与工具钢相比,寿命提高约20倍。

日本Kurimoto公司研制了由烧结碳化钨合金粉和高铬铸铁组成的复合材料,在一层烧结碳化钨合金粉上浇注熔化的高络铸铁形成复合板。新开发的这种超级耐腐复合材料,用作运输机的衬板,工作寿命超过670d,而原来用的高络铸铁仅为30~50d。日本富士电机公司开发了用以制作水轮机和水泵等部件的耐气蚀、耐砂土腐蚀的复合材料,金属基体是一种双相不锈钢(含Cr20230%,Ni3210%,Mo12 5%),硬质颗粒为Cr3C2、SiC、WC等,添加量5~60%(重量),比原来用的Cr13铸钢件的耐气蚀性提高10倍。

西德蒂森特钢公司用粉末冶金法生产了Ferro2 Titantit复合材料。该材料含45%(体积)TiC,Tic 均匀分布并镶嵌在高合金钢中。用它制成的模具比用莱氏体铬钢的寿命提高5~10倍,可用普通方法进行车、铣、钻削加工,最后淬硬到HRC70而不发生变形。前苏联开发应用了在干摩擦条件下使用的以12X18H10T为基体的复合材料,就碳化物含量和热处理制度对此类材料性能的影响进行了很多研究。E1pagounis,U1k1Lindroos采用热等静压法制备了体积分数高达30%的陶瓷颗粒增强钢基复合材料。其研究结果表明在所有增强体中,TiC和钢的结合最好,加入陶瓷颗粒后,钢的耐磨性显著提高,而抗拉强度、延展性和冲击韧性反而下降,这和轻金属有很大区别。

A1IBRAHIM等人也对颗粒增强复合材料进行了研究。研究结果表明:制备颗粒增强金属基复合材料时,润湿性是一个大难题,可通过以下途径来改变增强体与基体的润湿性:①提高增强体的表面能;

②降低固液界面能;③降低液态金属的表面张力。具体方法如下:对颗粒表面进行覆盖,如气相沉积镍或铜;使金属液合金化;热处理颗粒等。

D1NA TH and P1K1ROHA TG L采用离心铸造法制备了颗粒增强复合材料。研究结果表明:离心铸造时易造成颗粒偏聚区,偏聚区宽度随浇注温度提高和颗粒尺寸的增大而减小。

312 我国重金属基复合材料的研究

东北大学刘进平等采用离心预成型套法制成了SiC颗粒/铸铁复合材料。这种方法是依靠离心力把增强颗粒分布于铸件外表面,获得一定复合层厚度的复合材料,最大复合层厚度可达6~8mm。刘政等研究了纤维增强金属基复合材料的界面。结果表明界面在材料磨损中具有重要的保护作用。复合材料可通过界面消耗裂纹扩散能量,阻止裂纹扩散,减轻材料的破坏程度。这种机制为基体合金所不及,且在较大载荷下,复合材料的耐磨性更佳。哈尔滨工业大学李道明等研究了金属基复合材料的拉伸断裂过程[6],详细论述了微观裂纹的萌生及扩展,探讨了断裂机制,并对拉伸断裂行为与纤维强度分布进行了微机模拟。结果表明,随着纤维强度分布的变动系数CV增加,MMC断裂形式由非积累型向积累型过渡,纤维的平均承载能力随之下降。徐大庆研究了金属基复合材料的抗冲蚀性[7]。研究表明复合材料的组织从表层至心部可分为复合层、过渡层、和基体三部分。复合材料的抗冲蚀性能优于渗碳A3钢,WC粒度对抗冲蚀性能影响不大,铁基复合材料的基体应选择有较高硬度和强度的材料。权高峰等研究了增强体种类及含量对金属基复合材料性能的影响。研究结果表明,粉末冶金法制备非连续增强金属基复合材料可获得较高的强度和

FRP/CM 2004.No.1

弹性模量,复合材料的断裂应变随增强体含量增加而减小。

4 存在的问题及发展方向

411 存在的问题

重金属基复合材料在民用行业中的应用与研究相对缓慢。如果要使其推广使用,还必须解决以下几个问题。

(1)制备成本与制备技术

重金属基复合材料普遍存在制备成本问题。在制备过程中,所用设备专一,制备工艺复杂,很难应用于生产。若要使复合材料真正进入到产业化,还需要进行更深一步的研究,简化制造工艺,降低制造成本,增强复合材料的市场竞争力。

(2)增强体/金属的润湿性

复合材料性能的优劣性依赖于增强体与基体的结合及增强体的分布状况,而决定结合及分布状况的主要因素之一便是润湿性。由于大多数金属基体与增强体润湿差甚至不润湿,这就给复合材料的制备带来困难。研究[10]表明,添加合金元素及提高液态金属温度会提高增强体与基体的润湿性,但该做法又会提高成本或牺牲复合材料的性能,且润湿效果并不十分明显。

(3)增强体与基体的界面

由于金属基体熔点较高,需要在较高温度下制备复合材料,基体与增强体之间不可避免发生程度不同的界面反应及元素偏聚等。界面反应的程度决定了界面的结构性能。界面反应的主要结果有促进增强体与基体的润湿,产生界面反应物2脆性相,造成增强体损伤和改变基体成分。界面反应促进润湿对制备复合材料是有利的。这类反应轻微,不损伤颗粒、晶须等增强体。但是一旦反应生成脆性相进而形成脆性层,就会造成增强体严重损伤,同时造成强界面结合,复合材料性能急剧下降,甚至低于基体性能。

(4)增强体在基体中的分布

在制备金属基复合材料过程中,增强体在基体中偏聚是研究者遇到的难题之一。如何使其分布均匀也同样决定着复合材料的性能。在国内的研究中,试图通过离心铸造[11]、加强搅拌、配制中间合金、原位复合等手段解决该问题。但上述方法中还存在许多缺点,如离心铸造只能获得表面复合层和中间合金的材料性能等。因此,如何使增强体分布均匀始终是众多学者研究的对象。412 重金属基复合材料研究方向

(1)加强对制备工艺的研究。简化制备工艺,降低制备成本,始终是研究热点之一。

(2)加强对强化机制的研究。目前金属基复合材料的强化机制研究还不是很成熟,各家学者各有所见[10],很难达成共识。应加强对强化机制的研究,探讨复合材料的凝固过程,研究增强相与基体的微观作用机理,进一步推动金属基复合材料的发展。

(3)加强对增强相润湿性的研究。润湿性问题一直困扰研究金属基复合材料的学者,给实际制备复合材料带来很大的困难。目前,有些学者研究了铝基复合材料的润湿性,并取得了一定的进展[10]。但对钢基复合材料的研究却很少,国内目前尚未见报道。如果想制备优良的钢基复合材料,润湿性问题尤显重要。

(4)提高基体性能,进而提高复合材料的性能。目前多数学者研究的重点侧重于增强体与基体的结合界面及增强体在基体中的分布[11~12],却忽略了基体自身的性能。基体本身的性能对复合材料的影响也至关重要,性能优越的复合材料同样要求有性能优越的基体,因此应加大对基体和增强体性能同步提高的研究。

参考文献

[1]王玉砚1复合材料的发展现趋势[J]1国外金属材料,1991(1).

[2]于春田1金属基复合材料的发展及展望[J]1铸造,1994(11)1

[3]Loyd DJ1Particle Reinforced Aluminum and Magnesium Matrix

Composites[J]1Intl Mater Reviews,1994,39(1):1-221

[4]于春田1纤维增强金属的制法及特征[J]1铸造,1995(7)1

[5]陈锋,舒光翼1SiC颗粒增强ZA17基复合材料的摩擦磨损性能

[J]1机械工程材料,1998,22(6)1

[6]李道明等1金属基复合材料拉升断裂过程及其分析模型[J]1金

属科学与工艺,1990,9(4)1

[7]许大庆1铁基颗粒复合材料的组织与抗冲蚀性[J]1特种铸造及

有色合金,1998(6)1

[8]张力宁等1颗粒增强金属基复合材料强化机制探讨[J]1东南大

学学报,1995,25(4)1

[9]权高峰,柴东朗等1非连续增强金属基复合材料的物理增强机

制研究[J]1西安交通大学学报,1994,28(2)1

[10]张国定1金属基复合材料界面问题[J]1材料研究学报,1997,

11(6)1

[11]Krishnan1B P,Shetty H R and Rohatgi P K1Centrifugally Cast

Graphitic Aluminum with Segregated Grahite Particles[J]1AFS

Trans.,1976,84:73-801

[12]隋贤栋,罗承萍等1离心铸造Al基复合材料中SiC粒子的偏析

行为[J]1铸造,1997(9)1

(下转第13页)

FRP/CM 2004.No.1

层相应的预浸料铺贴后采用热压罐成型工艺制成。从表2可以看出,QW280/改性环氧树脂复合材料与TC 8/32K 2TO/改性环氧树脂复合材料力学性能基本相当。3.2 石英纤维织物/改性环氧复合材料介电性能

图1、2中的曲线分别描绘出了在2~16GHz

图2 2~16GHz

范围内介质损耗角正切变化曲线

图1 2~16GK z 范围内介电常数变化曲线

频测试范围内,QW280/改性环氧树脂和TC 8/32K 2

TO/改性环氧树脂复合材料层压板随频率增加介电性能变化的趋势。从图中可看出,上述两种材料的介电性能相当,且在2~16GHz 范围内随频率增加两种复合材料的介电常数和介质损耗角正切变化较小。

4 结 论

(1)QW280和TC 8/32K 2TO 石英纤维织物/改性

环氧树脂复合材料的力学性能和介电性能相当,且在2~16GHz 范围内随着频率增加介电性能变化较小;

(2)QW280及TC 8/32K 2TO 石英纤维织物/改性环氧树脂复合材料力学性能和电性能优异,上述两种复合材料均可用作宽频天线罩的蒙皮材料。

参考文献

[1]侯印鸣,李德成,孔宪正,陈素菊.综合电子战〔M 〕.北京:国防工

业出版社,2000.

[2]余景春,王璇,高红梅,张德墉.地面用雷达天线罩的发展[J ].玻

璃钢/复合材料,2000,5:46-48.

[3]陈立新,孙曼灵,周希真.毫米波复合材料雷达罩的研究I[J ].热

固性树脂,2000,15(2):15-19.

[4]王小群,杜善义,韩杰才.高速宽频带防空导弹天线罩研制探讨

[J ].宇航材料工艺,1998,2:17-25.

[5]陈立新,孙曼灵,周希真.毫米波复合材料雷达罩的研究II[J ].

热固性树脂,2000,15(3):15-19.

[6]嵇培军,蔡良元,杨明,白树成,曲建直.第十二届全国复合材

料学术会议[C].2002.137-140.

[7]嵇培军,陈梦怡,杨明,白树成.第十五届玻璃钢/复合材料学

术年会论文集[C],2003.126-130.

PR OPERT Y STU DY OF QUARTZ FABRIC REINFORCE D COMPOSITES CHEN Meng 2yi ,J I Pei 2jun ,CAI Liang 2yuan ,CU I Y i ,ZHAN G Hua (Beijing Institute of Aeronautical Materials ,Beijing 100095,China )

Abstract :The mechanic and dielectric properties of QW280and TC 8/32K 2TO quartz fabric/modified e 2poxy resin composites are studied in this paper.The results show that the mechanic and dielectric properties of QW280/modified epoxy resin composites are equal to these of TC 8/32K 2TO /modified epoxy resin composites.

K ey w ords :quartz fabric ;composites ;mechanic oproperties ;dielectric constants ;loss angle tangent (上接第52页)

DEVE LOPMENT AN D CURRENT STU DY OF METAL MATRIX COMPOSITE MATERIAL

L I Feng 2ping

(Liaoning Technical University ,Fuxing of Liaoning Prov.123000,China )

Abstract :This paper studied the classifications ,manufacturing methods of metal matrix composites ,ex 2pounded the current study of metal matrix composites in the world and at last pointed out the problems and the study direction in the field.

K ey w ords :metal matrix composite material ;manufacturing methods ;classifications ;current study ;study direction

FRP/CM 2004.No.1

南航金属材料学期末考试重点(带答案)

1.试述碳素钢中C的作用。(书上没有,百度的) 答:随C含量的增加,其强度和硬度增加,而塑性韧性和焊接性下降。当含碳量大于0.25时可焊性变差,故压力管道中一般采用含碳量小于0.25的钢。含碳量的增加,其球化和石墨化的倾向增加。 2.描述下列元素在普通碳素钢的作用:(a)锰、(b)硫、(c)磷、(d)硅。(P5、P6) 答:Mn在碳钢中的含量一般小于0.8%。可固溶,也可形成高熔点MnS(1600℃)夹杂物。 MnS在高温下具有一定的塑性,不会使钢发生热脆,加工后硫化锰呈条状沿轧向分布。 Si在钢中的含量通常小于0.5%。可固溶,也可形成SiO2夹杂物。夹杂物MnS、SiO2将使钢的疲劳强度和塑、韧性下降。S是炼钢时不能除尽的有害杂质。在固态铁中的溶解度极小。 S和Fe能形成FeS,并易于形成低熔点共晶。发生热脆 (裂)。P也是在炼钢过程中不能除尽的元素。磷可固溶于α-铁。但剧烈地降低钢的韧性,特别是低温韧性,称为冷脆。磷可以提高钢在大气中的抗腐蚀性能。S和P还可以改善钢的切削加工性能。 3.描述下列元素在普通碳素钢的作用:(a)氮、(b)氢、(c)氧。(P6) 答:N在α-铁中可溶解,含过饱和N的钢经受冷变形后析出氮化物—机械时效或应变时效,降低钢的性能。N可以与钒、钛、铌等形成稳定的氮化物,有细化晶粒和沉淀强化。H在钢中和应力的联合作用将引起金属材料产生氢脆。常见的有白点和氢致延滞断裂。 O在钢中形成硅酸盐2MnO?SiO2、MnO?SiO2或复合氧化物MgO?Al2O3、MnO?Al2O3。 4.为什么钢中的硫化锰夹杂要比硫化亚铁夹杂好? (P5) 答:硫化锰为高熔点的硫化物(1600),在高温下具有一定的塑性,不会使钢发生热脆。而硫化铁的熔点较低,容易形成低熔点共晶,沿晶界分布,在高温下共晶体将熔化,引起热脆。 5. 当轧制时,硫化锰在轧制方向上被拉长。在轧制板材时,这种夹杂的缺点是什么? (P5) 答:这些夹杂物将使钢的疲劳强度和塑性韧性下降,当钢中含有大量硫化物时,轧成钢板后会造成分层。 6.对工程应用来说,普通碳素钢的主要局限性是哪些? 答:弹性模量小,不能保证足够的刚度;抗塑性变形和断裂的能力较差;缺口敏感性及冷脆性较大;耐大气腐蚀和海水腐蚀性能差;含碳量高,没有添加合金元素,工艺性差. 7.列举五个原因说明为什么要向普通碳素钢中添加合金元素以制造合金钢? 答:提高淬透性;提高回火稳定性;使钢产生二次硬化;(老师课上只说了这三点) 8、哪些合金元素溶解于合金钢的铁素体?哪些合金元素分布在合金钢的铁素体和碳化物相之间?按照形成碳化物的倾向递增的顺序将它们列出。(P17—P18) 答:①Si、Al、Cr、W、Mo、V、Ti、P、Be、B、Nb、Zr、Ta②Ti、Zr、Nb、V、Mo、W、Cr 9、叙述1.0~1.8%锰添加剂强化普通碳素钢的机理。 答:①锰可以作为置换溶质原子形成置换固溶体,通过弹性应力场交互作用、电交互作用、化学交互作用阻碍位错运动;②增加过冷奥氏体稳定性,使C曲线右移,在同样的冷却条件下,可以得到片间距细小的珠光体,同时还可起到细化铁素体晶粒的作用,从而达到晶界强化的目的。③促进淬火效应。淬火后希望获得板条马氏体,造成位错型亚结构。 ④通过降低层错能,使位错易于扩展和形成层错,增加位错交互作用,防止交叉滑移。 10、合金元素V、Cr、W、Mo、Mn、Co、Ni、Cu、Ti、Al中哪些是铁素体形成元素?哪些是奥氏体形成元素?哪些能在α-Fe中形成无限固溶体?哪些能在γ-Fe 中形成无限固溶体?(P15-P16) 答:①V、Cr、W、Mo、Ti、Al②Mn、Co、Ni、Cu ③V、Cr、W、Mo、Ti、Al ④Mn、Co、Ni 11、钢中常见的碳化物类型主要有六种,例如M6C就是其中的一种,另外还有其它哪五种?哪一种碳化物最不稳定? 答:①MeX、Me2X、Me3X、Me7X3、Me23X6②Me3X

无机非金属材料的应用现状与发展趋势

非金属材料的应用现状与发展趋势 无机非金属材料(inorganic nonmetallic materials)是以某些元素的氧化物、碳化物、氮化物、卤素化合物、硼化物以及硅酸盐、铝酸盐、磷酸盐、硼酸盐等物质组成的材料。是除有机高分子材料和金属材料以外的所有材料的统称。无机非金属材料的提法是20世纪40年代以后,随着现代科学技术的发展从传统的硅酸盐材料演变而来的。无机非金属材料是与有机高分子材料和金属材料并列的三大材料之一。无机非金属材料工程是材料学中的一个专业。无机非金属材料工程是为了培养具备无机非金属材料及其复合材料科学与工程方面的知识,能在无机非金属材料结构研究与分析、材料的制备、材料成型与加工等领域从事科学研究、技术开发、工艺和设备设计、生产及经营管理等方面工作的高级工程技术人才。 本专业学生主要学习无机非金属材料及复合材料的生产过程、工艺及设备的基础理论、组成、结构、性能及生产条件间的关系,具有材料测试、生产过程设计、材料改性及研究开发新产品、新技术和设备及技术管理的能力。我国无机非金属材料工业的发展中存在很多问题,特别是传统的无机非金属材料与国外先进水平有非常大的差距,主要有: (1) 产品等级低 在传统无机非金属材料中,无论是水泥、玻璃还是陶瓷的产品等级普遍偏低。例如:发达国家的水泥熟料强度一般都在70MPa以上,而我国平均强度仅为50 MPa。我国高等级水泥(ISO≥)仅占18%,大量生产的是中、低等级水泥(ISO≤),而很多发达国家的高等级水泥占90%以上。 (2) 资源消耗高 在资源的消耗方面,水泥和陶瓷工业更为突出。由于大量的无序开采,未能充分利用有限资源,造成了极大浪费。例如:生产水泥熟料的主要原料是相对优质的石灰石,其化学成份须满足CaO含量不低于45%、MgO不高于3%等要求。我国符合水泥生产要求,可以使用的量仅约250亿吨。目前每年生产水泥消耗的优质石灰石约亿吨,因此该储量仅可生产水泥熟料约200亿吨,仅能提供约40年的水泥生产

金属材料学考试题库

第一章钢中的合金元素 1、合金元素对纯铁γ相区的影响可分为哪几种 答:开启γ相区的元素:镍、锰、钴属于此类合金元素 扩展γ相区元素:碳、氮、铜属于此类合金元素 封闭γ相区的元素:钒、鈦、钨、钼、铝、磷、铬、硅属于此类合金元素 缩小γ相区的元素:硼、锆、铌、钽、硫属于此类合金元素 2、合金元素对钢γ相区和共析点会产生很大影响,请举例说明这种影响的作用 答:合金元素对α-Fe、γ-Fe、和δ-Fe的相对稳定性以及同素异晶转变温度A3和A4均有很大影响 A、奥氏体(γ)稳定化元素 这些合金元素使A3温度下降,A4温度上升,即扩大了γ相区,它包括了以下两种情况:(1)开启γ相区的元素:镍、锰、钴属于此类合金元素 (2)扩展γ相区元素:碳、氮、铜属于此类合金元素 B、铁素体(α)稳定化元素 (1)封闭γ相区的元素:钒、鈦、钨、钼、铝、磷、铬、硅 (2)缩小γ相区的元素:硼、锆、铌、钽、硫属于此类合金元素 3、请举例说明合金元素对Fe-C相图中共析温度和共析点有哪些影响 答: 1、改变了奥氏体相区的位置和共析温度 扩大γ相区元素:降低了A3,降低了A1 缩小γ相区元素:升高了A3,升高了A1 2、改变了共析体的含量 所有的元素都降低共析体含量 第二章合金的相组成 1、什么元素可与γ-Fe形成固溶体,为什么

答:镍可与γ-Fe形成无限固溶体 决定组元在置换固溶体中的溶解条件是: 1、溶质与溶剂的点阵相同 2、原子尺寸因素(形成无限固溶体时,两者之差不大于8%) 3、组元的电子结构(即组元在周期表中的相对位置) 2、间隙固溶体的溶解度取决于什么举例说明 答:组元在间隙固溶体中的溶解度取决于: 1、溶剂金属的晶体结构 2、间隙元素的尺寸结构 例如:碳、氮在钢中的溶解度,由于氮原子小,所以在α-Fe中溶解度大。 3、请举例说明几种强、中等强、弱碳化物形成元素 答:铪、锆、鈦、铌、钒是强碳化物形成元素;形成最稳定的MC型碳化物钨、钼、铬是中等强碳化物形成元素 锰、铁、铬是弱碳化物形成元素 第四章合金元素和强韧化 1、请简述钢的强化途径和措施 答:固溶强化 细化晶粒强化 位错密度和缺陷密度引起的强化 析出碳化物弥散强化 2、请简述钢的韧化途径和措施 答:细化晶粒 降低有害元素含量 调整合金元素含量

铝基复合材料综述

铝基复合材料综述 XXXXXXXXXXX 摘要铝基复合材料凭借密度小、耐磨、热性能好等优点在航天航空等领域占有优势地位。文中综述了铝基复合材料的种类、铝基复合材料性能、各种铝基复合材料的制备和应用以及发展前景。 关键词铝基复合材料种类性能制备应用 Abstract Al-based alloys have advantages in the field of the aerospace by the advantages of small density , anti-function ,good thermal performance and so on. This article discussed the kinds ,performance ,approach , use and development prospect of Al-based alloys. Key words Al-based alloys kind performance approach use

1.引言 自20世纪80年代金属基复合材料大规模研究与开发以来,铝基复合材料在航空,航天,电子,汽车以及先进武器系统等领域得到迅速发展。铝基复合材料的制备工艺设计高温、增强材料的表面处理、复合成型等复杂工艺,而复合材料的性能、应用、成本等在很大程度上取决于其制造技术。因此,研究和开发心的制造技术,在提高铝基复合材料性能的同时降低成本,使其得到更广泛的应用,是铝基复合材料能否得到长远发展的关键所在。铝在制作复合材料上有许多特点,如质量轻、密度小、可塑性好,铝基复合技术容易掌握,易于加工等。此外,铝基复合材料比强度和比刚度高,高温性能好,更耐疲劳和更耐磨,阻尼性能好,热膨胀系数低。同其他复合材料一样,它能组合特定的力学和物理性能,以满足产品的需要。因此,铝基复合材料已成为金属基复合材料中最常用的、最重要的材料之一。2.铝基复合材料分类 按照增强体的不同,铝基复合材料可分为纤维增强铝基复合材料和颗粒增强铝基复合材料。纤维增强铝基复合材料具有比强度、比模量高,尺寸稳定性好等一系列优异性能,但价格昂贵,目前主要用于航天领域,作为航天飞机、人造卫星、空间站等的结构材料。颗粒增强铝基复合材料可用来制造卫星及航天用结构材料、飞机零部件、金属镜光学系统、汽车零部件;此外还可以用来制造微波电路插件、惯性导航系统的精密零件、涡轮增压推进器、电子封装器件等。 3.铝基复合材料的基本成分 铝及其合金都适于作金属基复合材料的基体,铝基复合材料的增强物可以是连续的纤维,也可以是短纤维,也可以是从球形到不规则形状的颗粒。目前铝基复合材料增强颗粒材料有SiC、AL2O3、BN等,金属间化合物如Ni-Al,Fe-Al和Ti-Al也被用工作增强颗粒。 4.铝基复合材料特点 在众多金属基复合材料中,铝基复合材料发展最快且成为当前该类材料发展和研究的主流,这是因为铝基复合材料具有密度低、基体合金选择范围广、热处理性好、制备工艺灵活等许多优点。另外,铝和铝合金与许多增强相都有良好的接触性能,如连续状硼、AL2O3\ 、

铝合金表面处理国内外应用现状

表面工程技术 铝合金表面处理国内外研究应用现状Aluminum alloy surface treatment of domestic and foreignresearch and application status 学院名称:材料科学与工程学院 专业班级:复合材料1101 学生姓名:曹成成 学号:3110706055 指导教师:张松立 2014 年6 月

【摘要】综述了近年来铝合金表面改性技术取得的研究进展,介绍了镀层技术,转化膜处理技术、高能束表面处理技术等方法制备铝合金表面层的原理、特点及研究成果简要介绍了铝合金表面处理技术的新进展,重点介绍了铝合 金的阳极氧化、电镀、化学镀和微弧氧化、激光熔覆等工艺。 关键词:铝合金;表面处理;阳极氧化;电镀;化学镀;微弧氧化;激光熔覆 前言 铝是元素周期表中第三周期主族元素,为面心立方晶格,无同素异构转变,延展性好、塑性高,可进行各种机械加工。铝的化学性质活泼,在干燥空气中铝的表面立即形成厚约1~3 nm 的致密氧化膜,使铝不会进一步氧化并能耐水;铝是两性的,既易溶于强碱,也能溶于稀酸。铝在大气中具有良好的耐蚀性。纯铝的强度低,只有通过合金化才能得到可作结构材料使用的各种铝合金。铝合金的突出特点是密度小、强度高。铝中加入Mn、Mg 形成的Al-Mn、Al-Mg 合金具有很好的塑性和较高的强度,称为防锈铝合金,如3A21 ,5A05。硬铝合金的强度较防锈铝合金高,但防蚀性能有所下降,这类合金有Al-Cu-Mg 系如 2A11 ,2A12。Al-Cu-Mg- Zn 系为超硬铝,如7A04 ,7A09。新近开发的高强度硬铝,强度进一步提高,而密度比普通硬铝降低15 % ,且能挤压成型,可用作摩托车骨架和轮圈等构件。Al-Li 合金可制作飞机零件和承受载重的高级运动器材。通过在铝中加入3 %~5 %(质量分数) 的比铝更轻的金属锂,就可以制造出强度比纯铝高20 %~25 % ,密度仅2. 5 t/ m3 的铝锂合金。这种合金用在大型客机上,可以使飞机的重量减少5 t 多,而载客人数不减。 尽管铝合金材料具有密度小、热膨胀系数低、比刚度和比强度高等优点,但

我国有色金属材料发展现状

我国有色金属材料发展现状 摘要:有色金属材料是新材料的一个重要的组成部分。发展有色金属新材料产业,加速有色金属新材料的研究和开发,对于促进国民经济的可持续发展具有极 其重要的战略意义。我国有色金属材料经过几十年的努力,已经在产量和规模方 面取得了重大进展,是目前世界上的有色金属生产大国。然而,我国有色金属材 料行业在高附加值产品、降低能耗、可持续发展方面与世界先进国家还有很大差距。本文讲述了我国有色金属材料的发展现状,并指出了今后的发展方向和战略。 关键词:有色金属;材料;战略 金属材料是人类赖以生存和发展的需要。特别是现代高新技术的发展,更是 依赖材料技术的进步。在金属材料中,有色金属材料是最重要的一类材料,合计60多种。地壳中含量最多的铝、镁元素均为有色金属元素。其它的还包括钛、铜、铅、锌、锑、锡、镍、钨、钼等元素。有色金属材料涉及到结构材料、功能材料、环境保护材料和生物医用材料等领域。其应用几乎涉及到国民经济和国防建设的 所有领域。有色金属新材料是新材料的一个极其重要的组成部分,其地位和作用 十分突出。大力发展有色金属新材料产业,加速有色金属新材料的研究和开发, 对促进国民经济的可持续发展具有极其重要的战略意义。 我国有色金属材料发展现状:我国有色金属工业经过50多年的发展,已经形成了比较完整的工业体系,建立了相当雄厚的物质基础。特别是近10年来,成 绩显著,举世瞩目,产量和规模发展迅速,跃居世界前列,产品规格进一步增多,除基本满足国内需求外,还实现了部分出口。如2002年,我国10种有色金属产 量首次突破1000万t,达到1 012万t,成为世界有色金属第一生产大国;其中铝、钨、稀土、铅、锑、锌、镁和锡等产量居世界第一位,稀土产量占世界总产 量的70%以上,镁产量占世界总产量的50%以上。另外我国还是世界有色金属贸 易大国之一,2002年我国有色企业实现销售收入2 690亿元,实现利税187亿元,实现利润80亿元;出口量为205万t,其中铅、锌、锡、锑、镁出口量居世界第一,预计2003年我国有色金属产量将达到1 120万t,实现利税250亿元,实现 利润150亿元。1.1.2研究开发取得重大进展我国有色金属材料经过多年的发展,在高性能材料、新型材料加工技术等方面已取得了重大进展。铝合金新材料的性 能大幅度提高,部分高强高韧铝合金、铝锂合金、喷射沉积快速凝固耐热铝合金 的性能达到国际先进水平。到20世纪90年代,随着国际镁合金应用的扩大,镁 的价格上升,在全国范围内出现了硅热法炼镁热潮,全国镁产量由1990年的 0.59万t猛增至1999年的16万t。虽然我国原镁的产量和出口量剧增,但镁合 金材料深度加工制品的发展相对滞后。近几年,国家将发展镁合金材料列为重大 科技攻关项目,镁合金新材料的研究水平因而得到了明显提高,开发了ZM1~ ZM10等十几个牌号的镁合金。通过细化、净化、微合金化等手段,使铸造镁合 金的性能大幅度提高。镁合金铸件、压铸件已应用于汽车和摩托车等领域。2001 年我国生产镁铸件1 040 t,压铸件2 120 t。镁合金制备技术得到了发展,现已装 备2 000 t的镁合金压铸机,能生产出0.3 mm厚的变形镁合金薄板,并开发了镁 合金阻燃技术、镁合金熔体环保型保护技术和镁合金微弧氧化表面处理技术等先 进制备技术。到目前为止,我国研制的钛合金有近50种,已列入国家标准的钛 及钛合金牌号有40余种。 20世纪80年代以来,我国钛合金开始进入由纯仿制到独立研究与仿制相结 合的阶段。经过“八五”、“九五”攻关,我国已形成4大钛合金系列:1)具有不同

铝基复合材料的研究发展现状与发展前景

铝基复合材料的研究发展现状与发展前景摘要:铝基复合材料具有很高的比强度、比模量和较低的热膨胀系数,兼具结构材料和功能材料的特点。介绍了铝基复合材料的分类、制造工艺、性能及应用等几个方面,最后对铝基复合材料的研究状况及其发展趋势。做了简单的介绍。 关键词:铝基复合材料,制造工艺,性能,应用 Abstract:Aluminum matrix composite was in capacity of structure materials and function materials for its high specific strength and high specific modulus and low coefficient of thermal expansion.The classification of aluminum matrix composite were introduced and the preparation process、properties and application of aluminum matrix composite was expounded,and then the domestic research status and future development trends of the composite were summed up. Key words:aluminum matrix composites,preparation process,properties,application. 1.发展历史 1.1概述 复合材料是由两种或两种以上物理和化学性质不同的材料通过先进的材料制备技术组合而成的一种多相固体材料。根据基体材料不同,复合材料包括三类:聚合物基复合材料(PMC)、金属基复合材料(MMC)和陶瓷基复合材料(CMC)[1]。金属基复合材料在20世纪60年代末才有较快的发展,是复合材料的一个新分支,其以高比强、高比模和耐磨蚀等优异的综合性能,在航空、航天、先进武器系统和汽车等领域有广泛的应用,已成为国内外十分重视发展的先进复合材料。 在金属基复合材料中,铝基复合材料具有密度低、基体合金选择范围广、可热处理性好、制备工艺灵活、比基体更高的比强度、比模量和低的热膨胀系数,尤其是弥散增强的铝基复合材料,不仅具有各向同性特征,而且具有可加工性和价格低廉的优点,更加引起人们的注意[2]。铝基复合材料具有很大的应用潜力,并且已有部分铝基复合材料成功地进入了商业化生产阶段。 铝基复合材料是以金属铝及其合金为基体,以金属或非金属颗粒、晶须或纤维为增强相的非均质混合物。按照增强体的不同,铝基复合材料可分为纤维增强铝基复合材料和颗粒增强铝基复合材料。纤维增强铝基复合材料具有比强度、比模量高,尺寸稳定性好等一系列优异性能,但价格昂贵,目前主要用于航天领域,作为航天飞机、人造卫星、空间站等的结构材料。颗粒增强铝基复合材料可用来制造卫星及航天用结构材料、飞机零部件、金属镜光学系统、汽车零部件;此外还可以用来制造微波电路插件、惯性导航系统的精密零件、涡轮增压推进器、电子封装器件等[3]。 然而不管增强物的类型和形状尺寸如何,大多数铝基复台材料具有以优点: ①重量轻、比强度、比刚度高。 ②具有高的剪切强度。 ③热膨胀系数低,热稳定性高,并有良好的导热性和导电性。 ④具有卓越的抗磨耐磨性。 ⑤能耐有机液体,如燃料和溶剂的侵蚀。 ⑥可用常规工艺和设备进行成型和处理。 1.2分类

金属材料学复习资料

金属材料学复习资料 题型:判断,选择,简答,问答 第一章 1.要清楚的三点: 1)同一零件可用不同材料及相应工艺。例:调质钢;工具钢 代用 调质钢:在机械零件中用量最大,结构钢在淬火高温回火后具有良好的综合力学性能,有较高的强韧性。适用于这种处理的钢种成为调质钢。调质钢的淬透性原则,指淬透性相同的同类调质钢可以互相代用。 2)同一材料,可采用不同工艺。例:T10钢,淬火有水、水- 油、分级等。强化工艺不同,组织有差别,但都能满足零件要求。力求最佳的强化工艺。 淬火冷却方式常用水-油双液淬火、分级淬火。成本低、工艺性能好、用量大。 3)同一材料可有不同的用途。例:602有时也可用作模具。低合 金工具钢也可做主轴,15也可做量具、模具等。 602是常用的硅锰弹簧钢,主要用于汽车的板弹簧。低合金工具钢可制造工具尺寸较大、形状比较复杂、精度要求相对较高的模具。15只在对非金属夹杂物要求不严格时,制作切削

工具、量具和冷轧辊等。 2.各种强化机理(书24页) 钢强化的本质机理:各种途径增大了位错滑移的阻力,从而提高了钢的塑性变形抗力,在宏观上就提高了钢的强度。 1)固溶强化:原子固溶于钢的基体中,一般都会使晶格发生畸 变,从而在基体中产生弹性应力场,弹性应力场与位错的交互作用将增加位错运动的阻力。从而提高强度,降低塑韧性。 2)位错强化:随着位错密度的增大,大为增加了位错产生交割、 缠结的概率,所以有效阻止了位错运动,从而提高了钢的强度。但在强化的同时,也降低了伸长率,提高了韧脆转变温度。 3)细晶强化:钢中的晶粒越细,晶界、亚晶界越多,可有效阻 止位错运动,并产生位错塞积强化。细晶强化既提高了钢的强度,又提高了塑性和韧度,所以是最理想的强化方法。 4)第二相强化:钢中微粒第二相对位错有很好的钉扎作用,位 错通过第二相要消耗能量,从而起到强化效果。 根据位错的作用过程,分为切割机制和绕过机制。 根据第二相形成过程,分为回火时第二相弥散沉淀析出强化; 淬火时残留第二相强化。

铝合金的研究现状及应用

科技广场2015.12 0引言 随着工业化向现代化高速发展,节能减重环保型材料需求量剧增。这种需求,使得铝合金的用量逐年增加。铝在地壳中的含量很高,在所有金属元素中排第一,其年产量大于其他有色金属年产总和,且铝合金质轻无毒性易回收利用,满足轻量化环保型合金的发展应用。铝合金密度低、比强度高、熔点低、铸造性能好、力学性能佳、加工性能好、导电性、传热性及抗腐蚀性能优良的特点使其广泛应用于交通运输、航海航天航空、化工工业、食品工业、电子通讯、复合材料、金属包装、建筑、输电行业、文体卫生等领域[1-2]。铝合金在所有金属材料中的使用排第二,仅次于钢铁[3]。由于冶炼铝生产工艺的优化以及技术水平的提高,降低了铝合金的成本,铝合金的应用越来越广泛。本文论述了铝合金的特点、分类、研究现状及应用,并提出铝合金未来研究方向。1铝合金的研究现状 铝工业的发展进程不到两百年,但因其密度小、易导热导电、耐蚀性好,且能与其他金属形成优质铝基合金,因此,铝合金发展迅猛并广泛应用于汽车、船舶、火车、飞机、炼钢等领域,成为国富民强的重要材料。根据成分和工艺不同,可将铝合金分为铸造铝 铝合金的研究现状及应用 StatusQuoofResearchinAluminumAlloysandtheApplication 白志玲 Bai Zhiling (六盘水师范学院,贵州六盘水553004) (Liupanshui Normal University,Guizhou Liupanshui553004) 摘要:铝合金具有密度低、力学性能佳、加工性能好、无毒、易回收、导电性、传热性及抗腐蚀性能优良等特点,在船用行业、化工行业、航空航天、金属包装、交通运输等领域广泛使用。本文叙述了铝合金的特点、分类,综述了铝合金的研究现状及应用,指出目前铝合金在发展中存在的问题,明确了铝合金的研究方向。 关键词:铝合金;研究现状;应用 中图分类号:TG146文献标识码:A文章编号:1671-4792(2015)12-0018-03 Abstract:Aluminum alloys have been widely used in marine,chemical industry,aerospace,metal packaging, transportation and other fields owing to their merits,such as low density,good mechanical property,good cutting property,non-toxic,recyclable,electrical conductivity,thermal conductivity,good corrosion resistance and so on. The paper introduces the characteristics and classification of aluminum alloys,as well as the status quo in its re-search and application,points out existing problems in the development,and puts forward directions for researches in the future. Keywords:Aluminum Alloys;Status Quo of Research;Application ★基金项目:六盘水师范学院高层次人才科研启动 基金(编号:LPSSYKYJJ201417);贵州省科技厅联 合基金项目(黔科合LH字[2014]7460号) 18 DOI:10.13838/https://www.wendangku.net/doc/7318708454.html,ki.kjgc.2015.12.004

无机非金属材料的现状与前景

无机非金属材料的现状与前景 【摘要】无机非金属材料是以某些元素的氧化物、碳化物、氮化物、卤素化合物、硼化物以及硅酸盐、铝酸盐、磷酸盐、硼酸盐等物质组成的材料。是除有机高分子材料和金属材料以外的所有材料的统称。在材料学飞速发展的今天,无机非金属材料有这广阔的应用前景和良好的就业形势。 【关键字】无机非金属材料方向前景智能 1. 无机非金属材料的特点及应用 无机非金属材料(inorganic nonmetallic materials)是以某些元素的氧化物、碳化物、氮化物、卤素化合物、硼化物以及硅酸盐、铝酸盐、磷酸盐、硼酸盐等物质组成的材料。是除有机高分子材料和金属材料以外的所有材料的统称。无机非金属材料的提法是20世纪40年代以后,随着现代科学技术的发展从传统的硅酸盐材料演变而来的。无机非金属材料是与有机高分子材料和金属材料并列的三大材料之一。 在晶体结构上,无机非金属的晶体结构远比金属复杂,并且没有自由的电子。具有比金属键和纯共价键更强的离子键和混合键。这种化学键所特有的高键能、高键强赋予这一大类材料以高熔点、高硬度、耐腐蚀、耐磨损、高强度和良好的抗氧化性等基本属性,以及宽广的导电性、隔热性、透光性及良好的铁电性、铁磁性和压电性。 无机非金属材料品种和名目极其繁多,用途各异,因此,还没有一个统一而完善的分类方法。通常把它们分为普通的(传统的)和先进的(新型的)无机非金属材料两大类。 普通无机非金属材料的特点是:耐压强度高、硬度大、耐高温、抗腐蚀。此外,水泥在胶凝性能上,玻璃在光学性能上,陶瓷在耐蚀、介电性能上,耐火材料在防热隔热性能上都有其优异的特性,为金属材料和高分子材料所不及。但与金属材料相比,它抗断强度低、缺少延展性,属于脆性材料。与高分子材料相比,密度较大,制造工艺较复杂。

铝基复合材料的发展现状与研究

铝基复合材料的发展现状与研究 摘要:随着现代生产技术的发展,对材料的性能要求越来越高,目前,铝基复合材料由于其优良的性能已经成为现时研究的热点。阐述了铝基复合材料的基本性能及应用情况,总结了近几年关于铝基复合材料的主要研究成果与发展趋势。 关键词:铝基复合材料,材料性能,研究成果,趋势 Development and progress of aluminium matrix composites Tang nong-j Abstract:With the development of modern manufacturing technology, The material performance requirements more and more high,The development of aluminum matrix composite materials was reviewed with their properties. Espectively in accordance with the classes to which they belong. The fundamental property and application field of aluminum matrix composite were briefly introduced. The main research achievements and development were summarized in recent years. Meanwhile, the outlook of its development was put forward. Key words:aluminium matrix composites,material properties,research findings,trend

金属材料学复习思考题及答案

第一章钢的合金化原理 1.名词解释 1)合金元素: 特别添加到钢中为了保证获得所要求的组织结构从而得到一定的物理、化学或机械性能的化学元素。(常用M来表示) 2)微合金元素: 有些合金元素如V,Nb,Ti, Zr和B等,当其含量只在0.1%左右(如B, 0.001%;V,0.2 %)时,会显著地影响钢的组织与性能,将这种化学元素称为微合金元素。 3)奥氏体形成元素:在γ-Fe中有较大的溶解度,且能稳定γ相;如 Mn, Ni, Co, C, N, Cu; 4)铁素体形成元素: 在α-Fe中有较大的溶解度,且能稳定α相。如:V, Nb, Ti 等。5)原位析出: 元素向渗碳体富集,当其浓度超过在合金渗碳体中的溶解度时, 合金渗碳体就在原位转变成特殊碳化物如Cr钢中的Cr: ε-Fe x C→Fe3C→(Fe, Cr)3C→(Cr, Fe)7C3→(Cr, Fe)23C6 6)离位析出:在回火过程中直接从α相中析出特殊碳化物,同时伴随着渗碳体的溶解,可使硬度和强度提高(二次硬化效应)。如 V,Nb, Ti等都属于此类型。 2.合金元素V、Cr、W、Mo、Mn、Co、Ni、Cu、Ti、Al中哪些是铁素体形成元素?哪些是奥氏体形成元素?哪些能在α-Fe中形成无限固溶体?哪些能在γ-Fe 中形成无限固溶体? 答:铁素体形成元素:V、Cr、W、Mo、Ti、Al; 奥氏体形成元素:Mn、Co、Ni、Cu; 能在α-Fe中形成无限固溶体:V、Cr; 能在γ-Fe 中形成无限固溶体:Mn、Co、Ni 3.简述合金元素对扩大或缩小γ相区的影响,并说明利用此原理在生产中有何意义?(1)扩大γ相区:使A3降低,A4升高一般为奥氏体形成元素 分为两类:a.开启γ相区:Mn, Ni, Co 与γ-Fe无限互溶. b.扩大γ相区:有C,N,Cu等。如Fe-C相图,形成的扩大的γ相区,构成了钢的热处理的基础。 (2)缩小γ相区:使A3升高,A4降低。一般为铁素体形成元素 分为两类:a.封闭γ相区:使相图中γ区缩小到一个很小的面积形成γ圈,其结果使δ相区与α相区连成一片。如V, Cr, Si, A1, Ti, Mo, W, P, Sn, As, Sb。 b.缩小γ相区:Zr, Nb, Ta, B, S, Ce 等 (3)生产中的意义:(请补充)。 4.简述合金元素对铁碳相图(如共析碳量、相变温度等)的影响。 答:1)改变了奥氏体区的位置:(请补充) 2)改变了共晶温度:(l)扩大γ相区的元素使A1,A3下降;如:(请补充)

耐磨金属材料的最新研究现状

耐磨金属材料的最新研究现状 关键词:耐磨材料;锰钢;抗磨白口铸铁;技术进展 摘要:耐磨金属材料被广泛地应用于工业生产的各个领域, 而随着科学技术和现代工业的高速发展,由于金属磨损而引起的能源和金属材料消耗增加等所造成的经济损失相当惊人。近年来,对金属磨损和耐磨材料的研究,越来越引起国内外人们的广泛重视。本文概述了国内外耐磨金属材料领域研究开发的现状及取得的一系列新进展。 0 引言 随着科学技术和现代工业的高速发展,机械设备的运转速度越来越高,受摩擦的零件被磨损的速度也越来越快,其使用寿命越来越成为影响现代设备(特别是高速运转的自动生产线)生产效率的重要因素。尽管材料磨损很少引起金属工件灾难性的危害,但其所造成的能源和材料消耗是十分惊人的。据统计,世界工业化发达的国家约30%的能源是以不同形式消耗在磨损上的。如在美国,每年由于摩擦磨损和腐蚀造成的损失约1000亿美元,占国民经济总收入的4%。而我国仅在冶金、矿山、电力、煤炭和农机部门,据不完全统计,每年由于工件磨损而造成的经济损失约400亿元人民币[1]。因此,研究和发展耐磨材料,以减少金属磨损,对国民经济的发展有着重要的意义。 1国外耐磨金属材料的发展 国外耐磨材料的生产和应用经过了多年研究与发展的高峰期,现已趋于稳定,并有自己的系列产品和国家标准、企业标准。经历了从高锰钢、普通白口铸铁、镍硬铸铁到高铬铸铁的几个阶段,目前已发展为耐磨钢和耐磨铸铁两大类。 耐磨钢除了传统的奥氏体锰钢及改性高锰钢、中锰钢以外,根据其含量的不同可分为中碳、中高碳、高碳合金耐磨钢;根据合金元素的含量又可分为低合金、中合金及高合金耐磨钢;根据组织的不同还可分为奥氏体、贝氏体、马氏体耐磨钢。而耐磨铸铁主要包括低合金白口铸铁和高合金白口铸铁两大类。二者中最具有代表性的是低铬白口铸铁和高铬白口铸铁,而且这两种材料目前在耐磨铸铁中占有主导地位。马氏体或贝氏体、马氏体组织的球墨铸铁在制作小截面耐磨件方面也占有一席之地,中铬铸铁则应用较少。从整体上看,合金白口铸铁的耐磨性优于耐磨铸钢,但后者韧性好,在诸如衬板、耐磨管道等方面有着广泛的应用[2]。 2 我国耐磨金属材料的发展 据统计,国内每年消耗金属耐磨材料约达300万吨以上,应用摩擦磨损理论防止和减轻摩擦磨损,每年可节约150亿美元。近年来,针对设备磨损的具体工况和资源情况,研制出多种新型耐磨材料。主要有改性高锰钢、中锰钢、超高锰钢

金属材料学 简要总结

《金属材料学》复习总结 第1章:钢的合金化概论 一、名词解释: 合金化:未获得所要求的组织结构、力学性能、物理性能、化学性能或工艺性能而特别在钢铁中加入某些元素,称为合金化。 过热敏感性:钢淬火加热时,对奥氏体晶粒急剧长大的敏感性。 回火稳定性:淬火钢在回火时,抵抗强度、硬度下降的能力。 回火脆性:淬火钢回火后出现韧性下降的现象。 二、填空题: 1.合金化理论是金属材料成分设计和工艺过程控制的重要原理,是材料成分、工艺、组织、 性能、应用之间有机关系的根本源头,也是重分发结材料潜力和开发新材料的基本依据。 2.扩大A相区的元素有:Ni、Mn、Co(与Fe -γ无限互溶);C、N、Cu(有限互溶); α无限互溶);Mo、W、Ti(有限互溶); 扩大F相区的元素有:Cr、V(与Fe - 缩小F相区的元素有:B、Nb、Zr(锆)。 3.强C化物形成元素有:Ti、Zr、Nb、V; 弱C化物形成元素有:Mn、Fe; 4.强N化物形成元素有:Ti、Zr、Nb、V; 弱N化物形成元素有:Cr、Mn、Fe; 三、简答题: 1.合金钢按照含量的分类有哪些?具体含量是多少?按含碳量划分又如何? ●按照合金含量分类:低合金钢:合金元素总量<5%; 中合金钢:合金元素总量在5%~10%; 高合金钢:合金元素总量>10%; ●按照含碳量的分类:低碳钢:w c≤0.25%; 中碳钢:w c=0.25%~0.6%; 高碳钢:w c>0.6%; 2.加入合金元素的作用? ①:与Fe、C作用,产生新相,组成新的组织与结构; ②:使性能改善。 3.合金元素对铁碳相图的S、E点有什么影响?这种影响意味着什么? (1)A形成元素均使S、E点向左下方移动,如Mn、Ni等; F形成元素均是S、E点向左上方移动,如Cr、V等 (2)S点向左下方移动,意味着共析C含量减小,使得室温下将得到A组织; E点向左上方移动,意味着出现Ld的碳含量会减小。 4.请简述合金元素对奥氏体形成的影响。 (1)碳化物形成元素可以提高碳在A中的扩散激活能,对A形成有一定阻碍作用; (2)非碳化物形成元素Ni、Co可以降低碳的扩散激活能,对A形成有一定加速作用。 (3)钢的A转化过程中存在合金元素和碳的均匀化过程,可以采用淬火加热来达到成 分均匀化。 5.有哪些合金元素强烈阻止奥氏体晶粒的长大?组织奥氏体晶粒长大有什么好处? (1)Ti、Nb、V等强碳化物形成元素会强烈阻止奥氏体晶粒长大,因为:Ti、Nb、V等

中国铝合金压铸业的发展及现状

中国铝合金压铸业的发展及现状 发表时间:2018-06-11T13:51:27.290Z 来源:《建筑学研究前沿》2017年第36期作者:沙雯雯 [导读] 我国压铸业的发展始于二十世纪九十年代,当时虽然还是一个新兴行业。 广东鸿图南通压铸有限公司 226300 摘要:近些年来随着科学技术的不断发展,越来越多的合成材料被铸造出来并被广泛使用,其中压铸铝合金便是其中的一种。我国的航空航天、各式各样的电子产品、无人驾驶汽车等技术目前正发展的如火如荼,而在这些领域里就要广泛用到压铸铝合金,因为压铸铝合金具有非常好的耐腐蚀性、良好的导电导热性、超高的强度以及易于铸造和加工的特性。俗话说的好有需求就会有供应,因此我国的压铸铝合金年产量增加了将近八分之一,在有色合金压铸件的产量里占据了十分之一的地盘。不过话又说了回来,科学技术的进步为该行业的发展带来了无限的机会,在科技的不断推动下我国的铝合金压铸件会造的越来越来好,规模越来越大,铸件越来越优。本文对铝合金压铸业的现状和发展做了一定的研究,以期能够帮助到需要的从行业者。 关键字:铝合金压铸业;发展;现状 引言 我国压铸业的发展始于二十世纪九十年代,当时虽然还是一个新兴行业,不过该行业的发展速度却非常之快,并且随着科学技术的不断发展和人们日常生活的需要,铝合金压铸行业的发展变得越来越好,铝合金压铸产品的种类变得越来越丰富,不同种类的合金正在悄无声息的改变我们的生活。 1我国压铸行业标准的发展历史 在此之前先介绍一下我国压铸行业标准的发展历史,在二十世纪六十年代我国的压铸工艺已经初具规模,注意,是压铸工艺而不是压铸行业,但并没有一套成型的压铸标准,只能参考原苏联的压铸标准;到了二十世纪七十年代才制定了HB5012—1974《铝合金压铸件》以及GB1173—1177—1974《铸造有色合金》等标准;经过十年的发展之后制定的JB3018—3072-82《有色压铸合金技术条件》以及 JB2702—80《锌合金、铝合金、铜合金压铸件技术条件》标准;到二十世纪八十年代末,我国该行业相关人士初步商定要制定一个更加成熟的行业标准;自此到1994年我国正式发布了包括GB/T15114—94《铝合金压铸件》、GB/T15115—94《压铸铝合金》等在内的七个用于压铸行业的标准;至2009年,最新版的国家推荐标准正式出台,即以GB/T15114—2009《铝合金压铸件》和GB/T15115—2009《压铸铝合金》这两个标准代替GB/T15114—94《铝合金压铸件》、GB/T15115—94《压铸铝合金》这两个标准。 2我国铝合金压铸行业的现状 压铸铝合金行业的发展始于二十世纪九十年代,具体来讲该合金的大量使用是在1914年之后,自此之后它便与我们的生活息息相关,其发展速度也得到了空前的提高。当然,压铸铝合金也有类别之分,按硬度来划分的话可以分为高强度和中低强度的压铸铝合金,按合金种类不同可以分为Al-Mg、Al-SiCu-Mg、Al-Si-Mg、Al-Zn、Al-Si-Cu等几大种类。接下来就挑几种压铸铝合金给大家简单介绍。 2.1 Al-Mg系合金 用Al和Mg制造而成的合金压铸件通常用来给一些具有较高防腐要求和需要特殊外观的压铸件,该合金兼具Al和Mg的优点,不仅强度高而且抗腐蚀性好,相较于其他的合金来讲阳极化处理及承受抛光的性能会好一些。不过这种合金的压铸难度会比较大,在压铸的过程中必须非常小心,否则很容易压铸失败。 2.2 Al-Si合金 相较于Al-Mg而言该合金的制造工艺就相对简单了许多,不过任何事情都是相对的,因为其制造起来比较粗糙所以不会用来做一些对需要超高精度的铸件,但是该材料也具有良好的耐腐蚀性,因此可以用来铸造一些对精度要求不太高以及零承重或者微承重的铸件。 2.3 Al-Si-Mg系及Al-Si-Cu系合金 由三种金属铸造而成的合金比前两类合金具有更优的性能。目前用三种金属铸造而成的合金已经在世界上广泛使用,足以见得该合金的性能十分出众,并且该合金的产出量也占得合金产出总量的十分之七。尤其是Al-Si-Cu的压铸合金,人们越来越多的关注到了这类合金。值得注意的是该类合金是最先用压铸方法制造的合金,可见其地位不一般。总体来讲合金具有单一金属所没有的优点,这也是为什么它能够取代单一金属的地位。 3我国铝合金压铸行业的发展 任何行业的发展都需要一个漫长的过程,都会从萌芽走向成熟,铝合金压铸行业的发展也是如此,在该行业的发展过程中,不同的时期会根据当时社会发展的现状和需要诞生不同的压铸技术。所谓的压铸技术就是利用高压将所需要的金属化成熔液然后根据需要压入不同的模具中的一种精密铸造法。利用压铸造出来的合金通常要比用普通方法铸造出的合金性能更优。目前世界上已经有多种压铸方法的出现,比较常用的有半固态压铸技术、真空压铸技术、挤压压铸技术等。 半固态压铸技术指的是在合金熔液将要凝固时对其进行搅拌使其变成浆料,再将这些浆料压铸成我们所需要的铸件。当前用到的两种常见的工艺分别是触变成型工艺和流变成形工艺。 顾名思义,真空压铸法即要将压铸模具中的空气抽空,使得模具内的气压降低,在模具内外压强差的作用下降合金熔液压入模具内,与此同时合金熔液会在压力的作用下做模具内凝固成型。用这种方法压铸而成的模具的密度比较大,不会存在较多的气孔。 挤压压铸技术可以说是一个非常全能的压铸方法了,它不仅能替代上述两种我们提到的压铸方法,更能替代其他更多的压铸方法,因此我国的许多企业已经将该种压铸方法用于实际生产当中。用挤压压铸技术铸造出的铸件力学性能较高,铸件十分紧凑。 4结语 从上文可以看出铝合金压铸行业的发展已经变得越来越成熟,各种各样的铝合金压铸产品也越来越多,随着人们对大自然的认识的不断加深,各种各样的金属也不断被发现,因此各种各样的合金也在不断的被研制出来,在不同的行业应用不同的合金对铝合金铸造业的发展乃至整个社会的发展都有一定的推动作用。与此同时我们也要不断探讨研究和改进各种合金的铸造方法,通过一次次的实验确定合金材

相关文档
相关文档 最新文档