文档库 最新最全的文档下载
当前位置:文档库 › 微积分公式_微积分公式运算法则

微积分公式_微积分公式运算法则

微积分公式_微积分公式运算法则
微积分公式_微积分公式运算法则

有关高等数学计算过程中所涉及到的数学公式(集锦)

(10) lim e x

=处

x _jioC

六、高阶导数的运算法则

1) [u (X )±v (x )F )=u (X )±v (x y)

-、lim a 0x m+a 1x m :+川+a n

X

Y b 0X m +b 1X m

ri||+b m

a 。 b

(系数不为

0的情况)

二、重要公式(1)]四沁/

(2) lim (1 +x y 1

=e (3) lim Va(a A 0)=1

(4) lim 折=1

n _^

limarctan x = — y 2 (6)

lim arctanx =—一

J 产 2 (7) limarccotx=0

X Y

(8) lim arccot x =兀

(9)

lim e x = 0

三、下列常用等价无穷小关系

X T 0)

sinx x tanx X

arcsixrf x

arcta nx x

仆赵]2

ln (1 +x 卅 X e X 一1口 X

aX —1 LI XI n a

(1 + x f-1U e x

四、导数的四则运算法则

(u ±v ) =u ‘±v '

f u ) u v - uv'

I —

=

I v 丿

五、基本导数公式

⑴(c ) =0

⑶(sin X ) = cosx

⑷(cosx ) = -sin x

2

⑸(tanx ) =sec x 2

⑹(cot X ) = -csc X

⑺(secx j =secx dan x

(8) (cscx ) = - cscx cot x

⑼(e x

) =e x

X

X

⑽(a ) =a ln a

-1

(11)(In X )=-

x

(12)(gx )=—

X l n a

, 1

(13) (arcsin x ) = -j=2 山

—x 2

■ 1

(14) (arccos x ) = - # 2

丁1 —x 2

, 1

(15) (arctan x )= 1 +x 2

I 1 (16) (arccot X ) = --- --------------- 2(")(

X ) = 1(18)( J X ) =

1

(2)

n

(3) [u (ax+b)F)=a n u C X ax+b ) (4) [u( x)v(x)=送cfu J^ *x y(k)(x)

k)

七、基本初等函数的n阶导数公式

(1)(x n)=n! (2) (e a r)(n)=a n€ax抽(3)(a X a x In n a

八、

sin (ax +b)n

f 兀)

=a sin ax +b + n ——f

I 2丿[cos(ax+b)=a n cos ax+b+ n、—2J

< 1 W 1j a n? n!

——=(-[)---------

l ax+b 丿(ax +b )

微分公式与微分运算法则

⑵ d(x P 戶P x^dx

⑴ d (C )=0

⑷ d (cosx )= -sinxdx ⑸ d(tanx ) = sec xdx ⑺ d (secx )=secx tanxdx

⑼ d (e^=e x dx

1

(12) d (log aX ) = ------ dx

xln a

1

(15)d (arctanx )=-- 2

1 +x

dx

九、微分运算法则

⑴ d (u ±v )=du ±dv

⑶ d (uv ) = vdu +udv

十、基本积分公式

⑴ Jkdx =kx +c In (ax +b

疔L(_1)n"气n-1)!

⑶ d(sin x)=cosxdx

n

ax + b)

2

(6)d(cotx)=—csc xdx

⑻ d (cscx )= -cscx cot xdx

⑽ d(a X ) = a X| nadx (11) d(ln xjdx

x

1 1

(13) d (arcs in x^ .2 dx (14) d (arccos x ) = - -=== dx

j1-x2j1-x2

1

(16) d (arccot x ) = -2dx

1 + x

⑵ d(cu )=cdu

U x ⑵—+c

4+1

dx

⑶ f一= ln|x| +c

? x

fe x d^e x+c (6)Jcosxdx=sinx+c

1

(11)f . dx = arcsin x + c

ftanxdx = Tn cosx +c

Jcotxdx = In sin x +c

Jsecxdx = In secx + tanx +c

J cscxdx = In cscx - cot x + c

2

1 2d^-arcta n

x

+c

a+x a a

(7) jsin xdx = -cosx +c

1 2

⑼ J ———=Jcsc xdx = —cotx +c

sin X 1 2

(8) f —— dx = [sec xdx=tanx + c 、

cos x

1

(10) f ----- 2

dx = arctanx + c '1+x 2

X-a 十 X + a

」dx=arcsin「c

j r~2 2 7a -x ' J x2±a2

dx = In x +

J x

±a2+c

三、

分部积分法公式

⑴形如fx n e ax dx,令U n

=X

dv = e ax dx

形如fx n sin xdx令

u

n

=X

dv =sin xdx

形如Jx n cosxdx令u = x n,dv = cosxdx

⑵形如fx n arctanxdx,令u= arctanx,dv =x n dx 形如fx n ln xdx,令u =1 n X,dv =x n dx

⑶形如

ax ■ax . ax ■

fe sin xdx,fe cosxdx令u=e ,sin x,cos x均可。

四、

第二换元积分法中的三角换元公式

(1) J a2-x2X = as i nt(2)J a2+x2x = ata nt (3) J x2- a2x =

asect 【特殊角的三角函数值】

(1) sinO =0

兀 1

sin—=-

( 3

)

6 一

.兀罷

sin —=—

3 2

sin — =1)

2

(5)sin兀=0

(1) cosO =1 (2) cos—

6

1

cos—=-

3 2

cos— = 0)

2

(5)COS^ = -1

(1) tanO =0

tan

6

43JI

tan

3

=V s ( 4)ta n 二

2

不存在(5)tan 兀=0

(1) cot 0不存在

cot

=5/3

6

(4)

cot 一=

2

(5)cot兀不存

五、

三角函数公式

1.两角和公式

sin( A + B) =sin AcosB +cosAsin B si nA- B ) s An cBo-s Ao s Bs

cos( A + B) = cos A cos B -s in A

sin B

c o sZA- B ) c oAs cos Ain Bs

2

一 f tan A+ta nB

tan( A + B)= ------------

1 -ta n Ata nB

…r 、 cot A cot B -1 cot( A + B)= -----------

cot B + cot A

…i ta nA-ta nB tan(A - B)= -------------

1 +tan Ata nB

…i cotA ?cotB+1 cot( A - B)= ------------

cot B - cot A

2. 二倍角公式

tan2A 二

2tan

A

1 -tan 2

A

3. 半角公式

4. 和差化积公式

丄.「 c ? a+b

a —

b sina+sinb = 2sin ----- cos ----

2 2 亠 c a+b

a-b

cosa + cosb =2cos ---- cos

2

.「 c a+b . a —b sina-sinb = 2cos --------- sin ----------------- 2 cosa - cosb = -2sin

2

sin (a +b )

tan a +tan b =

-----------------------

5. 积化和差公式

6. 万能公式

7. 平方关系

sin 2A =2sin AcosA

cos2A = cos 2

A —sin 2

A = 1 — 2sin 2

A = 2cos 2

A —1

.A [1 —cosA sin

2 V

A cos — 2

f +cosA 丄 A

I 1 -cosA an

7 - VV^cosA

sin A 1 +cos A

丄 A /v^cos A co 3

"V 1-COSA sin A

1 - cos A

2 a — b

sin ---- cosa cosb

sin asin b = -扌 p os y + b )—cos (a -b )]

1 L

cosacosb = ? [cos ( a + b )+ cos ( a - b )]

1 L

si na ccbs- [ sia+ b +

(san)b

coa sib V

siat b - ( san)b 2ta n

2 sin a =

1 +tan 2

-

2

cosa =

1 -tan 2-

2 1 + tan tana = 2 tair

2

2

a

1- tarr

■ 2 4 2 … Sin X

+cos X =1 2

sec X -ta n2X =1 2 .2 …

csc X — cot X =

1

2

三角函数公式 两角和公式

sin( A+B) = sin AcosB+cosAs inB cos(A+B) = cosAcosB-s inAsinB tan (A+B) = (ta nA+ta nB)/(1-ta nAta nB) cot(A+B) = (cotAcotB-1)/(cotB+cotA) 倍角公式 sin( A-B) = si nAcosB-cosAsi nB cos(A-B) = cosAcosB+s inAsinB

ta n( A-B) = (ta nA-ta nB)/(1+ta nAta nB) cot(A-B) = (cotAcotB+1)/(cotB-cotA)

tan2A = 2ta nA?1-ta

门人2 A) Si n2A=2Si nA?CosA Cos2A = Cos^2 A--Si 门人2 A=2Cos^2 A —1=1 — 2si 门人2 A

三倍角公式

sin3A = 3s in A-4(si nA)A3; tan3a = tan a ? tan(

半角公式

sin( A/2) = >

-COS A)/2}

cos(A/2) = V {(1+cosA)/2}

tan( A/2) =

dc1sA)/(1+cosA)}

cot(A/2) =

V {(1+cosA)/oi3A)}

tan( A/2) = (1--cosA)/si nA=si nA/(1+cosA)

和差化积

sin (a)+s in (b) = 2si n[ (a+b)/2]cos[(a-b)/2] cos(a)+cos(b) = 2cos[(a+b)/2]cos[(a-b)/2] tan A+ta nB=si n(A+B)/cosAcosB 积化和差

sin( a)-si n(b) = 2cos[(a+b)/2]si n[ (a-b)/2] cos(a)-cos(b) = -2s in [(a+b)/2]si n[ (a-b)/2]

sin (a)si n(b) = -1/2*[cos(a+b)-cos(a-b)] sin (a)cos(b) = 1/2*[si n(a+b)+si n(a-b)] 诱导公

cos(a)cos(b) = 1/2*[cos(a+b)+cos(a-b)] cos(a)si n(b) = 1/2*[si n(a+b)-si n(a-b)]

8. 倒数关系 tanx cotx =1 9. 商数关系 丄

sin x

tanx = ---- cosx secx cosx = 1 cot x=

sin x

六、 几种常见的微分方程 :dh f (x )g (y ),

1.可分离变量的微分方程

2.齐次微分方程:史= dx

3.—阶线性非齐次微分方程 cscx sinx =1

fi (X )gi (y )dx + f2( X )g 2 (y )dy = 0

寻+ p (x )y = Q (x )解为:

=e

〔"dx +c ]

cos3A = 4(cosA)^3 -3cosA n /3+a)a)tan( n /3

高等数学常用公式大全

高数常用公式 平方立方: 22222222 332233223223332233222(1)()()(2)2()(3)2()(4)()()(5)()()(6)33()(7)33()(8)222(a b a b a b a ab b a b a ab b a b a b a b a ab b a b a b a ab b a a b ab b a b a a b ab b a b a b c ab bc ca -=+-++=+-+=-+=+-+-=-+++++=+-+-=-+++++= 21221)(9)()(),(2) n n n n n n a b c a b a b a a b ab b n ----++-=-++++≥ 三角函数公式大全 两角和公式 sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinB tan(A+B) =tanAtanB -1tanB tanA + tan(A-B) =tanAtanB 1tanB tanA +- cot(A+B) =cotA cotB 1 -cotAcotB + cot(A-B) =cotA cotB 1 cotAcotB -+ 倍角公式 tan2A =A tan 12tanA 2- Sin2A=2SinA?CosA Cos2A = Cos 2A-Sin 2A=2Cos 2A-1=1-2sin 2A 三倍角公式 sin3A = 3sinA-4(sinA)3 cos3A = 4(cosA)3-3cosA tan3a = tana ·tan(3π+a)·tan(3 π -a) 半角公式 sin( 2A )=2cos 1A - cos( 2A )=2cos 1A + tan( 2A )=A A cos 1cos 1+- cot(2A )=A A cos 1cos 1-+ tan( 2 A )=A A sin cos 1-=A A cos 1sin + 和差化积 sina+sinb=2sin 2b a +cos 2b a - sina-sinb=2cos 2b a +sin 2b a - cosa+cosb = 2cos 2b a +cos 2b a - cosa-cosb = -2sin 2b a +sin 2 b a -

微积分公式与运算法则

微积分公式与运算法则 1、基本公式 (1)导数公式 (2) 微分公式 (xμ)ˊ=μxμ-1d(xμ)= μxμ-1 dx (ax)ˊ= axlna d(a x)= a x lnadx (logax)ˊ=1/(xlna) d(loga x)= 1/(xlna) dx (sin x)ˊ= cos x d(sin x)= cos xdx (con x)ˊ=-sin x d(con x)= -sin xdx (tan x)ˊ=sec2 x d(tan x)= sec2 x dx (cotx)ˊ= -csc2x d(cot x)= -csc2x dx (sec x)ˊ= sec x·tan x d(secx)= sec x·tan x dx (csc x)ˊ= -csc x·cot x d(csc x)= -csc x·cot x dx (arcsin x)ˊ= 1/(1-x2)1/2d(arcsin x)=1

/(1-x2)1/2 dx (arccos x)ˊ= -1/(1-x2)1/2 d(arccos x)= -1/(1-x2)1/2 dx (arctan x)ˊ= 1/(1+x2) d(arctan x)= 1/(1+x2) dx (arccot x)ˊ= -1/(1+x2) d(arccot x)=-1/(1+x2) dx (sinh x)ˊ= cosh x d(sinh x)= cosh x dx (cosh x)ˊ= sinh x d(cosh x)= sinh x dx 2、运算法则(μ=μ(x),υ=υ(x),α、β∈R) (1)函数的线性组合积、商的求导法则 (αμ+βυ)ˊ=αμˊ+βυˊ (μυ)ˊ=μˊυ+μυˊ (μ/υ)ˊ=(μˊυ-μυˊ)/υ2 (2)函数与差积商的微分法则 d(αμ+βυ)= αdμ+βdυ d(μυ)=υdμ+μdυ d(μ/υ)= (υdμ-μdυ)/υ2

微积分公式与运算法则 (1)

微积分公式与运算法则 1.基本公式 (1)导数公式 (2) 微分公式 (xμ)ˊ= μxμ-1 d(xμ)= μxμ-1 dx (a x)ˊ= a x lna d(a x)= a x lna dx (loga x)ˊ= 1/(xlna) d(loga x)= 1/(xlna) dx (sin x)ˊ= cos x d(sin x)= cos x dx (con x)ˊ= -sin x d(con x)= -sin x dx (tan x)ˊ= sec2 x d(tan x)= sec2 x dx (cot x)ˊ= -csc2 x d(cot x)= -csc2 x dx (sec x)ˊ= sec x·tan x d(sec x)= sec x·tan x dx (csc x)ˊ= -csc x·cot x d(csc x)= -csc x·cot x dx (arcsin x)ˊ= 1/(1-x2)1/2 d(arcsin x)= 1/(1-x2)1/2 dx (arccos x)ˊ= -1/(1-x2)1/2 d(arccos x)= -1/(1-x2)1/2 dx (arctan x)ˊ= 1/(1+x2) d(arctan x)= 1/(1+x2) dx (arccot x)ˊ= -1/(1+x2) d(arccot x)= -1/(1+x2) dx (sinh x)ˊ= cosh x d(sinh x)= cosh x dx (cosh x)ˊ= sinh x d(cosh x)= sinh x dx 2.运算法则(μ=μ(x),υ=υ(x),α、β∈R) (1)函数的线性组合积、商的求导法则 (αμ+βυ)ˊ=αμˊ+βυˊ(μυ)ˊ=μˊυ+μυˊ(μ/υ)ˊ= (μˊυ-μυˊ)/υ2

高数微积分公式大全 ()

高等数学微积分公式大全 一、基本导数公式 ⑴()0c '=⑵1x x μμμ-=⑶()sin cos x x '= ⑷()cos sin x x '=-⑸()2tan sec x x '=⑹()2cot csc x x '=- ⑺()sec sec tan x x x '=?⑻()csc csc cot x x x '=-? ⑼()x x e e '=⑽()ln x x a a a '=⑾()1ln x x '= ⑿()1 log ln x a x a '= ⒀( )arcsin x '=⒁( )arccos x '= ⒂()21arctan 1x x '= +⒃()2 1arccot 1x x '=-+⒄()1x '= ⒅ '=二、导数的四则运算法则 三、高阶导数的运算法则 (1)()()()()()()()n n n u x v x u x v x ±=±????(2)()() () ()n n cu x cu x =???? (3)()() () ()n n n u ax b a u ax b +=+???? (4)()()() ()()()() n n n k k k n k u x v x c u x v x -=?=????∑ 四、基本初等函数的n 阶导数公式 (1)()()!n n x n =(2)()()n ax b n ax b e a e ++=?(3)()() ln n x x n a a a = (4)()()sin sin 2n n ax b a ax b n π??+=++??? ?????(5)()()cos cos 2n n ax b a ax b n π??+=++??? ???? ? (6)() () () 1 1! 1n n n n a n ax b ax b +???=- ? +?? +(7)()() () ()() 1 1! ln 1n n n n a n ax b ax b -?-+=-????+ 五、微分公式与微分运算法则 ⑴()0d c =⑵()1d x x dx μμμ-=⑶()sin cos d x xdx = ⑷()cos sin d x xdx =-⑸()2tan sec d x xdx =⑹()2cot csc d x xdx =- ⑺()sec sec tan d x x xdx =?⑻()csc csc cot d x x xdx =-?

证明微积分基本公式

定义(定积分) 设函数f (x )是定义在闭区间[a ,b ]上的连续函数,用n + 1个分点 a = x 0 < x 1 < x 2 < … < x n – 1 < x n = b 把闭区间[a ,b ]划分成n 个小区间 [x 0,x 1],[x 1,x 2],…,[x i – 1,x i ],…,[x n – 1,x n ] 记各小区间[x i – 1,x i ](i = 1,2,…,n )的长度为Δx i = x i - x i – 1,在各小区间[x i – 1,x i ]内任取一点ξi ,取函数值f (ξi )与小区间长度Δx i 的乘积f (ξi )Δx i ,作和式 n n i i n i i i x f x f x f x f x f Δ)(Δ)(Δ)(Δ)(Δ)(22111ξξξξξ+++++=∑= 称为函数f (x )在区间[a ,b ]上的积分和。记各小区间的最大长度为d = max{Δx i },如果对于区间 [a ,b ]任意的划分和点ξi 在[x i – 1,x i ]上的任意取法,当d → 0时,积分和的极限存在,则称此极限为函数f (x )在区间[a ,b ]上的定积分,简称积分,记为 ∑?=→=n i i i d b a x x f x x f 10Δ)(lim d )( 其中?为积分号,[a , b ]称为积分区间,f (x )称为被积函数,x 称为积分变量,a 称为积分下限,b 称为积分上限。如果函数f (x )在区间[a ,b ]上的积分存在,则称f (x )在[a ,b ]上可积。 上述定义中的积分限要求a < b ,实际上这个限制可以解除,补充两条规定: (1)当a = b 时,规定0d )(=?a a x x f ; (2)当a > b 时,规定??-=a b b a x x f x x f d )(d )(。 可以看出,这两条规定是合理的,其中第一条规定也可以根据第二条推出。 定理1(可积的必要条件) 如果函数f (x )在闭区间[a ,b ]上的可积,则f (x )在[a ,b ]上有界。 定理2(可积的充分条件) 1.如果函数f (x )在闭区间[a ,b ]上的连续,则f (x )在[a ,b ]上可积。 2.如果函数f (x )在闭区间[a ,b ]上的单调,则f (x )在[a ,b ]上可积。 3.如果在闭区间[a ,b ]内除去有限个不连续点外,函数f (x )有界,则f (x )在[a ,b ]上可积。 引理(微分中值定理) 设函数f (x )在闭区间[a ,b ]内连续,在开区间(a ,b )内可导,则至少存在一点ξ∈(a ,b ),成立等式 f (b ) ? f (a ) = f'(ξ)(b ? a ) 以上结论称为微分中值定理,等式称为微分中值公式。 设函数f (x )在闭区间[a ,b ]内连续,则可以证明f (x )在[a ,b ]上可积,于是存在新的函数F (x ),成立微分关系F'(x ) = f (x )或d F (x ) = f (x )d x ,则称F (x )为f (x )的一个原函数。试利用微分中值定理和定积分的定义证明微积分基本公式 )()()(d )(a F b F x F x x f b a b a -==? 这个公式又称为牛顿-莱布尼茨公式。 证明:

5.2 微积分基本公式-习题

1.设函数0 cos x y tdt = ?,求'(0)y ,'()4 y π。 【解】由题设得'()cos y x x =, 于是得 '(0)cos01y ==,'()cos 4 4 2 y ππ == 。 2.计算下列各导数: ⑴20x d dx ?; 【解】20x d dx ?2)x =2= ⑵ 1t d dt dx ; 【解】1t d dt dx 1 ()t d dt dx =-=-=。 ⑶ cos 2 sin cos()x x d t dt dx π?; 【解】cos 2sin cos()x x d t dt dx π?0cos 2 2sin 0[cos()cos()]x x d t dt t dt dx ππ=+?? 》 0cos 22 sin 0cos()cos()x x d d t dt t dt dx dx ππ= +?? sin cos 2200 [cos()]cos()x x d d t dt t dt dx dx ππ=-+?? 22cos(sin )(sin )cos(cos )(cos )d d x x x x dx dx ππ=-+ 22cos(sin )cos cos[(1sin )](sin )x x x x ππ=-+-- 22cos(sin )cos cos(sin )sin x x x x πππ=--- 22cos(sin )cos cos(sin )sin x x x x ππ=-+ 2cos(sin )(sin cos )x x x π=-。 ⑷2ln 1 x x d dt dx t ?。 【解】 2ln 1x x d dt dx t ?21ln 11 1[]x x d dt dt dx t t =+?? 21ln 111x x d d dt dt dx t dx t =+?? …

常用微积分公式大全

常用微积分公式大全 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

常用微积分公式 基本积分公式均直接由基本导数公式表得到,因此,导数运算的基础好坏直接影响积分的能力,应熟记一些常用的积分公式. 因为求不定积分是求导数的逆运算,所以由基本导数公式对应可以得到基本积分公式.。 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

对这些公式应正确熟记.可根据它们的特点分类来记. 公式(1)为常量函数0的积分,等于积分常数. 公式(2)、(3)为幂函数的积分,应分为与. 当时,, 积分后的函数仍是幂函数,而且幂次升高一次. 特别当时,有. 当时, 公式(4)、(5)为指数函数的积分,积分后仍是指数函数,因为 ,故(,)式右边的是在分母,不在分子,应记清. 当时,有. 是一个较特殊的函数,其导数与积分均不变. 应注意区分幂函数与指数函数的形式,幂函数是底为变量,幂为常数;指数函数是底为常数,幂为变量.要加以区别,不要混淆.它们的不定积分所采用的公式不同. 公式(6)、(7)、(8)、(9)为关于三角函数的积分,通过后面的学习还会增加其他三角函数公式.

公式(10)是一个关于无理函数的积分 公式(11)是一个关于有理函数的积分 下面结合恒等变化及不定积分线性运算性质,举例说明如何利用基本积分公式求不定积分. 例1 求不定积分. 分析:该不定积分应利用幂函数的积分公式. 解: (为任意常数) 例2 求不定积分. 分析:先利用恒等变换“加一减一”,将被积函数化为可利用基本积分公式求积分的形式. 解:由于,所以 (为任意常数) 例3 求不定积分.

微积分公式与运算法则

微积分公式与运算法则文件编码(GHTU-UITID-GGBKT-POIU-WUUI-8968)

微积分公式与运算法则 1.基本公式 (1)导数公式(2)微分公式 (xμ)ˊ=μxμ-1d(xμ)=μxμ-1dx (a x)ˊ=a x lnad(a x)=a x lnadx (loga x)ˊ=1/(xlna)d(loga x)=1/(xlna)dx (sinx)ˊ=cosxd(sinx)=cosxdx (conx)ˊ=-sinxd(conx)=-sinxdx (tanx)ˊ=sec2xd(tanx)=sec2xdx (cotx)ˊ=-csc2xd(cotx)=-csc2xdx (secx)ˊ=secx·tanxd(secx)=secx·tanxdx (cscx)ˊ=-cscx·cotxd(cscx)=-cscx·cotxdx (arcsinx)ˊ=1/(1-x2)1/2d(arcsinx)=1/(1-x2)1/2dx (arccosx)ˊ=-1/(1-x2)1/2d(arccosx)=-1/(1-x2)1/2dx (arctanx)ˊ=1/(1+x2)d(arctanx)=1/(1+x2)dx (arccotx)ˊ=-1/(1+x2)d(arccotx)=-1/(1+x2)dx (sinhx)ˊ=coshxd(sinhx)=coshxdx (coshx)ˊ=sinhxd(coshx)=sinhxdx 2.运算法则(μ=μ(x),υ=υ(x),α、β∈R) (1)函数的线性组合积、商的求导法则 (αμ+βυ)ˊ=αμˊ+βυˊ(μυ)ˊ=μˊυ+μυˊ

(μ/υ)ˊ=(μˊυ-μυˊ)/υ2 (2)函数和差积商的微分法则 d(αμ+βυ)=αdμ+βdυ d(μυ)=υdμ+μdυ d(μ/υ)=(υdμ-μdυ)/υ2 3.复合函数的微分法则 设y=f(μ),μ=ψ(x),则复合函数y=f[ψ(x)]的导数为 dy/dx=fˊ[ψ(x)]·ψˊ(x) 所以复合函数的微分为 dy=fˊ[ψ(x)]·ψˊ(x)dx 由于fˊ[ψ(x)]=fˊ(μ),ψˊ(x)dx=dμ,因此上式也可写成dy=fˊ(μ)dμ 由此可见,无论μ是自变量,还是另一变量的可微函数,微分形式dy=fˊ(μ)dμ保持不变,这一性质称为微分形式不变性。

微积分公式与运算法则

创作编号:BG7531400019813488897SX 创作者:别如克* 微积分公式与运算法则 1.基本公式 (1)导数公式 (2) 微分公式 (xμ)ˊ= μxμ-1 d(xμ)= μxμ-1 dx (a x)ˊ= a x lna d(a x)= a x lna dx (loga x)ˊ= 1/(xlna) d(loga x)= 1/(xlna) dx (sin x)ˊ= cos x d(sin x)= cos x dx (con x)ˊ= -sin x d(con x)= -sin x dx (tan x)ˊ= sec2 x d(tan x)= sec2 x dx (cot x)ˊ= -csc2 x d(cot x)= -csc2 x dx (sec x)ˊ= sec x·tan x d(sec x)= sec x·tan x dx (csc x)ˊ= -csc x·cot x d(csc x)= -csc x·cot x dx (arcsin x)ˊ= 1/(1-x2)1/2 d(arcsin x)= 1/(1-x2)1/2

dx (arccos x)ˊ= -1/(1-x2)1/2 d(arccos x)= -1/(1-x2)1/2 dx (arctan x)ˊ= 1/(1+x2) d(arctan x)= 1/(1+x2) dx (arccot x)ˊ= -1/(1+x2) d(arccot x)= -1/(1+x2) dx (sinh x)ˊ= cosh x d(sinh x)= cosh x dx (cosh x)ˊ= sinh x d(cosh x)= sinh x dx 2.运算法则(μ=μ(x),υ=υ(x),α、β∈R) (1)函数的线性组合积、商的求导法则 (αμ+βυ)ˊ=αμˊ+βυˊ(μυ)ˊ=μˊυ+μυˊ (μ/υ)ˊ= (μˊυ-μυˊ)/υ2 (2)函数和差积商的微分法则 d(αμ+βυ)= αdμ+βdυ d(μυ)=υdμ+μdυ d(μ/υ)= (υdμ-μdυ)/υ2

微积分基本公式

微积分基本公式 下面我们先从实际问题中寻找解决问题的线索.为此,我们对变速直线运动中遇到的位置函数)(t s 及速度函数)(t v 之间的联系作进一步的研究. 一、变速直线运动中位置函数与速度函数之间的联系 有一物体在一直线上运动.在这直线上取定原点、正向及长度单位,使它成为一数轴.设时刻t 时物体所在位置为)(t s ,速度为)(t v .(为了讨论方便起见,可以设0)(≥t v .) 从第一节知道:物体在时间间隔[]21 ,T T 内经过的路程可以用速度函数)(t v 在[]21 ,T T 上的定积分?2 1 d )(T T t t v 来表达;另一方面,这段路程又可以通过位置函数)(t s 在区间[] 21 ,T T 上增量)()(12T s T s -来表达.由此可见,位置函数)(t s 与速度函数)(t v 之间有如下关系: ) ()(d )(122 1 T s T s t t v T T -=? . (1) 因为)()(t v t s =',即位置函数)(t s 是速度函数)(t v 的原函数,所以关系式 (1) 表示,速度函数)(t v 在区间[]21 ,T T 上的定积分等于)(t v 的原函数)(t s 在区间[]21 ,T T 上的增量:)()(12T s T s -. 上述从变速直线运动的路程这个特殊问题中得出的关系,在一定条件下具有普遍性.事实上,我们将在第三目中证明,如果函数)(x f 在区间] ,[b a 上连续,那么,)(x f 在区间 ] ,[b a 上的定积分就等于)(x f 的原函数(设为)(x F )在区间] ,[b a 上的增量:)()(a F b F -. 二、积分上限的函数及其导数 设函数)(x f 在区间] ,[b a 上连续,并且设x 为] ,[b a 上的一点.现在我们来考察)(x f 在部分区间] ,[x a 上的定积分 ? x a x x f d )(. 首先,由于)(x f 在区间] ,[x a 上仍旧连续,因此这个定积分存在.这时,x 既表示定积分的上限,又表示积分变量.因为定积分与积分变量的记法无关,所以,为了明确起见,可以把积分变量改用其他符号,例如用t 表示,则上面的定积分可以写成 ? x a t t f d )(

微积分基本公式

微积分公式

tan -1 x = x-33x +55x -7 7 x +…+)12()1(12+-+n x n n + … (1+x)r =1+r x+!2)1(-r r x 2+! 3)2)(1(--r r r x 3 +… -1

高等数学常用积分公式查询表

导数公式: 基本积分表: 1.d x ax b +?=1ln ax b C a ++ 2.()d ax b x μ+?=11()(1) ax b C a μμ++++(1μ≠-) 3.d x x ax b +?=21(ln )ax b b ax b C a +-++ 5.d ()x x ax b +?=1ln ax b C b x +-+ 6.2d ()x x ax b +?=21ln a ax b C bx b x +-++ 10 .x C 19.22d x x a +?=1arctan x C a a + 21.22d x x a -?=1ln 2x a C a x a -++ 23.2d x x ax b +?=21ln 2ax b C a ++ 24.2 2d x x ax b +?=2d x b x a a ax b -+? a x x a a a x x x x x x x x x x a x x ln 1)(log ln )(cot csc )(csc tan sec )(sec csc )(cot sec )(tan 22='='?-='?='-='='222211)cot (11)(arctan 11)(arccos 11)(arcsin x x arc x x x x x x +-='+='--='-='

31. 1arsh x C a +=ln(x C + 32. =C + 33. x =C 34. x =C + 35.2 x =2ln(2a x C -++ 39. x 2 ln(2a x C +++ 43.x a C + 44.2d x x ?=ln(x C +++ 47. x =C 53.x 2 ln 2 a x C 57.x =arccos a a C x + 59. arcsin x C a + 61. x =C

高等数学常用积分公式查询表

导数公式: 基本积分表: 三角函数的有理式积分: a x x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22 = '='?-='?='-='='2 2 22 11 )(11 )(11 )(arccos 11 )(arcsin x arcctgx x arctgx x x x x +- ='+= '-- ='-= '? ?????????+±+=±+=+=+=+-=?+=?+-==+==C a x x a x dx C shx chxdx C chx shxdx C a a dx a C x ctgxdx x C x dx tgx x C ctgx xdx x dx C tgx xdx x dx x x )ln(ln csc csc sec sec csc sin sec cos 222 22 22 2C a x x a dx C x a x a a x a dx C a x a x a a x dx C a x arctg a x a dx C ctgx x xdx C tgx x xdx C x ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=????????arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 2 2222222? ????++-=-+-+--=-+++++=+-= ==-C a x a x a x dx x a C a x x a a x x dx a x C a x x a a x x dx a x I n n xdx xdx I n n n n arcsin 22ln 22)ln(221 cos sin 22 2222222 2222222 22 2 22 2 π π

常用微积分公式大全

常用微积分公式大全 Prepared on 24 November 2020

常用微积分公式 基本积分公式均直接由基本导数公式表得到,因此,导数运算的基础好坏直接影响积分的能力,应熟记一些常用的积分公式. 因为求不定积分是求导数的逆运算,所以由基本导数公式对应可以得到基本积分公式.。 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

对这些公式应正确熟记.可根据它们的特点分类来记. 公式(1)为常量函数0的积分,等于积分常数. 公式(2)、(3)为幂函数的积分,应分为与. 当时,, 积分后的函数仍是幂函数,而且幂次升高一次. 特别当时,有. 当时, 公式(4)、(5)为指数函数的积分,积分后仍是指数函数,因为 ,故(,)式右边的是在分母,不在分子,应记清. 当时,有. 是一个较特殊的函数,其导数与积分均不变. 应注意区分幂函数与指数函数的形式,幂函数是底为变量,幂为常数;指数函数是底为常数,幂为变量.要加以区别,不要混淆.它们的不定积分所采用的公式不同.

公式(6)、(7)、(8)、(9)为关于三角函数的积分,通过后面的学习还会增加其他三角函数公式. 公式(10)是一个关于无理函数的积分 公式(11)是一个关于有理函数的积分 下面结合恒等变化及不定积分线性运算性质,举例说明如何利用基本积分公式求不定积分. 例1 求不定积分. 分析:该不定积分应利用幂函数的积分公式. 解: (为任意常数) 例2 求不定积分. 分析:先利用恒等变换“加一减一”,将被积函数化为可利用基本积分公式求积分的形式. 解:由于,所以 (为任意常数)

(完整版)高等数学常用公式汇总————

高数常用公式 平方立方: 22222222 332233223223332233222(1)()()(2)2()(3)2()(4)()()(5)()()(6)33()(7)33()(8)222(a b a b a b a ab b a b a ab b a b a b a b a ab b a b a b a ab b a a b ab b a b a a b ab b a b a b c ab bc ca -=+-++=+-+=-+=+-+-=-+++++=+-+-=-+++++= 21221)(9)()(),(2) n n n n n n a b c a b a b a a b ab b n ----++-=-++++≥L 倒数关系:sinx·cscx=1 tanx·cotx=1 cosx·secx=1 商的关系:tanx=sinx/cosx cotx=cosx/sinx 平方关系:sin^2(x)+cos^2(x)=1 tan^2(x)+1=sec^2(x) cot^2(x)+1=csc^2(x) 倍角公式: sin(2α)=2sinα·cosα cos(2α)=cos^2(α)-s in^2(α)=2cos^2(α)-1=1-2sin^2(α) tan(2α)=2tanα/[1-tan^2(α)] 降幂公式: sin^2(α/2)=(1-cosα)/2 cos^2(α/2)=(1+cosα)/2 tan^2(α/2)=(1-cosα)/(1+cosα) tan(α/2)=sinα/(1+cosα)=(1-cosα)/sinα 两角和差: sin(α±β)=sinα·cosβ±cosα·sinβ cos(α+β)=cosα·cosβ-sinα·sinβ cos(α-β)=cosα·cosβ+sinα·sinβ tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ) tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ) 积化和差: sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)] cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)] cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)] sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]

商业微积分公式

A thesis submitted to in partial fulfillment of the requirement for the degree of Master of Engineering 有关高等数学计算过程中所涉及到的数学公式(集锦) 一、0 101101lim 0n n n m m x m a n m b a x a x a n m b x b x b n m --→∞?=??+++? =??? L L (系数不为0的情况) 二、重要公式(1)0sin lim 1x x x →= (2)()1 0lim 1x x x e →+= (3 ))1n a o >= (4 )1n = (5)lim arctan 2 x x π →∞ = (6)lim tan 2 x arc x π →-∞ =- (7)limarccot 0x x →∞ = (8)lim arccot x x π→-∞ = (9)lim 0x x e →-∞ = (10)lim x x e →+∞ =∞ (11)0 lim 1x x x + →= 三、下列常用等价无穷小关系(0x →) sin x x : tan x x : arcsin x x : arctan x x : 2 11cos 2 x x -: ()ln 1x x +: 1x e x -: 1ln x a x a -: ()11x x ? +-?: 四、导数的四则运算法则 ()u v u v '''±=± ()uv u v uv '''=+ 2u u v uv v v '''-??= ???

考研数学常用微积分公式背诵表

你的考试好帮手,记住我们的网址:www . KaoKer .com 考客下载网:你的考试好帮手,记住我们的网址:www . KaoKer .com 第 1 页 共 1 页 () / x μ =1 x μμ- ()/x a =ln x a a ()/ x e =x e ()/ l o g a x =1 ln x a ()/ ln x = 1x ()/ sin x =cos x ()/ c o s x =s i n x - ()/ t a n x =2 s e c x ()/ c o t x =2c s c x - () / sec x =sec tan x x ()/ c s c x =c s c c o t x x - ()/ a r c s i n x = () / arccos x =- ()/ a r c t a n x = 2 11x + ()/ a r c c o t x = 2 11x - + () / uv =/ / u v uv + /u v ?? = ??? / / 2 u v uv v - kdx =?kx x d x μ = ? 1 1 x μμ++ dx x =? ln x 2 1dx x =+?arctan x =? a r c s i n x c o s x d x =?s i n x s i n x d x =?c o s x - 2 sec xdx = ?tan x 2 c c s x d x =?c o t x - s e c t a n x x d x =?s e c x c s c c o t x x d x =?c s c x - x e d x =?x e x a d x = ?ln x a a t a n x d x =?l n c o s x - cot xdx =?ln sin x sec xdx = ?l n s e c t a n x x + csc xdx =?l n c s c c o t x x - 2 2 1 dx x a =+?1arctan x a a 2 2 1 dx x a =-?1ln 2x a a x a -+ = ? ln x + =? a r c s i n x a 等价无穷小()0x → sin ~x x t a n ~x x a r c s i n ~x x a r c t a n ~x x l n (1)~x +x 1~x e -x 1cos ~x -2 12 x 1~1 2x 1~x a -ln x a 渐近线k =()lim x f x x →∞ b =()lim x f x kx →∞-??? ? 曲率k = () // 3/2 2 1y y +

常用微积分公式大全完整版

常用微积分公式大全 HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】

常用微积分公式 基本积分公式均直接由基本导数公式表得到,因此,导数运算的基础好坏直接影响积分的能力,应熟记一些常用的积分公式. 因为求不定积分是求导数的逆运算,所以由基本导数公式对应可以得到基本积分公式.。 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

(11) 对这些公式应正确熟记.可根据它们的特点分类来记. 公式(1)为常量函数0的积分,等于积分常数. 公式(2)、(3)为幂函数的积分,应分为与. 当时,, 积分后的函数仍是幂函数,而且幂次升高一次. 特别当时,有. 当时, 公式(4)、(5)为指数函数的积分,积分后仍是指数函数,因为 ,故(,)式右边的是在分母,不在分子,应记清. 当时,有. 是一个较特殊的函数,其导数与积分均不变. 应注意区分幂函数与指数函数的形式,幂函数是底为变量,幂为常数;指数函数是底为常数,幂为变量.要加以区别,不要混淆.它们的不定积分所采用的公式不同. 公式(6)、(7)、(8)、(9)为关于三角函数的积分,通过后面的学习还会增加其他三角函数公式.

公式(10)是一个关于无理函数的积分 公式(11)是一个关于有理函数的积分 下面结合恒等变化及不定积分线性运算性质,举例说明如何利用基本积分公式求不定积分. 例1 求不定积分. 分析:该不定积分应利用幂函数的积分公式. 解: (为任意常数) 例2 求不定积分. 分析:先利用恒等变换“加一减一”,将被积函数化为可利用基本积分公式求积分的形式. 解:由于,所以 (为任意常数) 例3 求不定积分. 分析:将按三次方公式展开,再利用幂函数求积公式.

微积分公式_微积分公式运算法则

有关高等数学计算过程中所涉及到的数学公式(集锦) (10) lim e x =处 x _jioC 六、高阶导数的运算法则 1) [u (X )±v (x )F )=u (X )±v (x y) -、lim a 0x m+a 1x m :+川+a n X Y b 0X m +b 1X m ri||+b m a 。 b (系数不为 0的情况) 二、重要公式(1)]四沁/ (2) lim (1 +x y 1 =e (3) lim Va(a A 0)=1 (4) lim 折=1 n _^ limarctan x = — y 2 (6) lim arctanx =—一 J 产 2 (7) limarccotx=0 X Y (8) lim arccot x =兀 (9) lim e x = 0 三、下列常用等价无穷小关系 X T 0) sinx x tanx X arcsixrf x arcta nx x 仆赵]2 ln (1 +x 卅 X e X 一1口 X aX —1 LI XI n a (1 + x f-1U e x 四、导数的四则运算法则 (u ±v ) =u ‘±v ' f u ) u v - uv' I — = I v 丿 五、基本导数公式 ⑴(c ) =0 ⑶(sin X ) = cosx ⑷(cosx ) = -sin x 2 ⑸(tanx ) =sec x 2 ⑹(cot X ) = -csc X ⑺(secx j =secx dan x (8) (cscx ) = - cscx cot x ⑼(e x ) =e x X X ⑽(a ) =a ln a -1 (11)(In X )=- x (12)(gx )=— X l n a , 1 (13) (arcsin x ) = -j=2 山 —x 2 ■ 1 (14) (arccos x ) = - # 2 丁1 —x 2 , 1 (15) (arctan x )= 1 +x 2 I 1 (16) (arccot X ) = --- --------------- 2(")( X ) = 1(18)( J X ) = 1 (2)

微积分公式与定积分计算练习

微积分公式与定积分计算练习(附加三角函数公式) 一、基本导数公式 ⑴()0c '= ⑵1x x μμμ-= ⑶()sin cos x x '= ⑷()cos sin x x '=- ⑸()2tan sec x x '= ⑹()2cot csc x x '=- ⑺()sec sec tan x x x '=? ⑻()csc csc cot x x x '=-? ⑼ ()x x e e '= ⑽ ()ln x x a a a '= ⑾ ()1 ln x x '= ⑿ () 1log ln x a x a '= ⒀ ( )arcsin x '= ⒁( )arccos x '=⒂ ()21arctan 1x x '=+ ⒃() 21arccot 1x x '=-+⒄()1 x '= ⒅ '= 二、导数的四则运算法则 ()u v u v '''±=± ()uv u v uv '''=+ 2u u v uv v v ''' -??= ??? 三、高阶导数的运算法则 (1)()()() () () () () n n n u x v x u x v x ±=±??? ? (2)()() ()() n n cu x cu x =??? ? (3)()() () ()n n n u ax b a u ax b +=+??? ? (4) ()()() () ()()()0 n n n k k k n k u x v x c u x v x -=?=???? ∑ 四、基本初等函数的n 阶导数公式 (1) ()() ! n n x n = (2) ()() n ax b n ax b e a e ++=? (3) ()() ln n x x n a a a = (4) ()() sin sin 2n n ax b a ax b n π??+=++??? ??? ??(5) ()()cos cos 2n n ax b a ax b n π??+=++??? ???? ? (6) () () () 1 1! 1n n n n a n ax b ax b +???=- ?+?? + (7) ()() () ()() 1 1! ln 1n n n n a n ax b ax b -?-+=-???? + 五、微分公式与微分运算法则

相关文档