文档库 最新最全的文档下载
当前位置:文档库 › 九年级数学圆的对称性2

九年级数学圆的对称性2

九年级数学圆的对称性2
九年级数学圆的对称性2

人教版九年级数学九年级上圆的对称性(1)导学案

圆的对称性(1) 一、学习目标 1、经历探索圆的中心对称性及有关性质的过程 2、理解圆的中心对称性及有关性质 3、会运用圆心角、弧、弦之间的关系解决有关问题 重点:理解圆的中心对称性及有关性质 难点:运用圆心角、弧、弦之间的关系解决有关问题 二、知识准备: 1、什么是中心对称图形? 2、我们采用什么方法研究中心对称图形? 三、学习内容: 1、按照下列步骤进行小组活动: ⑴在两张透明纸片上,分别作半径相等的⊙O 和⊙O ' ⑵在⊙O 和⊙O '中,分别作相等的圆心角∠AOB 、∠'''B O A ,连接AB 、''B A ⑶将两张纸片叠在一起,使⊙O 与⊙O '重合(如图) ⑷固定圆心,将其中一个圆旋转某个角度,使得OA 与OA '重合 在操作的过程中,你有什么发现,请与小组同学交流 _______________________________________________ 2、上面的命题反映了在同圆或等圆中,圆心角、弧、弦的关系,对于这三个量之间的关系,你还有什么思考?请与小组同学交流. 你能够用文字语言把你的发现表达出来吗? 3、圆心角、弧、弦之间的关系: 在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等 4、试一试:如图,已知⊙O 、⊙O '半径相等,AB 、CD 分别是⊙O 、⊙O '的两条弦填空: (1)若AB=CD ,则 , (2)若AB= CD ,则 , (3 ',则 , 5么如何来刻画弧的大小呢? 弧的大小:圆心角的度数与它所对的弧的度数相等 例1、如图,AB 、AC 、BC 都是⊙O 的弦,∠AOC=∠BOC ∠ABC 与∠BAC 相等吗?为什么? ’ ’ C ︵ ︵

苏科版 九年级上册 第2章 对称图形——圆有关的知识点

圆 圆的定义: 在一个平面内,线段OA 绕它固定的一个端点O 旋转一周,另一个端点A 随之旋转所形成的图形叫做圆,固定的端点O 叫做圆心,线段OA 叫做半径。 以点O 为圆心的圆记作“⊙O ”,读作“圆O ” 注意:圆的的位置由圆心决定,圆的大小由圆的半径决定。 圆是平面内到定点的距离等于定长的点的集合,定点是圆心,定长是半径。 图文: 点和圆的位置关系: 设⊙O 的半径是r ,点P 到圆心O 的距离为d ,则有: dr ?点P 在⊙O 外。 图文: 点P 在圆O 内 d <r 点P 在圆O 上 d=r 点P 在圆O 外 d>r A O r P O d r O d r P O d r P A A A

圆的有关概念: 同心圆:圆心相同,半径不相等的圆; 等 圆:能够互相重合的圆叫等圆;(或者半径相等的圆); 弦: 连接圆上任意两点的线段 ; 直 径:过圆心且的端点在圆上的线段叫直径。(或者过圆心的弦); 弧: 圆上任意两点间的部分叫做圆弧,简称弧,用符号“⌒”表示; 优 弧:大于半圆的弧; 劣 弧:小于半圆的弧; 圆心角:顶点在圆心的角; 圆周角:顶点在圆上,并且两边都和圆相交的角; 弓 形:由弦及其所对的弧组成的图形; 弦心距:从圆心到弦的距离; 注意:1、同圆或等圆的半径都相等,或者半径相等的圆叫等圆或同圆; 2、直径是最长的弦,直径是弦,但是弦不一定直径; 3、弧可以分为优弧、劣弧和半圆;优弧大于劣弧; 4、半圆是弧,但是弧不一定是半圆; 5、能够互相重合的弧叫等弧,若只是说度数或长度相等都不叫等弧; 6、圆周角必须要强调角的两边与圆有交点,而圆心角不需要; 图文: 同心圆 等圆 弦:弦CD ,弦AB 圆周角:∠BAC 直径:AB 圆O 的直径 圆心角:∠BOC 优弧:错误! 劣弧:⌒BDC 弦心距:OE O R r O 1 O 2 O A B C D E O C B A

2017年秋季学期新版冀教版九年级数学上学期28.1、圆的概念及性质、圆的对称性的应用素材

1 圆的“对称性”的应用 圆是轴对称图形图形,对称轴是任意一条过圆心的直线,利用这个“对称性”,我们可以得到垂直于弦的直径平分这条弦,并且平分弦所对的弧.结合圆的特点,我们体会它们的用处: 【例1】在直径为1米的圆柱形油槽内装入一些油后,截面如图1所示,若油面宽AB =0.6米,则油的最大深度为_______. 分析:本题考查垂径定理和勾股定理.欲求油的最大深度,就是求图1中弓形高CD =OD - OC ,所以关键是求OC ,利用勾股定理在△AOC 中可求出.通过本题可看出图中弦长a ,弦心距d ,半径r ,与弓形高h 四者之间的关系,要特别明确:①r =h +d ;②r 2=(2 a )2+d 2,由两个式子可知对于a 、d 、r 、h 这四个量,已知两个,另外两个一定能求,我们应该熟记. 解:作半径OD ⊥AB 于C ,∴AC =21AB =0.6×2 1=0.3. 在Rt △AOC 中,∵OC =22AC OA -=22)3.0()5.0(-=0.4, ∴CD =OD -OC =0.5-0.4=0.1(米). ∴油的最大深度为0.1米. 【例2】在半径为5厘米的圆内有两条互相平行的弦,一条弦长为8厘米,另一条弦长为6厘米,则两弦之间的距离为_______. 分析:本题考查垂径定理和勾股定理.根据题意,画出图形,这是与半径、弦长有关的问题,很自然联想到垂径定理,作出垂径,根据弦长a ,圆心到弦的距离d ,半径r 三者之间的关系r 2=(2 a )2+d 2可求出弦心距d ,从而问题解决.解答本题时,一定要注意分两种情况讨论,两条平行弦可能在圆心两侧,也可能在圆心同侧. 解:①如图2所示,如果两条平行弦在圆心两侧, 过O 作EF ⊥AB 于E ,EF ⊥CD 于F ,连结AO 、CO ,

圆的对称性与性质

圆的对称性与性质 【重点知识】 1.弦心距:圆心到弦的距离. 2.圆周角:顶点在圆上,它的两边分别和圆相交的角,叫做圆周角. 3.一条弧所对的圆周角等于它所对的圆心角的一半. 4.在同圆或等圆中,同弧或等弧所对的圆周角相等. 5.直径所对的圆周角是直角,090的圆周角所对的弦是直径. 【归纳总结】 1.在同圆或等圆中:①两个圆心角相等;②两条弧相等;③两条弦相等;④两条弦的弦心距相等.此四项中任何一项成立,则其余对应的三项都成立. 【典型例题】 例1.①如图1,在⊙O 中,,AB AC = 070,A ∠=则C ∠=______. ②如图2,已知,,A B C 在⊙O 上,且040,BAC ∠=则OCB ∠=_____. ③如图3,已知AB 是⊙O 的直径,,,C D E 都是⊙O 上的点,则12∠+∠=_____. ④如图4,已知圆心角AOB ∠的度数为0100,则圆周角ACB ∠的度数是______. (图1) (图2) (图3) (图4) (图5) ⑤如图5,矩形ABCD 与圆心在AB 上的⊙O 交于点,,,,8,1,G B F E GB cm AG cm == 2,DE cm =则EF =_______cm . ⑥如图6,在⊙O 中,0 60,3,ACB D AC ∠=∠==则ABC ?的周长为________. ⑦(2008湘潭)如图7,已知⊙O 半径为5,弦AB 长为8,点P 为弦AB 上一动点,连结OP ,则线段OP 的最小长度是 . 图6 图7

⑧(2008重庆)已知,如图8,AB 为⊙O 的直径,,AB AC BC =交⊙O 于点,D AC 交⊙O 于点0,45.E BAC ∠=给出以下五个结论:①0 22.5;EBC ∠=②;BD DC =③2;AE EC = ④劣弧? AE 是劣弧?DE 的2倍;⑤.AE BC =其中正确结论的序号是 . ⑨(2008黄石)如图9,AB 为⊙O 的直径,点C D ,在⊙O 上,50BAC ∠=,则ADC ∠= . 图8 图9 ⑩如图10,∠E=40°,AB=BC=CD ,则∠ACD= . 例2.①在半径为2的⊙O 中,弦AB 的长为AOB ∠=______. ②⊙O 的半径2,OA =弦,AB AC 的长为一元二次方程20x x -+=的两 个根,则BAC ∠=_____. ③如图,在⊙O 中,AB 是直径, CD 是一条弦,//,AB CD 圆周角030,10,CAD AB cm ∠==则弦CD 的长是______. ④如图,AB 是⊙O 的直径,CD 为弦,CD AB ⊥于E ,则下列结论中不成立的是( ) A. COE DOE ∠=∠ B. CE DE = C.OE BE = D. BD BC = ⑤(2008上海)小明不慎把家里的圆形玻璃打碎了,其中四块碎片如图所示,为配到与原来大小一样的圆形玻璃,小明带到商店去的一块玻璃碎片应该是( ) A.第①块 B.第②块 C.第③块 D.第④块 ③图 ④图 ⑤图 ⑥图 B ?E D C B A O 20 题图 图10

浙教版第三章圆的基本性质教案3.2圆的轴对称性(2)

3.2 圆的轴对称性(2) 教学目标 1.使学生掌握垂径定理及其推论,并会用垂径定理及其推论解决有关证明、计算和 作图问题; 2.使学生了解垂径定理及其推论在实际中的应用,培养学生把实际问题转化为数学 问题的能力和计算能力,结合应用问题向学生进行爱国主义教育. 教学重点和难点 垂径定理的两个推论是重点;由定理推出推论1是难点. 教学方法:类比启发 教学辅助:投影片 教学过程: 一、从学生原有的认知结构提出问题 1.画图叙述垂径定理,并说出定理的题设和结论.(由学生叙述) 2.教师引导学生写出垂径定理的下述形式: 题设结论 指出:垂径定理是由两个条件推出三个结论,即由①②推出③④⑤. 提问:如果把题设和结论中的5条适当互换,情况又会怎样呢?引出垂径定理推论的课题 二、运用逆向思维方法探讨垂径定理的推论 1.引导学生观察图形,选①③为题设,可得: 由于一个圆的任意两条直径总是互相平分的,但是它们不一定是互相垂直的,所以要使上面的题设能够推出上面的结论,还必须加上“弦AB不是直径”这一条件. 已知:如图3-15,在⊙O中,直径CD与弦AB(不是直径)相交于E,且E是AB的中点. 求证:CD⊥AB,. 分析:要证明CD⊥AB,即证OE⊥AB,而E是AB的中点,即证OE为AB的中垂线.由等腰三角形的性质可证之.利用垂径定理可知AC=BC,AD=BD. 证明:连结OA,OB,则OA=OB,△AOB为等腰三角形. 因为E是AB中点,所以OE⊥AB,即CD⊥AB, 又因为CD是直径,所以 2.(1)引导学生继续观察、思考,若选②③为题设,可得: (2)若选①④为题设,可得: 3.根据上面具体的分析,在感性认识的基础上,引导学生用文字叙述其中最常用的三 推论1 (1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧; (2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧; (3)平分弦所对的一条弧的直径,垂直平分弦并且平分弦所对的另一条弧. 4.垂径定理的推论2. 在图3-15的基础上,再加一条与弦AB平行的弦EF,请同学们观察、猜想,会有什么结论出现:(图7-37) 学生答 接着引导学生证明上述猜想成立.(重点分析思考过程,然后学生口述,教师板书.) 证明:因为EF∥AB,所以直径CD也垂直于弦EF,

数学f1初中数学3.2 圆的对称性教案二

本文为自本人珍藏版权所有仅供参考 本文为自本人珍藏版权所有仅供参考 圆的对称性 教学目标 (一)教学知识点(二) 1.圆的旋转不变性. 2.圆心角、弧、弦之间相等关系定理. (二)能力训练要求 1.通过观察、比较、操作、推理、归纳等活动,发展空间观念、推理能力以及概括问题的能力. 2.利用圆的旋转不变性,研究圆心角、弧、弦之间相等关系定理. (三)情感与价值观要求 培养学生积极探索数学问题的态度及方法. 教学重点 圆心角、弧、弦之间关系定理. 教学难点 “圆心角、弧、弦之间关系定理”中的“在同圆或等圆”条件的理解及定理的证明. 教学方法 指导探索法. 教具准备 投影片两张 第一张:做一做(记作§3.2.2A) 第二张:举反例图(记作§3.2.2B) 教学过程 Ⅰ.创设问题情境,引入新课 [师]我们研究过中心对称图形,我们是用什么方法来研究它的,它的定义是什么?哪位同学知道?

[生]用旋转的方法.中心对称图形是指把一个图形绕某一个点旋转180°,如果旋转后的图形能够和原来的图形互相重合,那么这个图形叫中心对称图形.这个点就是它的对称中心. [师]圆是一个特殊的圆形,通过前面的学习,同学们已经了解到圆既是一个轴对称图形又是一个中心对称图形.那么,圆还有其他特性吗?下面我们继续来探讨. Ⅱ.讲授新课 [师]同学们请观察老师手中的两个圆有什么特点? [生]大小一样. [师]现在老师把这两个圆叠在一起,使它俩重合,将圆心固定. 将上面这个圆旋转任意一个角度,两个圆还重合吗? [生]重合. [师]通过旋转的方法我们知道:圆具有旋转不变的特性.即一个圆绕着它的圆心旋转任意一个角度,都能与原来的图形重合.圆的中心对称性是其旋转不变性的特例.即圆是中心对称图形,对称中心为圆心. [师]我们一起来做一做.(出示投影片§3.2.2A) 按下面的步骤做一做: 1.在两张透明纸上,作两个半径相等的⊙O和⊙O′,沿圆周分别将两圆剪下. 2.在⊙O和⊙O'上分别作相等的圆心角∠AOB和∠A'O'B'(如下图示),圆心固定.注意:在画∠AOB与∠A'O'B'时,要使OB相对于OA的方向与O'B'相对于O'A'的方向一致,否则当OA与OA'重合时,OB与O'B'不能重合. 3.将其中的一个圆旋转一个角度,使得OA与O'A'重合.

最新北师大版初中数学九年级下册《圆的对称性》教案设计

北师大版初中数学九年级下册《圆的对称性》教案设计

课题:第三章第2节圆的对称性(1) 课型:新授课 教学目标: 1.理解圆的对称性(轴对称)及有关性质.(重点) 2.理解垂径定理及推论,并会运用其解决有关问题.(难点) 教法与学法指导: 这节课主要通过“找圆心”等问题情境激发学生探究的兴趣和热情,经历“操作实践—大胆猜测---综合证明----灵活应用”的课堂模式,在探究垂径定理过程中,让学生领会数学的严谨性,并培养学生的数学应用意识,勇于探索的精神. 课前准备:制作课件,学生预习学案. 教学过程: 一、情景导入明确目标 组织教学:准备,给每一位同学发放圆形纸片(用化学滤纸);并提出问题,(问题1) 通过上节课《车轮为什么是圆形》的学习,认识了圆的基本概念,这是一张圆形纸片,你有什么办法找出它的圆心呢? 学生活动:学生凭借经验很容易想到用两次折叠的方法,找到圆心. [师]:同学们上一节课,我们学习了圆的基本概念,知道,半径定圆的大小,圆心定圆的位置.下面,请一位同学到前面演示自己找圆心的过程. 学生演示: [师]:(问题2)在折叠的过程中,你从中还知道圆具有什么性质? [生1]:老师,圆是对称图形,既是轴对称图形,又是中心对称图形. [师]:很好,同学们观察的很认真,这节课,我们重点研究圆的轴对称性,那么,圆的对称轴是怎样的直线,有多少条对称轴?

[生2]:老师,圆的对称轴是直径,它有无数条对称轴. [师]:同学们,这位同学回答的对吗? [生3]:不正确,对称轴应该是直线,而直径是线段,应该说,对称轴是直径所在的直线,或者是过圆心的直线. 教师活动:进行鼓励表扬并板书,3.2 圆的对称性(1) 圆的对称性:圆是轴对称图形,对称轴是任意一条过圆心的直线. 设计意图:问题可以激发学生学习数学的兴趣,而兴趣又是最好的老师.通过设 计一连串的问题情境容易引发学生学习和探究的兴趣,在动手操作中既复习圆的意义,又探索到圆的对称性. 二、自主学习 合作探究: 探究活动一:圆的基本概念 (让学生注意观察动画课件) 学案(问题3): (1)什么是弦?什么是弧?如何区别?怎么表示? (2)弧与弦分别可以分成几类?它们如何区分? 学情预设:可能出现的 情形一:学生看书后能理解弦、弧、优弧、劣弧及半圆的意义,但是难以区别异同,如: 弦是线段,弧是曲线段;直径是弦,但弦不一定是直径;半圆是弧,但弧不一定是半圆;半圆既不是劣弧,也不是优弧. 情形二:学生写出的弧可能重复或遗漏,不能掌握“优弧与劣弧成对出现”的规律. 情形三:优弧的表示方法. 以上若学生不能讨论总结得出,则需要老师引导得出结论. 学生活动:学生在预习的前提下边观察图形演示边独立思考,再在四人小组间交流讨论. 教师活动:参与学生的讨论,注意收集信息,以便及时补充,然后提问. C

九年级数学上册第2章对称图形-圆2.2圆的对称性第2课时圆的轴对称性同步练习新版苏科版

第2章 对称图形——圆 2.2 第2课时 圆的轴对称性 知识点 1 圆的轴对称性 1.圆是轴对称图形,____________都是它的对称轴,因此圆有________条对称轴. 知识点 2 垂径定理 2.如图2-2-12,已知⊙O 的直径AB ⊥CD 于点E ,则下列结论中不一定正确的是( ) A .CE =DE B .AE =OE C.BC ︵=BD ︵ D .△OC E ≌△ODE 3.在⊙O 中,非直径的弦AB =8 cm ,OC ⊥AB 于点C ,则AC 的长为( ) A .3 cm B .4 cm C .5 cm D .6 cm 图2-2-12 图2-2-13 4.教材习题2.2第5题变式如图2-2-13,AB 是⊙O 的弦,半径OC ⊥AB 于点D .若⊙O 的半径为5,AB =8,则CD 的长是( ) A .2 B .3 C .4 D .5 5.如图2-2-14,⊙O 的直径CD 垂直弦AB 于点 E ,且CE =2,DE =8,则AB 的长为( ) A .2 B .4 C .6 D .8 图2-2-14

图2-2-15 6.如图2-2-15,AB是⊙O的直径,C是⊙O上的一点.若BC=6,AB=10,OD⊥BC于点D,则OD的长为________. 7.[xx·长沙] 如图2-2-16,AB为⊙O的直径,弦CD⊥AB于点E,已知CD=6,EB=1,则⊙O的半径为________. 图2-2-16 图2-2-17 8.如图2-2-17是一个古代车轮的碎片,小明为求其外圆半径,连接外圆上的两点A,B,外圆半径OC⊥AB于点D交外圆于点C.测得CD=10 cm,AB=60 cm,则这个车轮的外圆半径是________cm. 9.[xx秋·盐都区月考] 已知:如图2-2-18,在⊙O中,弦AB的长为8,圆心O到AB的距离为3. (1)求⊙O的半径; (2)若P是AB上的一动点,试求OP的最大值和最小值. 图2-2-18

圆的对称性

圆的对称性 温故知新: 1.已知:如图,点O是∠EPF的平分线的一点,以O为圆心的圆和∠EPF的两边分别交于点 A、B和C、D.求证: ∠OBA=∠OCD 1、圆的对称性 (1)圆是轴对称图形,它的对称轴是直径所在的直线。 (2)圆是中心对称图形,它的对称中心是圆心。 (3)圆是旋转对称图形。 2、垂径定理。 (1)垂直于弦的直径平分这条弦,且平分这条弦所对的两条弧。 (2)推论: 平分弦(非直径)的直径,垂直于弦且平分弦所对的两条弧。 平分弧的直径,垂直平分弧所对的弦。 【例1】如图,AB、AC、BC是⊙O的弦,∠AOC=∠BOC.∠ABC与∠BAC相等吗?为什么? 【例2】如图,在△ABC中,∠C=90°,∠B=28°,以C为圆心, DE的度数. CA为半径的圆交AB于点D,交BC与点E.求⌒ AD、⌒

【例3】如图,在同圆中,若⌒ AB=2⌒ CD,则AB与2CD的大小关系是( ) . A. AB>2CD B. AB<2CD C. AB=2CD D. 不能确定 【例4】如图,已知在⊙O中,弦AB的长为8厘米,圆心O到AB的距离为3厘米,求⊙O的半径. 【例5】如图,圆柱形水管内原有积水的水平面宽CD=10cm,水深GF=1cm,若水面上升1cm(EG=1cm),则此时水面宽AB为多少?

【例6】有一座弧形的拱桥,桥下水面的宽度AB 为7.2米,拱顶高出水面CD ,长为2.4米,现有一艘宽3米,船舱顶部为长方形并且高出水面2米的货船要经过这里,此货船能顺利通过这座弧形拱桥吗? 课堂练习 1.如图,在⊙O 中,AB ︵=AC ︵,∠AOB =122°,则∠AOC 的度数为( ) A .122° B .120° C .61° D .58° 2.下列结论中,正确的是( ) A .同一条弦所对的两条弧一定是等弧 B .等弧所对的圆心角相等 C .相等的圆心角所对的弧相等 D .长度相等的两条弧是等弧 3.如图,在⊙O 中,若C 是AB ︵的中点,∠A =50°,则∠BOC 等于( ) A .40° B .45° C .50° D .60° 4.如图,已知BD 是⊙O 的直径,点A ,C 在⊙O 上,AB ︵=BC ︵,∠AOB = 60°,则∠COD 的度数是________. 5.如图,AB 是⊙O 的直径,BC ︵=CD ︵=DE ︵,∠BOC =40°,则∠AOE =

苏教版九年级-圆的对称性-知识点及典型例题(附答案)

圆的对称性 主要内容: 1. 圆是轴对称图形,也是中心对称图形。 经过圆心的直线是对称轴。 圆心是它的对称中心。 2. 圆心角、弧、弦之间的关系 定理:在同一个圆中,如果圆心角相等,那么它们所对的弧相等,所对的弦也相等。 推论:在同一个圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等。 如图,用几何语言表示如下:⊙O中, (1)∵∠AOB=∠A'OB' (3)∵AB=A'B' 5. 直径垂直于弦的性质(垂径定理) 垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。 如图:几何语言 【典型例题】 例1. 如图,在Rt△ABC中,∠C=90°,AC=3,BC=4,以点C为圆心,CA为半径的圆与AB、BC分别交于点D、E。求AB、AD的长。 分析:求AB较简单,求弦长AD可先求AF。 解: 例2. 如图,⊙O中,弦AB=10cm,P是弦AB上一点,且PA =4cm,OP=5cm,求⊙O的半径。 分析:⊙O中已知弦长求半径,通常作弦心距构造直角三角形, 利用勾股定理求解。 解:

第8题 例3. 如图“五段彩虹展翅飞”是某省利用国债资金修建的横跨渡江的琼洲大桥已正式通车,该桥的两边均有五个红色的圆拱,最高的圆拱的跨度为110米,拱高为22米,求这个圆拱所在圆的直径。 分析:略 解: 【模拟试题】一. 选择题。 1. ⊙O 中,弦AB 所对的弧为120°,圆的半径为2,则圆心到弦AB 的距离OC 为( ) A. B. 1 C. D. 2. 如图,AB 是⊙O 的直径,弦CD ⊥AB ,垂足为E ,如果,则AE 的 长为( ) A. 2 B. 3 C. 4 D. 5 3. 如图,⊙O 的弦AB 垂直于直径MN ,C 为垂足,若OA =5cm ,下面四个结论中可能成 立的是( ) A. B. C. D. 4. 下列命题中正确的是( ) A. 圆只有一条对称轴 B. 平分弦的直径垂直于弦 C. 垂直于弦的直径平分这条弦 D. 相等的圆心角所对的弧相等 5. 如图,已知AD =BC ,则AB 与CD 的关系为( ) A. AB >CD B. AB =CD C. AB <CD D. 不能确定 二. 填空题。 6. 半径为6cm 的圆中,有一条长的弦,则圆心到此弦的距离为___________cm 。 7. 把球放在长方体纸盒内,球的一部分露出盒外,其截面如图所示,已知EF=CD=16厘米,则球的半径为 厘米. 第5题 第11题

初三培优专题18 圆的对称性

专题18 圆的对称性 阅读与思考 圆是一个对称图形. 首先,圆是一个轴对称图形,任意一条直径所在的直线都是它的对称轴,圆的对称轴有无数条;同时,圆又是一个中心对称图形,圆心就是对称中心,圆绕其圆心旋转任意角度,都能够与本身重合,这是圆特有的旋转不变性. 由圆的对称性引出了许多重要的定理:垂径定理及推论;在同圆或等圆中,圆心角、圆周角、弦、弦心距、弧之间的关系定理及推论.这些性质在计算和证明线段相等、角相等、弧相等和弦相等等方面有广泛的应有.一般方法是通过作辅助线构造直角三角形,常与勾股定理和解直角三角形相结合使用. 熟悉以下基本图形和以上基本结论. 我国战国时期科学家墨翟在《墨经》中写道:“圆,一中间长也.”古代的美索不达米亚人最先开始制造圆轮.日、月、果实、圆木、车轮,人类认识圆、利用圆,圆的图形在人类文明的发展史上打下了深深的烙印. 例题与求解 【例1】在半径为1的⊙O 中,弦AB ,AC 的长分别为3和2,则∠BAC 度数为_______. (黑龙江省中考试题) 解题思路:作出辅助线,解直角三角形,注AB 与AC 有不同位置关系. 由于对称性是圆的基本特性,因此,在解决圆的问题时,若把对称性充分体现出来,有利于圆的问题的解决. 【例2】如图,在三个等圆上各自有一条劣弧? AB ,?D C ,?EF .如果?AB +?D C =?EF ,那么AB +CD 与EF 的大小关系是( ) A .A B +CD =EF B .AB +CD >EF C .AB +C D

圆的对称性(教案)

5.2 圆的对称性(二) 班级姓名学号 学习目标 1.理解圆的对称性(轴对称)及有关性质. 2.理解垂径定理并运用其解决有关问题. 学习重点:垂径定理及其运用. 学习难点:灵活运用垂径定理. 教学过程 一、情境创设 (1)圆是轴对称图形吗? (2)你是如何验证的? 设计意图1、体验折叠是验证轴对称图形的非常好的方法。 2、确信圆是轴对称图形,圆的对称轴是直径所在的直线,这样的对称轴有无数条。 圆是轴对称图形,我们这节课就来研究与圆的轴对称有关的性质。 二、探索与发现 如图,AB是⊙O的直径,画弦CD⊥AB,垂足为P,探索图形中的相等关系。 你是如何发现的? 教学设计: 经历从感性到理性的认知过程 通过观察操作说理等方法获取结论。 垂径定理 文字语言:_________________________________________________________。 符号语言: 。 三、例题讲解 2cm,你能求出圆心O到CD的距离吗?例1. 已知:如图,直径AB⊥CD,⊙O的半径为2cm,若弦CD=3 例2. 如图,以点O为圆心的两个同心圆中,大圆的弦AB交小圆于点C、D.AC与BD相等吗?为什么?

四、及时巩固: 1.如图,OA=OB ,AB 交⊙O 与点C 、D ,AC 与BD 是否相等?为什么? 2.填空 (1)如图,已知⊙O 的半径为13cm ,AB 为⊙O 的一条弦,点O 到AB 的距离为5cm ,则AB=____. (2)如图,已知⊙O 的直径为10cm 中,弦AB=8cm ,P 是AB 上的一个动点。OP长度的范围是 。 (3)如图,以点P 为圆心的圆弧与X 轴交于A ,B 两点,点P 的坐标为(4,2),点A 的坐标为(2,0)则点B 的坐标为_________. 第(1)题 第(2)题 第(3)题 五、应用与拓展: 1.某居民区一处圆形下水管道破裂,修理人员准备更换一段与原管道同样粗细的新管道.如图所示,已知污水水面宽度为60cm ,水面至管道顶部距离为10cm ,问修理人员应准备半径多大的管道? 思考: 如果水面宽度由60cm 变为80cm ,那么污水面下降了多少厘米? 2. (思维拓展)已知⊙O 的半径为5cm ,点P 是⊙O 内一点,OP=4cm ,则过点P 的所有弦中,最短弦的长为多少cm? 过点P 的所有弦中,长度为整数的弦有几条? O B A P O B A

苏科版-数学-九年级上册-《圆的对称性》练习

圆的对称性(第二课时) 基础题: 一、判断题: (1)相等的圆心角所对弦相等() (2)相等的弦所对的弧相等() 二、选择题: 1.下列命题中,正确的有() A.圆只有一条对称轴 B.圆的对称轴不止一条,但只有有限条 C.圆有无数条对称轴,每条直径都是它的对称轴 D.圆有无数条对称轴,经过圆心的每条直线都是它的对称轴 2.下列说法中,正确的是() A.等弦所对的弧相等B.等弧所对的弦相等 C.圆心角相等,所对的弦相等D.弦相等所对的圆心角相等 3.下列命题中,不正确的是() A.圆是轴对称图形B.圆是中心对称图形C.圆既是轴对称图形,又是中心对称图形D.以上都不对 三、填空题: 1.圆既是轴对称图形,又是_________对称图形,它的对称轴是_______, 对称中心是____. 2.⊙O中,弦AB的长恰等于半径,则弦AB所对圆心角是________度. 3. 圆的一条弦把圆分为5: 1 两部分, 如果圆的半径是2cm, 则这条弦的长是_____cm. 4.已知⊙O中,OC⊥弦AB于C,AB=8,OC=3,则⊙O的半径长等于________. ★发展题: 四、选择填空题 如图,过⊙O内一点P引两条弦AB、CD,使AB=CD, 求证:OP平分∠BPD. 证明:过O作OM⊥AB于M,ON⊥CD于N.

A、OM⊥PB B、OM⊥AB C、ON⊥CD D、ON⊥PD ▲提高题: 五、解答题: 1.如果圆的两条弦互相平行,那么这两条弦所夹的弧相等吗?为什么? 2. 如图,已知⊙O1和⊙O2是等圆,直线CF顺次交这两个圆于C、D、E、F,且CF交O1O2于点M, ⌒⌒ EF CD ,O1M和O2M相等吗?为什么?

浙教版九上《圆的轴对称性》word教案

3.2 圆的轴对称性(一) 教学目标 知识目标 1.理解圆是轴对称图形,每一条直径所在的直线都是对称轴. 2.掌握圆的性质(垂径定理),并会用它解决有关弦、弧、?弦心距及半径之间关系的证明和计算. 能力目标:经历折纸、画图、归纳等过程,培养学生的探索能力和应用能力. 情感目标:通过合作学习,探索圆的性质;让学生亲身体验、直观感知,并操作确认,激发学生自主学习和应用数学的意识. 教学重点难点 重点:探索圆的轴对称性和圆的性质. 难点:用圆的轴对称性推导出圆的性质及其应用. 课堂教与学互动设计 【创设情境,引入新课】 复习提问:(1)什么是轴对称图形? (2)正三角形是轴对称性图形吗?有几条对称轴? (3)圆是否为轴对称图形?如果是,它的对称轴是什么??你能找到多少条对称轴?──引入新课 【合作交流,探究新知】 一、自主探索 1.在透明纸上任意作一个圆和这个圆的任意一条直径,?然后沿着直径所在的直线把纸折叠,你发现了什么? 2.结论:圆是_________图形,_________的直线都是对称轴. 二、合作学习 1.在圆形纸片(如图3-3-1所示)上任意画一条直径CD,然后在CD上任意取一点E,过E画弦AB⊥CD于点E,把圆形纸片沿直径对折,观察直径CD两侧,你发现哪些点、线互相重合?有哪些圆弧相等?

图3-3-1 2.请你用命题的形式表达你的结论. 3.请你对上述命题写出已知、求证,并给出证明. 4.圆的性质(垂径定理): 垂直于弦的直径平分这条弦,并且平分弦所对的弧. 三、概括性质 1.直径垂直于弦. .????直径平分弦直径平分弦所对的弧 例如:CD 是直径,AB ⊥CD EA=EB ,CA CB =,DA DB =. 2.分一条弧成相等的两条弧的点,叫做这条弧的中点.例如,图3-3-1中,?点C?是AB 的中点,D 是ADB 的中点. 【例题解析,当堂练习】 例1 (课本例1)已知AB (如图3-3-2),用直尺和圆规求作这条弧的中点. 图3-3-2 练一练 如图3-3-3,同心圆O 中,大圆的弦AB 与小圆交于C ,D 两点,判断线段AC 与BD 的大小关系,并说明理由.

初中数学知识点精讲精析 圆的对称性

3·2圆的对称性 1.圆弧:圆上任意两点间的部分叫做圆弧,简称弧(arc). 2.弦:连接圆上任意两点的线段叫做弦(chord). 3.直径:经过圆心的弦叫直径(diameter).Array如右图。以A、B为端点的弧记作AB, 渎作“圆弧AB”或“弧AB”;线段AB是 ⊙O的一条弦,弧CD是⊙O的一条直径. 注意: ①弧包括优弧(major arc)和劣弧(minor are),大于半圆的弧称为优弧,小于半圆的 弧称为劣弧.如上图中,以A、D为端点的弧有两条:优弧ACD(记作ACD),劣弧ABD(记作 AD).半圆,圆的任意一条直径的两个端点分圆成两条弧,每一条弧叫半圆弧,简称半圆.半 圆是弧,但弧不一定是半圆;半圆既不是劣弧,也不是优弧. ②直径是弦,但弦不一定是直径. 4.圆是轴对称图形,过圆心的直线是它的对称轴,有无数条对称轴. 5.垂径定理: 垂直于弦的直径平分这条弦,并且平分弦所对的弧. 注意:①条件中的“弦”可以是直径.②结论中的“平分弧”指平分弦所对的劣弧、优弦. 证明此定理: 如图,连结OA、OB,则OA=OB.在Rt△OAM和Rt△OBM中, ∵OA=OB,OM=OM,∴Rt△OAM≌Rt△OBM, ∴AM=BM.∴点A和点墨关于CD对称.∵⊙O关于直径CD对称, ∴当圆沿着直径CD对折时,点A与点B重合, 弧AC与弧BC重合,弧AD与弧BD重合.∴AC=∴BC, 弧AD与弧BD重合. 可将原定理叙述为:一条直线若满足:(1)过圆心;(2)垂直于弦,那么可推出:①平分 弦,②平分弦所对的优弧,③平分弦所对的劣弧. 即垂径定理的条件有两项,结论有三项.用符号语言可表述为: 如图3—7,在⊙O中,

九年级数学圆的对称性练习题

3.2 圆的对称性 同步练习 一、填空题: 1.圆既是轴对称图形,又是_________对称图形,它的对称轴是_______, 对称中心是____. 2.已知⊙O 的半径为R,弦AB 的长也是R,则∠AOB 的度数是_________. 3. 圆的一条弦把圆分为5: 1 两部分, 如果圆的半径是2cm, 则这条弦的长是_____cm. 4.已知⊙O 中,OC ⊥弦AB 于C,AB=8,OC=3,则⊙O 的半径长等于________. 5.如图1,⊙O 的直径为10,弦AB=8,P 是弦AB 上的一个动点,那么OP 长的取值范围是_____. B P A O D C B A E D C B A O (1) (2) (3) 6.已知:如图2,有一圆弧形拱桥,拱的跨度AB=16cm,拱高CD=4cm,那么拱形的半径是____m. 7.如图3,D 、E 分别是⊙O 的半径OA 、OB 上的点,CD ⊥OA,CE ⊥OB,CD= CE, 则AC 与CB 弧长的大小关系是_________.

8.如图4,在⊙O 中,AB 、AC 是互相垂直且相等的两条弦,OD ⊥AB,OE ⊥AC,垂足分别为D 、E,若AC=2cm,则⊙O 的半径为_____cm. E D C B A O B A O B P A O (4) (5) (6) (7) 二、选择题: 9.如图5,在半径为2cm 的⊙O 中有长为的弦AB,则弦AB 所 对的圆心角的度数为( ) A.60° B.90° C.120° D.150° 10.如图6,⊙O 的直径为10cm,弦AB 为8cm,P 是弦AB 上一点,若OP 的长为整数, 则满足条件的点P 有( ) A.2个 B.3个 C.4个 D.5个 11.如图7,A 是半径为5的⊙O 内一点,且OA=3,过点A 且长小于8的弦有( ) A.0条 B.1条 C.2条 D.4条 三、解答题: 12.如图,AB 是⊙O 的弦(非直径),C 、D 是AB 上两点,并且AC=BD.试判断OC 与OD 的数量关系并说明理由.

九年级数学中考典型及竞赛训练专题18 圆的对称性(附答案解析)

九年级数学中考典型及竞赛训练专题18 圆的对称性 阅读与思考 圆是一个对称图形. 首先,圆是一个轴对称图形,任意一条直径所在的直线都是它的对称轴,圆的对称轴有无数条;同时,圆又是一个中心对称图形,圆心就是对称中心,圆绕其圆心旋转任意角度,都能够与本身重合,这是圆特有的旋转不变性. 由圆的对称性引出了许多重要的定理:垂径定理及推论;在同圆或等圆中,圆心角、圆周角、弦、弦心距、弧之间的关系定理及推论.这些性质在计算和证明线段相等、角相等、弧相等和弦相等等方面有广泛的应有.一般方法是通过作辅助线构造直角三角形,常与勾股定理和解直角三角形相结合使用. 熟悉以下基本图形和以上基本结论. 我国战国时期科学家墨翟在《墨经》中写道:“圆,一中间长也.”古代的美索不达米亚人最先开始制造圆轮.日、月、果实、圆木、车轮,人类认识圆、利用圆,圆的图形在人类文明的发展史上打下了深深的烙印. 例题与求解 【例1】在半径为1的⊙O 中,弦AB ,AC BAC 度数为_______. (黑龙江省中考试题) 解题思路:作出辅助线,解直角三角形,注AB 与AC 有不同位置关系. 由于对称性是圆的基本特性,因此,在解决圆的问题时,若把对称性充分体现出来,有利于圆的问题的解决. 【例2】如图,在三个等圆上各自有一条劣弧AB ,D C ,EF .如果AB +D C =EF ,那么AB +CD 与EF 的大小关系是( ) A .A B +CD =EF B .AB +CD >EF C .AB +C D

《圆的对称性》教案

《圆的对称性》教案 教学目标 1.知识与技能 (1)理解圆的轴对称性和中心对称性,会画出圆的对称轴,会找圆的对称中心; (2)掌握圆心角、弧和弦之间的关系,并会用它们之间的关系解题. 2.过程与方法 (1)通过对圆的对称性的理解,培养学生的观察、分析、发现问题和概括问题的能力,促进学生创造性思维水平的发展和提高; (2)通过对圆心角、弧和弦之间的关系的探究,掌握解题的方法和技巧. 3.情感、态度与价值观 经过观察、总结和应用等数学活动,感受数学活动充满了探索性与创造性,体验发现的乐趣. 教学重难点 重点:对圆心角、弧和弦之间的关系的理解. 难点:能灵活运用圆的对称性解决有关实际问题,会用圆心角、弧和弦之间的关系解题.教学过程 一、创设情境,导入新课 问:前面我们已探讨过轴对称图形,哪位同学能叙述一下轴对称图形的定义? (如果一个图形沿着某一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴). 问:我们是用什么方法来研究轴对称图形? 生:折叠. 今天我们继续来探究圆的对称性. 问题1:前面我们已经认识了圆,你还记得确定圆的两个元素吗? 生:圆心和半径. 问题2:你还记得学习圆中的哪些概念吗? 忆一忆: 1.圆:平面上到____________等于______的所有点组成的图形叫做圆,其中______为圆心,定长为________.

2.弧:圆上_____叫做圆弧,简称弧,圆的任意一条____的两个端点分圆成两条弧,每一条弧都叫做圆的半径.__________称为优弧,_____________称为劣弧. 3.___________叫做等圆,_________叫做等弧. 4.圆心角:顶点在_____的角叫做圆心角. 二、探究交流,获取新知 知识点一:圆的对称性 1.圆是轴对称图形吗?如果是,它的对称轴是什么?你能找到多少条对称轴? 2.大家交流一下:你是用什么方法来解决这个问题的呢? 动手操作:请同学们用自己准备好的圆形纸张折叠:看折痕经不经过圆心? 学生讨论得出结论:我们通过折叠的方法得到圆是轴对称图形,经过圆心的一条直线是圆的对称轴,圆的对称轴有无数条. 知识点二:圆的中心对称性. 问:一个圆绕着它的圆心旋转任意一个角度,还能与原来的图形重合吗? 让学生得出结论:一个圆绕着它的圆心旋转任意一个角度,都能与原来的图形重合,我们把圆的这个特性称之为圆的旋转不变性.圆是中心对称图形,对称中心为圆心. 做一做: 在等圆⊙O 和⊙O ' 中,分别作相等的圆心角∠AOB 和A O B '''∠(如图3-8),将两圆重叠,并固定圆心,然后把其中的一个圆旋转一个角度,得OA 与OA '重合.你能发现哪些等量关系吗?说一说你的理由.

初中数学知识点精讲精析 圆的对称性

第二节圆的对称性 要点精讲 一、圆的对称性: 1.圆既是中心对称图形,又是轴对称图形. 将圆周绕圆心旋转180°能与自身重合,因此它是中心对称图形,它的对称中心是圆心,将圆周绕圆心旋转任意一角度都能与自身重合,这说明圆具有旋转不变性,是旋转对称的特例. 经圆心画任意一条直线,并沿此直线将圆对折,直线两旁的部分能够完全重合,所以圆是轴对称图形,每一条直径所在的直线都是它的对称轴,所以圆有无数条对称轴. 2.在同圆或等圆中,圆心角、弧、弦、弦心距之间的关系: 在同圆或等圆中,如果两个圆心角、两条弧、两条弦、两弦的弦心距中,有一组量相等,那么它们所对应的其余各组量也分别相等. 二、垂径定理及推论:(由圆的轴对称性得出的) 1.定理:垂直于弦的直径平分弦,且平分弦所对的优、劣弧.(常见辅助线,过圆心作弦的垂线) 2.推论:平分(非直径的)弦的直径垂直于弦,且平分弦所对的两条弧. 3.总结为:一条直线满足:(1)过圆心,(2)垂直于弦,(3)平分弦,(4)平分弦所对的优弧,(5)平分弦所对的劣弧,中的任意两点,则其他三点也成立.(注:①(1)与(3)结合使用时,弦为非直径弦.②(2)与(3)结合可找圆心,即两条弦的垂直平分线的交点.)③利用垂径定理及勾股定理对于(圆半径r、弦长a、弦心距d、弓开的高h中任意已知两个量可求得另两个量. 相关链接 像窗花一样,把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,称这两个图形轴对称,这条直线叫做对称轴,两个图形中的对应点叫做对称点. 把一个图形沿着某一条直线折叠,如果直线两旁的部分能够互相重合,那么称这个图形是轴对称图形,这条直线就是对称轴. 典型分析 1.如图所示,正方形ABCD内接于⊙O,直径MN∥AD,则阴影部分面积占圆面积()

圆的对称性—知识讲解(提高)

圆的对称性—知识讲解(提高) 【学习目标】 1.理解圆的对称性;并能运用其特有的性质推出在同一个圆中,圆心角、弧、弦之间的关系,能运用这些关系解决问题,培养学生善于从实验中获取知识的科学的方法;理解弦、弧、半圆、优弧、劣弧、等弧等与圆有关的概念,理解概念之间的区别和联系; 2.通过探索、观察、归纳、类比,总结出垂径定理等概念,在类比中理解深刻认识圆中的圆心角、弧、弦三者之间的关系; 3. 掌握在同圆或等圆中,三组量:两个圆心角、两条弦、两条弧,只要有一组量相等,就可以推出其它两组量对应相等,及其它们在解题中的应用. 【要点梳理】 要点一、圆的对称性 圆是轴对称图形,过圆心的直线是它的对称轴,有无数条对称轴. 圆是中心对称图形,对称中心为圆心. 要点诠释: 圆具有旋转不变的特性.即一个圆绕着它的圆心旋转任意一个角度,都能与原来的图形重合. 要点二、与圆有关的概念 1.弦 弦:连结圆上任意两点的线段叫做弦. 直径:经过圆心的弦叫做直径. 弦心距:圆心到弦的距离叫做弦心距. 要点诠释: 直径是圆中通过圆心的特殊弦,也是圆中最长的弦,即直径是弦,但弦不一定是直径. 为什么直径是圆中最长的弦?如图,AB是⊙O的直径,CD是⊙O中任意一条弦,求证:AB≥CD. 证明:连结OC、OD ∵AB=AO+OB=CO+OD≥CD(当且仅当CD过圆心O时,取“=”号) ∴直径AB是⊙O中最长的弦. 2.弧 弧:圆上任意两点间的部分叫做圆弧,简称弧.以A、B为端点的弧记作,读作“圆弧AB”或“弧 AB”. 半圆:圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆; 优弧:大于半圆的弧叫做优弧; 劣弧:小于半圆的弧叫做劣弧.

相关文档
相关文档 最新文档