文档库 最新最全的文档下载
当前位置:文档库 › 汽车动力传递路线

汽车动力传递路线

汽车动力传递路线
汽车动力传递路线

动力传递路线:

离合器、变速器、角传动装置、万向传动装置、后驱动桥,后驱动车轮

特点:

便于车身内部的布置,减小室内发动机的噪声,省去长的传动轴,前轴载荷小,附着力大,能够充分利用车厢面积,散热差

应用:一般用于大型客车

4、发动机中置后轮驱动(MR)Middle-engine Rear-drive

特点:是目前大多数运动型轿车和方程式赛车所采用的布置形式。

5、发动机前置全轮驱动(XWD)动力传递路线:离合器、变速器、分动器、万向传动装置分4Wheel Drive

别到达前后驱动桥,最后传到前后驱动车轮

特点:

利用汽车全部质量作为附着力,故牵引力大,有很强的越野能力;动力分传给各个车轮,减少每一驱动轮的负担,轮胎磨损小且均一

应用:主要用于越野汽车

三、汽车行驶基本原理(略)

四、汽车维修流程及维修工作原则

1、流程

2、汽车维修人员的工作原则

a、安全生产:人身安全(眼睛的防护、听觉的保护、手的保

护、衣服、头发及饰物)、工具和设备安全、车辆安全

b、整洁、有序的工作:穿戴整洁、爱护车辆、工作场所的整

洁有序

c、高效、可靠的工作

d、按时完成工作

e、后续工作

3、日常安全守则

自动变速器动力传递路线分析

自动变速器动力传递路线分析(一) 一.自动变速器动力传递概述 自动变速器由液力元件、变速机构、控制系统、主传动部件等几大部分组成。变速机构可分为固定平行轴式、行星齿轮式和金属带式无级自动变速器(CVT)三种。我国在用的车辆中,大多数自动变速器都采用行星齿轮式变速机构,这也是本文重点分析的对象。行星齿轮机构一般由2个或2个以上行星齿轮组按不同的组合方式构成,其作用是通过对不同部件的驱动或制动,产生不同速比的前进挡、倒挡和空挡。 换挡执行元件的作用是约束行星齿轮机构的某些构件,包括固定并使其转速为0,或连接某部件使其按某一规定转速旋转。通过适当选择行星齿轮机构被约束的基本元件和约束方式,就可以得到不同的传动比,形成不同的挡位。换挡执行元件包括离合器、制动器和单向离合器3 种不同的元件,离合器的作用是连接或驱动,以将变速机构的输入轴(主动部件)与行星齿轮机构的某个部件(被动部件)连接在一起,实现动力传递。制动器的作用是固定行星齿轮机构中的某基本元件,它工作时将被制动元件与变速器壳体连接在一起,使其固定不能转动。单向离合器具有单向锁止的特点,当与之相连接的元件的旋转趋势使其受力方向与锁止方向相同时,该元件被固定(制动)或连接(驱动);当受力方向与锁止方向相反时,该元件被释放(脱离连接)。由此可见,单向离合器在不同的状态下具有与离合器、制动器相同的作用。 由以上介绍可知,掌握不同组合行星齿轮机构的运动规律是自动变速器故障诊断的基础。

二.单排单级行星齿轮机构 1.单排单级行星齿轮机构的传动比 最简单的行星齿轮机构由一个太阳轮、一个内齿圈和一个行星架组成,我们称之为一个单排单级行星排,如图1所示。由于单排行星齿轮机构具有两个自由度,为了获得固定的传动比,需将太阳轮、齿圈或行星架三者之一制动(转速为0)或约束(以某一固定的转速旋转),以获得我们所需的传动比;如果将三者中的任何两个连接为一体,则整个行星齿轮机构以同一速度旋转。 目前,在有关自动变速器的资料中,有关传动比的计算公式有以下几个: (n1-nH)/(n3-nH)=-Z3/Z1 式(1) 式中:n1-太阳轮转速;nH-行星架转速;n3-内齿圈转速;Z1-太阳轮齿数;Z3-内齿圈齿数n1+αn2-(1+α)n3=0 式(2) 式中:n1-太阳轮转速;n2-内齿圈转速;n3-行星架转速;α=内齿圈齿数/太阳轮齿数=Z2/Z1 Z2=Z1+Z3 式(3) 式中:Z1-太阳轮齿数;Z2-行星架假想齿数;Z3-内齿圈齿数 下面对这3个公式的原理与推导过程作以介绍,这也是本文后面对不同型号自动变速器速比计算方法的基础。定轴轮系齿轮传动比计算公式为i=(-1)m(所有的从动齿轮数乘积)/(所有的主动齿轮数乘积)=(-1)mZn/Z1,它对行星齿轮机构是不适用的。因为在行星齿轮机构中,星轮在自转的同时,还随着行星架的转动而公转,这使得定轴轮系传动比的计算方法不再适用。我们可以用“相对速度法”或“转化机构法”对行星齿轮机构的传动比进行分析,这一方法的理论依据是“一个机构整体的绝对运动并不影响其内部各构件间的相对运动”,这就好象手表表针的相对运动并不随着人的行走而变化一样,这一理论是一位名叫Willes的科学家于1841年提出的。假定给整个行星轮系加上一个绕支点O旋转的运动(-ω),这个运动的角速度与行星架转动的角速度(ω)相同,但方向相反,这时行星架静止不动,使星轮的几何轴线固定,我们就得到了一个定轴轮系,这样就能用定轴轮系的方法进行计算了。用转速n代替角速度ω,nbsp; 利用定轴轮系传动比计算公式有: i13H=n1H/n3H=(n1-nH)/(n3-nH)=(-1)1Z2Z3/Z1Z2=-Z3/Z1 式(4) 如果把α=Z2/Z1代入原公式(4)中,可得到式(2)或式(3)。由此可见,这3个公式其实是同一个公式的不同表达方式。 2.单排单级行星齿轮机构行星架的假想齿数 在式(4)中,假设固定内齿圈,使n3=0,代入式(5)得式(6): n1/nH=(Z1+Z3)/Z1 式(5) 又:i1H=n1/nH=ZH/Z1 式(6) 联解式(5)、(6)可得出: ZH=Z1+Z3 即“行星架的假想齿数是太阳轮齿数和内齿圈齿数之和”,注意,这一结论只适用于单级行

汽车动力性能的评价标准

浅谈汽车动力性评价标准 摘要:本文研究了汽车动力性评价的各种方法和评价指标,介绍了动力性评价的主要参数:最高车速、加速时间、最大爬坡度、发动机最大功率、比功率、驱动轮输出功率、驱动力等相关评价参数;介绍了汽车的动力性衰退现象和汽车动力性评价的实验方法。 关键词:汽车动力性评价指标加权系数优化设计 1汽车动力性评价的各种方法及评价指标概述 1.1汽车动力性概述 汽车动力性是汽车最基本的使用性能。汽车无论是用作生产工具还是用作生活用具,其运行效率均取决于是否拉得动、跑得快,即取决于运行速度。在运行条件(地理、道路、气候条件及运输组织条件等)一定时,汽车的平均运行技术速度主要取决于汽车的动力性。显然汽车动力性越好,汽车运行的平均技术速度就越高,汽车运行效率也就越高。因此汽车工程界,用车的、购车的、爱车的都很看重汽车的动力性。汽车具有什么样的动力性算好,如何评定,观点不同,评价的依据也就不同,目前尚无统一公认的评价指标,更无标准。汽车工程界基于具有最高的平均行驶技术速度的观点,以汽车的最高行驶速度、加速时间和最大爬坡度为量标,评定、比较汽车动力性的优劣。对于新车的动力性,人们基本上认同这三个指标。 对于在用汽车动力性的评价量标就各不一样了。在用汽车的动力性在新车定型时便已确立,在使用时,再与其他车型横向比较动力性的高低就毫无意义了。就是在同型汽车间相互比较动力性,除了表明具体汽车间动力性存在差异外,也不能据此揭示该型汽车结构、性能的优劣。由于使用条件的差异,在用汽车间不具有横向比较的条件,缺乏可比性。在用汽车固有动力性在使用过程不是恒定不变的,是随着运行过程中部件、零件的磨损、老化等逐渐衰退变差,直至跑不动,丧失工作能力。这样动力性衰退便是汽车技术状况变差的征兆。汽车

汽车传动系统详细讲解

汽车传动系统详细讲解 以前我们介绍过汽车车身尺寸的意义和汽车心脏发动机的基本构造,然而汽车要行驶在道路上必须先使车轮转动,要如何将发动机的动力传送到车轮并使车轮转动?负责传递动力让汽车发挥行驶功能的装置就是传动系统,汽车没有了它就会成为一台发电机或坐人的空壳,并且还是一台烧钱的机器了。 在基本的传动系统中包含了负责动力连接的装置、改变力量大小的变速机构、克服车轮之间转速不同的,和联结各个机构的传动轴,有了这四个主要的装置之后就能够把发动机的动力传送到轮子上了。 一、动力连接装置 1. 离合器:这组机构被装置在发动机与手动之间,负责将发动机的动力传送到手动。 汽油发动机车辆在运行时,发动机需要持续运转。但是为了满足汽车行驶上的需求,车辆必须有停止、换档等功能,因此必须在发动机的外连动之处,加入一组机构,以视需求中断动力的传递,以在发动机持续运转的情形之下,达成让车辆静止或是进行换档的需求。这组机构,便是动力连接装置。一般在车辆上可以看到的动力连接装置有离合器与扭力转换器等两种。

离合器这组机构被装置在发动机与手动之间,负责将发动机的动力传送到手动。如图所示,飞轮机构与发动机的输出轴固定在一起。在飞轮的外壳之中,以一圆盘状的弹簧连接压板,其间有一摩擦盘与输入轴连接。 当离合器踏板释放时,飞轮内的压板利用弹簧的力量,紧紧压住摩擦板,使两者之间处于没有滑动的连动现象,达成连接的目的,而发动机的动力便可以通过这一机构,传递至,完成动力传递的工作。 而当踩下踏板时,机构将向弹簧加压,使得弹簧的外围翘起,压皮便与摩擦板脱离。此时摩擦板与飞轮之间已无法连动,即便发动机持续运转,动力并不会传递至及车轮,此时,驾驶者便可以进行换档以及停车等动作,而不会使得发动机熄火。 2. 扭力转换器:这组机构被装置在发动机与自动之间,能够将发动机的动力平顺的传送到自动。在扭力转换器中含有一组离合器,以增加传动效率。 当汽车工业继续发展,一般消费者开始对于控制油门、剎车以及离合器等三个踏板的复杂操作模式感到厌烦。机械工程师开始思考如何以利用机构来简化操作过程。扭力转换器便是在这样的情形之下被导入汽车产品的,成就了全新的使用感受。 扭力转换器导入,改变了人们驾驶汽车的习惯!扭力转换器取代了传统的机械式离合器,被安装在发动机与自动之间,能够将发动机的动力平顺的传送到自动。 从图中可以清楚地看到,扭力转换器的离作方式与离合器之间截然不同。在扭力转换器之中,左侧为发动机动力输出轴,直接与泵轮外壳连接。而在扭力转换器的左侧,则有一组涡轮,透过轴与位于右侧的变速系统连接。导轮与涡轮之间没有任何直接的连接机构,两者均密封在扭力转换器的外壳之中,而扭力转换器之内则是充满了黏性液体。 当发动机低速运转时,整个扭力转换器会同样低速运转,泵轮上的叶片会带动扭力转换器内的黏性液体,使其进行循环流动。但是由于转速太低,液体对于

81-40LE自动变速器动力传递路线资料

81-40LE自动变速器动力传递路线 一、基本参数 上海通用凯越(1.6)、乐骋(1.4)和长安福特嘉年华车均装用81-40LE 自动变速器,它是日本Aisin AW公司生产的产品。81-40LE自动变速器是4速、电子控制、带有锁止离合器的变速器,其4挡为超速挡。该自动变速器是专为发动机横置、前轮驱动的车辆而设计的,其主要规格参数见表1。 二、行星齿轮机构与换挡执行元件 81-40LE自动变速器行星齿轮机构与换挡执行元件的布置如图1所示。它采用拉威那式行星齿轮机构,将一个单排单级行星齿轮机构和一个单排双级行星齿轮机构按特定的方式组合起来。由图1可知,行星齿轮机构前端(右侧)是一个单排双级行星齿轮机构,后端(左侧)是一个单排单级行星齿轮机构,它们共用一个行星架和齿圈。在前排行星齿轮机构中,行星架上有长、短两种行星轮,长行星轮同时与短行星轮、齿圈和后排大太阳轮啮合;短行星轮同时与长行星轮和前排小太阳轮啮合;共用齿圈为动力输出端。在不同挡位,各部件的状态见表2,各换挡执行元件的名称及作用见表3。

三、动力传递路线

81-40LE自动变速器动力传递路线示意图如图2,不同挡位时,各换挡执行元件的状态见表4。 1.1挡动力传递路线分析 (1)D1挡动力传递路线

D1挡动力传递路线如图3所示,由图可知,在1挡时,输入轴顺时针旋转,前进挡离合器C1结合,驱动前太阳轮使单向离合器F2锁止,防止行星架逆时针旋转进而使齿圈顺时针减速旋转。在D之1挡,由于单向离合器F2锁止是动力传递不可缺少的条件,故没有发动机制动。 (2)手动1挡动力传递路线 手动1挡动力传递路线如图4所示,由图可知,在手动1挡时,输入轴顺时针旋转,前进挡离合器C1结合,驱动前太阳轮使第1/倒挡制动器B3工作,双向固定行星架,防止行星架逆时针旋转,齿圈顺时针减速旋转。在手动1挡,由于第

车辆动力传动系统

车辆动力传动系统国内外概况及发展趋势 1.发展现状 坦克车辆传动系统大体走过了定轴式机械传动、液力传动(或液力机械传动)、综合传动三个发展阶段。到目前为止,西方国家主要是美国、德国和英国现装备的第三代主战坦克采用综合传动装置约占装备车总数的45%。 带闭锁离合器的液力变矩器、多自由度行星变速机构、液压或复合的无级转向、电液自动操纵等多功能模块集成的液力机械综合传动装置,不仅是当前军用履带车辆的最佳传动型式,而且是21世纪初出现的新一代坦克车辆的基本传动型式,构成今后一段相当时期内坦克车辆综合传动的主流。 此外,电传动是坦克车辆传动技术又一发展方向。坦克电传动研究的开始时间是很早的,但目前正在研究中的坦克电传动和早期的电传动,在技术上有很大的不同。现代电传动技术的发展实在电机技术和电机控制技术以及机电一体化设计和综合控制、动力电池组管理与应用等一系列现代技术集成发展的结果。 表所示为几种典型的系列化综合传动装置,履带式和轮式。比较有代表性的传动系统如图所示。20世纪80年代初期,美国开始了重型战斗车辆“先进的整体式推进系统(AIPS)”的研制,使动力舱体积现在已缩小到总体积的26%~30%,传递功率达到1100~1200kW。(此段落为集中典型的传动系统介绍,补充图中所示各传动系统的较详细资料。) 2001年,美国完成了基于M113的20t级电传动演示样车的研究。样车采用一台186kW的6缸直列柴油机,通过传动比为1:4.28的增速箱与一台600V的180kW交流发电机连接,为电传动平台提供电能。原理样车装配480V铅酸蓄电池组,每个主动轮配置一个220kW油冷高速感应电动机。车辆最高速度为96km/h,加速时间0~56km/h只需要9s(列装的最新型M113A3为27s),车辆燃料消耗率为3.1km/L,最大行驶范围达1120km,从错误!未找到引用源。显示了其电传动驱动系统的布置情况。 从上世纪80年代中期开始,与磁电机公司合作开发出“伦克EMT1100传动

1简述汽车动力性及其评价指标

1.简述汽车动力性及其评价指标 2.汽车行驶阻力是怎样形成的? 3.滚动阻力系数 4.影响滚动阻力系数的因素有哪些? 5.柏油或水泥路面经使用后,滚动阻力系数增加而附着系数下降,请说 明其原因。 6.汽车旋转质量换算系数 7.简述汽车旋转质量换算系数的物理意义 8.汽车旋转质量换算系数由哪几部分组成? 9.汽车空气阻力是怎样形成的? 10.汽车空气阻力由哪几部分组成? 11.附着力 12.附着系数 13.影响附着系数的因素是什么? 14.什么是道路阻力系数ψ,请写出它的表达式。 15.什么是汽车的驱动力,请写出它的表达式。 16.什么是汽车的加速阻力,请写出它的表达式。 17.什么是发动机工况的稳定性? 18.滚动阻力如何产生的?它是作用在汽车(轮胎)的切向力吗? 19.迟滞损失 20.滚动阻力偶与滚动阻力系数的关系。 21.滚动阻力是否是作用在汽车轮胎圆周上的切向力?为什么? 22.能否在汽车受力分析图上画出滚动阻力,为什么?

23.用受力图分析汽车从动轮在平路加速或减速行驶时的受力情况,并推 导切向力方程式。 24.用受力图分析汽车驱动轮在平路加速或减速行驶时的受力情况,并推 导切向力方程式。 25.作用在汽车上的是滚动阻力偶矩,但是在汽车行驶方程式中出现的却 是滚动阻力,请论述之。 26.从理论力学力系(力偶矩)平衡和汽车工程两个角度,分析汽车行驶 方程式中各项的意义和使用(适用)条件。 27.分析驱动-附着条件公式的地面法向反作用力与道路条件的关系。 28.利用驱动-附着条件原理分析不同汽车驱动型式的适用条件。 29.试从物理和力学意义分析汽车行驶方程式中的各个力。 30.汽车旋转质量换算系数及加速阻力的力学和工程意义。 31.叙述地面法向力的合力偏离轮胎与地面接触印迹中心的原因。 32.请说明汽车最高车速与汽车实际行驶中遇到的最高车速是否一致,为 什么? 33.汽车用户说明书上给出的最高车速是如何确定的? 34.驱动力Ft是否为真正作用在汽车上驱动汽车前进的(反)作用力, 请说明理由。 35.如何确定汽车样车的最高车速?在汽车设计和改装车设计阶段如何 确定汽车最高车速? 36.用作图法或数值计算法确定的汽车最高车速是一个固定值,而汽车 (例如样车)的最高车速却是一个平均值,为什么? 37.汽车的驱动力图 38.汽车的驱动力图是如何制作的?

变速器传动路线 文档

二、三轴式变速器的变速传动机构 三轴式变速器用于发动机前置后轮驱动的汽车。下面以东风EQ1092中型货车的变速器为例进行介绍,其结构简图如图3-18所示,有三根主要的传动轴,一轴、二轴和中间轴,所以称为三轴式变速器。另外还有倒档轴。 图3-18 东风EQ1092中型货车的三轴式变速器 l-一轴 2-—轴常啮合齿轮 3-—轴常啮合齿轮接合齿圈 4、9-接合套;5-四档齿轮接合齿圈 6-二轴四档齿轮 7-二轴三档齿轮 8-三档齿轮接合齿圈 10-二档齿轮接合齿圈 11-二轴二档齿轮 12-二轴一、倒档直齿滑动齿轮 13-变速器壳体 14-二轴 15-中间轴 16-倒档轴 17、19-倒档中间齿轮 18-中间轴一、倒档齿轮 20-中间轴二档齿轮 21-中间轴三档齿轮 22-中间轴四档齿轮 23-中间轴常啮合齿轮 24、25-花键毂 26-一轴轴承盖 27-回油螺纹该变速器为五档变速器,各档传动情况如下: (1)空档 二轴上的各接合套、传动齿轮均处于中间空转的位置,动力不传给第二轴。

(2)一档 前移一倒档直齿滑动齿轮12与中间轴一档齿轮18啮合。动力经一轴齿轮2、中间轴常啮合齿轮23、中间轴齿轮18、二轴一倒档齿轮12,传到第二轴使其顺时针旋转(与第一轴同向)。 (3)二档 后移接合套9与二轴二档齿轮11的接合齿圈10啮合。动力经齿轮2、23、20、11、10、9、24,传到二轴使其顺时针旋转。 (4)三档 前移接合套9与二轴三档齿轮7的接合齿圈8啮合。动力经齿轮2、23、21、7、8、9、24,传到二轴使其顺时针旋转。 (5)四档 后移接合套4与二轴四档齿轮6的接合齿圈5啮合。动力经齿轮2、23、22、6、5接、4、25,传到二轴使其顺时针旋转。 (6)五档 前移接合套4与一轴常啮合齿轮2的接合齿圈3啮合。动力直接由一轴、2、3、4、25,传到二轴,传动比为1。由于二轴的转速与一轴相同,故此档称为直接档。 (7)倒档 后移二轴上的一、倒档直齿滑动齿轮12与倒档齿轮17啮合。动力经齿轮2、23、18、19、17、12,传给二轴使其逆时针旋转,汽车倒向行驶。倒档传动路线与其他档位相比较,由于多了倒档中间齿轮的传动,所以改变了二轴的旋转方向。

(完整版)汽车的传动系统原理及分类

汽车传动是汽车行驶的基础,汽车传动系统的作用将发动机输出的动力传递给驱动轮,使汽车产生运动。汽车传动系统由离合器、变速器、传动轴、减速器、差速器、半轴等组成,全轮驱动汽车还包括分动器。根据动力来源、传动方式汽车传动系统分为四种,为了更好的了解汽车传动系统,成都汽修学校编写本文为你介绍汽车传动原理及传动系统分类。 汽车传动原理 汽车传动原理:汽车动力系统提供动力,经传动系统把动力传给后面的驱动轮,传动系统配合动力系统实现汽车在不同条件下能正常行驶。为了适应汽车行驶的不同要求,传动系应具有减速增扭、变速、使汽车倒退、中断动力传递、使两侧驱动轮差速旋转等具体作用。 汽车传动系统分类 1、机械式传动系 机械式传动系结构简单、工作可靠,在各类汽车上得到广泛的应用。其基本组成情况和工作原理:发动机的动力经离合器、变速器、万向节、传动轴、主减速器、差速器、半轴传给后面的驱动轮。并与发动机配合,保证汽车在不同条件下能正常行驶。为了适应汽车行驶的不同要求,传动系应具有减速增扭、变速、使汽车倒退、中断动力传递、使两侧驱动轮差速旋转等具体作用。 2、液力传动系 液力传动系组合运用液力和机械来传递动力。在汽车上,液力传动一般指液传动,即以液体为传动介质,利用液体在主动元件和从动元件之间循环流动过程中动能的变化来传递动力。动液传动装置有液力偶合器和液力变矩器两种。液力偶合器只能传递扭矩,而不能改变扭矩的大小,可以代替离合器的部分功能,即保证汽车平稳起步和加速,但不能保证在换档时变速器中的齿轮不受冲击。液力变矩器则除了具有液力偶合器的全部功能外,还能实现无

级变速,故目前应用得比液力偶合器广泛得多。但是,液力变矩器的输出扭矩与输入扭矩的比值范围还不足以满足使用要求,故一般在其后再串联一个有级式机械变速器而组成液力机械变速器以取代机械式传动系中的离合器和变速器。液力机械式传动系能根据道路阻力的变化自动地在若干个车速范围内分别实现无级变速,而且其中的有级式机械变速器还可以实现自动或半自动操纵,因而可使驾驶员的操作大为简化。但是由于其结构较复杂,造价较高,机械效率较低等缺点,目前除了高级轿车和部分重型汽车以外,一般轿车和货车很少采用。 3、静液式传动系 静液式传动系又称容积式液压传动系。主要由油泵、液压马达和控制装置等组成。发动机的机械能通过油泵转换成液压能,然后由液压马达再又转换为机械能。在图示方案中,只用一个水磨石马达将动力传给驱动桥主减速器,再经差速器、半轴传给驱动轮。另一方案是每一个驱动轮上都装一个水磨石马达。采用后一方案时,主减速器、差速器、和半轴等机械传动件都可取消静压式传动系由于机械效率低、造价高、使用寿命和可靠性不够理想,故目前只在某些军用车辆上开始采用。 4、电力式传动系 电力式传动系主要由发动机驱动的发电机、整流器、逆变装置(将直流电再转变为频率可变的交流电的装置)、和电动轮(内部装有牵引电动机和轮达减速器的驱动轮)等组成。电力式传动系的性能与静液式传动系相近,但电机质量比油泵和液压马达大得多,故目前只限于在超重型汽车上应用。 汽车传动系统的选择是否合理对汽车的动力性经济性的影响较大,汽车传动系统的研究和设计是实现汽车自动化控制、节能减排的核心,本文介绍了汽车传动原理以及传动系统分类,详细了解这些对于汽车性能的改进有很大的帮助。

图解汽车-汽车传动系统结构解析

出处:太平洋汽车网作者:陈启贞时间:2012-10-24 我们知道,发动机输出的动力并不是直接作用于车轮上来驱动汽车行驶的,而是需经过一系列的动力传递机构。那动力到底如何传递到车轮的?下面我们了解一下汽车传动系统是怎样工作的。 ● 动力是怎样传递的? 发动机输出的动力,是要经过一系列的动力传递装置才到达驱动轮的。发动机到驱动轮之间的动力传递机构,称为汽车的传动系,主要由离合器、变速器、传动轴、主减速器、差速器以及半轴等部分组成。 发动机输出的动力,先经过离合器,由变速器变扭和变速后,经传动轴把动力传递到主减速器上,最后通过差速器和半轴把动力传递到驱动轮上。 汽车传动系的布置形式与发动机的位置及驱动形式有关,一般可分为前置前驱、前置后驱、后置后驱、中置后驱四种形式。

● 什么是前置前驱? 前置前驱(FF)是指发动机放置在车的前部,并采用前轮作为驱动轮。现在大部分轿车都采取这种布置方式。由于发动机布置在车的前部,所以整车的重心集中在车身前段,会有点“头重尾轻”。但由于车体会被前轮拉着走的,所以前置前驱汽车的直线行驶稳定性非常好。 另外,由于发动机动力经过差速器后用半轴直接驱动前轮,不需要经过传动轴,动力损耗较小,适合小型车。不过由于前轮同时负责驱动和转向,所以转向半径相对较大,容易出现转向不足的现象。 ● 什么是前置后驱? 前置后驱(FR)是指发动机放置在车前部,并采用后轮作为驱动轮。FR整车的前后重量比较均衡,拥有较好的操控性能和行驶稳定性。不过传动部件多、传动系统质量大,贯穿乘坐舱的传动轴占据了舱内的地台空间。

FR汽车拥有较好的操控性、稳定性、制动性,现在的高性能汽车依然喜欢采用这种布置行形式。 ● 什么是后置后驱? 后置后驱(RR)是指将发动机放置在后轴的后部,并采用后轮作为驱动轮。由于全车的重量大部分集中在后方,且又是后轮驱动,所以起步、加速性能都非常好,因此超级跑车一般都采用RR方式。

汽车主要使用性能指标

汽车主要使用性能指标 汽车的使用性能是指汽车能适应各种使用条件而发挥最大工作效率的能力。主要有下面几项。 (一)汽车的动力性 这是汽车首要的使用性能。汽车必须有足够的平均速度才能正常行驶。汽车必须有足够的牵引力才能克服各种行驶阻力,正常行驶。这些都取决于动力性的好坏。汽车动力性可从下面三方面指标进行评价。 1、汽车的最高车速指汽车满载在良好水平路面上能达到的最高行驶速度。 2、汽车的加速能力指汽车在各种使用条件下迅速增加汽车行驶速度的能力。加速过程中加速用的时间越短、加速度越大和加速距离越短的汽车,加速性能就越好。 3、汽车的上坡能力上坡能力用汽车满载时以最低挡位在坚硬路面上等速行驶所能克服的最大坡度来表示,称为最大爬坡度。它表示汽车最大牵引力的大小。 不同类型的汽车对上述三项指标要求各有不同。轿车与客车偏重于最高车速和加速能力,载重汽车和越野汽车对最大爬坡度要求较严。但不论何种汽车,为在公路上能正常行驶,必须具备一定的平均速度和加速能力。 (二)汽车的燃料经济性 为降低汽车运输成本,要求汽车以最少的燃料消耗,完成尽量多的运输量。汽车以最少的燃料消耗量完成单位运输工作量的能力,称为燃料经济性,评价指标为每行驶100公里消耗掉的燃料量(升)。 (三)汽车的制动性 汽车具有良好的制动性是安全行驶的保证,也是汽车动力性得以很好发挥的前提。汽车制动性有下述三方面的内容。 1、制动效能汽车迅速减速直至停车的能力。常用制动过程中的制动时间、制动减速度和制动距离来评价。汽车的制动效能除和汽车技术状况有关外,还与

汽车制动时的速度以及轮胎和路面的情况有关。 2.制动效能的恒定性在短时间内连续制动后,制动器温度升高导致制动效能下降,称之为制动器的热衰退,连续制动后制动效能的稳定程度为制动效能的恒定性。 3.制动时方向的稳定性是指汽车在制动过程中不发生跑偏、侧滑和失去转向的能力。当左右侧制动动力不一样时,容易发生跑偏;当车?quot;抱死"时,易发生侧滑或者失去转向能力。为防止上述现象发生,现代汽车没有电子防抱死装置.防止紧急制动时车轮抱死而发生危险。 (四)汽车的操纵性和稳定性 汽车的操纵性是指汽车对驾驶员转向指令的响应能力,直接影响到行车安全。轮胎的气压和弹性,悬挂装置的刚度以及汽车重心的位置都对该性能有重要影响。 汽车的稳定性是汽车在受到外界扰动后恢复原来运动状态的能力,以及抵御发生倾覆和侧滑的能力。对于汽车来说,侧向稳定性尤为重要。当汽车在横向坡道上行驶。转弯以及受其他侧向力时,容易发生侧滑或者侧翻。汽车重心的高度越低,稳定性越好。合适的前轮定位角度使汽车具有自动回正和保持直线行驶的能力,提高了汽车直线行驶的稳定性。如果装载超高、超载,转弯时车速过快,横向坡道角过大以及偏载等,容易造成汽车侧滑及侧翻。 (五)汽车的行驶平顶性 汽车在行驶过程中由于路面不平的冲击,会造成汽车的振动,使乘客感到疲劳和不舒适,货物损坏。为防止上述现象的发生,不得不降低车速。同时振动还会影响汽车的使用寿命。汽车在行驶中对路面不平的降震程度,称为汽车的行驶平顺性。 汽车行驶平顺性的物理量评价指标,客车和轿车采?quot;舒适降低界限"车速特性。当汽车速度超过此界限时,就会降低乘坐舒适性,使人感到疲劳不舒服。该界限值越高,说明平顺性越好。货车采用"疲劳--降低工效界限"车速特性。汽车车身的固有频率也可作为平顺性的评价指标。从舒适性出发,车身的固有频率在600赫兹~850 赫兹的范围内较好。高速汽车尤其是轿车要求具有优良的行驶

自动变速器动力传递路线分析2

自动变速器动力传递路线分析(一)基本单级和双级行星齿轮机构传动分析 内容简介:自动变速器的齿轮机构多数为行星齿轮机构,由两个到三个行星排,利用多个离合器和制动器,实现某些元件作为输入,制动某些元件,组合出不同的传动比,从而实现换档过程。而行星齿轮机构因为有齿轮的公转和自转,配合不同行星排组合、不同离合器和制动器组合,传动过程复杂。本站文章来源于汽车维修与保养、汽车维修技师等杂志发表的自动变速器传动路线原理,其中加入了本站站长对自动变速器的理解和认知! 自动变速器液力变矩器、齿轮变速机构、液压控制系统和电子控制系统组成。其中齿轮变速机构分为固定平行轴式和行星齿轮式两种。除本田自动变速器采用固定平行轴式外,多数自动变速器齿轮变速机构采用行星齿轮式。行星齿轮机构利用两个到三个行星排,配合多个离合器、制动器和单身离合器,组合出不同的传动比,从而实现换档过程。 行星齿轮机构可分为单级行星齿轮机构和双级行星齿轮机构。 一单排单级行星齿轮机构的传动规律分析: 最简单的行星齿轮机构由一个太阳轮、一个内齿圈和一个行星架和多个行星齿轮组成,但是用于传递动力的有太阳轮、齿圈和行星架,也就是说,行星齿轮机构的三个构件是太阳轮、齿圈和行星架。结构如图所示:

1-太阳轮;2-行星齿轮;3-齿圈;4-行星架 单级行星齿轮机构图 1 单级行星齿轮机构太阳轮、齿圈和行星架齿数的规律 在单级行星齿轮机构中,太阳轮和齿圈的齿数是可以数出来的,而行星架的齿数是多少呢其中的原理计算我不写了,写了相信也没有人看的,我就直接说结论吧: 行星架的齿数=太阳轮齿数+齿圈的齿数;也说是说行星架齿数>行星架齿数>太阳轮齿数。 2 单级行星齿轮机构太阳轮、齿齿圈和行星架运动方向规律总结

汽车主要性能指标

汽车主要性能指标 汽车的使用性能是指汽车能适应各种使用条件而发挥最大工作效率的能力。主要有下面几项。 (一)汽车的动力性 这是汽车首要的使用性能。汽车必须有足够的平均速度才能正常行驶。汽车必须有足够的牵引力才能克服各种行驶阻力,正常行驶。这些都取决于动力性的好坏。汽车动力性可从下面三方面指标进行评价。 1、汽车的最高车速 指汽车满载在良好水平路面上能达到的最高行驶速度。 2、汽车的加速能力 指汽车在各种使用条件下迅速增加汽车行驶速度的能力。加速过程中加速用的时间越短、加速度越大和加速距离越短的汽车,加速性能就越好。 3、汽车的上坡能力 上坡能力用汽车满载时以最低挡位在坚硬路面上等速行驶所能克服的最大坡度来表示,称为最大爬坡度。它表示汽车最大牵引力的大小。不同类型的汽车对上述三项指标要求各有不同。轿车与客车偏重于最高车速和加速能力,载重汽车和越野汽车对最大爬坡度要求较严。但不论何种汽车,为在公路上能正常行驶,必须具备一定的平均速度和加速能力。 (二)汽车的燃料经济性 为降低汽车运输成本,要求汽车以最少的燃料消耗,完成尽量多的运输量。汽车以最少的燃料消耗量完成单位运输工作量的能力,称为燃料经济性,评价指标为每行驶100公里消耗掉的燃料量(升)。 (三)汽车的制动性 汽车具有良好的制动性是安全行驶的保证,也是汽车动力性得以很好发挥的前提。汽车制动性有下述三方面的内容。 1、制动效能 汽车迅速减速直至停车的能力。常用制动过程中的制动时间、制动减速度和制动距离来评价。汽车的制动效能除和汽车技术状况有关外,还与汽车制动时的速度以及轮胎和路面的情况有关。

2.制动效能的恒定性 在短时间内连续制动后,制动器温度升高导致制动效能下降,称之为制动器的热衰退,连续制动后制动效能的稳定程度为制动效能的恒定性。 3.制动时方向的稳定性 是指汽车在制动过程中不发生跑偏、侧滑和失去转向的能力。当左右侧制动动力不一样时,容易发生跑偏;当车轮“抱死”时,易发生侧滑或者失去转向能力。为防止上述现象发生,现代汽车有电子防抱死装置.防止紧急制动时车轮抱死而发生危险。 (四)汽车的操纵性和稳定性 汽车的操纵性是指汽车对驾驶员转向指令的响应能力,直接影响到行车安全。轮胎的气压和弹性,悬挂装置的刚度以及汽车重心的位置都对该性能有重要影响。 汽车的稳定性是汽车在受到外界扰动后恢复原来运动状态的能力,以及抵御发生倾覆和侧滑的能力。对于汽车来说,侧向稳定性尤为重要。当汽车在横向坡道上行驶。转弯以及受其他侧向力时,容易发生侧滑或者侧翻。汽车重心的高度越低,稳定性越好。合适的前轮定位角度使汽车具有自动回正和保持直线行驶的能力,提高了汽车直线行驶的稳定性。如果装载超高、超载,转弯时车速过快,横向坡道角过大以及偏载等,容易造成汽车侧滑及侧翻。 (五)汽车的行驶平顶性 汽车在行驶过程中由于路面不平的冲击,会造成汽车的振动,使乘客感到疲劳和不舒适,货物损坏。为防止上述现象的发生,不得不降低车速。同时振动还会影响汽车的使用寿命。汽车在行驶中对路面不平的降震程度,称为汽车的行驶平顺性。 汽车行驶平顺性的物理量评价指标,客车和轿车采用“舒适降低界限”车速特性。当汽车速度超过此界限时,就会降低乘坐舒适性,使人感到疲劳不舒服。该界限值越高,说明平顺性越好。货车采用“疲劳--降低工效界限”车速特性。 汽车车身的固有频率也可作为平顺性的评价指标。从舒适性出发,车身的固有频率在600赫兹~850赫兹的范围内较好。 高速汽车尤其是轿车要求具有优良的行驶平顺性。轮胎的弹性、性能优越的悬挂装置、座椅的降震性能以及尽量小的非悬挂质量,都可以提高汽车的行驶平顺性。

汽车传动系统——各类传动的结构图解

汽车传动系统——各类传动的结构图解 一.机械式传动系一般组成及布置示意图 1-离合器 2-变速器 3-万向节 4-驱动桥 5-差速器 6-半轴 7-主减速器 8-传动轴 图为传统的发动机纵向安装在汽车前部,后桥驱动的4×2汽车布置示意图。发动机发出的动力经离合器、变速器、万向传动装置传到驱动桥。在驱动桥处,动力经过主减速器、差速器和半轴传给驱动车轮。 二.发动机前置、纵置,前轮驱动的布置示意图 1-发动机 2-离合器 3-变速器 4-变速器输入轴 5-变速器输出轴 6-差速器 7-车速表驱动齿轮 8-主减速器从动齿轮 发动机前置、纵置,前桥驱动,使得变速器和主减速器连在一起,省掉了它们之间的万向传动装置。 三.典型液力机械传动示意图

1-液力变矩器 2-自动器变速器 3-万向传动 4-驱动桥 5-主减速器6-传动轴 液力传动(此处单指动液传动)是利用液体介质在主动元件和从动元件之间循环流动过程中动能的变化来传递动力。液力传动装置串联一个有级式机械变速器,这样的传动称为液力机械传动。 四.静液式传动系示意图 1-离合器 2-油泵 3-控制阀 4-液压马达 5-驱动桥 6-油管 液压传动也叫静液传动,是通过液体传动介质静压力能的变化来传递能量。主要由发动机驱动的油泵、液压马达和控制装置等组成。 五.混合式电动汽车采用的电传动

1-离合器 2-发电机 3-控制器 4-电动机 5-驱动桥 6-导线 电传动是由发动机驱动发电机发电,再由电动机驱动驱动桥或由电动机直接驱动带有减速器的驱动轮 (注:范文素材和资料部分来自网络,供参考。只是收取少量整理收集费用,请预览后才下载,期待你的好评与关注)

自动变速器的R,D档动力传递路线

4HP-16型自动变速器是由专业制造变速器的ZF公司开发,与前轮驱动、发动机横置的车辆配套使用。4HP-16为电控4速自动变速器,被装备在上海通用公司生产的凯越(1.8)、雪弗兰景程、大宇美男爵等乘用车上。由于4HP-16型自动变速器内没有单向离合器,使变速器的结构紧凑、质量轻、且换挡零件数目减少,使拖滞损耗降低,传动效率增高,作用在部件和传动系上的峰值扭矩低。但这种设计需要加工精密的机械部件、高性能的软件和精确的发动机控制信号来保证,采用重叠换挡控制技术。4HP-16自动变速器的基本技术参数见表1,动力传递路线见图1。 由图1可知,4HP-16自动变速器采用改进型辛普森行星齿轮机构,即后排行星架与前排齿圈为一体;后排齿圈与前排行星架为一体,是动力输出端;前、后排两个太阳轮独立。在变速器内部有2个离合器和3个制动器,各换挡执行元件的作用见表2,不同挡位时各换挡执行元件的状态见表3。

一、P/N挡动力传递路线 在P或N挡,离合器B工作,驱动后排太阳轮,但无制动部件,整个行星齿轮机构空转,故没有动力输出,动力传递路线简图见图2。动力传递路线是:发动机→变矩器泵轮→涡轮→输入轴→离合器B工作,驱动后排太阳轮→行星齿 二、R挡动力传递路线 R挡时,离合器B工作,驱动后排太阳轮;制动器D工作,固定后排行星架,后排齿圈/前排行星架反向减速输出,动力传递路线见图3。动力传递路线是:发动机→变矩器泵轮→涡轮→输入轴→离合器B工作,驱动后排太阳轮→制动器D工作,固定后排行星架→后排齿圈/前排行星架反向减速输出→差速器。 三、1挡动力传递路线 在D、3、2、1之1挡,换挡执行元件的动作完全相同,即离合器B工作,驱动后排太阳轮;

汽车的动力性与经济性指标

汽车的动力性与经济性 衡量一辆汽车质量的高低,技术性能是重要的依据。其中动力性、经济性是主要指标。动力性指标和经济性指标在汽车的性能介绍表上都有介绍。 汽车的动力性指标 汽车的动力性指标主要由最高车速、加速能力和最大爬坡度来表示,是汽车使用性能中最基本的和最重要的性能。在我国,这些指标是汽车制造厂根据国家规定的试验标准,通过样车测试得出来的。 最高车速:指在无风条件下,在水平、良好的沥青或水泥路面上,汽车所能达到的最大行驶速度。按我国的规定,以1.6公里长的试验路段的最后500米作为最高车速的测试区,共往返四次,取平均值。 加速能力(加速时间):指汽车在行驶中迅速增加行驶速度的能力,通常用加速时间和加速距离来表示。加速能力包括两个方面,即原地起步加速性和超车加速性。现多介绍原地起步加速性的参数。因为起步加速性与超车加速性的性能是同步的,起步加速性性能良好的汽车,超车加速性也一样良好。 原地起步加速性是指汽车由静止状态起步后,以最大加速强度连续换档至最高档,加速到一定距离或车速所需要的时间,它是真实反映汽车动力性能最重要的参数。有两种表示方式:车速0加速到1000米(或400米,或1/4英里)需要的秒数;车速从0 加速到100公里/小时(80公里/小时、100公里/小时)所需要的秒数,时间越短越好。 超车加速性是指汽车以最高档或次高档由该档最低稳定车速或预定车速(如30公里/小时、40公里/小时)全力加速到一定高速度所需要的时间。 这里特别要指出的是,加速性能的测试与驾驶员的驾车换档技术与环境有密切的联系。驾驶员技术水平的不同,行驶路面的不同,甚至气候条件的不同,所反映出来的加速时间也会不同。车厂给出的参数往往是样车所能达到的最佳值,因此作为用户来说,这个参数仅能做为参考。 爬坡能力:指汽车在良好的路面上,以1档行驶所能爬行的最大坡度。对越野汽车来说,爬坡能力是一个相当重要的指标,一般要求能够爬不小于60%或30°的坡路;对载货汽车要求有30%左右的爬坡能力;轿车的车速较高,且经常在状况较好的道路上行驶,所以不强调轿车的爬坡能力,一般爬坡能力在20%左右。 汽车的经济性指标 汽车的经济性指标主要由耗油量来表示,是汽车使用性能中重要的性能。尤其我国要实施燃油税,汽车的耗油量参数就有特别的意义。耗油量参数是指汽车行驶

自动变速器动力传递路线分析(八)--大众公司01M、01N型自动变速器大众公司01M、01N型自动变速器(图)

大众公司生产的01M型自动变速器用于捷达、宝来和进口帕萨特B4车上,01N 型自动变速器用于桑塔纳、帕萨特B5车上。01M型自动变速器是横置安装,01N 型自动变速器是纵置安装,但两种自动变速器的动力传递路线相同,所以在这里一并介绍。关于01M型自动变速器传动比有不同的资料来源,见表1。 一、行星齿轮机构和换挡执行元件 1.行星齿轮机构 01M/01N自动变速器采用拉维那式行星齿轮机构如图1所示,它是一种双排单、双级复合式行星齿轮机构,其前排为单级结构,后排是双级结构,前后排共用一个内齿圈和一个行星架。在行星架上,外行星轮为长行星轮,和前排太阳轮啮合;内行星轮为短行星轮,和后排小太阳轮和长行星轮同时啮合。在行星齿轮变速机构中,2个太阳轮独立运动;小太阳轮和短行星轮啮合,同时短行星轮又和长行星轮的小端啮合;长行星轮小端和齿圈啮合,同时长行星轮的大端和大太阳轮啮合。齿圈输出动力,通过对大、小太阳轮及行星架的不同驱动、制动组合,实现4个前进挡和1个倒挡。在不同挡位,行星齿轮机构各部件的状态见表2。 图1 行星齿轮机构

2.换挡执行元件 01M型自动变速器换挡执行元件由3个离合器(K2、K1、K3)、2个制动器(B2、B1)和1个单向离合器(F)组成,动力传递示意图如图2所示,各换挡执行元件所控制的部件见表3,不同挡位时,各换挡执行元件的状态见表4。 图2 动力传递路线示意图

二、动力传递路线分析 图3是本人在修理01M 型自动变速器时拍下的行星齿轮机构照片,据此得出各部件的齿数是:前排太阳轮齿数Z 11为24;后排太阳轮齿数Z 21为21;内齿圈齿数Z 3为57。 在该型自动变速器中,n 1H (前)= n 2H (后)=n H =行星架转速;n 13(前)= n 23(后)=n 3=内齿圈转速。 行星齿轮机构中,前行星排是一个单级行星齿轮机构,故有:(n 11-n H )/(n 3-n H ) =-Z 3/Z 1 …………式1 行星齿轮机构中,后行星排是一个双级行星齿轮机构,故有:(n 21-n H )/(n 3-n H )=Z 3/Z 1 …………式2 1.1挡动力传递路线 1挡时,离合器K1工作,驱动后排太阳轮;单向离合器F 锁止,单向固定行星架,即nH=0,则齿圈同向减速输出,动力传递示意如图4所示。因在1挡,单

汽车传动系统综述

汽车传动系统 汽车发动机与驱动轮之间的动力传递装置称为汽车的传动系。它应保证汽车具有在各种行驶条件下所必需的牵引力、车速,以及保证牵引力与车速之间协调变化等功能,使汽车具有良好的动力性和燃油经济性;还应保证汽车能倒车,以及左、右驱动轮能适应差速要求,并使动力传递能根据需要而平稳地结合或彻底、迅速地分离。传动系包括离合器、变速器、传动轴、主减速器、差速器及半轴等部分。汽车发动机与驱动轮之间的动力传递装置称为汽车的传动系。 1简介 牵引力、车速,以及保证牵引力 汽车传动系统图示 与车速 汽车传动系的组成和布置形式是随发动机的类型、安装位置,以及汽车用途的不同而变化的。例如,越野车多采用四轮驱动,则在它的传动系中就增加了分动器等总成。而对于前置前驱的车辆,它的传动系中就没有传动轴等装置。 传动系的布置型式机械式传动系常见布置型式主要与发动机的位置及汽车的驱动型式有关。有六种可分为: 1.前置后驱—FR:即发动机前置、后轮驱动 这是一种传统的布置型式。国内外的大多数货车、部分轿车和部分客车都采用这种型式。FR的优点是附着力大易获得足够的驱动力,整车的前后重量比较均衡,操控稳定性较好。缺点是传动部件多、传动部件多、传动系统质量大,贯穿乘坐舱的传动轴占据了舱内的地台空间。 2.后置后驱—RR:即发动机后置、后轮驱动 在大型客车上多采用这种布置型式,少量微型、轻型轿车也采用这种型式。发动机后置,使前轴不易过载,并能更充分地利用车箱面积,还可有效地降低车身地板的高度或充分利用汽车中部地板下的空间安置行李,也有利于减轻发动机的高温和噪声对驾驶员的影响。缺点是发动机散热条件差,行驶中的某些故障不易被驾驶员察觉。远距离操纵也使操纵机构变得复杂、维修调整不便。但由于优点较为突出,在大型客车上应用越来越多。

自动变速器动力传递路线分析 2

自动变速器动力传递路线分析(一)基本单级与双级行星齿轮机构传动分析 内容简介:自动变速器得齿轮机构多数为行星齿轮机构,由两个到三个行星排,利用多个离合器与制动器,实现某些元件作为输入,制动某些元件,组合出不同得传动比,从而实现换档过程。而行星齿轮机构因为有齿轮得公转与自转,配合不同行星排组合、不同离合器与制动器组合,传动过程复杂。本站文章来源于汽车维修与保养、汽车维修技师等杂志发表得自动变速器传动路线原理,其中加入了本站站长对自动变速器得理解与认知! 自动变速器液力变矩器、齿轮变速机构、液压控制系统与电子控制系统组成、其中齿轮变速机构分为固定平行轴式与行星齿轮式两种、除本田自动变速器采用固定平行轴式外,多数自动变速器齿轮变速机构采用行星齿轮式、行星齿轮机构利用两个到三个行星排,配合多个离合器、制动器与单身离合器,组合出不同得传动比,从而实现换档过程、 行星齿轮机构可分为单级行星齿轮机构与双级行星齿轮机构。 ?一单排单级行星齿轮机构得传动规律分析:? 最简单得行星齿轮机构由一个太阳轮、一个内齿圈与一个行星架与多个行星齿轮组成,但就是用于传递动力得有太阳轮、齿圈与行星架,也就就是说,行星齿轮机构得三个构件就是太阳轮、齿圈与行星架。结构如图所示: 1-太阳轮;2-行星齿轮;3-齿圈;4-行星架 ?单级行星齿轮机构图 1 单级行星齿轮机构太阳轮、齿圈与行星架齿数得规律? 在单级行星齿轮机构中,太阳轮与齿圈得齿数就是可以数出来得,而行星架得齿数就是多少呢?其中得原理计算我不写了,写了相信也没有人瞧得,我就直接说结论吧:

行星架得齿数=太阳轮齿数+齿圈得齿数;也说就是说行星架齿数>行星架齿数>太阳轮齿数。 2单级行星齿轮机构太阳轮、齿齿圈与行星架运动方向规律总结 想想,如果让太阳轮顺转,将带动行星齿轮绕行星齿轮轴逆转,若此时将行星架固定不动,行星齿轮得逆转将带动齿圈逆转。也就就是说,若将行星架固定,太阳轮与齿圈得运动方向相反。还就是太阳轮顺转带动行星齿轮绕行星齿轮轴逆转。若将齿圈固定,逆转得行星齿轮将绕内齿圈行走,从而带动行星架顺转。也说就是说若将齿圈固定,太阳轮与行星架得运动方向相反。那么若就是将太阳轮固定,行星架与内齿圈得运动方向相同还就是相反呢?我不再推导了,直接说结果吧: 单级行星齿轮机构太阳轮、齿齿圈与行星架运动方向规律总结图 3 如何实现直接档传动? 如果将三者中太阳轮、齿圈与行星架得任何两个连接为一体,则整个行星齿轮机构以同一速度旋转。对于自动变速器多数得三档(直接档)时,常常就是要用两个离合器,这两个离合器将输入轴动力传给太阳轮、齿圈与行星架中得两个,则第三个输出得转速与输入相同,即行成了直接档。

相关文档
相关文档 最新文档