文档库 最新最全的文档下载
当前位置:文档库 › 室内游泳馆通风空调设计

室内游泳馆通风空调设计

室内游泳馆通风空调设计
室内游泳馆通风空调设计

室内游泳馆通风空调设计

游泳馆室内设计参数

对于新建室内游泳池设计参数取值的建议:以往,国内酒店的室内游泳池的设计水温(即泳池水表面温度)大多采用27℃,冬季室内干球温度通常定为29℃。我们在调研过程中发现,即使在水温为29℃,空气温度为29℃,相对湿度为78%的休闲型的室内游泳馆中,在馆内游泳的四位年青人出水后都有冷感;而在一个室内干球温度31℃、相对湿度60%的SPA 的浴池大厅内调研时,受访者无论长幼均无不适的冷感或闷热感。如今,已经有一些有经验的酒店管理公司提出,酒店中的休闲型的室内游泳池的水温宜提高到30~32℃,其室温应为31~33℃;此前,上海金茂大厦凯悦酒店的室内游泳馆在其设计和运行中,均已将游泳馆池厅的室温提高到31℃。因此,在具体的工程设计中室内游泳馆池厅的温度以及池水温度究竟如何取值,应事先与建设方或管理公司充分沟通后确定。相关的检测资料表明,当环境的相对湿度在40%~60%的范围内时,空气中可检出的细菌、病毒和微生物数量极少,有的几乎为零;但过低的相对湿度会加速水分的蒸发,造成从泳池中出来的人会因体表水迅速蒸发出现不适的冷感,故笔者建议室内游泳馆池厅内的设计相对湿度宜控制在50%~60%的范围以内。

围护结构的传热系数

冬季,为防止室内游泳馆围护结构内表面结露,应在设计工况下保持围护结构内表面温度比室内空气的露点温度高2.8℃。于是,根据已经确定的室内、外计算温湿度可按下式初算出防止围护结构内表面结露所需传热系数K f :

()()w n nb n f t t t t K --=/α (8—5) 式中 K f ——围护结构防止内表面结露的最大传热系数,W/(m 2·℃);

α——围护结构内表面换热系数,计算时可取8.7W/(m 2·℃)

t n ——室内干球温度,℃;

t w ——冬季室外空气调节计算干球温度,℃;

t nb ——冬季围护结构内表面温度,即等于室内空气的露点温度加2.8℃。

在围护结构传热系数的防表面结露的校核计算时,有一点应引起注意,室内设计参数表所列出的池厅冬季的温、湿度,通常是根据一般规定或标准作出的选用值,并非设计工况下的确切计算值。设计时应根据(8—13)计算确定池厅室内的相对湿度,并在焓湿图上找出该工况下游泳池室内空气的露点温度,重新按式(8—5)复核围护结构的传热系数。如有需要更正之处,应重新向建筑专业提资。

室内游泳馆热湿负荷计算

1. 室内游泳馆池厅的散湿量的计算与池厅空调系统的换气次数的确定

(1)池厅散湿量的计算公式。室内游泳馆池厅的散湿量与泳池的类型、泳池的面积、湿地面的面积、同时游泳的人数、人的运动强度、池水温度、空气的温湿度、水面风速等诸多因素有关。而游泳的人数和人的运动强度等活动因子又与游泳馆的类型密切相关。因此,在预测室内游泳馆设计散湿量时,宜采用按活动因子计算散湿量的方法,即

()()γυ/2.7889a w a p p p F A w -+?= (8—6) 式中 w p ——为游泳池水面及周边湿地水面的总蒸发量,g/s ;

A ——游泳池面积,m 2;

F a ——活动因数;

υ——游泳池水面风速,m/s ;

p w ——游泳池水表面温度下的饱和空气的水蒸汽分压力,kPa ;

p a ——设计状态下室内空气的水蒸汽分压力,kPa ;

γ——池水表面温度下水的汽化潜热可按(8—14)式计算,kJ/kg 。

【注】本式源自ASHRAE. 2003 ASHRAE Application Handbooks [M]. Atlanta ;ASHRAE Inc ,2003

典型的游泳池活动因数 表8-10

表注:在调研中发现,不同类型的酒店,游泳馆的人数有明显的差异:会议娱乐性的酒店游泳馆(有的还对外开放)人数最多,其人员密度可达4m 2/p ;旅游渡假性酒店的游泳人数居中,人员密度约在9 m 2/p 左右;商务型酒店的游泳馆人数相对较少,最大人员密度可按14 m 2/p 计算(上述人员密度,均采用游泳池的池水面积进行计算)。对应活动因数的取值也宜有所区别,建议:会议娱乐性酒店取1.00;旅游渡假酒店取0.80;商务酒店宜取0.65。

由于泳池水表面温度通常要求控制在27~29℃之间,因此,水的汽化潜热基本不变;当把游泳池水面空气流速控制在不大于0.125m/s 的条件下时,室内游泳馆散湿量的计算式可进一步简化成下面的实用计算式:

()a w a p p p F A w -?=144.0 (8—7) 式中除总蒸发量w p 的单位采用kg/h 计算以外,其他各项都与(8—6)式一致。本计算式源自2003ASHRAE Handbook —HV AC Application (pp.4.6),其使用单位已由英制改为公制。

(2)池厅空调系统的换气次数及散湿量计算公式的选用。综合分析相关文献所载数据,建议:当池厅空调系统只选用热回收专用空调机组时,其设计换气次数约在4~6次/h 之间,室内游泳池的散湿量宜使用(8—7)式计算;当游泳馆的空调系统采用常规空调箱进行热湿处理或选用常规空调箱加热回收专用空调机组联合处理时,换气次数宜按10~12次/h 进行设计。室内换气次数的成倍增长,势必使游泳池的水面风速有所提高,故此时建议使用(8—6)式计算室内游泳池的散湿量,式中泳池的水面风速宜取0.2m/s 。

图8-7 四季酒店游泳馆

图8-8 金茂凯悦酒店游泳馆

2. 游泳馆室内热负荷

游泳馆室内热负荷应包括冬季围护结构(不包括门窗缝隙渗透)的热负荷、空气向泳池及周边湿地水表面放热的热负荷、池厅负压引起的邻室与室外空气渗入室内形成的渗透热负荷,减去空气从池水蒸发中获得的汽化潜热。

(1)泳池岸边湿地面积。岸边湿地面对商务酒店的游泳馆来说,既是客观存在,但其实际面积并不大,存在的时间也不长。其原因是商务酒店游泳的客人相对较少,且高星级商务酒店游泳馆的工作人员须随时清除池厅地面上的水渍(从上面两张酒店泳池的照片就可以感性地了解商务酒店泳池周边“湿地面”的基本状况)。为方便计算,建议商务酒店游泳池把泳池四周外扩0.5m (基本上可把泳池周边的排水沟包含在内)的范围算作湿地面的面积;渡假型游泳池岸边湿地面积宜按池边外扩1.25m 计算;会议娱乐型酒店游泳池的活动因数Fa 在本文中被建议取1.0,其泳池岸边湿地面积宜按外扩2m (约6.5呎)计算。游泳馆的建筑热负荷应使用经鉴定的电算程序进行计算。

(2) 空气向泳池及周边湿地水表面放热的热负荷Q f 可按下式计算:

()[()]

q s n s s n f t t A t t A Q .-+-=α (8—8) 式中 Q f ——空气向泳池及周边湿地水表面放热的热负荷,W ;

α——空气向水面的放热系数,取8.4W/(m 2·℃);

A ——泳池面积,m 2;

A s ——泳池周边湿地面积,m 2;

t n ——池厅室内干球温度,℃;

t s ——泳池设计水面温度,℃;

t s.q ——池厅室内空气的湿球温度,℃。

(3)负压渗透热负荷。室内游泳池必须有通往更衣室或直通疏散走道的内门。如有可能,建筑师会设置一个通向室外观景平台或裙房屋顶绿化区的外门,以便在过渡季扩大游泳馆的休息区。池厅的负压使室外空气和邻室的室内空气透过门窗的缝隙渗入池厅,由于内门的漏风量远远大于外门的漏风量,夏季由邻室渗入池厅的风温和比焓都比游泳馆内的空气低,故夏季可作为空调系统的裕量不参与计算。然而在冬季,无论是从内门还是从外门漏入的空气,其温度都低于池厅室内的空气温度,都是游泳馆的热负荷。因此,必须先分别算出从外门(或外窗)和内门渗入池厅的风量。然后再计算池厅冬季的渗透热负荷。

1)游泳馆池厅的室内负压。ASHRAE 建议室内游泳馆的池厅保持1.3~3.8mmH 2O 负压。

酒店游泳馆池厅与相邻空调房间的平均设计负压值宜取25Pa 。

2)外门、外窗及固定透明玻璃幕墙缝隙的漏风量计算:

外门与固定透明玻璃幕墙的漏风量应由幕墙公司提供,并按计算压差△P=15Pa (因酒店其它空调房间对外需保持10Pa 正压,故池厅与室外的压差应等于-15Pa )进行修正。在幕墙公司未介入之前,外门、外窗的漏风量与固定部分透明玻璃幕墙窗在压差10Pa 时的漏风量L 10,宜分别按3 m 3/(m ﹒h)和0.1m 3/(m ﹒h)进行计算(含施工中可能出现的偏差)。算得的门窗缝隙漏风量L 10,需要根据实际压差按下式进行修正,即实际计算漏风量等于L W :

101065.03.11015L L L W ≈???? ??= (m 3/h ) (8—9)

3)内门漏风量计算:

通过内门门缝的漏风量可参照《高层民用建筑设计防火规范》 GB 50045 — 95(2005年版)第8.3.2条推荐的公式进行计算,即

25.1827.05.0????=i

i i P A l (8—10) 式中 l i ——第i 扇内门的门缝漏风量,m 3/s ;

A i —— 第i 扇内门的门缝面积,m 2;

△P i ——第i 扇内门两侧的压差,Pa 。计算时需注意的是,内门两侧的压差可能会出现以下几种情况:一种是通向疏散通道的内门与电梯厅或接待大厅等公共空间直接相连,只要设计按照空气平衡的需要,在这些公共空调区域的计算新风量的基础上,再补充送入上述连通空间的、数量等于其计算漏风量的新风量。那么,这扇门两侧的计算压差△P i 可取25Pa 。第二种情况是,游泳池直接与男女更衣室相连。当进入更衣室的门关闭时,更衣室与门外的公共空间之间的压差宜取5Pa ;由更衣室进入游泳池池厅的门关闭时,计算该门缝漏风量的计算压差宜取20Pa 。设计应根据空气平衡的计算结果向公共空间与更衣室补风。第三种情况是游泳馆池厅的内门通过一段封闭的走道间接与男女更衣室、健身房或其它功能房间相连。那么,池厅的这个内门在封闭走道与池厅间压差的作用下漏进池厅的风量应等于间接连通的更衣室、健身房等房间通过各自的房门漏进封闭走道的风量。并可通过(8—11)式求出封闭走道内的空气压力P f :

∑=??=??j

j j j i i i P A P A 15.0.5.0 (8—11)

′式中 A i ——池厅第i 扇内门的门缝面积,m 2;

△P i ——池厅第i 扇内门两侧的压差,且△P i =P f -P c ,Pa ;

P f ——封闭走道内空气的压力,Pa ;

P c ——池厅内设计负压,(相对于室外)取-15 Pa ;

A i.j ——通过封闭走道与池厅间接连接的第i.j 个房门的门缝面积,m 2;

△P i.j ——第i.j 扇房门两侧的计算压差△P j =P j -P f ,Pa ;

P i.j ——第i.j 个房间的室内正压。只要设计时在这些房间计算新风量的基础上再加上本次空气平衡算得的补充新风量,那么,这些房间室内的计算正压P j

(相对于室外)取+10Pa 。 将△P i 和△P i.j 代入(8—11)′式,可得

()()∑=-?=+?j

j f j i f i P A P A 15

.0.5.01015 (8—11) 在计算上述房门的门缝面积时的平均门缝宽,建议:弹簧门取0.005m ;普通门取0.003m 。

4)冬季池厅渗透热负荷:

池厅负压渗透热负荷Q S.T ,可根据渗入池厅的风量按下式计算:

()()∑-+-=i n n i n w n w T S h h G h h G Q ... (kW ) (8—12) 式中 G w ——通过外门(或可开窗)和透明幕墙的缝隙渗入池厅的室外空气总量,kg/s ; G n.i ——通过池厅第i 扇内门渗入池厅的室内空气量,kg/s ;

h n ——冬季设计工况下池厅内空气的比焓,kJ/kg ;

h n.i ——池厅第i 扇内门相邻空间内空气的比焓,kJ/kg 。

在使用(8—12)式计算前,必须先按下面的湿平衡方程式(式8—13)计算出在冬季设计工况下池厅内空气的含湿量,确定池厅在冬季设计工况下运行时室内空气的状态点,进而在焓湿图上确定池厅内空气的比焓h n 。

()()()γυ/2.7889)(...a w a i n i n w w x n i n w x

p p F A d G d G G d G G G -+?=?-+-++∑∑ (8—13)

式中 G x ——通过空调机组送入池厅的新风量(参见本文8.4.7-2),kg/s ;

G w ——通过外门(或可开窗)和透明幕墙渗入池厅的室外空气的总量,kg/s ; G n.i ——通过池厅第i 扇内门渗入池厅的室内空气量,kg/s ;

d n —— 冬季设计工况下池厅室内空气的含湿量,计算时须用式a

a p B p -622代入; d W ——冬季室外空气计算含湿量,g/kg ;

d n.i ——池厅第i 扇内门相邻空间内空气的含湿量(参见本文8.4.7-2),g/kg ;

湿平衡方程式等号右式的第一项中各字符的定义详见(8—6)的注解。当池水的散湿量是按照(8—7)式计算时,须用(8—7)式替换(8—13)式等式右面的散湿量计算式。

(4)池水温度t s 下水蒸汽的汽化潜热可按下式[8]计算:

s t 35.22500-=γ (kJ/kg ) (8—14)

3. 游泳馆室内冷负荷计算

夏季室内游泳馆池厅的室内冷负荷应包括设计工况下通过围护结构进入室内的热量、灯光散热形成的显热冷负荷、人体的热湿负荷(在水中游泳的人体散发的热湿负荷,隐含在游泳馆散湿量的潜热负荷中,不另计算;只计算在池旁躺椅上休息的客人与工作人员的热湿负荷)以及池水与地面水蒸发进入室内的潜热冷负荷的和,减去空气向泳池及周边湿地水表面放热的热负荷Q a 。调研表明,白天游泳馆照明用电量约占其设计照明总电量的20%左右。设计时,白天宜按照明总用电量的20%进行计算;19:00以后再按设计照明的总用电量计算。

池厅设计最小新风量

1. ASHRAE 6

2.1—2004通风标准:该标准要求按每平方呎泳池及其岸边湿地面积计算的户外空气量不小于0.48CFM ,相当于8.78CMH/m 2。

2. 酒店管理公司建议的新风标准之间存在较大的差异,其中最高的一个新风标准达9CMH/m 2。实践表明,根据池厅面积按9CMH/m 2新风标准设计的室内游泳池空调系统,无论在其周边房间内,还是在其池厅里都闻不到氯的气味,但新风能耗偏高;在长三角及以北地区还会导致池厅冬季室内相对湿度低于50%方面的问题。

3. 池厅设计最小新风量的取值:池厅设计最小新风量应根据ASHRAE 62.1—2004的通风标准,按每m 2泳池及其岸边湿地面积8.78m 3/h 计算。湿地面积参见8.3.3节,第2.

(1)条的规定计量。由于通过外门、外窗及内门缝隙渗入池厅的空气都有除湿和稀释池厅

空气中结合氯浓度的作用,为节省游泳池空调系统的能耗,本文建议把上述计算漏风量统一计入池厅户外空气的范围内,仅当设计最小新风量与漏风量的差小于人均新风量30CMH/p 时,池厅空调系统的最小新风量(即通过空气处理机送入室内的新风量)应按30CMH/p计算,且夏季不宜小于送风量的5%;但冬季游泳馆池厅空调系统的最小新风量,应使设计工况下池厅室内相对湿度不小于50%。此时,进入池厅的户外空气量等于池厅空调系统的最小新风量与内、外门窗缝漏风总量的和。

池厅气流组织

1. 送风口和回风口的布置须认真考虑,应防止送、回风口之间发生短路。短路会产生气流滞留区,使游泳馆内局部空间的水蒸汽积聚、空气的相对湿度上升。

2. 上送风口的叶片或导流装置应向外倾斜15~20°、对着外墙、外窗。当池厅内设置天窗时,紧贴天窗下沿的侧送风口内的叶片或导流装置应向上倾斜15~20°。设在池厅内区吊顶天花上的送风风口应采用贴附性能好的散流器。

3. 送风口不得直接对着可能使气流改变流动方向的表面吹风,以防止反射折转的气流吹到从水中出来并沿池边行走的游泳者身上。

4. 侧送风口不得直接对着游泳池表面吹风,这种送风方式将大大提高泳池水表面的风速使得在水中游泳的人感到不适;同时过大的风速会加速池水蒸发,增加池水的热损失。

5. 在游泳馆外墙(或外窗)的下部设置下送风口时,风口的叶片应向外倾斜15~20°、对着外墙、外窗送风,切忌反装。下送风口宜高出地面300~500mm。

6. 为保持池区处于负压,空调系统的回(排)风风口宜设置在正对泳池的天花上,或是离泳池最近的墙面下部,送风口不会直接吹到的地方。

室内游泳馆池厅送风口的布置形式可参见图8-9。

(a)下送风风口布置图(b)上送风风口布置图

图8-9 游泳池空调送风风口的布置图

游泳馆的空气处理及设备配置

1. 游泳馆空气的热湿处理

(1)系统采用以冷、热盘管为核心处理部件的四管制组合式空气处理机时,其空气处理过程如下:

1)夏季,当室外空气的比焓h w≥室内设定比焓h n时,回风与设计最小新风量混合后进入水冷表面式冷却器(下简称“冷盘管”)降温去湿,保持室内空气的含湿量等于设定值;再经热盘管加热使室内空气温度维持设定值。

2)当室外空气的比焓h w<室内设定比焓h n时,系统进入全新风工况。新风经冷盘管降温去湿,以保持室内空气的含湿量等于设定值;再通过热盘管加热到送风参数后送入室内,

以保持稳定的室内温度。

3) 当室外空气的含湿量d w <夏季设计送风参数的含湿量d s 时,系统进入变新风工况区。系统将通过改变吸入的新风量(即改变新、回风比)来保持室内空气的含湿量接近设定值;此时,游泳馆室内的余湿量完全依靠干燥的新风来消除,空气处理机中的冷盘管已经不必承担去湿的功能。因此,其供冷量只须受室内温度传感器的控制。随着室外温度下降,当冷盘管的供冷量下降到零时,系统进入采暖工况。

4) 系统进入采暖工况后,继续处于变新、回风比的控制状态,使室内空气的相对湿度保持在50%~60%的范围内,直到系统吸入的新风量达到冬季设计最小新风量,系统将自动停止新、回风比的控制。系统加热盘管的供热量受控于室内温度传感器的偏差信号。夏热冬冷及以北地区在冬季设计工况下,空调系统过大的新风量会导致池厅相对湿度低于设定下限值。为保持游泳馆池厅内空气的相对湿度不小于50%,设计时应根据其室内设计温度,由(8—15)式求出室内空气在相对湿度?=50%时的水蒸汽分压力p a :

b a a P P .?=? ;即或 b a a P P .5.0= (8—15) 式中 p a.b ——游泳馆室内设计温度对应的湿空气的饱和水蒸汽分压力,即设计室内温度与

100%饱和线的交点所对应的水蒸汽分压力,kPa 。

然后,用湿平衡方程(8—13)式求出池厅空调系统冬季由空调箱吸入的最小室外新风量G X 。具体计算方法请参见以下的商务型酒店室内游泳馆空气处理的计算实例。

(2) 当设计采用四管制冷热水盘管的组合式空调箱对室内游泳馆的空气进行热湿处理时,应注意以下几个问题:

1) 常规四管制空调系统,夏季由冷盘管除湿,冬季则只能依靠新风来消除室内的余湿。因此,在夏热冬暖且冬季室外空气含湿量较高的地区,当游泳馆采用常规空调机对室内空气进行热湿处理时,其冬季设计工况下的最小新风量还应满足游泳馆的除湿要求。

2) 夏季游泳馆池厅空气处理机再热用热源须独立设置。在设计高星级酒店或国宾馆一类建筑的室内游泳馆的空调系统时,必须对酒店四管制空调系统的运行情况有一个深入的了解:即使是按四管制设计的五星级酒店,为了节省运行费用,其空调系统在夏季供冷时绝不会同时供应热水。这种情况在国际五星级酒店中也不例外。酒店不会仅为游泳馆空调系统区区数千瓦到数十千瓦的再热量,去运行容量数兆瓦的空调供热系统。因此,当高星级酒店的游泳馆的空调设计,必须采用常规四管制的全空气空调系统时,宜在其机房内增设一套小型汽——水热交换热水机组。

3)池水蒸发量是影响池厅空调系统运行的主要因素,(8—6)式引入活动因素Fa 用以估算设计工况下的池水蒸发量。然而来酒店游泳池游泳的人数变化很大,Fa 必将随之变化:有时达到设计值,但多数情况下空无一人。泳池里人少了,池水蒸发量自然随Fa 下降而减少,氯的挥发量也将成比例减少。在设计自动控制系统时,应能使池厅空调系统根据室内相对湿度的变化,适时减少系统的新风量与池厅排风量,在保持卫生状况达标的前提下最大限度地减少系统新风能耗。

(3)当设计采用游泳馆专用的双风机热回收系统时,无论是夏季还是冬季,空调系统均采用机组配置的直接蒸发式表冷器对回风进行降温去湿处理,并将蒸发器所吸收的热量全部回收,或用于冬季空调系统加热,夏季的再热,多余的部分再用于池水加热。详细运行控制请见“8.3.7 SWHP 普尔帕克双风机成套游泳池空间环境控制和热回收系统简介”专篇。

2. 某商务型酒店室内游泳馆采用常规四管制空调箱作空气处理的计算实例

【计算条件】夏季室外空调计算干球温度34.6℃,湿球温度28.2℃;冬季室外空调计算干球温度-1.2℃、相对湿度74%(含湿量d w =2.389 g/kg );夏季大气压100570Pa ,冬季大气压102650Pa 。室内设计干球温度全年31℃,夏季室内相对湿度60%;冬季室内相对湿

度≮50%。泳池设计水温29℃。泳池面积131.4m2,游泳馆池厅的体积1600m3;夏季室内显热冷负荷29.65kW,冬季建筑围护结构热负荷33.49kW。池厅对于室内相邻房间保持25Pa 负压。池厅有一个宽1.8m、高2.1m的外门和两个同样尺寸的内门,透明玻璃幕墙的缝隙总长183m,无可开启外窗。其中一个内门通向疏散走道,该走道直接与健身中心接待厅及电梯厅相连;另一个内门通过一段封闭走道分别与男女更衣室和健身房间接连接:男女更衣室用的都是宽1.0m、高2.1m的房门,健身房的门宽1.8m、高2.1m。所有内门均为弹簧门,缝宽按5mm计算。冬季接待厅与电梯厅的设计室内温度为20℃、相对湿度40%(含湿量d n1=5.785 g/kg);健身房的设计室内温度为22℃、相对湿度40%(含湿量d n2.1=6.551 g/kg);更衣室的设计室内温度为25℃、相对湿度50%(含湿量d n2.2=9.865g/kg)。试根据室内设计参数分别计算系统送风量、负压渗透漏风量、系统最小新风量、冬夏设计工况下池厅空调系统的送风状态及设计工况下空调系统的供冷与供热量。

【解】

(1)池厅内、外门与幕墙的计算漏风量

1)外门与幕墙漏风量

已知外门的尺寸等于1.8m×2.1m,幕墙的缝隙总长183m。

(A)外门缝隙的总长A m.f=2.1×3+1.8×2=9.9m

将A m.f及计算压差△P=15Pa代入(8—9)式,可得外门漏风量L w.m:

L w.m=1.3×A m.f×l m10=1.3×9.9×3=38.6m3/h;

(B)将幕墙玻璃与窗框间的缝隙长度代入(8—9)式,可得透明玻璃幕墙的漏风量L w.q:L w.q=1.3×A q.f×l q10=1.3×183×0.1=23.8m3/h;

(C)外门与幕墙的总漏风量L w=L w.m+L w.q=38.6+23.8≈62 m3/h。或G w=0.0207 kg/s

2)内门计算漏风量

(A)连接接待厅内门的漏风量

按已知条件可得门缝的计算面积A n1=(2.1×3+1.8×2)×0.005=0.0495m2

将A n1及计算压差△P=25Pa代入(8—10)式,可得此内门的漏风量L n1:L n1=1.03×0.0495×250.5=0.255m3/s=918m3/h或G n1=1.2×L n1=0.306kg/s (B)连接更衣室、健身房与池厅的每个内门漏风量

a)与封闭走道连接的每个内门的门缝面积

池厅门:A n2=0.0495m2

更衣室:A2.1=A2.2=(2.1+1.0)×2×0.005=0.031 m2

健身房:A2.3=0.0495m2

b)封闭走道的计算压力

将门缝面积A n2、A2.1、A2.2、A2.3代入(8—11)式,有

0.0495×(P f+15)0.5=( 0.031+0.031+0.0495) ×(10-P f) 0.5

整理后可得封闭走道的计算压力P f=5.88Pa

c)内门漏风量

将A n2、A2.1、A2.2、A2.3及计算压力P f=5.88Pa代入(8—10)式,可得每个内门的漏风量

池厅门:L n2=1.03×0.0495×(5.88+15)0.5=0.233 m3/s=839m3/h

更衣室:L2.1=L2.2=1.03×0.031×(10-5.88)0.5=0.065 m3/s=233m3/h或G 2.1=0.078kg/s

健身房:L2.3=1.03×0.0495×(10-5.88)0.5=0.1035 m3/s=373m3/h或G 2.3=0.124kg/s 3)池厅门、窗缝隙的总漏风量

将外门与幕墙的漏风量L w及池厅两个内门的漏风量L n1、L n2累计求和,可得池厅保持25Pa负压的总漏风量L C.L=62+918+839=1819 m3/h或G C.L =0.6063 kg/s

(2) 夏季送风状态和系统送风量:

1)计算池水蒸发量及其潜热

根据本书8.3.3建议,当游泳馆的空调系统采用常规空调箱进行热湿处理时,换气次数按11次/h 进行设计;用(8—6)式计算室内游泳池的散湿量,式中泳池的水面风速取υ=0.2m/s ;取游泳池活动因数F a =0.65。水在29℃时的汽化潜热γ=2500-2.35×29=2432kJ/kg 。

将游泳池水表面积A 、活动因数F a 、水面风速υ、汽化潜热γ、游泳池水表面温度下的饱和蒸汽分压力P w =4.054kPa 及夏季游泳池室内设计工况下空气的水蒸汽分压力P a =2.729kPa 代入(8—6),可得

池水蒸发量 ()()γυ/2.7889a w a p p p F A w -+?=

=131.4×0.65×104.6×(4.054-2.729)/2432=4.87g/s

蒸发潜热 =?=γp q w Q 0.00487×2432≈11.844kW

2) 夏季室内显热冷负荷及总冷负荷

x l Q ?=29.65kW ; =+=?q x l l Q Q Q 29.65+11.844 = 41.494kW

3) 热湿比 ==p l w Q /ε41.494/0.00487≈8520kJ/kg

4) 池厅空调系统的估算送风量

池厅吊顶下的体积为1600m 3,系统送风量可按下式估算,即

送风量 L s.g =11×1600=17600m 3/h=4.889 m 3/s

5) 求最小新风量

根据表8-10的“表注”的建议,商务酒店池厅的湿地面积宜按泳池岸边外扩0.5m

计算,即泳池面积与岸边湿地面积之和等于164m 2。那么,若按ASHRAE 62.1—2004通风标准计算的新风量应不小于L X.A =164×8.78≈1440m 3/h 。

与池厅保持负压引起的漏风量L C.L =1819 m 3/h 相比,L X.A <L C.L 。为此,夏季通过

空调箱的新风量宜按送风量的5%计算,即L X.S =0.05×17600=880m 3/h

6) 绘制焓湿图(图8—10)、计算池厅送风量

在h —d 图上,按照设计室内温度31℃、相对湿度60%确定夏季室内空气状态点

N ,设计工况下室内空气的比焓h n =75.69 kJ/kg 。通过N 点画出ε= 8520kJ/kg 的过程线。

用夏季池厅的室内显热冷负荷Q l.x 和系统估算送风量L s.g ,代入下式,可得送风温

差⊿t s

⊿t s =Q l.x /(C P ·ρ·L s.g )=29.65/(1.01×1.2×4.889)≈5.0℃

本例宜按送风温差⊿t s =5.0℃准确计算系统设计送风量L S ,有

L S =29.65/(1.01×1.2×5)=4.893 m 3/s ,或L S =17615 m 3/h

池厅空调系统夏季送风温度t s = 31-5 = 26℃,过程线ε与26℃等温线的交点S ,

就是夏季池厅送风状态点。在h —d 图上过S 点向下做垂线与85%相对湿度线相交于L 点(机器露点),当风机及送风管道的温升按1.5℃计算时,被处理到L 点的空气需被等湿加热到K 点。由于系统送风量的估算值与计算值相差无几,夏季系统通过空调箱处理的最小新风量L X.S 将维持原计算不变。

图8-10 夏季池厅空气处理过程的焓湿图

7) 计算系统夏季供冷量Q G .L 与再热量Q Z.R

从夏季池厅空调系统处理空气的焓湿图中可以查到,回风与新风混合后进入冷盘

管前的比焓h C =76.545kJ/kg ,经降温降湿处理到L 点空气的比焓h L =66.367 kJ/kg ,可得池厅空调系统夏季的计算供冷量Q G .L :

Q G .L =(h C – h L )×G S =(76.545-66.367)×1.2×4.893=59.76kW

从夏季空气处理的焓湿图中可查出K 点的比焓h K =66.692 kJ/kg ,因此,池厅空调

系统在夏季设计工况下的再热量Q Z.R :

Q Z.R =(h K – h L )×G S =(66.692-66.367)×1.2×4.893≈1.91kW 。

(3) 冬季送风状态与系统加热量:

1) 冬季池厅室内设计参数及湿平衡计算

为保持池厅内一定的新风量,冬季在保持室内干球温度31℃的条件下,其相对湿度宜按照50%进行湿平衡计算,并依此确定冬季池厅设计新风量L X 。

(A )求池水蒸发量

将池水面积A 、活动因数Fa 、水面风速υ、汽化潜热γ、游泳池水表面温度下的饱和蒸汽分压力P w =4.054kPa 及夏季游泳池室内设计工况下空气的水蒸汽分压力P a =2.274 kPa 代入(8—6),可得池水蒸发量

()()γυ/2.7889a w a p p p F A w -+?=

=131.4×0.65×104.6×(4.054-2.274)/2432=6.539g/s

(B )冬季池厅湿平衡与系统最小新风量

根据池厅排风与所有进入池厅空气的湿差应等于游泳池池水的蒸发量的原理,本书在8.3.3节中建立了湿平衡方程(8—13)式。将前面计算漏风量(G w 、G n.i )、池水蒸发量w p 及在h —d 图中查得的空气含湿量(d w 、d n 、d n.i ),代入下式,就可以求出池厅空调系统通过空调箱吸入的新风量G X

()p i n i n w w x n i n w x w d G d G G d G G G =?-+-++∑∑...)(

将相关数据代入后,有

(G X +0.6063)×14.091-(G X +0.0207)×2.389-(0.306×5.785+0.124×6.551+2×

0.078×9.865)=6.539

整理后可得系统最小新风量G X

G X =0.185kg/s 或 L X =3600 G X /1.2=555m 3/h

计算结果表明,冬季要保持本例中的池厅室内相对湿度不低于50%,通过空调箱

吸入的新风量不能超过555 m 3/h 。设计宜取550 m 3/h ,冬季新风比约为3.1%。

2)冬季池厅的室内热负荷

池厅冬季室内热负荷两个由围护结构热负荷与负压渗透热负荷两个部分组成。池厅冬季的围护结构热负荷Q S是本例的已知条件,负压渗透热负荷需按(8—12)式计算确定。

(A)池厅负压渗透热负荷(室内温度31℃、h n=67.36 kJ/kg)

室外渗入空气量G w=62m3/h、比焓h w=4.758kJ/kg、t w=-1.2℃;

接待厅渗入空气G n.1=918m3/h、比焓h n.1=34.88kJ/kg、t n.1=20℃;

健身房渗入空气G2.1= G2.2=373m3/h、比焓h2=38.868kJ/kg、t2=22℃;

男女更衣渗入空气G2.3=466m3/h、比焓h3=50.376kJ/kg、t3=25℃。

a)负压渗透引起的全热负荷Q S.T:

Q S.T=(67.36-4.758)×0.0207+(67.36-34.88)×0.306+(67.36-38.868)×

0.124+(67.36-50.376)×0.078×2=17.41kW

b)负压渗透引起的显热负荷Q S.T.S:

Q S.T.S=[(31+1.2)×0.0207+(31-20)×0.306+(31-22)×0.124+(31-25)×0.078×2]×1.01=6.14kW

(B)冬季池厅的总热负荷与显热负荷

a)池厅的总热负荷Q R

欲求Q R,必须先算出冬季池厅室内空气从池水蒸发中获得的汽化潜热Q q。将求得的冬季池水散湿量w p的值代入(8—14)式,有

Q q= w pγ?=0.006539×2432=15.9kW

然后,把已知的建筑热负荷Q J.R=-33.49Kw,负压渗透热负荷Q S.T及池水蒸发的汽化潜热Q q相加起来,便可求得总热负荷Q R;

Q R=Q J.R +Q S.T+Q q=-33.49+(-17.41)+15.9=-35.0kW

b)池厅的显热负荷Q S.R;

Q S.R= Q J.R + Q S.T.S =-33.49+(-6.14)=-39.63 kW

3)冬季池厅计算湿负荷w C

设计工况下冬季池厅的湿负荷等于池水散湿量与负压渗透风除湿量之差,即

w C= w p-(Q S.T-Q S.T.S)/γ=0.006539-(17.41-6.14)/2432=0.001905kg/s 4)热湿比ε= Q R/w C=-35/0.001905=-18370kJ/kg

5)绘制焓湿图

图8-11 冬季池厅空气处理过程的焓湿图

在h—d图上(见图8—11),按照设计室内温度31℃、相对湿度50%,确定冬季室内空气状态点N,通过该点画热湿比ε=-18370的过程线。如忽略送风密度的变化,就可以根据池厅冬季的显热负荷Q S.R与系统送风量G S算得冬季设计工况下的送风温差,⊿t S =Q S.R /(C P×G S)= 39.63/(1.01×5.872)≈6.7℃,即送风温度t S= t n+⊿t S= 31+=

37.7℃。过程线ε与37.7℃等温线的交点S,即冬季泳池送风状态点。其比焓h S=

73.363kJ/kg、含湿量d S= 13.728 g/kg。

6)池厅空调系统冬季的加热量

过冬季送风状点S做垂线,与设计工况下室内外空气的状态点的连线N—W交于C点,即冬季室内空气在设计状态下的回风与新风的混合点,混合空气的比焓

h C=65.42kJ/kg。由此可求出池厅空调系统冬季的供热量Q G.R:

Q G.R=G S×(h S-h C)=5.872×(73.363-65.42)=46.64 kW。

3. 空调系统与设备配置

(1)游泳馆空调系统宜采用单风机组合式空调箱,其基本功能段包括新/回风混合段、粗/中效过滤段、表冷段、加热段及风机段(采用不锈钢转轴。电机与轴承外置),表冷器与空气加热器的换热面积应分别有20%与25%的裕量(考虑到池水蒸发量的估算与最小新风量的确定与实际情况可能出现偏差所留裕量),送风风机的风量应有10%的裕量。组合式空调箱的底部应设置钢筋混凝土减振台板与弹簧减振器。组合式空调箱的新风入口宜设置两根新风管,一个用于系统在空调季取新风,其断面宜按ASHRAE 62.1—2004的通风标准算得的新风量确定,且不小于系统送风量的10%。此风管上应设置电动对开式多叶调节阀;一个用于过渡季系统全新风运行取新风,此风管上应设置高气密型电动对开式多叶调节阀。用于寒冷或严寒地区游泳馆空调系统的最小新风管上应设空气预热器。箱体内部与游泳池空气接触的零部件(包括风机的叶轮与蜗壳)表面应具有良好的防腐性能(通常采用环氧树脂喷涂法)。

池厅空调送、回风管宜采用铝板制作,风管壁厚按照《通风与空调工程施工质量验收规范》GB 50243—2002 表4.2.1-3规定选材。管道消声器、调节阀、防火阀及止回阀均应采用不锈钢板材制作。

(2)汽——水热交换热水机组的设置。在设计高星级酒店或国宾馆一类建筑的室内游泳馆的空调系统时,当必须采用常规四管制的全空气空调系统时,宜在其机房内增设一套小型汽——水热交换热水机组。其供热水管与酒店空调供热系统的供回水管并联设置(可通过手动阀门完成切换)。当采用常规四管制空气处理机与热回收机组联合处理的方案,夏季的空气再热可由热回收机组的空气热交换器独立承担。

(3)游泳馆宜配备空调季排风风机,其设计风量应等于游泳馆空调系统的最小新风量(当冬、夏季系统的设计最小新风量有差异时取两者的大值计算)与保持游泳池负压所需风量的和。保持池厅负压的漏风量需根据游泳池与周边房间通道设置的情况,按计算确定。空调季排风风机的选型风量应在计算风量的基础上预留25%的裕量,并在排风管上设置电动调节风阀,适时根据相邻房间与池厅之间压差的变化对排风量进行。运行时应在保证客人应有的舒适度为前提,在保持游泳馆内空气中含氯浓度不超标的条件下(按照《工作场所有害因素职业接触限值》GBZ 2—2002的规定:氯气最高允许浓度为1.0mg/m3),力求减少空调箱的最小新风量,以节省冬、夏空调季内新风的能耗。游泳馆应另配置一台过渡季排风风机,用于在过渡季中配合空调系统实现全新风工况,以及游泳池超氯化水处理或换水期间的大风量换气。过渡季排风风机的设计风量按送风机风量的1.1倍计算。无论是空调季排风还是过渡季排风风机的静压,均应在风管水力计算的基础上增加37Pa。排风机应选用电机与轴承外置型不锈钢风机箱,与排风接触的风机转轴表面应作防腐处理。排风风管应采用不锈钢板制作。

室内游泳池设计方案

室内游泳池设计方 案 、设计参数: 1.游泳池平均水深: 1.5米 2.游泳池表面积:120m2 3.游泳池容积:180m3 4.游泳池水温:26-28C 二、设计依据: 1. 设计规范 《游泳池和水上游乐池给水排水设计规程》《建筑给水排水及采暖工程施工质量验收规范》《建筑给水排水设计规范》GB50015-2003 2. 气象参数 夏季空调室外计算干球温度:25.8 C; 夏季空调室外计算湿球温度:19.9 C; 夏季通风室外计算温度:23 C;CECS 14 :2002 GB50242-2002

SW- 西南风; 常年室外主导风 向:

冬季空调室外计算干球温度: 1 C; 冬季室外计算相对湿度:68% ; 冬季通风室外计算温度:8 C; 3?自来水水温:最低7C,年平均17.1 C,冬季计算水温10C 三、设计方案: (一)恒温、加热方案 游泳池恒温、加热采用空气源热泵。实践证明,空气源热泵具有恒温效果好,节能效果明显等特点。 1. 游泳池恒温所需热量:游泳池恒温所需热量等于以下耗热量总和: A. 池水表面蒸发损失的热量: A = 丫*(0.0174*Vf + 0.0229)*(Pb —Pq)*F*760/ B =87818.64kcal/h =102kw B .池壁和池底传导损失的热量: B= A x 0.2 =17563.73kcal/h =20.4kw C.补充新水加热所需的热量: C=c*qb*(ts —tb)/t =7200kcal/h

=8.4kw A+B+C=130.8kw ( 每小时所需提供热量157kw) 2. 游泳池初次加热所需热量:初次加热所需热量等于以下耗热量总和: A. 游泳池初次加热热量: A = C x M t =2880000kcal =3348.8kw B. 游泳池初次加热过程中所损失热量: B =游泳池恒温所需热量 -2 =65.4kw/h 游泳池初次加热时间取48 小时 则游泳池初次加热所需热量=A + Bx48 = 6488kw (135.2kw/h) 3. 游泳池加热设备选型: 游泳池恒温每小时所需热量:157kw 游泳池初次加热每小时所需热量:135.2kw

游泳馆设计规范

总出人口布置应明显,不宜少于二处,并以不同方向通向城市道路。观众出入口的有效宽度不宜小于/百人的室外安全疏散指标 道路应满足通行消防车的要求,净宽度不应小于,上空有障碍物或穿越建筑物时净高不应小于4m。体育建筑周围消防车道应环通 观众出入口处应留有疏散通道和集散场地,场地不得小于/人,可充分利用道路、空地、屋顶、平台等。 部分专用停车场(贵宾、运动员、工作人员等)宜设在基地内 应确定建筑功能分区。可分为竞赛区、观众区、运动员区、竞赛管理区、新闻媒体区、贵宾区、场管运营区等。 应考虑残疾人参加的运动项目特点和要求,应满足残疾观众的需求 运动场地界线外围必须按照规则满足缓冲距离、通行宽度及安全防护等要求。裁判和记者工作区域要求、运动场地上空净高尺寸应满足比赛和练习的要求。 应考虑场地运动器械的安装、固定、更换和搬运需求。 场地的对外出入口应不少于二处,其大小应满足人员出入方便、疏散安全和器材运输的要求。 残疾观众席位为千分之二,方便残疾人入席和疏散 观众席有背硬椅:座宽,排距。座椅高度~. 记者席,评论员席。 观众席纵走道间连续座位数目,室内每排不宜超过26个。当仅一侧有纵走道时,座位数目应减半。

主席台和包厢宜设单独的出入口。主席台应与其休息室联系方便,并能直接通达比赛场地,与一般观众席之间宜适当分隔。 观众席规模10000以下,主席台1%~2%;观众席规模10000以上,主席台%~1%; 独立的看台至少应有二个安全出口,且体育馆每个安全出口的平均疏散人数不宜超过400~700人 通向安全出口的纵走道设计总宽度应与安全出口的设计总宽度相等。经过纵横走道通向安全出口的设计人流股数应与安全出口的设计通行人流股数相等 每一安全出口和走道的有效宽度除应符合计算外,还应符合下列规定: 1) 安全出口宽度不应小于,同时出口宽度应为人流股数的倍数,4股和4股以下人流时每股宽按计,大于4股人流时每股宽按计; 2) 主要纵横过道不应小于(指走道两边有观众席); 3) 次要纵横过道不应小于(指走道一边有观众席); 4) 活动看台的疏散设计应与固定看台同等对待。

通风空调课程设计说明书

通风部分 (2) 第一章工程概况及基本资料 (2) 1.1 工程概况 (2) 1.2 基本资料 (2) 第一章设计内容 (2) 2.1 确定通风方式 (2) 2.2 送风量和排风量的计算 (3) 2.3 管道系统布置与水力计算 (3) 2.4 风机选择 (4) 空调部分 (5) 第一章工程概况 (5) 1.1 建筑概况 (5) 1.2 设计参数 (6) 第二章空调负荷计算 (6) 2.1 室内冷负荷计算 (6) 2.1.1 用冷负荷温度计算围护结构传热形成的冷负荷 (6) 2.1.2用冷负荷系数计算窗户因日射得热形成的冷负荷 (6) 2.1.3 内围护结构传热形成的冷负荷 (7) 2.1.4 人体散热形成的冷负荷 (7) 2.1.5 室内照明散热形成的冷负荷 (8) 2.1.6 室内设备散热形成的冷负荷 (8) 第三章空调系统方案确定 (9) 3.1 冷热源机组的确定 (9) 3.1.1 冷热源方案分析 (9) 3.1.2 空调系统划分送风区划分 (9) 第四章空调机组的选择 (10) 4.1 空调房间风量、冷量的确定 (10) 4.2 末端设备选型 (11) 第五章风系统设计计算 (11) 5.1 风系统设计概述 (11) 5.2 通风管道的选择 (11) 5.3 风管水力计算 (11) 第六章水系统设计计算 (12) 6.1 空调水系统形式的确定 (12) 6.1.1 冷冻水系统的选择 (12) 6.1.2 冷却水系统的选择 (14) 6.1.3 水循环水力计算 (14)

通风部分 第一章工程概况及基本资料 1.1 工程概况 本工程为营业及办公建筑。地下一层,建筑面积770m2。地下一层为车库及各类机房。要求进行地下室的通风排烟设计。 1.2 基本资料 本工程位于市中心,动力与能源完备,照明用电充足,自来水和天然气由城市管网供应。土建专业提供地下室平面图一张。 第一章设计内容 2.1 确定通风方式 地下一层的有害气体主要是由地下停车场产生,而地下停车场内汽车排放的有害物主要是一氧化碳(CO)、碳氢化合物(HC)、氮氧化物(NOX)等有害物。怠速状态下,CO、HC、NOX三种有害物散发量的比例大约为7:1.5:0.2。由此可见,CO是主要的。根据TT36-79《工业企业设计卫生标准》,只要提供充足的新鲜的空气,将空气中的CO浓度稀释到《标准》规定的范围以下,HC、NOX均能满足《标准》的要求。 由《高层民用建筑设计防火规范》[GB50045—1995(2001版)]及《人民防空工程设计防火规范》[GB50098—1998(2001版)]中对地下车库设消防排烟的规定知:本建筑属于高度超过32m的二类建筑,应在面积超过100m 2,且常有人停留或可燃物较多的无窗或固定窗房间是指机械排风排烟设施。 在考虑地下汽车库的气流分布时,防止场内局部产生滞流是最重要的问题。因CO较空气轻,再加上发动机发热,该气流易滞流在汽车库上部,因此在顶棚处排风有利,排风口的布置应均匀,并尽量靠近车体。新风如能从汽车库下部送,对降低CO浓度是十分有利的,但结构上很难做到,因此,送风口可集中布置在上部,采用中间送,两侧回。在保证满足设计要求的前提下,尽量使系统安装简

游泳池设计规范

第一章总则 第1.0.1条为使游泳池的给水排水设计符合游泳水质、水温、卫生要求和达到技术先进、经济合理、安全可靠、方便管理和节约用水,特制订本规范。 第1.0.2条本规范适用于新建、扩建和改建的人工建造的游泳池和跳水池的给水排水设计,但设计温泉游泳池、冲浪游泳池、医疗游泳池、水上乐园等游泳设施时,还应遵守有关规定。 第1.0.3条游泳池的给水排水设计除执行本规范外,还应遵守现行的《建筑给水排水设计规范》,以及其它有关规范或规定。 第二章水质和水温 第一节水质 第2.1.1条游泳池初次充水和正常使用过程中的补充水水质,应符合现行的《生活饮用水卫生标准》的要求。 第2.1.2条游泳池池水的水质应符合表2.1.2的规定。 人工游泳池水质卫生标准表2.1.2

注:比赛游泳池池水水质还应符合有关规定。 第二节水温 第2.2.1条游泳池的池水温度,可根据游泳池的用途,按下列数值进行设计: 一、室内游泳池: 1.比赛游泳池:24~26℃; 2.训练游泳池:25~27℃; 3.跳水游泳池:26~28℃; 4.儿童游泳池:24~29℃。 注:旅馆、学校、俱乐部和别墅内附设的游泳池,其池水温度可按训练游泳池池水温度数值设计。 二、露天游泳池的池水温度不宜低于22℃。 第2.2.2条室内游泳池设有准备池时,其池水温度按本规范第2.2.1条的训练游泳池数值设计。 第三章给水系统 第一节系统选择 第3.1.1条游泳池应采用循环净化给水系统。 第3.1.2条当水源充沛时,游泳池可采用直流给水系统,但入池混合后的池水水质应符合本规范第2.1.2条的规定。

注:当技术经济、社会、环境效益比较合理时,可采用直流净化给水系统。 第二节充水和补水 第3.2.1条游泳池的初次充水时间,应根据使用性质和城镇给水条件确定,一般宜采用24h。但最长不宜超过48h。 第3.2.2条游泳池的补充水量,应根据游泳池的水面蒸发、排污、过滤设备反冲洗(如用池水反冲洗时)和游泳者带出等所损失的水量确定,一般可按表3.2.2的数据选用。 游泳池的补充水量表3.2.2 注:如卫生防疫部门有规定时,还应符合卫生防疫部门的有关规定。 第3.2.3条直流给水系统的游泳池的补充水量,每小时不得小于游泳池水容积的15%。 第3.2.4条游泳池宜采用间接充水和补水的方式,如采用直接补水和充水方式时,应采取有效的防回流措施。 第3.2.5条补充水管的设计,应符合下列要求: 一、宜与充水管道合并设置; 二、补水管的水流方向,不得与游泳池水流方向相反; 三、宜设置独立的计量装置。 第四章水的循环

游泳馆空调设计

游泳馆空调通风设计 1. 概述 游泳作为一种竞技体育项目和人民大众体育活动,日益得到广泛的发展。作为开展这种体育活动的场所之一——室内游泳馆,也在逐步发展,功能逐步完善。由于游泳馆具有特殊的建筑功能,因此,在空调负荷计算,空气处理方式,以及设备选择上都有不同于常规建筑的地方。 2. 设计方案 2.1 建筑特点 室内游泳馆常年使用,并且功能相对单一,因此,室内的设计状态常年一致。由于其建筑功能,室内具有巨大的水面,水温基本不变。由于人员卫生要求,水体本身须循环处理,一般采用氯气消毒方式,室内空气氯气含量很高,室内的空气具有腐蚀性。 2.2 空调、通风特点 2.2.1 空调、通风要求 由于氯气的毒性和腐蚀性,因此室内要保持一定的负压,因此要设置排风机。在空气处理过程中,不可采用常用的一次回风方式,因为含有氯气的回风会腐蚀设备。 2.2.2 负荷特点

室内由于湿负荷很大,且常年一致,因此,一年四季均须除湿。同时,由于室内状态基本不变,水面温度也基本恒定,水面和空气存在一定的温差,加之水面面积巨大,在冬季形成较大的显热损失,不可忽略。室内的负压要求,会产生很大的空气渗透,会带来很大的热、湿负荷,这点在计算负荷时也应根据实际情况,予以考虑。 2.2.3 空调目的 根据冬夏季室外状态的不同以及室内的空气状态,确定空调的方案,同时也用于判断各负荷是否可以做为设计裕量而忽略。冬季,室外温度低,空调的目的是保暖和除湿;夏季,室外温度高,湿度大,空调的目的是降温和除湿。 2.2.4 能耗要求 由于必须采用直流式系统,运行能耗是相当大的,因此要采用一定的节能措施,如采用热回收装置,可以节约能耗。根据热回收的机理不同,可以分为显热回收和全热回收两种,本例中采用全热回收方式,逆流换热。 2.3 负荷计算 负荷计算应该将控制范围内一切对室内温度和湿度产生作用的因素统一考虑,但是在实际分析和设计过程中,根据室内的具体情况和人员的接受程度,以及空调的目的不同,可以将某些负荷忽略,为实际运行提供更广阔的空间。 2.3.1 夏季室内负荷 夏季室内负荷包括四个方面,其中围护结构、人员、灯光等的常规冷负荷以及

(完整word版)新风系统设计说明

空调通风系统设计说明 第一部分:新风系统 一、设计依据: 1、甲方提供的相关资料及现场情况; 2、暖通空调设计标准,设计手册。 二、工程概况: 本工程为办公用会议室,建筑面积为220平方米,层高为3.20米,人数约105人。 三、新风量确定: 按照采暖通风和设计规范并参照实用供热空调设计手册,将需要新风量计算如下: 1、按每平米地板面积新风量指标计算:20X220=4400m3/h; 2、按每人最小新风量计算(考虑有一些吸烟状况): 105X40=4200m3/h; 3、按保证室内环境换气次数计(考虑有一些吸烟状况): 220X3.2X6=4224m3/h; 四、设备选型及说明 以本工程实际情况及上述计算结果为依据,综合考虑确定总新风量为4000m3/h—4500m3/h满足要求,根据现场尺寸,选用一台或两台新风换气机。这样既可以保证向室内提供经过过滤的新鲜空气,同时将等量的室内烟雾等污浊空气排到室外,双向换气还可以减少室内冷热量损失,起到明显的节能效果。

第二部分:空调系统 一、设计参数 (一)、室外计算参数 1、冬季空调计算温度:-12℃ 空调计算相对湿度:45% 2、夏季空调计算干球温度:33.2℃ 空调计算相对湿度:60% (二)、室内计算参数 夏季:温度:25±2℃相对湿度:55% 冬季:温度:18±2℃相对湿度:45% 二、负荷的确定 1、本工程空调负荷包括建筑负荷、人体负荷、照明负荷、新 风负荷及其他符合: 其中:建筑负荷为50w/m2,人体负荷为65w/m2,灯光负荷为40w/m2,新风和其他负荷为150w/m2; 2、根据以上单位面积负荷计算出总空调负荷为: 230X305=70150w。 三、空调设备选型 1、根据现场情况,可以安装11台风机盘管; 2、根据上述空调负荷计算结果,每台风机盘管负担6.3KW, 因此选用11台型号为FP-12(008型)的风机盘管,单台参数 为:冷量约6.2KW/台,风量约1350m3/h。

游泳池设计方案_范文

游泳池设计方案 本文是关于范文的游泳池设计方案,感谢您的阅读! 游泳池设计方案(一) 一、编制依据: 1.1根据五路居大学生公寓配套服楼图纸设计 1.2《地面工程防水技术规范》(GB50108-2001) 二、工程概况: 本工程位于海淀区五路居大学生公寓配套服务综合楼首层游泳池防水。 三、施工部署: 为确保工程质量和工期,特别选调管理能力强、业务水平好的管理人员组织现场管理领导小组,并抽调有施工经验、施工水平高的施工人员进行施工,质量必须按屋面防水规范严格要求,工期安排施工上岗人员10人计划4天结束该工程。 现场领导小组 组长:赵云涛,项目经理:负责本工程防水全面工作。 副组长:刘连雨,施工质检,安全管理。 副组长:任俊昌,质量验收,现场技术指导。 后勤:张建义,材料供应,后勤保障。 四、施工准备: 4.1材料准备 水泥基(JS复合涂料)2.5吨。 4.2机具准备 4.2.1基本清理工具:开刀、凿子、锤子、钢丝刷、扫帚、抹布; 4.2.2取料配料工具:台秤、水桶、称料桶、拌料桶、搅拌器、剪刀; 4.2.3涂料涂覆工具:滚子(用于涂覆较稀的料)、刷子(用于涂覆较稠的料及小面积局部部位) 五.施工方法 5.1基面处理 基面必须平整、牢固、干净、无明水、无渗漏、凹凸不平及裂缝处须找平,

渗漏处须先进行堵漏处理,阴阳角做成圆弧角。 5.2配料 如果需要加水,先在液料中加水后,用搅拌器边搅拌边徐徐加入粉料,之后充分搅拌均匀直至料中不含团粉(搅拌时间3分钟左右,最好不要手工搅拌)。 打底层涂料的重量配比为:液料:粉料:水=10:7:14;下层、中层和上层涂料的重量配比为:液料:粉料:颜料:水=10:7:0.5~1:0~2。在规定的加水范围内,涂面、顶面或立面施工应不加或少加些水, 5.3涂覆 用滚子或刷子涂覆,根据选定的工法,按照打底层→下层→无纺布→上层的次序逐层完成。各层之间的时间间隔以前一层涂膜干固不粘为准(在温度为20℃的露天条件下,不上人施工约3小时,上人施工约5小时)。现场温度低、湿度大、通风差,干固时间长些;反之短些。对于Q5工法,其下层、无纺布和中层须连续施工,不能间隔。涂覆时应注意以下事项: 5.3.1若涂料(尤其是打底料)有沉淀应随时搅拌均匀; 5.3.2涂覆要尽量均匀,不能有局部沉积,并要求多滚刷几次,使涂料与基层之间不留气泡,粘结严实; 5.3.3每层涂覆必须按规定用量取料,不能过厚或过薄,若最后防水层厚度不够,可加涂一层或数层。 5.4清洗 在施工间隙或施工结束时,应当尽快用水清洗所有沾有涂料的工具和工作服。否则,等涂料干固后很难清洗。 5.5保护层与装饰层施工 保护层或装饰层施工须在防水层完工2天后进行。抹水泥砂浆时,为了方便施工,可在防水层最后一遍涂覆后,立即撒上干净的中粗砂。粘贴块材时,将金汤JS复合防水涂料按液料:粉料=10:15~20调成腻子壮,即可用作胶粘剂。 5.6质量要求与工程检验 防水层施工后应认真检查整个工程的各个部分,特别是薄弱环节,发现问题,及时修复。涂层不应有裂纹、翘边、鼓泡、分层等现象。 6注意事项

游泳池水处理设备及室内游泳馆的空调系统

1游泳池水处理设备 传统的游泳池水处理方式是通过池边或池底组建管道,与循环水池(箱)和游泳池的过滤器、消毒等设备相连,处理设备置于固定的机房。然而考虑到嵌入游泳池墙壁的管道容易渗漏,以及为了节能节水和节省建筑空间减小机房面积等问题,建议将传统过滤系统进行变革,本文介绍的一体化游泳池过滤设备是一套独有的无管道式过滤设备。 1 .1一体化游泳池过滤设备 过滤设备只需安装在游泳池墙壁上,它已集合了聚光灯和过滤元件于一身,称为一体化游泳池过滤设备。可以将过滤器的功效分为两个部分。第一是物理过滤部分,它是将树叶、昆虫以及其他的微粒和生物清除;其次是化学消毒杀菌部分,它具有防止藻类因光合作用的滋生,确保游泳池舒适卫生。 池水的过滤是利用过滤精度高达6 ~15μm的过滤袋。通过吸水口将池水吸人,经过滤袋过滤后,向前面及侧面的喷嘴排人泳池。同时过滤袋配有一个投药篮,定时投放适量的药品,对池水进行消毒处理。 过滤袋的材质采用聚脂纤维材料,它能滤掉一般的细菌,且过滤方向为单向过滤,从而保证了出水水质的安全可靠,出水水质甚至可以达到国家饮用水的水质检测标准。由于水的洁净度很高,因此水的景观效果更佳,在未投加硫酸铜的情况下,也有一种天然的蓝色,自然透明,清澈见底。

1.2 水处理工艺流程 游泳池水一投药篮(毛发聚集器)一过滤袋(6微米)一循环水泵一热交换器一游泳池 游泳池水处理流程见图1 。 1 .3 一体化游泳池过滤设备的特点 一体化游泳池过滤设备以简单的系统代替了传统游泳池复杂的循环系统,综合起来具有以下特点。 ( 1 )过滤设备:为整体构造,不需传统的机房、管道( 如:水下灯线管)等复杂系统。 ( 2)功能配置:集循环过滤、冲浪(可选)、局部按摩、泡泡浴、清

室内游泳馆通风空调设计

室内游泳馆通风空调设计 游泳馆室内设计参数对于新建室内游泳池设计参数取值的建议:以往,国内酒店的室内游泳池的设计水温 (即泳池水表面温度)大多采用27C,冬季室内干球温度通常定为29C。我们在调研过程中发 现,即使在水温为29C,空气温度为29C,相对湿度为78%的休闲型的室内游泳馆中,在馆内游泳的四位年青人出水后都有冷感;而在一个室内干球温度31 C、相对湿度60%的SPA 的浴池大厅内调研时,受访者无论长幼均无不适的冷感或闷热感。如今,已经有一些有经验的酒店管理公司提出,酒店中的休闲型的室内游泳池的水温宜提高到30~32C,其室温应为 31~33 C;此前,上海金茂大厦凯悦酒店的室内游泳馆在其设计和运行中,均已将游泳馆池厅的室温提高到31 C。因此,在具体的工程设计中室内游泳馆池厅的温度以及池水温度究竟如何取值,应事先与建设方或管理公司充分沟通后确定。相关的检测资料表明,当环境的相对湿度在40%~60%的范围内时,空气中可检出的细菌、病毒和微生物数量极少,有的几乎为零;但过低的相对湿度会加速水分的蒸发,造成从泳池中出来的人会因体表水迅速蒸发出现不适的冷感,故笔者建议室内游泳馆池厅内的设计相对湿度宜控制在50%~60%的范围 以内。 围护结构的传热系数 冬季,为防止室内游泳馆围护结构内表面结露,应在设计工况下保持围护结构内表面温度比室内空气的露点温度高28C。于是,根据已经确定的室内、外计算温湿度可按下式 初算出防止围护结构内表面结露所需传热系数K f: K f t n t nb / t n t w (8—5) 式中K f——围护结构防止内表面结露的最大传热系数,W/ ( m2?C); ――围护结构内表面换热系数,计算时可取8.7W/ ( m2?C) t n――室内干球温度,C; t w ――冬季室外空气调节计算干球温度,C; t nb――冬季围护结构内表面温度,即等于室内空气的露点温度加28C。 在围护结构传热系数的防表面结露的校核计算时,有一点应引起注意,室内设计参数表所列出的池厅冬季的温、湿度,通常是根据一般规定或标准作出的选用值,并非设计工况下的确切计算值。设计时应根据( 8—13)计算确定池厅室内的相对湿度,并在焓湿图上找出 该工况下游泳池室内空气的露点温度,重新按式( 8—5)复核围护结构的传热系数。如有需 要更正之处,应重新向建筑专业提资。 室内游泳馆热湿负荷计算 1.室内游泳馆池厅的散湿量的计算与池厅空调系统的换气次数的确定 (1)池厅散湿量的计算公式。室内游泳馆池厅的散湿量与泳池的类型、泳池的面积、湿地面的面积、同时游泳的人数、人的运动强度、池水温度、空气的温湿度、水面风速等诸多因素有关。而游泳的人数和人的运动强度等活动因子又与游泳馆的类型密切相关。因此,在预测室内游泳馆设计散湿量时,宜采用按活动因子计算散湿量的方法,即 W p A F a 89 78.2 p w P a / (8—6) 式中Wp——为游泳池水面及周边湿地水面的总蒸发量,g/s ; A——游泳池面积,m2; F a――活动因数; ――游泳池水面风速,m/s;

游泳池给水排水设计规范综述

游泳池给水排水设计规范 前言 从50年代开始,游泳池在我国已有建设,近年来迅速发展,从工程设计、运行管理、科学研究和设备制造等各方面均已积累和取得了丰富的成功经验和成果。为满足设计需要,本规范在调查研究和总结国内外经验的基础上,反复征求有关专家和单位意见,经过全国建筑给排水工程标准技术委员会审查定稿。现批准《游泳池给水排水设计规范》CECS 14:89,并推荐给有关工程建设设计单位使用。在使用过程中,请将意见及有关资料寄上海市广东路17号全国建筑给排水工程标准技术委员会(邮政编码:200002)。 中国工程建设标准化协会 1989年12月26日 第一章总则 第1.0.1条为使游泳池的给水排水设计符合游泳水质、水温、卫生要求和达到技术先进、经济合理、安全可靠、方便管理和节约用水,特制订本规范。 第1.0.2条本规范适用于新建、扩建和改建的人工建造的游泳池和跳水池的给水排水设计,但设计温泉游泳池、冲浪游泳池、医疗游泳池、水上乐园等游泳设施时,还应遵守有关规定。 第1.0.3条游泳池的给水排水设计除执行本规范外,还应遵守现行的《建筑给水排水设计规范》,以及其它有关规范或规定。 第一节水质 第2.1.1条游泳池初次充水和正常使用过程中的补充水水质,应符合现行的《生活饮用水卫生标准》的要求。 第2.1.2条游泳池池水的水质应符合表2.1.2的规定。 人工游泳池水质卫生标准表2.1.2

注:比赛游泳池池水水质还应符合有关规定。 第二节水温 第2.2.1条游泳池的池水温度,可根据游泳池的用途,按下列数值进行设计: 一、室内游泳池: 1.比赛游泳池:24~26℃; 2.训练游泳池:25~27℃; 3.跳水游泳池:26~28℃; 4.儿童游泳池:24~29℃。 注:旅馆、学校、俱乐部和别墅内附设的游泳池,其池水温度可按训练游泳池池水温度数值设计。 二、露天游泳池的池水温度不宜低于22℃。 第2.2.2条室内游泳池设有准备池时,其池水温度按本规范第2.2.1条的训练游泳池数值设计。第三章给水系统 第一节系统选择 第3.1.1条游泳池应采用循环净化给水系统。 第3.1.2条当水源充沛时,游泳池可采用直流给水系统,但入池混合后的池水水质应符合本规范第2.1.2条的规定。 注:当技术经济、社会、环境效益比较合理时,可采用直流净化给水系统。 第二节充水和补水 第3.2.1条游泳池的初次充水时间,应根据使用性质和城镇给水条件确定,一般宜采用24h。但最长不宜超过48h。 第3.2.2条游泳池的补充水量,应根据游泳池的水面蒸发、排污、过滤设备反冲洗(如用池水反冲洗时)和游泳者带出等所损失的水量确定,一般可按表3.2.2的数据选用。 游泳池的补充水量表3.2.2

空调系统设计说明书_范文

设计总说明 本设计为上海市某办公楼空调通风系统设计。该办公楼属大型办公建筑,总建筑面积约为55000㎡。地下两层,地上二十八层,建筑总高度为99.6m。地下两层为车库及设备用房,地上二十八层均为办公用房。该建筑的主要功能间有办公室、会议室、接待室等。全楼冷负荷为3080千瓦,全楼采用风冷热泵机组进行集中供给空调方式。 本建筑位于上海市。上海市地处我国东部沿海地区,东经121°43′,北纬31°16′。属于亚热带季风气候区,四季分明,夏热冬冷,春秋短暂,但由于地处沿海,雨季较为分散,以夏季雨量最大。夏季空调室外日平均温度30.4℃,办公室室内温度26℃,湿度65%,室内风速v ≤0.3 m/s;冬季办公室室内温度20℃,湿度40%,室内风速v≤0.2 m/s。 设计的依据主要有同济大学浙江学院毕业设计(论文)任务书《上海市某办公楼空调通风系统设计》、采暖通风与空调设计规范GBJ19—87、HV AC暖通空调节设计指南、高层民用建筑设计防火规范GB50045—95(2005版)、GB 50189-2005 公共建筑节能设计标准、简明通风设计手册等。 考虑该大厦为办公楼,空调的运行时间主要在上班时间,所以计算负荷时本设计取的时间为6—18时。此设计中的建筑主要房间为办公室,大多面积较小,且各房间互不连通,应使所选空调系统能够实现对各个房间的独立控制,综合考虑各方面因素,确定选用风机盘管加新风系统。在房间内布置吸顶式风机盘管,嵌入暗装的形式。将该集中系统设为风机盘管加独立新风系统,新风机组从室外引入新风处理到室内空气焓值,不承担室内负荷。风机盘管承担室内全部冷负荷及部分的新风湿负荷。风机盘管加独立新风系统由百叶风口下送和侧送。水系统采用闭式双管异程式,冷水泵四台,三用一备。 在冷负荷计算的基础上完成主机和风机盘管的选型,并通过风量、水量的计算确定风管路和水管路的规格,并校核最不利环路的阻力和压头用以确定风机和水泵。 通风设计方面,地下室为车库及设备用房,设计成机械送排风为主,自然进排风为辅的方式,其换气每小时不小于6次;卫生间排风设计为排风扇机械排风到外阳台,排风量按每小时不小于10次的换气量计算;考虑到办公室吸烟问题,也采用排风扇机械排风到外阳台,排风量为送风量的80%。电梯前室及楼梯间设计加压送风。 该设计按照建筑结构及其要求制定空调方案,力求能够满足使用的要求,即能够满足办公舒适性。此外还要从空调设计的科学合理性和经济性,以及建筑整体的美观度考虑。中央空调在现代建筑中越来越多的应用,技术也越来越成熟先进。能够有效的管理,一次性投资,后期使用方便,并且不占用建筑的有效空间。本文就是对中央空调的设计到选型,到校核计算的一个说明。从使用性到科学性再到经济性上做到好的结合。方案选择是整体考虑以及设计的总体思想,计算部分是整个设计的基础,绘图部分是与设计施工相联系的实际的走管和安装。三个部分相依相承,都与整个工程密不可分。各个部分都要保证科学合理,正确无误,经济适用。 本设计是真实性课题的典例。其中,有理论的分析计算,有中央空调方案的选择论证,有实际的绘图安装。是一个完整的工程设计实例。设计计算主要有冷负荷的计算,送风量的计算,管路的计算等。冷负荷的计算确定了各个房间的空气状况和调节条件,以及整个工程的负荷量。是确定室内空调调节方案的主要数据。也是选择冷水机组最主要的参考数据。送风量和管路的计算是面向实际设备和管路的数据资料。都是整个设计的基础。 在上面主要阶段完成以后还要对一些具体细节的问题加以论证思考并列出解决方案。比如管

游泳池暖通设计

游泳池暖通设计 随着人民生活水平的提高,一些星级宾馆、一些小区或体育健身中心,往往配建室内游泳池。为此,小型室内游泳池空调设计,也就越来越普遍。室内游泳池由于其高湿,因此需重点解决其结露和闷热的问题,本文就本人所做的某学校室内游泳馆工程,谈对游泳池设计的几点体会。 一:工程概况 该游泳馆总建筑面积为4000㎡,它包括一个50×25m的标准游泳池及一座600人的看台及一些辅助用房。它主要是为满足校内学生教学训练的要求,同时又能举办小型的体育比赛。 二:室内空气参数的确定 为保证人员在出水后和入水前的舒适性,按国际游泳池设计标准规定,池厅空气温度应高于池水温度1~2℃,相对湿度一般为50~70%,但不超过75%,风速控制在0.2m/s左右。同时,为防止冬季围护结构结露,国际游泳池设计标准规定池厅内空气含湿量不大于14g/kg。本工程池水温度设定为26℃,因此室内空气温度取27℃。由于空气湿度对人们的舒适感也有密切的关系。相对湿度低,空气干燥同时空气中水蒸汽分压力低,会使刚出水面的润湿皮肤表面水份蒸发加速,从人体带走蒸发潜热,容易使人产生寒冷的感觉。同时水份蒸发多,室内空气含湿量增加,使消除室内余湿所需的通风量增加,则相应增加冬季加热送入室内新风的负荷。若相对湿度过高,则室内空气含湿量过大,会使空气露点提高,使围护结构内表面产生结露现象,综合以上利弊分析,本工程采用60%,此时室内空气的含湿量为13.3g/kg,露点温度为18℃。由于观众区同池区同处一个大空间,在确定空气参数时,在满足运动员舒适感的前提下,也要兼顾观众的舒适感,若冬季观众区温度取27℃的话,则明显太热了,因此观众区温度根据舒适性空调要求取22℃。 三:通风量的计算

室内游泳池设计方案

室内游泳池设计方案 一、设计参数: 1.游泳池平均水深: 1.5米 2.游泳池表面积:120m2 3.游泳池容积:180m3 4.游泳池水温:26-28℃ 二、设计依据: 1.设计规范 《游泳池和水上游乐池给水排水设计规程》CECS 14 :2002 《建筑给水排水及采暖工程施工质量验收规范》GB50242-2002 《建筑给水排水设计规范》GB50015-2003 2.气象参数 夏季空调室外计算干球温度: 25.8℃; 夏季空调室外计算湿球温度: 19.9℃; 夏季通风室外计算温度: 23℃; 常年室外主导风向: SW-西南风;

冬季空调室外计算干球温度: 1℃; 冬季室外计算相对湿度: 68%; 冬季通风室外计算温度: 8℃; 3.自来水水温:最低7℃,年平均17.1℃,冬季计算水温10℃。 三、设计方案: (一)恒温、加热方案 游泳池恒温、加热采用空气源热泵。实践证明,空气源热泵具有恒温效果好,节能效果明显等特点。 1.游泳池恒温所需热量:游泳池恒温所需热量等于以下耗热量总和: A.池水表面蒸发损失的热量: A =γ*(0.0174*Vf + 0.0229)*(Pb—Pq)*F*760/B =87818.64kcal/h =102kw B.池壁和池底传导损失的热量: B= A x 0.2 =17563.73kcal/h =20.4kw

C.补充新水加热所需的热量: C=c*qb*(ts—tb)/t =7200kcal/h =8.4kw A+B+C=130.8kw (每小时所需提供热量157kw) 2.游泳池初次加热所需热量:初次加热所需热量等于以下耗热量总和: A.游泳池初次加热热量: A = C×M×△t =2880000kcal =3348.8kw B.游泳池初次加热过程中所损失热量: B = 游泳池恒温所需热量÷2 =65.4kw/h 游泳池初次加热时间取48小时 则游泳池初次加热所需热量=A + Bx48 = 6488kw (135.2kw/h)

室内游泳馆通风空调设计

室游泳馆通风空调设计 游泳馆室设计参数 对于新建室游泳池设计参数取值的建议:以往,国酒店的室游泳池的设计水温(即泳池水表面温度)大多采用27℃,冬季室干球温度通常定为29℃。我们在调研过程中发现,即使在水温为29℃,空气温度为29℃,相对湿度为78%的休闲型的室游泳馆中,在馆游泳的四位年青人出水后都有冷感;而在一个室干球温度31℃、相对湿度60%的SPA 的浴池大厅调研时,受访者无论长幼均无不适的冷感或闷热感。如今,已经有一些有经验的酒店管理公司提出,酒店中的休闲型的室游泳池的水温宜提高到30~32℃,其室温应为31~33℃;此前,金茂大厦凯悦酒店的室游泳馆在其设计和运行中,均已将游泳馆池厅的室温提高到31℃。因此,在具体的工程设计中室游泳馆池厅的温度以及池水温度究竟如何取值,应事先与建设方或管理公司充分沟通后确定。相关的检测资料表明,当环境的相对湿度在40%~60%的围时,空气中可检出的细菌、病毒和微生物数量极少,有的几乎为零;但过低的相对湿度会加速水分的蒸发,造成从泳池中出来的人会因体表水迅速蒸发出现不适的冷感,故笔者建议室游泳馆池厅的设计相对湿度宜控制在50%~60%的围以。 围护结构的传热系数 冬季,为防止室游泳馆围护结构表面结露,应在设计工况下保持围护结构表面温度比室空气的露点温度高2.8℃。于是,根据已经确定的室、外计算温湿度可按下式初算出防止围护结构表面结露所需传热系数K f : ()()w n nb n f t t t t K --=/α (8—5) 式中 K f ——围护结构防止表面结露的最大传热系数,W/(m 2·℃); α——围护结构表面换热系数,计算时可取8.7W/(m 2·℃) t n ——室干球温度,℃; t w ——冬季室外空气调节计算干球温度,℃; t nb ——冬季围护结构表面温度,即等于室空气的露点温度加2.8℃。 在围护结构传热系数的防表面结露的校核计算时,有一点应引起注意,室设计参数表所列出的池厅冬季的温、湿度,通常是根据一般规定或标准作出的选用值,并非设计工况下的确切计算值。设计时应根据(8—13)计算确定池厅室的相对湿度,并在焓湿图上找出该工况下游泳池室空气的露点温度,重新按式(8—5)复核围护结构的传热系数。如有需要更正之处,应重新向建筑专业提资。 室游泳馆热湿负荷计算 1. 室游泳馆池厅的散湿量的计算与池厅空调系统的换气次数的确定 (1)池厅散湿量的计算公式。室游泳馆池厅的散湿量与泳池的类型、泳池的面积、湿地面的面积、同时游泳的人数、人的运动强度、池水温度、空气的温湿度、水面风速等诸多因素有关。而游泳的人数和人的运动强度等活动因子又与游泳馆的类型密切相关。因此,在预测室游泳馆设计散湿量时,宜采用按活动因子计算散湿量的方法,即 ()()γυ/2.7889a w a p p p F A w -+?= (8—6) 式中 w p ——为游泳池水面及周边湿地水面的总蒸发量,g/s ; A ——游泳池面积,m 2; F a ——活动因数; υ——游泳池水面风速,m/s ; p w ——游泳池水表面温度下的饱和空气的水蒸汽分压力,kPa ;

游泳池过滤与恒温系统设计方案

游泳池过滤与恒温系统设计方案 —— 一、前言 现阶段我国高档住宅小区和星级酒店的建设,游泳池(馆)已成为人民文化生活和城市建设的重要组成部分。为节约用水,保证泳池水质符合国家卫生标准,保证游泳爱好者的身心健康,设置游泳池循环水处理设备已被列入游泳池(馆)建设的必备项目。我公司本着投资少、保质量、讲信誉的原则,设计了游泳池水处理工艺。水质达到国家颁布的《游泳池场所卫生标准》。 我国过去游泳池循环水设备一般采用国产钢制过滤器,设备体积大、设计流量小、占地面积大、防腐性能差、成本高、进出水管采用钢管、因加氯腐蚀生锈,池水被锈水污染,反冲洗时间长,浪费水源。 由于以上缺点,为此我公司引进了国外先进的游泳池循环水处理设备。 二、工程概况 技术文件完全按业主要求编制,重点体现了以下几点技术要求: 1、本游泳池的数量、布置和使用功能要求: 本游泳池为非标准室内恒温游泳池。 2、游泳池水处理系统工艺和设备材料的要求: 2.1、循环方式: 池水均采用逆流式循环布水方式,全部循环水量由池壁送入池中,由游泳池周边或两侧边的上缘溢流回水的方式。池水初次给水、补水均采用市政自来水,补水可利用均衡池的液位控制进行自动补水。 2.2、循环水泵

2.2.1、循环水泵采用澳洲“雷达”牌产品。 2.2.2、循环水泵为共轴式端离心泵,涡型石墨壳体、不锈钢轴、机械密封,转速为1450rpm。 2.2.3、水泵的流量不得小于池水净化循环流量,水泵的扬程不得小于用水设施的几何高度和管道(管件、阀门、毛发聚集器等)、设备(过滤器等)、附配件(给水口、回水口)等水头损失流出水头之和。 2.2.4、循环水泵设3台水泵,3台同时运行。 2.2.5、循环水泵设在地下室,成自灌式。 2.2.6、循环水泵的进水前端均配置毛发聚集器,进出口两端均设有阀门控制和隔震软接头,水泵的出水端均设置压力表和缓闭式静音止回阀。 2.3、过滤器: 2.3.1、过滤系统的过滤器采用压力过滤器,压力过滤器罐体承受的压力可超过0.45MPa。 2.3.2、过滤器材质为FRP。 2.3.3、过滤器过滤速度小于45m/h,过滤器均采用池水进行反冲洗。 2.4、系统管道: 2.4.1、循环给水管内的水流速度不得超过 2.0m/s;循环回水管的水流速度宜为0.7-1.0m/s。 2.4.2、循环水泵的进水管水流速度宜采用 1.0-1.2m/s,出水管内的水流速度宜采用1.5-2.0m/s。 2.4.3、循环水管道的材质采用UPVC塑料管,其工作压力1.0MPa。 2.5、水质检测和加药系统控制: 2.5.1、水质检测仪选用美国“卫星”,原产地原品牌原装进口。

新风系统设计说明

空调通风系统设计说明 第一部分:新风系统 一、设计依据: 1、甲方提供的相关资料及现场情况; 2、暖通空调设计标准,设计手册。 二、工程概况: 本工程为办公用会议室,建筑面积为220平方米,层高为3、20米,人数约105人。 三、新风量确定: 按照采暖通风与设计规范并参照实用供热空调设计手册,将需要新风量计算如下: 1、按每平米地板面积新风量指标计算:20X220=4400m3/h; 2、按每人最小新风量计算(考虑有一些吸烟状况): 105X40=4200m3/h; 3、按保证室内环境换气次数计(考虑有一些吸烟状况):220X3、 2X6=4224m3/h; 四、设备选型及说明 以本工程实际情况及上述计算结果为依据,综合考虑确定总新风量为4000m3/h—4500m3/h满足要求,根据现场尺寸,选用一台或两台新风换气机。这样既可以保证向室内提供经过过滤的新鲜空气,同时将等量的室内烟雾等污浊空气排到室外,双向换气还可以减少室内冷热量损失,起到明显的节能效果。 第二部分:空调系统 一、设计参数

(一)、室外计算参数 1、冬季空调计算温度:-12℃ 空调计算相对湿度:45% 2、夏季空调计算干球温度:3 3、2℃ 空调计算相对湿度:60% (二)、室内计算参数 夏季:温度:25±2℃相对湿度:55% 冬季:温度:18±2℃相对湿度:45% 二、负荷的确定 1、本工程空调负荷包括建筑负荷、人体负荷、照明负荷、新 风负荷及其她符合: 其中:建筑负荷为50w/m2,人体负荷为65w/m2,灯光负荷为40w/m2,新风与其她负荷为150w/m2; 2、根据以上单位面积负荷计算出总空调负荷 为:230X305=70150w。 三、空调设备选型 1、根据现场情况,可以安装11台风机盘管; 2、根据上述空调负荷计算结果,每台风机盘管负担6、3KW, 因此选用11台型号为FP-12(008型)的风机盘管,单台参数 为:冷量约6、2KW/台,风量约1350m3/h。 第三部分:安装及其她说明 1、本工程施工安装应遵循《通风及空调工程施工及验收规范》

泳池设计方案

泳池水处理设计方案—广盛行 网址: APP:净水 电话: 一、泳池水处理: 根据《游泳池给水排水工程技术规程》CJJ122-2008 的规定,游泳池水净化包括四个方面的内容,泳池水过滤,泳池水消毒,泳池水加热,泳池水循环系统管道的设计等设备选型及系统设计方案等内容组合。 其中泳池水过滤设备是水处理系统的核心设备,过滤设备的节能高效,科学合理决定水质的优劣,根据我公司的多年实践及对系统设备的配置,形成了较优化的设备选型方案,现对我公司(广盛行)泳池系统方案已选型表的形式呈现给大家,以作为设计及选型依据。 二.过滤设备为我公司开发的全自动高效节能曝气滤机,对水处理量为Q=20-50m3/h,采用全自动单罐曝气滤机,对处理流量为Q=70-600m3/h,采用四个罐组合的全自动高效曝气滤机,材质为PP板,采用塑料自动焊接设备,工厂定型生产而成,为广盛行的专利设备,专利号为:ZL 2013 2 0195218.8,本专利设备的特点为:过滤方式采用国际先进的反粒度过滤技术,过滤效率高,纳污量大,能达到23KG/m3的纳污量,出水浊度可≤1.0NTU;反冲洗强度高,可达21L/S.m2;滤料冲洗彻底,在额定年限内滤料永不板结。 三、高效曝气滤机特点 ◆自动化程度高:整套设备和系统,全自动化运行,反冲洗采用虹吸原理,由水位及电 磁阀双重控制,安全系数高,冲洗控制简单,灵活,防止单纯靠水位控制,想冲洗时虹吸难形成,即使虹吸形成了,由于各种原因,虹吸断不了,造成满池水被抽干的情况,所以我公司的设备是总结了很多公司的失败经验,按全新的理念设计的,实践证明,非常安全可靠,操作灵活。 ◆结构合理:设备结构紧凑,管路简化,节省占地空间,安装方便。 ◆高效:过滤速度达到35m/h,出水溶解氧达8.0mg/l。出水水质高洁透明,活化,鲜化。 ◆耐用可靠:滤机为U-PVC制造而成,寿命可达40年左右。滤料强度高,且 反冲洗强度高,冲洗彻底,永不板结,不需更换滤料。

室内游泳池恒温方案设计

室内游泳池热泵方案 1.1客户基本情况 我公司通过前期对贵公司沟通,根据贵单位提供相关数据及现场情况分析: 热水现况: 贵公司室内游泳池:约365平方*1.6M=584立方,按26~28℃恒温,参考“室内泳池热负荷”的计算方法来进行计算。 (一)耗热量的计算: 1、游泳初次加热时间:(24H~48H) Q初=V×1000×(T1-T2)/T /860 其中:v—池水总容积 T1—池水温度水温28℃ T2—广州自来水冬季温度10℃ T—加热时间 带入计算Q初=584×1000×(28-10)/30 /860 = 407kw 584×1000×(28-10)/(400KW×860) = 30H 2、水面蒸发损失的热量: Q1=1.163υ(0.0174υf+0.0229)(Pb-Pq)F*760/B kW (7.12.) 其中:Q1—池面蒸发损失热量kW v—与池水温度相等时,水的蒸发汽化潜热(kal/kg)此值查581.4 vf—池水面上风速:取风速0.5m/s Pb—与池水温度相等时的饱和空气的水蒸汽分压力mmHg Pq—空气的水蒸气分压力mmHg F—池水表面积365 B—当地的大气压力mmHg 根据广州气象参数,查焓湿图,数据如下: vf=0.5m/s, Pb=28.3mmHg Pq=15.6mmHg ;υ=581.4(kal/kg) B=744225 mmHg 带入计算:Q1=1.163*581.4(0.0174*0.5+0.0229)(28.3-15.6)*365*760/744225= 101kw 3、池底和池壁损失的热量、水面传导损失的热量管道和设备损失的热量应按游泳池水表面蒸 发损失的热量的20%计算确定: Q2 =Q1×20% 带入计算:Q2 =Q1×20%=101kw×20%=20.2kW 4、补充水加热所需的热量: Q3=αγqb(ts-tb)/t kJ/h 其中:Qb-补充水加热所需的热量kJ/h

相关文档