文档库 最新最全的文档下载
当前位置:文档库 › 反力架计算书..

反力架计算书..

反力架计算书..
反力架计算书..

目录

一、设计、计算总说明 (1)

二、计算、截面优化原则 (1)

三、结构计算 (1)

3.1 反力架布置形式 (1)

3.2力学模型 (2)

3.3 荷载取值 (3)

3.4力学计算 (3)

四、截面承载能力复核 (6)

4.1 截面参数计算 (6)

五、截面优化分析 (8)

六、水平支撑计算 (9)

七、螺栓连接强度设计 (10)

7.1计算参数确定 (10)

7.2 弯矩设计值Mmax和剪力设计值Vmax (10)

一、设计、计算总说明

该反力架为广州市地铁21号线11标[水西站~长平站]盾构区间右线盾构机始发用。

反力架外作用荷载即盾构机始发的总推力乘以动荷载效应系数加所有不利因素产生的荷载总和,以1600吨水平推力为设计值。

反力架内力计算采用中国建筑科学研究院开发的PKPM2005版钢结构STS 模块为计算工具。对于螺栓连接、角焊缝连接处的设计,仅仅计算其最大设计弯矩和剪力值,而不作截面形式设计,可根据提供弯矩、剪力设计值来调整截面是否需要做加固处理。

二、计算、截面优化原则

1、以偏向于安全性的原则。所有计算必须满足实际结构受力的情况,必须满足强度、刚度和稳定性的要求。

2、在满足第1项的前提下以更符合经济性指标为修改结构形式、截面参数等的依据。

3、参照以往施工项目的设计经验为指导,借鉴其成熟的结构设计形式,以修改和复核计算为方向进行反力架结构设计。

4、但凡构件连接处除采用螺栓连接外,需要视情况进行必要的角焊缝加固,特殊情况下,可增设支托抗剪、焊钢板抗弯,以保证连接处强度不低于母体强度。

三、结构计算

3.1 反力架布置形式

由两根立柱和两根横梁以及水平支撑组成。立柱与横梁采用高强螺栓连接,为加强整体性一般按照以往施工项目的施工经验另需在连接处焊接,故

所有节点都为固定连接。所有连接在设计时必须要求连接处强度不得低于母体强度。

图3-1 反力架平面布置图

3.2力学模型

如上图所示,反力架为一门式刚架。立柱计算高度为6630mm,上下各有两个横梁,计算跨度为5700mm。根据连接形式,以及荷载传递路径可按如下计算模型设计:

图3-2反力架计算模型

其中:

L1、L2为水平横梁与部分钢负环直接接触。

H1、H2为立柱,底部与井底板预埋钢板固接,中间与横梁、斜向连杆、

水平支撑固定连接。

Z1~Z7为水平支撑,一端固接与反力架一端固接在井壁预埋钢板上。

荷载传递路径分析:

盾构机水平推力F→负环管片→钢负环→反力架→水平支撑以及井底、井

壁的支座。

3.3 荷载取值

根据海瑞克公司提供的总荷载设计值为F=1600 Array吨。平均分配到钢负环上。如下图所示。

钢负环把荷载传递到反力架上的四个受力区域

(即图3.2所示的A、B、C、D四个区域)每个区域

的Fi为1/4 F。

F=1600t*9.8kN/t=15680kN;

Fi=F/4=3920kN。

图3-3 荷载分布示意图

3.4力学计算

根据以上分析,我们分别建立横梁、立柱、支撑的计算模型。因为横梁

的荷载是传递到立柱和水平支撑上的,故应计算为横梁-立柱-水平支撑-井壁

支座。

3.4.1横梁L1计算

q1=F1/2.39m=1640kN/m.

L0=5.7m X1=X2=1.655m 。

3.4.2横梁L2计算

q 2=F 2/2.39m=1640kN/m. L 0=5.7m X 1=X 2=1.655m 。

q

1

图3-5 L 1弯矩图(kN.m )

图3-6 L 1剪力图 (kN)

2

图3-7 L 2计算简图

3.4.3立柱H 12计算

如左图所示,q h 即为钢负环传递的荷载,R 1、 R 2

为横梁L 1、L 2传递的支座反力,立柱H 1、H 2计算模型相同。

Q h =F 2/2.39m=1640kN/m; L 0=6.555m;

R1=382kN; R2=2678kN.

图3-8 L 2弯矩图(kN.m)

图3-9 L 2剪力图(kN )

q h

R

R 2

图3-10H 1|z 受力图

四、截面承载能力复核

4.1 截面参数计算

横梁和立柱采用箱式截面,腹板为2*

(640*30)mm,翼缘采用2*(500*30)mm。

A腹板=640*30=19200mm2;

A翼缘=500*30=15000mm2;

As=2*(A腹板+ A翼缘)=68400mm2;

323

11

(*500*3015000*335)*2(*30*640)*2

1212

x

I=++

Ix=4679720000 mm4

3

13370628.57

/2

x

z

I

W mm

h

==

4.2.1 L1截面复核

图3-11H1|z弯矩图(kN.m)图3-12H1|z剪力图(kN)

图4-1横截面示意图

查弯矩图、剪力图,得M max =793.1 kN.m ; Vmax=2276.2 kN ;

6max max

3

793.1*10.59.313370628.57x M N mm

MPa W mm δ=== 3max max

22276.2*1059.32*2*19200V N MPa A mm

τ===腹板 查钢结构设计规范可知:[δ]=210MPa ;[τ]=120MPa 。故经检验δmax

<[δ],

τ

max

<[τ];横梁L 1满足强度设计要求。

4.2.2 L2截面复核 查弯矩图、剪力图,得

M max =3030kN.m ;

V max =2678.9 kN ;

6max max

3

3030*10.226.613370628.57x M N mm

MPa W mm δ=== 3max max

22768.9*1072.12*2*19200V N MPa A mm

τ===腹板 查钢结构设计规范可知:[δ]=210MPa ;[τ]=120MPa 。故经检验δmax

〉[δ],

τ

max

<[τ];横梁L 2不能满足正截面强度要求。

4.2.3. H1|2截面复核 查弯矩图、剪力图,得: Mmax=65

5.9kN.m ; Vmax=1787.9kN ; 6max max 3

655.9*10.49.113370628.57x M N mm

MPa W mm

δ=== 3max max

2

1787.9*1046.62*2*19200V N MPa A mm τ===腹板

查钢结构设计规范可知:[δ]=210MPa ;[τ]=120MPa 。故经检验δmax

〉[δ],

τ

max

<[τ];横梁H 12不能满足正截面强度要求。

五、截面优化分析

通过以上分析和计算我们发现横梁L 1上的最大正应力和最大剪应力远小于许用正应力和许用剪应力;横梁L 2的最大正应力略大于许用正应力。

故,从使用角度和经济角度上看,我们需要对横梁L 1和L 2进行截面参数调整,以使其更符合上述要求。

注:虽然通过计算立柱H 1和H 2的最大正应力和最大剪应力也远小于许用正应力和许用剪应力,但立柱不但要承受横梁传递的支座反力R 1同时还需要承受横梁传递的扭矩。考虑到箱型梁抗扭转的极惯性矩2*c A I dA =ρ?,是非常规计算可以得出的。故在上述计算中未考虑立柱的抗扭转强度,而是根据经验值预留一定的安全强度储备。

(1)横梁L1截面优化计算

取L1截面参数如下图所示; Iy=1749860000mm4

Wy=6685314.3mm3 A 腹板=19200mm2 A 翼缘=15000mm2

As=34200mm2 则有:

6max max

3

793.1*10.118.6[]6685314.3x M N mm

MPa W mm δ===<δ

y

3max max

22768.9*10118.6[]2*19200V N

MPa A mm

τ===<τ腹板

所以,横梁L1截面调整为如图5-1所示的截面形状。

(2)横梁L2截面优化计算

Iz=6371666667mm4 Wz=18204761.9mm3 A 腹板=36000mm2 A 翼缘=50000mm2

As=86000mm2

6max max

3

3030*10.166.4[]18204761.9x M N mm MPa W mm δ===<δ3max max

2

2768.9*1076.9[]2*36000V N MPa A mm τ===<τ腹板

所以,横梁L 1截面调整为如图5-1所示的截面形状。

六、水平支撑计算

A 腹板=640*30=19200mm 2; A 翼缘=500*30=15000mm 2;

As=2*(A 腹板+ A 翼缘)=68400mm 2;

32311

(*500*3015000*335)*2(*30*640)*2

1212

x I =++

I x =4679720000 mm 4

3

13370628.57/2

x

z I W mm h =

=

注:水平支撑计算中,我们只考虑水平支撑的轴压计算,不考虑其受弯承载能力计算,即假定水平支撑是二力杆结构。

图5-1横截面示意

查上述立柱、横梁的剪力图,在水平支撑处,取剪力突变值为水平支撑的轴压力N ,从中求得N max 作为校核依据。

N1=N3=283.2+363.1=646.3kN ; N2=4552.4kN ;

N3=N4=1732.3+1787.9=3520.2kN ; N6=N7=2678.9+93.3=2772.2kN ; 则有:Nmax=3520.2kN ;

3max max

2

3520.2*1051.5[]68400s N N

MPa A mm σ===<σ

所以,水平支撑满足强度要求。

七、螺栓连接强度设计

7.1计算参数确定

螺栓采用8.8级A 普通螺栓,直径为Ф26mm 。

350;b t f MPa = 250b v f MPa =。

7.2 弯矩设计值Mmax 和剪力设计值Vmax 由1

max

2

i

My N y =∑得:2max 1i N y M y =∑,

222

22max

1 3.14*26350**2*2(125250)44231.8.2

b

t i d f y M kN m y π+===∑

通过计算可知,螺栓连接处最大可承受弯矩为为231.8kN.m ;对于弯矩过大的连接处需要通过增设角焊措施来增强截面抗弯能力。剪力设计值同时计算剪切破坏和积压破坏的剪力设计值,取其中较小值。

2

1

max

3.14*26**10*250*1326.654

b v

s V

n f A kN ===

2max **10*26*30*3052379b c V n d tf kN ===∑

故螺栓连接处可承受的最大剪力为1326.65kN ,对于连接处剪应力不满足的地方我们增加角焊缝以增强连接。

支架受力计算书

光伏支架项目风载、雪载、抗震分析报告书 ------冀电C型钢支架 1.1 自然条件(50年一遇) (1)基本风压W0=0.3kN/m2 (2)基本雪压S0=0.2kN/m2 (3)设计基本地震加速度值为0.05g。 1.2 抗震设防 (1)根据《中国地震烈度表》查知贵州地区基本烈度为6度。 (2)根据周边已建项目的地质勘察情况,本项目所在区域地貌单一,地层岩性均一且层位稳定,对基础无任何不良影响,适于一般性工业及民用建筑。(3)抗震设施方案的选择原则及要求 建筑的平、立面布置宜规划对称、建筑的质量分布和刚度变化均匀,楼层不宜错层,建筑的抗震缝按建筑结构的实际需要设置,结构设计中根据地基土质和结构特点采取抗震措施,增加上部结构及基础的整体刚度,改善其抗震性能,提高整个结构的抗震性。 1.3 荷载确定原则 在作用于光伏组件上的各种荷载中,主要有风、雪荷载、地震作用、结构自重和由环境温度变化引起的作用效应等等,其中风荷载引起的效应最大。 在节点设计中通过预留一定的间隙,消除了由各种构件和饰面材料热胀冷缩引起的作用效应,还比较美观合理。 在进行构件、连接件和预埋件承载力计算时,必须考虑各种荷载和作用效应的分项系数,即采用其设计值。

①风荷载 根据规范,作用于倾斜组件表面上的风荷载标准值,按下列公式(1.1)计算:Wk= βgz .μs.μz.W0 〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃(1.1) 式中: Wk 风荷载标准值( kN /m2 ); βgz 高度z 处的阵风系数;标高地面位置取值1.69。 μs风荷载体型系数,按《建筑结构荷载规范》GB50009-2001 取值。取值为1.3。 μz风压高度变化系数;取值1.25. Wo 基本风压( kN /m2 ): 贵州地区基本风压取值0.3KN/M2,按规范要求,进行构件、连接件和锚固件承载力计算时,风荷载分项系数应取γw = 1.4,即风荷载设计值为: w = γw .wk = 1.4wk 〃〃〃〃〃〃〃〃〃〃〃〃〃(1.2) 该项目取值w = 1.15kN/m2,组件面积约为70.15 m2,故最大推力=1.15×70.15×sin20o=27.59 KN,而最大上拔力=1.15×70.15×cos20o=70.81KN。 ②雪荷载 地面水平投影面上的雪荷载标准值,应下式(2.1)计算: Sk = μr So 〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃(2.1) 式中,Sk 雪荷载标准值(kN / m2); μr 屋面积雪分布系数;根据规范取值0.6; 基本雪压So (kN / m2);依贵州地区50 年一遇最大雪荷载查规范取值0.2 kN / m2;则该项目最大雪荷载参考值为0.12kN / m2。组件面积约为70.15 m2,故最大雪载荷值为8.42KN;

模板受力计算

墩柱模板设计计算书 (以B2#为例) 设计说明:墩柱高度为8米,截面规格为为9米×4米。设计模板的面板为6mm厚Q235钢板,纵肋采用[10#槽钢,间距为350mm,背楞采用28#槽钢,间距为1000,浇注时采用泵送混凝土,浇注速度为 1.5米 /小时。 I 荷载 砼对模板的侧压力: F=0.22×r c×t0×β1×β2V1/2 =0.22×26×(200/(15+25))×1.2×1.15×21/2 =55.8 KN/m2 V=2m/ h(浇注速度) t=25℃(入模温度) 倾倒混凝土时产生的水平荷载为2 KN/m2 振捣混凝土时产生的水平荷载为2 KN/m2 荷载组合为:(55.8×1.2+4×1.4)×0.85=61.7 KN/m2 II面板验算 已知:板厚h=6mm 取板宽b=10mm q=F〃b=0.617N/mm按等跨考虑

1、强度验算: Mmax =0.1×ql2=0.1×0.617×3502=7558.3 N〃mm 截面抵抗矩W=bh2/6=10×62/6=60 mm3 最大内力:σ=Mmax/W= 7558.3/60=126N/ mm2<215N/ mm2 满足要求。 2、挠度验算: I=bh3/12=10×63/12=180 mm4 ω=0.677×ql4/100EI =0.677×0.617×3504/(100×2.06×105×180) =1.7mm 满足要求。 III 竖肋验算 已知:l=1000mm a=500mm q=0.0617×350=21.6N/mm W[10=39.7×103mm3 I[10=198.6×104mm4

盾构反力架安装专项方案及受力计算书

目录 一、工程概况 (2) 二、反力架的结构形式 (2) 2.1、反力架的结构形式 (2) 2.2、各部件结构介绍 (2) 2.3、反力架后支撑结构形式 (4) 三、反力架安装准备工作 (5) 四、反力架安装步骤及方法 (5) 五、反力架的受力检算 (6) 5.1、支撑受力计算 (6) 5.2、斜撑抗剪强度计算 (8) 六、反力架受力及支撑条件 (8) 6.1、强度校核计算: (10) 6.2、始发托架受力验算 (11)

一、工程概况 东莞市轨道交通R2线2304标土建工程天宝站~东城站盾构区间工程起点位于天宝站,终点位于东城站。盾构机由天宝站南端盾构始发井组装后始发,利用吊装盾构机的260t履带吊安装反力架。 二、反力架的结构形式 2.1、反力架的结构形式 如图一所示。 图一反力架结构图 2.2、各部件结构介绍 (1) 立柱:立柱为箱体结构,主受力板为30mm钢板,筋板为

20mm钢板,材质均为Q235-A钢材,箱体结构截面尺寸为700mmX500mm,具体形式及尺寸见图二。 图二立柱结构图 (2) 上横梁:结构为箱体结构,主受力板为30mm钢板,筋板为20mm钢板,材质均为Q235-A钢材,箱体结构截面尺寸为700mmX500mm,其结构与立柱相同。 (3) 下横梁:箱体结构,主受力板为30mm,筋板为20mm钢板,材质均为Q235-A,箱体结构截面尺寸为250mmX500mm,其结构如图三所示。 图三下横梁结构图

(4 )八字撑:八字撑共有4根,上部八字撑2根,其中心线长度为1979mm,下部八字撑2根,其中心线长度为2184mm,截面尺寸如图四所示。 图四八字撑接头结构图 2.3、反力架后支撑结构形式 后支撑主要有斜撑和直撑两种形式,按照安装位置分为立柱后支撑、上横梁后支撑、下横梁后支撑。 立柱支撑(以左线盾构反力架为例):线路中心左侧(东侧)可以直接将反力架的支撑固定在标准段与扩大端相接的内衬墙上;线路中心线右侧(西侧)材料均采用直径500mm,壁厚9mm的钢管。始发井东侧立柱支撑是3根直撑(中心线长度为1700mm),始发井西侧立柱是2根斜撑(中心线长度分别为5247mm和3308mm,与水平夹角均为45度)和一根直撑(底部)。如下图所示 1700

光伏支架载荷计算

支架强度计算 支架是安装从下端到上端高度为4m以下的太阳能电池阵列时使用计算因从支架前面吹来(顺风)的风压及从支架后面吹来(逆风)的风压引起的材料的弯曲强度和弯曲量,支撑臂的压曲(压缩)以及拉伸强度,安装螺栓的强度等,并确认强度。 (1)结构材料 选取支架材料,确定截面二次力矩I M和截面系数Z。 (2)假象载荷 1)固定荷重(G) 组件质量(包括边框)G M +框架自重G KI+其他G K2 固定载荷G=G M+G KI + G K2 2)风压荷重(W) (加在组件上的风压力(W M)和加在支撑物上的风压力(W K)的总和) 2 X C X V O X S)X a x I x J W=1/2 X( C w 3)积雪载荷(S)。与组件面垂直的积雪荷重。 4)地震载荷(K)。加在支撑物上的水平地震力 5)总荷重(W)正压:5) =1) +2) +3) +4)

负压:5) =1) -2) +3) +4) 载荷的条件和组合 (3)悬空横梁模型 (4)A-B间的弯曲应力 顺风时A-B点上发生的弯曲力矩: M i=WL 勺8应力(T i二M/Z (5)A-B间的弯曲 (6)B-C间的弯曲应力和弯曲形变 (7)C-D间的弯曲应力和弯曲形变 (8)支撑臂的压曲 (9)支撑臂的拉伸强度

(10)安装螺栓的强度

基础稳定性计算 1、风压载荷的计算 2、作用于基础的反作用力的计算 3、基础稳定性计算 当受到强风时,对于构造物基础要考虑以下问题: ①受横向风的影响,基础滑动或者跌倒 ②地基下沉(垂直力超过垂直支撑力) ③基础本身被破坏 ④吹进电池板背面的风使构造物浮起 ⑤吹过电池板下侧的风产生旋涡,引起气压变化,使电池板向地面吸引 对于③?⑤须采用流体解析等方法才能详细研究。研究风向只考虑危险侧的逆风状态 以下所示为各种稳定条件: a.对滑动的稳定 平时:安全率Fs> 1.5 ;地震及暴风时:安全率Fs > 1.2 b.对跌倒的稳定 平时:合力作用位置在底盘的中央1/3以内时 地震及暴风时:合力作用位置在底盘的中央2/3以内时 c.对垂直支撑力的稳定

模板受力计算

目录 一模板系统强度、变形计算 ...................... 错误!未定义书签。 侧压力计算.................................. 错误!未定义书签。 面板验算.................................... 错误!未定义书签。 强度验算.................................... 错误!未定义书签。 挠度验算................................. 错误!未定义书签。 木工字梁验算................................ 错误!未定义书签。 强度验算................................. 错误!未定义书签。 挠度验算................................. 错误!未定义书签。 槽钢背楞验算................................ 错误!未定义书签。 强度验算................................. 错误!未定义书签。 挠度验算................................. 错误!未定义书签。 对拉杆的强度的验算.......................... 错误!未定义书签。 面板、木工字梁、槽钢背楞的组合挠度为 ........ 错误!未定义书签。二受力螺栓及局部受压混凝土的计算............... 错误!未定义书签。 计算参数.................................... 错误!未定义书签。 计算过程.................................... 错误!未定义书签。 混凝土的强度等级......................... 错误!未定义书签。 单个埋件的抗拔力计算 ..................... 错误!未定义书签。 锚板处砼的局部受压抗压力计算 ............. 错误!未定义书签。 受力螺栓的抗剪力和抗弯的计算 ............. 错误!未定义书签。 爬锥处砼的局部受压承载力计算 ............. 错误!未定义书签。

盾构机反力架计算书

盾构机反力架计算书 太平桥站盾构始发反力架支撑计算书一、工程情况说明 哈尔滨地铁一号8标工业大学—太平桥区间投入一台德国海瑞克盾构机进行施工,编号S-285,从太平桥站西端头下井。我们对反力架采取水平撑加斜支撑的形式加固,将反作用力传递至车站底板、中板及侧墙。 二、反力架及支撑示意图 12 中板 侧反反 力力 墙 架架 底板底板 12 1-12-2 计算说明: 1、根据以往施工情况,始发盾构机推力按照800T进行计算,其中底部千斤顶油压按照200bar,两侧按照140bar,顶部千斤顶不施加推力; 2、通过管片和基准钢环调节,每组千斤顶所在区域按照均布荷载进行计算; 3、水平支撑采用200mm及250mm宽翼缘H型钢,分别支撑与车站底板及侧墙上,斜撑采用200mm宽翼缘H型钢,45度角撑于车站底板上; 4、反力架经几次始发使用,梁自身抗弯和抗剪无问题,本次不予计算。三、力学模型图

A 44.7t/m44.7t/mBD C 89.4t/m 盾构机在顶推过程中反力架提供盾构向前掘进的反力,通过焊接在反力架上的型钢支撑, 将力传递到车站结构上。为保证反力架能够提供足够的反力,以确保前方地层不会发生较大 沉降。要求型钢支撑强度足够。 四、计算步骤 1、模型简化 假设千斤顶推力平均分配到四个支撑边,即每边承受200t的压力。 2、轴力验算 1)底边 σ,F/A,F/(8,A,2,A),2000000/(8,6428,2,9218),28.6MPa 112 2 200mm H型钢截面面积A=6428mm1 2 250mm H型钢截面面积A=9128mm2 σ,σ,210MPa 1max 2)右侧边 σ,F/A,F/(10,A),2000000/(10,6428),31.1MPa 21 σ,σ,210MPa 2max 3)顶边 σ,F/A,F/(4,A),2000000/(4,6428),77.8MPa 31 σ,σ,210MPa 3max

屋顶光伏电站支架强度及屋面载荷计算

屋顶光伏电站支架强度及屋面载荷计算 1 工程概况 项目名称:江苏省*****中心小学49KW光伏屋顶 工程地址:江苏省*** 设计单位:上海能恩太阳能应用技术有限公司 建设单位:******有限公司 结构形式:屋面钢结构光伏支架 支架高度:0、3m 2 参考规范 《建筑结构可靠度设计统一标准》GB50068—2001 《建筑结构荷载规范》GB50009—2001(2006年版) 《建筑抗震设计规范》GB50011—2010 《钢结构设计规范》GB50017—2003 《冷弯薄壁型钢结构设计规范》GB50018—2002 《不锈钢冷轧钢板与钢带》GB/T3280—2007 3设计条件: 太阳能板规格:1650mm*990mm*50mm 混凝土屋顶太阳能板安装数量:200块 最大风速:27、5m/s 平坦开阔地域 太阳能板重量:20kg 安装条件:屋顶 计算标准:日本TRC 0006-1997 设计产品年限:20年 4型材强度计算 4、1 屋顶荷载得确定 (1)设计取值: ①假设为一般地方中最大得荷重,采用固定荷重G与暴风雨产生得风压荷重W 得短期复合荷重。 ②根据气象资料,扬中最大风速为27、5m/s,本计算最大风速设定为:30m/s。 ③对于混凝土屋面,采用最佳倾角安装得系统,需要考虑足够得配重,确保组件方阵得稳定可靠。 ④屋面高度20m。 4、2 结构材料: C型钢重量:1、8kg/m

截面面支架尺寸(mm) 41*41*2 安装角度 25° 材料镀锌 截面面积(A) 277 形心主轴到腹板边缘得距离 1、4516E+01 形心主轴到翼缘尖得距离 2、6484E+01 惯性矩 Ix 8、3731E+04 惯性矩 Iy 4、5694E+04 回转半径 ix 1、7386E+01 回转半径 iy 1、2844E+01 截面抵抗矩 Wx 4、0844E+03 截面抵抗矩 Wx 4、0844E+03 截面抵抗矩 Wy 3、1478E+03

模板受力计算书

模板受力计算书 一,参数信息: 1,模板支架参数; 方本木的间隔距离:(㎜):300.00 方木的截面宽度:(㎜):40.00 方木的截面高度:(㎜): 2,荷载参数: 模板与木板的自重(KN/㎡): 砼与钢筋自重:(KN/M3): 施工均布荷载标准值(KN/㎡): 3,楼板面参数: 钢筋级别:二级钢HRB335(20MNSI) 楼板砼强度等级:C35 每平米楼板截面的钢筋的面积(㎜2)1440.000 计算厚度(㎜)200.000 4,板底方木参数: 板底方木迁选用木材:杉木: 方木弹性模量:E(N/㎜2):9000.00 方木抗弯强厚设计值:FM(N/㎜2):11.000 方木抗剪强度设计值:FV(N/㎜2);1.400 二,模板底支撑方木的验算: 本工程模板板底采用方工木作为支撑,方木按照简支梁计算:

方木截面惯性矩I和截面抵抗矩W分别为: W=B×H2/6=4.000×8.0002/6=42.700㎝3 I=B×H3/12=×12=㎝4 木楞计算 1,荷载计算 ⑴钢筋砼板自重红线荷载(KN/M): q1=××=M: ⑵模板的自重线荷载(KN/M) q2=×=M: ⑶活荷载为施工荷载标准值(KN) q3=××= 2,抗弯强度验算: 最大弯矩考虑为静荷载与活荷载的计算值最不利分配的弯矩之和,计算公式如下; 均布荷载:q =×(q1+q2)=×+=M:集中荷载:q=×q1=×=:最大弯矩:M=q×1/4×12/8=××4+×8= 最大支座力:N=q/2+q×1/2=+×2= 截面应力: α=M/W== m㎡ 方木最大应力计算值为:MM2,小于方木抗弯强度值MM2, 满足要求。3,抗剪强度验算: 其中最大剪力:V=×2+2=:

反力架受力计算

反力架受力计算 一、反力架的结构形式 1、反力架的结构形式如图一所示。 图一反力架结构图 2、各部件结构介绍 2.1 立柱:立柱为箱体结构,主受力板为30mm钢板,筋板为20mm钢板, 材质均为Q235-A钢材,箱体结构截面尺寸为700mmX500mm,具体形式及尺寸见图二。

图二立柱结构图 2.2 上横梁:结构为箱体结构,主受力板为30mm钢板,筋板为20mm钢板,材质均为Q235-A钢材,箱体结构截面尺寸为700mmX500mm,其结构与立柱相同。 2.3 下横梁:箱体结构,主受力板为30mm,筋板为20mm钢板,材质均为Q235-A,箱体结构截面尺寸为250mmX500mm,其结构如图三所示。 图三下横梁结构图 2.4 八字撑:八字撑共有4根,上部八字撑2根,其中心线长度为1979mm,下部八字撑2根,其中心线长度为2184mm,截面尺寸如图四所示。

图四八字程接头结构图 二、反力架后支撑结构形式 后支撑主要有斜撑和直撑两种形式,按照安装位置分为立柱后支撑、上横梁后支撑、下横梁后支撑。 1、立柱支撑:材料均采用直径500mm,壁厚9mm的钢管,内部浇灌混凝 土提高稳定性。始发井西侧立柱支撑是2根直撑(中心线长度为3875mm),始发井东侧立柱是2根斜撑(中心线长度分别为8188mm和4020mm,与 水平夹角分别是29度和17度)。如下图所示 西侧立柱直撑型式东侧立柱斜撑型式 2、上横梁支撑:材料均采用直径500mm,壁厚9mm的钢管,内部浇灌混 凝土提高稳定性,中心线长度分别为4080mm、4141mm、4201mm,其 轴线与反力架轴线夹角为15度。

光伏支架受力计算书..

支架结构受力计算书 设计:___ ___ _日期:___ 校对:_ 日期:___ 审核:__ _____日期:____ 常州市**实业有限公司

1 工程概况 项目名称: *****30MW 光伏并网发电项目 工程地址: 新疆 建设单位: **集团 结构高度: 电池板边缘离地不小于500mm 2 参考规范 《建筑结构可靠度设计统一标准》GB50068—2001 《建筑结构荷载规范》GB50009—2012 《建筑抗震设计规范》GB50011—2010 《钢结构设计规范》GB50017—2003 《冷弯薄壁型钢结构设计规范》GB50018—2002 《不锈钢冷轧钢板和钢带》GB/T3280—2007 《光伏发电站设计规范》 GB50797-2012 3 主要材料物理性能 3.1材料自重 铝材——————————————————————327/kN m 钢材————————————————————3/78.5kN m 3.2弹性模量 铝材————————————————————270000/N mm 钢材———————————————————2206000/N mm 3.3设计强度 铝合金 铝合金设计强度[单位:2/N mm ]

钢材 钢材设计强度[单位:2/N mm ] 不锈钢螺栓 不锈钢螺栓连接设计强度[单位:2/N mm ] 普通螺栓 普通螺栓连接设计强度[单位:2/N mm ] 角焊缝 容许拉/剪应力—————————————————2160/N mm 4 结构计算 4.1 光伏组件参数 晶硅组件: 自重PV G :0.196kN (20kg /块) 尺寸(长×宽×厚)992164400mm ?? 安装倾角:37°

反力架计算书汇总

目录 一、设计、计算总说明 (1) 二、计算、截面优化原则 (1) 三、结构计算 (1) 3.1 反力架布置形式 (1) 3.2力学模型 (2) 3.3 荷载取值 (3) 3.4力学计算 (3) 四、截面承载能力复核 (6) 4.1 截面参数计算 (6) 五、截面优化分析 (8) 六、水平支撑计算 (9) 七、螺栓连接强度设计 (10) 7.1计算参数确定 (10) 7.2 弯矩设计值Mmax和剪力设计值Vmax (10)

一、设计、计算总说明 该反力架为广州市地铁21号线11标[水西站~长平站]盾构区间右线盾构机始发用。 反力架外作用荷载即盾构机始发的总推力乘以动荷载效应系数加所有不利因素产生的荷载总和,以1600吨水平推力为设计值。 反力架内力计算采用中国建筑科学研究院开发的PKPM2005版钢结构STS 模块为计算工具。对于螺栓连接、角焊缝连接处的设计,仅仅计算其最大设计弯矩和剪力值,而不作截面形式设计,可根据提供弯矩、剪力设计值来调整截面是否需要做加固处理。 二、计算、截面优化原则 1、以偏向于安全性的原则。所有计算必须满足实际结构受力的情况,必须满足强度、刚度和稳定性的要求。 2、在满足第1项的前提下以更符合经济性指标为修改结构形式、截面参数等的依据。 3、参照以往施工项目的设计经验为指导,借鉴其成熟的结构设计形式,以修改和复核计算为方向进行反力架结构设计。 4、但凡构件连接处除采用螺栓连接外,需要视情况进行必要的角焊缝加固,特殊情况下,可增设支托抗剪、焊钢板抗弯,以保证连接处强度不低于母体强度。 三、结构计算 3.1 反力架布置形式 由两根立柱和两根横梁以及水平支撑组成。立柱与横梁采用高强螺栓连接,为加强整体性一般按照以往施工项目的施工经验另需在连接处焊接,故

光伏支架技术要求

光伏支架技术要求 支架对于我们来说并不陌生,在生活的每个角落,只要你稍加注意,就会有支架的出现,下面南通正道就详细为你介绍一下光伏支架的几种常见形式。 (1)方阵支架采用固定支架,光伏阵列的最佳倾角为36°,共1429个支架, (2)光伏组件的支撑依据风荷载按照能够抵抗当地50年一遇最大风速进行设计,支架应按承载能力极限状态计算结构和构件的强度、稳定性以及连接强度。 (3)支架设计应考虑在安装组件后,组件最低端离地高度应满足光伏电站设计规范要求,在确保安全的前提下既经济合理,又方便施工。 (4)要充分考虑现场对光伏发电对支架距离地面最小距离的要求,具体数值要经招标人确认。 (5)钢材、钢筋、水泥、砂石料的材质应满足国家标准。 (6)光伏电池组件安装采用压块式固定在组件框架上,为防止腐蚀冷弯薄壁型钢,螺栓、螺母材质为Q235B热浸镀锌,厚度不小于65μm;与冷弯薄壁型钢相联接的所有螺栓也Q235B热浸镀锌;导槽与组件之间的连接螺栓直径为不小于M8。热浸镀锌满足《金属覆盖层钢铁制件热浸镀锌层技术要求及试验方法》GB/T13912-2002中规定,防腐寿命不低于25年,并提供抗腐蚀性测试报告。 (7)光伏组件光伏支架承受的基本风压应不小于m2。 (8)支架冷弯薄壁型钢檩条满足最大变形量不超过L/200,构件的允许应力比不大于。 (9)钢支撑结构系统的变形量应满足《光伏发电站设计规范》 (GB50797-2012)、“钢结构设计规范(GB50017-2003)”和“钢结构工程施工质量验收规范(GB50205-2001)”。

(10)支架系统抗震等级等应满足《光伏发电站设计规范》(GB50797-2012)以及《建筑抗震设计规范》(GB50011-2012)的要求。 (11)支架与支架基础之间采用螺栓连接形式或预埋件焊接形式,安装完成后的防腐处理由投标人负责,连接螺栓的大小由投标人负责设计。 (12)支架应预留汇流箱安装支撑件,汇流箱规格待定(汇流箱不在供货范围内)。 (13)支架应预留接地扁钢安装用螺栓孔,螺栓孔的位置中标后协商确定。 (14)冷弯薄壁型钢型材与所有钢支撑件之间应有钢垫片。 (15)投标人应提供光伏支架作用于支架基础上的荷载及连接件的定位、大小。 (16)投标人应按照设计院对本项目的整体设计和结构荷载要求,进行支架二次深化设计,向甲方和设计院提供深化设计图和计算书;二次深化设计应满足相关规范、标准的要求,深化设计图纸需经设计院审核确认后方可实施,否则由此引起的返工及其他损失由投标人自行承担。 (17)投标单位应根据自己系统进行深化设计,并在投标报价中考虑此部分造价,深化设计业主不追加造价(正常设计变更除外)。 (18)中标人应在招标人发出中标通知书7天内提交深化设计图纸给设计院供审核,并在招标人的组织协调下,派相关专业人员与施工相关方进行图纸会审。 (19)投标人投标时应提供以下技术文件: 1)投标人须提供企业业绩,项目案例及资质复印件。 2)投标人在投标文件中应提供设计方案图纸及节点详图;同时提供支架的结构计算书及紧固件节点计算书;

承台模板受力验算

主桥承台木模板计算 一、计算依据 1、《施工图纸》 2、《公路桥涵施工技术规范》(JTG/T F50-2011) 3、《路桥施工计算手册》 二、承台模板设计 主桥承台平面尺寸为11.5×11.5m,高4m,由于主桥承台基坑开挖深度达10m,基坑钢支撑较多,不利于大块钢模板的吊装,故承台模板考虑采用木模板拼装。 面板采用15mm厚竹胶板(平面尺寸2440×1220mm),水平内楞为80×80mm方木,水平内楞外设竖向外楞,外楞为双拼φ48×3mm钢管,对拉螺杆采用直径20mm的螺纹钢。 承台模板立面局部示意图 承台模板平面局部示意图 三、模板系统受力验算 3.1 设计荷载计算 1、新浇混凝土对模板的侧压力 模板主要承受混凝土侧压力,本工程砼一次最大浇筑高度为4m,新浇筑混凝土作用于模板的最大侧压力取下列二式中的较小值:

1 F=0.22γc t0β1β2V2 F=γc H 式中 F—新浇筑混凝土对模板的最大侧压力(KN/m2); γc—混凝土的重力密度,取24KN/m3; t0—新浇混凝土的初凝时间,取10h; V—混凝土的浇灌速度,取0.6m/h; H—混凝土侧压力计算位置处至新浇混凝土顶面的总高度,取4m; β1—外加剂影响修正系数,取1.0; β2—混凝土坍落度影响修正系数,取1.15; 1 所以 F=0.22γc t0β1β2V2 1 =0.22×24×10×1.0×1.15×0.62 =47.03 KN/m2 F=γc H =24×4=96 KN/m2 综上混凝土的最大侧压力F=47.03 KN/m2 2、倾倒混凝土时冲击产生的水平荷载

考虑两台泵车同时浇筑,倾倒混凝土产生的水平荷载标准值取4KN/m2。 3、水平总荷载 分别取荷载分项系数1.2和1.4,则作用于模板的水平荷载设计值为:q1=47.03×1.2+4×1.4=62 KN/m2 有效压头高度为 h=F/γc =62/24=2.585 m 3.2面板验算 木模板支护方式为典型的单向板受力方式,可按多跨连续梁计算。 内楞采用竖向80×80mm方木,方木中心间距250mm,模板宽度取b=2440mm,作用于模板的线荷载:q1=62×2.44=151.28kN/m,模板截面特性 1bh2=2440×152/6=91500mm3。 为:W= 6 1bh3=2440×153/12=686250mm4; I= 12 模板强度验算: 根据《路桥施工计算手册》表8-13查得最大弯距系数为0.1。 M max=0.1q1l2=0.1×151.28×2502=9.455×105N·mm σ=M max/W=9.455×105/91500=10.3Mpa<[f m]=13Mpa,模板强度符合要求。 模板刚度验算:

圆柱墩模板受力计算书

圆柱墩模板受力计算书

广东云浮(双凤)至罗定(榃滨)高速公路工程圆柱墩模板受力计算书 广西壮族自治区公路桥梁工程总公司 广东云浮至罗定高速公路第四合同段项目部 2011年11月

目录 1、圆柱墩设计概况 ------------------------------------------2 2、受力验算依据 --------------------------------------------3 3、圆柱墩模板方案 ------------------------------------------3 4、模板力学计算 --------------------------------------------3 4.1、模板压力计算 --------------------------------------3 4.2、面板验算 ------------------------------------------3 4.3、横肋验算 ------------------------------------------4 4.4、竖肋验算 ------------------------------------------4 4.5、螺栓强度验算 --------------------------------------5

圆柱墩模板受力计算书 1、圆柱墩设计概况 本标段范围内共设有竹沙大桥、国道G324跨线桥、双莲塘大桥、小垌大桥、及更大桥、培岭1#桥、培岭2#桥、培岭3#桥等8座大桥,共有圆柱墩149条,根据墩柱高度不同,圆柱墩直径有1.1m、1.3m、1.4m、1.6m、

现浇混凝土模板的支撑设计计算书

模板的支撑设计计算书 ●本工程的模板均采用胶合板模板,木方背楞,钢管扣件支撑,配合采用 对拉螺栓。

施工荷载 1.4×2500=3500N/m 2 钢筋自重荷载 1.2×1100=1320N/m 2 振捣荷载 1.4×2000=2800 N/m 2 合计: 15480 N/m 2 mm q bh f l bh W m 80148 .156181********* 12 22=****=*≤ (2)按剪应力验算 mm q bhf l f bh ql bh V ql V v v 201648 .1533.118100043443232/1max =****=≤≤== =τ (3)按挠度验算

mm q EI l l EI ql 487200 632.0100200 100632.034=??=< ?=ω 现浇板木胶合板模板跨度(即70×100mm 木方背楞间距)取400mm. 4) 70×100mm 木方背楞受力验算 70×100mm 木方背楞搁置在钢管大横杆上,现进行木方背楞受力验算。 (1)按抗弯强度验算 上式中q ’=15480×0.4=6.192N/mm (2))按剪应力验算 (3 根据以上计算,胶合板木方70×100mm 背楞跨度可取1200mm 。 但模板下钢管扣件支撑,每一扣件抗滑能力约为6500N ,而其上荷载为15480N/m 2,可知如支撑立杆间距布置为600mm×600mm,则扣件承受

的力为15480×0.6×0.6=5.57KN<6.5KN,可满足要求。 则木方背楞下,φ48×3.5钢管大横楞及φ48×3.5立杆间距取@600mm ,也即,木方背楞的实际跨度为600mm ,现进行大横杆及立杆验算。 5) 木方背楞下φ48×3.5钢管大横杆受力验算 作用于钢管横楞上的集中荷载为F=q ×0.6×0.4=4.39KN 则按单跨梁,最大弯距可能为: m KN Fl M ?=?== 439.04 6.039.44max (2) 按挠度验算 mm mm F EI l l EI Fl 6008364390400121867101.24820048400 4853<=????=≤≤ =ω 6) 钢管支撑立杆受力验算。 支撑立杆步距1800m ,采用φ48×3.5钢管对接连接: 立杆最大受力F=15480×0.6×0.6=5573N<扣件的抗滑能力值 2 2/205/01.36489 316.05573316 .0,1488 .151800 3.1mm N mm N A N i l <=?=?===?= ?= ?σ?μλ则查表 150mm 厚及其以下模板支撑设计

始发架反力架基座结构受力计算书

始发架、结构受力检算书编制: 审核: 审批: 1

附件8 始发基座结构承载能力计算书 始发基座结构受力检算书 一、设计资料 始发架主受力结构为纵梁、横梁、并与连接杆焊接成一个整体,形成整体受力结构,盾构作用在轨道梁上,通过轨道传力到底座上,最后传递到始发架井底地基,轨道梁和支架采用螺栓、焊接形式连接,其结构图如下: 支承架主视图 支承架侧视图 二、受力分析 2.1如上图所示,盾身重力荷载作用在轨道上,通过支架传递到底座基础,斜纵梁是受力主体,横梁把荷载传递到基础。 2.2受力验算 盾构总重G=377t 其中:盾构刀盘重量G1=60t 长度L1=1.645m 前盾总成重量G2=

110t L2=2.927m 中盾重量G3=110t 长度L3=3.63m,盾尾重量G4=35t,长度L4=4.045m, 由上面盾构节段位置的重量和长度,可知结构最不利位置在前盾总成,因此只需检算盾构前盾总成下方的支承架是否满足受力要求即可。 取荷载分项系数取 1.2,动载系数取 1.25,则盾构前盾总成下方每根钢轨荷载为:P=1.2x1.25x1100/(2x2.927)=281.86kN/m, 假设钢轨荷载均匀分布传递到支承架纵梁,则纵梁荷载q=281.86kN/m; 取支架单元支架计算: 纵梁受力检算: 按简支梁计算 Mmax=ql2/8=281.86× 0.892 /8=27.91kN/m max max 6 27910 48.1579.810x M Mpa W -σ= ==? 满足刚度要求 2.3底横梁检算: F =P ×cos62.32°=130.94t,平均分配到4根横梁上,则每根横梁拉力T1=32.74t T=2T1=65.48 465480062.56[]181104.6710F Mpa Mpa A -σ= ==σ=? 满足受力要求 2.4支架横梁中连接螺栓计算:

抗拔桩计算书

雨水收集池抗浮计算书 一、条件 1、地面标高:0.000m ,底板标高:-4.500m ,设水位标高:-0.500m 。 2、雨水收集池长度A=40000mm ,宽度B=40000mm ,,底板厚度d1=300mm ,池壁厚度d2=300,底板垫层厚d3=100mm 。 3、增加网格2.5米一个桩100mm 抗拔桩,共计N =225个(400mm ×400mm ),深入钢筋混凝土底板,新增200mm 厚钢筋混凝土底板抗浮及修补底板漏水。 4、素混凝土22-24KN/每立方米;钢筋混凝土24-25KN/每立方米(建筑结构荷载规范GB50009-2001,第38页) 5、1kg =9.8N ,即1 KN =0.102吨 F=mg 二、计算 1、水池自重: (1)、垫层自重:G1=41.2×41.2×0.1×23×0.102=398.22吨 (2)、底板自重:G2=41×41×0.7×24.5×0.102=2940.57吨 (3)、池壁自重:G3=40×4×0.3×4.7×24.5×0.102=563.77吨 水池总重Gs =∑(G1+G2+G3) =∑ (398.22+2940.57+563.77) =3902.66吨 2、相关参数: (1)、抗浮安全系数:K =1.05~1.10 (2)、水容重:r =1000 kg/立方米 (3)、水池底板面积:F =1697.44平方米 (4)、地下水顶面至底板地面距离:H 2=4.6米 3、整体抗浮验算 K =2r G H F =(Gs+N )/(4.6×1697.44)≥1.1,故抗浮计算满足需增加抗拔承载力N =4686.39吨 4、计算单桩抗拔极限承载力标准值 ∑==m i i i sik i k l u q U 1 λ

模板支架专项方案计算书汇总

主体结构 模板支架受力计算书 计算人: 复核人:

狮山路站模板、支架强度及稳定性验算 1、设计概况 狮山路站为地下两层,双跨整体式现浇钢筋混凝土框架结构;车站内衬墙与围护桩间设置柔性防水层。在通道、风道与主体结构连接处设置变形缝。主要结构构件的强度等级及尺寸如下: 表1 狮山路站主体结构横断面尺寸表 2、模板体系设计方案概述 狮山路站全长272m,共分10段结构施工。主体结构施工拟投入8套标准段脚手架(长27.2m×宽19.8m×6.35m)。最长段模板长32m、最短段模板长24m,每段模板平均按27.2m考虑。模板主要采用胶合板模板加三角钢模板。支架采用Φ48×3.5mm碗扣式钢管脚手架支撑,中间加强杆件、剪刀撑、扫地杆采用扣件式脚手架。 (1)狮山路站侧墙模板施工采用三角支架模板系统,三角大模板支架体系分为:三角钢架支撑和现场拼装的模板系统。三角支架分为4.0m高的标准节和0.85m高的加高节,大模板采用4000(长)×1980(宽)×6.0mm(厚)钢模板。大模板竖肋、横肋和边肋均采用[8普通型热轧槽钢,背楞采用2[10,普通型热轧槽钢。 在浇注底板混凝土时,侧墙部分要比底板顶面向上浇灌300mm高。在浇灌混凝土前水平埋入一排φ25精扎螺纹钢(外露端车丝),作为侧墙大模板的底部支撑的地脚螺栓拉结点,L=700。在施工过程中必须确保此部分侧墙轴线位置和垂直度的准确,以保证上下侧墙的对接垂直、平顺。对于单面侧墙模板,采用单面侧向支撑加固。侧向支撑采用角钢三角架斜撑,通过预埋Φ25拉锚螺栓和支座垫块固定。纵向间距同模板竖龙骨间距,距离侧墙表面200mm。

始发架反力架基座结构受力计算书

. . 始发架、结构受力检算书编制: 审核: 审批:

附件8 始发基座结构承载能力计算书 始发基座结构受力检算书 一、设计资料 始发架主受力结构为纵梁、横梁、并与连接杆焊接成一个整体,形成整体受力结构,盾构作用在轨道梁上,通过轨道传力到底座上,最后传递到始发架井底地基,轨道梁和支架采用螺栓、焊接形式连接,其结构图如下: 支承架主视图 支承架侧视图 二、受力分析 2.1如上图所示,盾身重力荷载作用在轨道上,通过支架传递到底座基础,斜纵梁是受力主体,横梁把荷载传递到基础。 2.2受力验算

盾构总重G=377t 其中:盾构刀盘重量G1=60t 长度L1=1.645m 前盾总成重量G2=110t L2=2.927m 中盾重量G3=110t 长度L3=3.63m,盾尾重量G4=35t,长度L4=4.045m, 由上面盾构节段位置的重量和长度,可知结构最不利位置在前盾总成,因此只需检算盾构前盾总成下方的支承架是否满足受力要求即可。 取荷载分项系数取 1.2,动载系数取 1.25,则盾构前盾总成下方每根钢轨荷载为:P=1.2x1.25x1100/(2x2.927)=281.86kN/m, 假设钢轨荷载均匀分布传递到支承架纵梁,则纵梁荷载q=281.86kN/m; 取支架单元支架计算: 纵梁受力检算: 按简支梁计算 Mmax=ql2/8=281.86× 0.892 /8=27.91kN/m max max 6 27910 48.1579.810x M Mpa W -σ= ==? 满足刚度要求 2.3底横梁检算: F =P ×cos62.32°=130.94t,平均分配到4根横梁上,则每根横梁拉力T1=32.74t T=2T1=65.48 465480062.56[]181104.6710F Mpa Mpa A -σ= ==σ=?

扩底抗拔桩承载力计算

扩底抗拔桩抗拔承载力计算 丁浩珉 摘要:随着我国城市化进程的迅速发展,地下结构的建设呈现迅猛发展的势头。地下结构的抗浮问题日益受到国内外学者的重视。抗拔桩是当前应用的最为广泛的抗浮基础类型。然而抗拔桩的理论研究远远落后于工程实践。本文对扩底抗拔桩进行概述,并分析其破坏形态及作用机理。最后总结一些扩底抗拔桩承载力计算方法。 关键词:扩底抗拔桩承载力计算破坏机理 Calculation of the Up-lift Resistance Bearing Capacity of Bored Cast-in-place Pile with Enlarged Bottom Abstract :With the development of municipal engineering,lots of underground structures are built.More and more researchers are aware of the importance of resisting the uplift load.Tension piles are widely used to resist the uplift load,but theories about tension piles are far behind of engineering practice. This paper give an overview of tension piles with enlarge bottom,and analyze the failure modes and resisting mechanism.Finally,the paper will summarize some of the calculation of the up-lift resistance bearing capacity of bored cast-in-place pile with enlarged bottom. Keywords: tension piles with enlarge bottom calculation of bearing capacity failture mode 1 引言 近年来,随着城市建设的高速发展,城市建设用地越来越少,地下空间的开发和利用成为发展的必然趋势。大量带有地下车库的高程建筑,以及地下管廊,下沉式广场的兴建,使地下结构抗浮问题变得非常突出。目前,扩底抗拔桩因其单桩抗拔承载力大,质量易于保证,施工速度快,无噪音,无振动,在保证一定抗拔力的情况下,可缩短桩长,减少桩数,避免穿过某些复杂的地层,改善施工条件,省工省料省时,节约投资等特点,在工程中经常用来解决抗浮问题。但扩底桩的设计,试验资料甚少,扩底抗拔桩的理论尚未完善。一般在设计抗拔桩时,通常是参照规范规定的抗压桩的侧摩阻力,再乘以单一的经验折减系数,以此作为抗拔桩的侧摩阻力,再乘以单一的经验折减系数,以此作为抗拔桩的侧摩阻力来计算其抗拔力。扩底抗拔桩由于在桩底形成扩大头,增大桩端承载面积,从而提高单桩抗拔承载力,如何合理考虑桩底抗拔力成为设计计算的难点。本文对于各种扩底抗拔桩承载力计算方法进行总结,同同时对比等截面抗拔桩分析扩底抗拔桩的受力特点和扩底抗拔桩的受力机理,从而对扩底抗拔桩有个深入的认识。 2 扩底桩概述 扩底桩作为抗拔桩,其最大的优点是:可以用增加不多的材料来获取增加桩基抗拔承载力的效果。随着扩孔技术的不断发展,扩底桩的应用越来越广泛,设计理论也随之发展。 通常,桩基承载力中的桩侧摩阻力部分随着上拔荷载的增加开始也逐渐增大,但是一般在桩—土界面上相对位移达到4—10mm时,相应的侧壁摩阻力就会达到其峰值,其后将逐渐下降。但扩底桩与等截面桩不同。在基础上拔的过程中,扩大头上移挤压土体,土对它的反作用力(即上拔阻力)一般也是随着上拔位移的增加而增大的。并且,即使当桩侧摩阻

相关文档