文档库 最新最全的文档下载
当前位置:文档库 › 电磁感应的经典讲解

电磁感应的经典讲解

电磁感应的经典讲解
电磁感应的经典讲解

由法拉第电磁感应定律,当穿过闭合导体回路的磁通量发生变化时,回路中就产生感应电动势。但引起磁通量变化的原因可以不同。当导体或导体回路在恒定磁场中运动而产生的感应电动势,称为动生电动势;而当导体或导体回路不动,磁场发生变化而产生的感应电动势则称为感生电动势。

1.动生电动势:

设闭合导体回路abcda中,导线cd可在导线框上向右自由滑动,速度为v。任意时刻t穿过该导线框的磁通量为:

由法拉第电磁感应定律,该导线框中的感应电动势(动生电动势)大小为:

此动生电动势的方向由c指向d。

动生电动势的产生机制:

导线cd在磁场中向右运动时,自由电子受洛仑兹力:

的方向由d指向c。

该洛仑兹力使导线两端积累电荷而产生电场,使自由电子受电场力:

的方向由c指向d。

当时,,使cd间维持电势差。

此时,导线cd相当于一个电源,d为正极、c为负极。

可见:产生动生电动势的原因为洛仑兹力。

导线cd中的非静电场为作用在单位正电荷上的洛仑兹力:

由电动势的定义,导线cd中的动生电动势为:

上例中导线cd中产生的动生电动势时也可用上式求得:

讨论:当导线速度在垂直于磁场方向的分量不为零时才能产生感应电动势。可形象地说:导线因切割磁感应线而产生电动势。

Flash动画:动生电动势

例题13-2-1:长为l 的铜棒,以速率v 平行于电流为i的无限长载流直导线运动,求铜棒中的电动势。

解法一:直电流在其右侧空间产生的磁感强度为:

方向垂直向里。

在铜棒上任取线元dx。其上产生的动生电动势为:

整个铜棒上的动生电动势为:

电动势的方向从左向右。

解法二:

取假想闭合回路(假想部分无感应电动势)。

通过该假想回路中面积元dS的磁通量为:

所以通过整个回路的磁通量为:

由法拉第电磁感应定律,铜棒上的动生电动势为:

例题13-2-2:长为l 的铜棒,在均匀磁场B中以角速度ω旋转,求铜棒两端的感应电动势。解法一:在铜棒上取线元dl,其速率:

在该线元上产生的动生电动势为:

所以,整个铜棒上的动生电动势为:

“?”号表示电动势的方向与积分方向相反,即o 端为正。

解法二:

铜棒在dt 时间内扫过的面积:

通过该面积的磁通量:

根据法拉第电磁感应定律:

讨论:若将铜棒改为铜盘,则该铜盘可看作由许多铜棒组成,此时铜盘中心和边缘间的动生电动势仍由上式决定。

小结:求动生电动势的两种方法:

①用法拉第电磁感应定律:

若导体不闭合,可假想一个导体回路,但回路的假想部分不能有动生电动势。

②利用公式:

此式在求解不闭合导体中的动生电动势时,有时比较方便。

2.感生电动势:

产生感生电动势时,导体或导体回路不动,而磁场变化。因此产生感生电动势的原因不可能是洛仑兹力。那么,产生感生电动势的原因是什么呢?

英国物理学家麦克斯韦指出:变化的磁场会在其周围空间激发出一种电场,称为感生电场,其电场线为闭合曲线,所以又称为涡旋电场(非静电场),用E r表示。

当变化的磁场中有导体回路时:自由电子受感生电场的作用而产生感生电动势。所以:产生感生电动势的原因为非静电场E r。

由电动势定义,感生电动势为:

即:

讨论:①式中“?”号说明和的方向关系符合楞次定律(见上图)。

②感生电场的环流不为零,说明感生电场不是保守场,其电场线为闭合曲线。

Flash动画:感生电动势的应用—工频感应炉

例题13-2-3:半径为R 的圆柱形空间内有均匀磁场B,设,且为常量。求:(1)空间各点的涡旋电场;(2)金属棒ab上的感生电动势。

解:(1)由对称性,感生电场的电场线是以o为圆心的一系列同心圆。设环路l 顺时针为正。

当R < r 时:

得:

的方向与环路绕行方向相反,即逆时针方向。

当R > r 时:

得:

的方向也沿逆时针方向。

(2) 解法一:金属棒上任取线元dl。

该线元上产生的感生电动势为:

所以整个金属棒上的感生电动势为:

解法二:假想闭合回路aoba(假想部分ao、ob与感生电场垂直,所以无感生电动势)。穿过该闭合回路的磁通量为:

由法拉第电磁感应定律:

感生电动势的方向由a指向b。

小结:求感生电动势的两种方法:

①用法拉第电磁感应定律:

若导体不闭合,可假想一个导体回路,但回路的假想部分不能有感生电动势。

②利用公式:

此式在求解不闭合导体中的感生电动势时,有时比较方便。

例题13-2-4:在虚线圆内有均匀磁场,dB/dt = –0.1T/s。设某时刻B=0.5T。求:(1)在半径r =10cm的导体圆环任一点上涡旋电场的大小和方向;(2)若导体环电阻为2Ω,求环内电流; (3)环上任意两点a、b间的电势差;(4)若将环上某点切开并稍许分开,求两端间电势差。

解: (1) 由对称性,此圆柱形空间内的磁感应线都是以O为圆心的一系列同心圆。所以导体圆环上任一点的感生电场满足下式:

即:

E r的方向为顺时针方向。

(2) 导体内的感生电流为:

(3) 将导体环等效为下面的闭合电路。

由基尔霍夫定律:

所以ab间的电势差为:

因为:

代入上式得:。

(4) 若将环上任一点处切开并稍许分开时,分开的两端之间的电势差为:

高考物理第二轮复习第18讲电磁感应中的能量课后练习

第18讲 电磁感应中的能量 题一:如图所示,MN 、PQ 为两根足够长的水平放置的平行金属导轨,间距L =1 m ;整个空间内以OO '为边界,左侧有垂直导轨平面向上的匀强磁场,磁感应强度大小11T B =,右侧有方向相同、磁感应强度大小22T B =的匀强磁场。两根完全相同的导体棒c 、b 质量均为0.1kg m =,与导轨间的动摩擦因数均为0.2μ=,两导体棒在导轨间的电阻均为R =1 Ω。开始时,c 、b 棒均静止在导轨上,现用平行于导轨的恒力F =0.8 N 向右拉b 棒。假设c 棒始终在OO '左侧,b 棒始终在OO '右侧,除导体棒外其余电阻不计,滑动摩擦力和最大静摩擦力大小相等,2 10m/s g =。 (1)c 棒刚开始滑动时,求b 棒的速度大小; (2)当b 棒的加速度大小22 1.5m/s a =时,求c 棒的加速度大小; (3)已知经过足够长的时间后,b 棒开始做匀加速运动,求该匀加速运动的加速度大小,并计算此时c 棒的热功率。 题二:如图所示,两根足够长且平行的光滑金属导轨所在平面与水平面成53α=?角,导轨间接一阻值为3 Ω的电阻R ,导轨电阻忽略不计。在两平行虚线间有一与导轨所在平面垂直的匀强磁场,磁场区域的宽度为0.5m d =。导体棒a 的质量为10.1kg m =、电阻为16R =Ω;导体棒b 的质量为20.2kg m =、电阻为23R =Ω,它们分别垂直导轨放置并始终与导轨接触良好。现从图中的M 、N 处同时将a 、b 由静止释放,运动过程中它们都能匀速穿过磁场区域,且当a 刚出磁场时b 正好进入磁场。(sin530.8?=,cos530.6?=,g 取10 m/s 2,a 、b 电流间的相互作用不计),求: (1)在b 穿越磁场的过程中a 、b 两导体棒上产生的热量之比; (2)在a 、b 两导体棒穿过磁场区域的整个过程中,装置上产生的热量; (3)M 、N 两点之间的距离。 题三:如图所示,固定的竖直光滑U 形金属导轨,间距为L ,上端接有阻值为R 的电阻,处在方向水平且垂直于导轨平面、磁感应强度为B 的匀强磁场中,质量为m 、电阻为r 的导体棒与劲度系数为k 的固定轻弹簧相连放在导轨上,导轨的电阻忽略不计。初始时刻,弹簧处于伸长状态,其伸长量为1mg x k =,此时导体棒具有竖直向上的初速度v 0。在沿导轨往复运动的过程中,导体棒始终与导轨垂直并保持良好接触。则下列说法正确的是( )

电磁感应重要专题讲解及试题(带答案)

电磁感应专题 电磁感应中的动力学问题 这类问题覆盖面广,题型也多种多样;但解决这类问题的关键在于通过运动状态的分析来寻找过程中的临界状态,如速度、加速度取最大值或最小值的条件等,基本思路是: 对“双杆”类问题进行分类例析 1、“双杆”向相反方向做匀速运动 当两杆分别向相反方向运动时,相当于两个电池正向串联。 【例1】两根相距d =0.20m 的平行金属长导轨固定在同一水平面内,并处于竖直方向的匀强磁场中,磁场的磁感应强度B =0.2T ,导轨上面横放着两条金属细杆,构成矩形回路,每条金属细杆的电阻为r =0.25 Ω,回路中其余部分的电阻可不计.已知两金属细杆在平行于导轨的拉力的作用下沿导轨朝相反方向匀速平 移,速度大小都是v =5.0m/s ,如图所示.不计导轨上的摩擦. (1)求作用于每条金属细杆的拉力的大小. (2)求两金属细杆在间距增加0.40m 的滑动过程中共产生的热量. 2.“双杆”同向运动,但一杆加速另一杆减速 当两杆分别沿相同方向运动时,相当于两个电池反向串联。 【例2】两根足够长的固定的平行金属导轨位于同一水平面内,两导轨间的距离为L 。导轨上面横放着两根导体棒ab 和cd ,构成矩形回路,如图所示.两根导体棒的质量皆为m ,电阻皆为R ,回路中其余部分的电阻可不计.在整个导轨平面内都有竖直向上的匀强磁场,磁感应强度为B .设两导体棒均可沿导轨无摩擦地滑行.开始时,棒cd 静止,棒ab 有指向棒cd 的初速度v 0.若两导体棒在运动中始终不接触,求: (1)在运动中产生的焦耳热最多是多少. (2)当ab 棒的速度变为初速度的3/4时,cd 棒的加速度是多少? 3. “双杆”中两杆都做同方向上的加速运动。 “双杆”中的一杆在外力作用下做加速运动,另一杆在安培力作用下做加速运动,最终两杆以同样加速度做匀加速直线运动。如【例3】(2003年全国理综卷) 4.“双杆”在不等宽导轨上同向运动。 F=BIL 界状态 v 与a 方向关系 运动状态的分析 a 变化情况 F=ma 合外力感应电流 确定电源(E ,r ) r R E I +=

电磁感应典型例题和练习

电磁感应 课标导航 课程容标准: 1.收集资料,了解电磁感应现象的发现过程,体会人类探索自然规律的科学态度和科学精神。 2.通过实验,理解感应电流的产生条件,举例说明电磁感应在生活和生产中的应用。 3.通过探究,理解楞次定律。理解法拉第电磁感应定律。 4.通过实验,了解自感现象和涡流现象。举例说明自感现象和涡流现象在生活和生产中的应用。 复习导航 本章容是两年来高考的重点和热点,所占分值比重较大,复习时注意把握: 1.磁通量、磁通量的变化量、磁通量的变化率的区别与联系。 2.楞次定律的应用和右手定则的应用,理解楞次定律中“阻碍”的具体含义。 3.感应电动势的定量计算,以及与电磁感应现象相联系的电路计算题(如电流、电压、功 率等问题)。 4.滑轨类问题是电磁感应的综合问题,涉及力与运动、静电场、电路结构、磁场及能量、 动量等知识、要花大力气重点复习。 5.电磁感应中图像分析、要理解E-t、I-t等图像的物理意义和应用。 第1课时电磁感应现象、楞次定律 1、高考解读 真题品析 知识:安培力的大小与方向 例1. (09年物理)13.如图,金属棒ab置于水平放置的U形光滑导轨上,在ef右侧存在有界匀强磁场B,磁场方向垂直导轨平面向下,在ef左侧的无磁场区域cdef有一半径很小的金属圆环L,圆环与导轨在同一平面当金属棒ab在水平恒力F作用下从磁场左边界ef处由静止开始向右运动后,圆环L有__________(填收缩、扩)趋势,圆环产生的感应电流_______________(填变大、变小、不变)。 解析:由于金属棒ab在恒力F的作用下向右运动,则abcd回路中产生逆时针方向的感应电

电磁感应经典例题

电磁感应典型例题 【例题1】图为地磁场磁感线的示意图,在北半球的地磁场 的竖直分量向下,飞机在我国的上空匀速航行,机翼保持水平, 飞行高度不变。由于地磁场的作用,金属机翼上有电势差,设 飞行员左方机翼末端处的电势为U1,右方机翼末端的电势为U2。 A.若飞机从西向东飞,U1比U2高 B.若飞机从东向西飞,U2比U1高 C.若飞机从南往北飞,U1比U2高 D.若飞机从北往南飞,U2比U1高 【例题2】如图所示,通电直导线右边有一个矩形线框,线框平面与直导线共面,若使线框逐渐远离(平动)通电导线,则穿过线框的磁通量将: A.逐渐增大 B.逐渐减小 C.保持不变 D.不能确定 【例题3】如边长为0.2m的正方形导线框abcd斜靠在墙上,线框平面与地面成30°角,该区域有一水平向右的匀强磁场,磁感应强度为0.5T,如图所示。因受振 动线框在0.1s内滑跌至地面,这过程中线框里产生的感应电动势的平均值为_____。 【例题4】关于自感现象,下列说法中正确的是: A.对于同一线圈,当电流变化越大时,线圈中产生的自感电动势也越大 B.对于同一线圈,当电流变化越快时,其自感系数也越大 C.线圈中产生的自感电动势越大,则其自感系数一定较大

D.感应电流有可能和原电流的方向相同 【例题5】用力拉导线框使导线框匀速离开磁场这一过程如图所示,下列说法正 确的是: A.线框电阻越大,所用拉力越小 B.拉力做的功减去磁场力所做的功等于线框产生的热量 C.拉力做的功等于线框的动能 D.对同一线框,快拉与慢拉所做的功相同,线框产生的热量也相同 【例题6】如右图所示,线圈由A位置开始下落,在磁场中受到的磁场力如果总 小于它的重力,则它在A、B、C、D四个位置(B、D位置恰好线圈有一半在磁场中)时,加速度关系为: A. a A>a B>a C>a D B. a A=a C>a B>a D C. a A=a C>a D>a B D. a A=a C>a B=a D 【例题 7】如图所示,固定在匀强磁场中的正方形导线框abcd,各边长为l,其中ab是一段电阻为R的均匀电阻丝,其余三边均为电阻可忽略的铜线。磁场的磁感应强 度为B,方向垂直纸面向里。现有一与ab段的材料、粗细、长度都相同的电阻丝PQ 架在导体框上,如图所示,PQ以恒定速度υ从ad滑向bc,当滑过1 3 l的距离时,通 过aP段电阻丝的电流多大?方向如何?

第13讲—电磁感应讲解

电磁感应 一、电磁感应、楞次定律 1.电流磁效应:1820年,丹麦物理学家奥斯特发现载流导线能使小磁针偏转,这种作用称为电流的磁效应(为了避免地磁场对实验结果的影响,实验时通电直导线应南北放置)2.电磁感应现象:1831年,英国物理学家法拉第发现了电流磁现象,即“磁生电”现象,产生的电流叫做感应电流。至此,宣告电磁学作为一门同一学科诞生。 3.产生感应电流的条件:穿过闭合导体回路的磁通量发生变化。 也就是:(1)导体回路必须闭合;(2)穿过闭合回路导体的磁通量发生变化,或者闭合回路的部分导体做切割磁感线运动。 理解“导体棒切割磁感线” (1)导体棒是否将磁感线“割断”,如果没有“割断”就不能说切割。甲、乙两图,导体是真“切割”磁感线,而丙图中,导体没有切割磁感线。 (2)即便是导体真“切割”了磁感线,也不能保证就能产生感应电流,对于图甲,尽管导体“切割”了磁感线,但是由于穿过闭合回路的磁通量并没有发生变化,所以并没有感应电流。但对于乙图,导体框的一部分导体“切割”磁感线,穿过线框的磁感线条数越来越少,线框中就有感应电流;对于丙图,闭合导体回路在非匀强磁场中运动,切割了磁感线,同时穿过线框的磁感线条数减少,线框中有感应电流。 (3)即使是闭合回路的部分导体做切割磁感线的运动,也不能 保证一定存在感应电流。如图所示,abcd线框的一部分在匀强 磁场中上下平动,在线框中没有感应电流。 4.磁通量Φ的计算 Φ=中的B是匀强磁场的磁感应强度,S是与磁场方向垂直的有效面积。如(1)公式BS 果磁感线和平面不垂直,S应该取平面在垂直磁感线方向上的投影的有效面积。 (2)当磁感线和平面不垂直,S应该取平面在垂直磁感线方向上的投影的有效面积;当磁场区域的面积小于闭合回路的面积,应该去有效的磁场区域。 (3)磁通量是标量,但是磁通量有正负之分,其正负是这样规定的:任何一个平面都有正、反两个面,若规定磁感线从正面穿入时磁通量为正值,则磁感线从反面穿过时磁通量为负值。所以,匀强磁场穿过闭合曲面的磁通量为0。 (4)磁通量与线圈的匝数无关。

第十讲法拉第电磁感应定律应用一磁感应定律应用一95

第十一讲、法拉第电磁感应定律(一) 一、要点导学: 法拉第电磁感应定律: 二、例题精选: (一)、对感应电动势概念的理解 例:下列说法正确的是(D ) A .穿过线圈的磁通量为零时,感应电动势也一定为零 B .穿过线圈的磁通量不为零时,感应电动势也一定不为零 C .穿过线圈的磁通量均匀变化时,感应电动势也均匀变化 D .穿过线圈的磁通量变化越快,感应电动势越大 (二)、感应电动势方向(判断电势高低) 例:飞机在我国上空匀速巡航。机翼保持水平,飞行高度不变。由于地磁场的作用,金属 机翼上有电势差。设飞行员左方机翼末端处的电势为U 1,右方机翼末端处的电势为U 2,(A,C ) A .若飞机从西往东飞,U 1比U 2高 B .若飞机从东往西飞,U 2比U 1高 C .若飞机从南往北飞,U 1比U 2高 D .若飞机从北往南飞,U 2比U 1高 (三)、感应电动势大小计算 例:在如图所示的平面中, L 1、L 2是两根平行的直导线, ab 是垂直跨在L 1、L 2上并且可以 左右滑动的直导线, 它的长度是d , 电阻是r . 在线路中接入定值电阻R 和电容器C , 如图所示. 当ab 以速度v 向右匀速滑动时, 电容器上极板带什么电荷? 电量多少? ( 四)法拉第电磁感应定律与直流电综合 (1)、求回路电流、及由电流计算安培力和电热 例: 如图所示,PN 与QM 两平行金属导轨相距1m ,电阻不计,两端分别接有电阻R 1和 R 2,且R 1=6Ω,ab 导体的电阻为2Ω,与导轨良好接触并可在导轨上无摩擦地滑动,垂直穿过导轨平面的匀强磁场的磁感应强度为1T 。现ab 以恒定速度v =3m/s 匀速向右 a b R C L L 2 L 1

高考物理知识讲解 电磁感应中的电路及图像问题(提高) 专题复习资料含答案

物理总复习:电磁感应中的电路及图像问题 【考纲要求】 1、理解电磁感应中的电路问题 2、理解磁感应强度随时间的变化规律图像 3、理解感应电动势(路端电压)随时间的变化规律图像 4、理解感应电流随时间的变化规律图像 5、理解安培力随时间的变化规律图像 【考点梳理】 考点、电磁感应中的电路及图像问题 要点诠释: 电磁感应现象中图像问题的分析,要抓住磁通量的变化,从而推知感应电动势(电流) 大小变化的规律,用楞次定律判断出感应电动势(或电流)的方向,从而确定其正负,以及 在坐标中的范围。 分析回路中的感应电动势或感应电流的大小及其变化规律,要利用法拉第电磁感应定律 来分析。有些问题还要画出等效电路来辅助分析。 另外,要正确解决图像问题,必须能根据图像的定义把图像反映的规律对应到实际过程 中去,又能根据实际过程的抽象规定对应到图像中去,最终根据实际过程的物理规律进行判 断,这样,才抓住了解决图像问题的根本。 解决这类问题的基本方法: (1)明确图像的种类,是B t -图像还是t φ-图像,E t -图像,或者I t -图像。对于切割 磁感线产生感应电动势和感应电流的情况,还常涉及感应电动势E 和感应电流I 随线圈位移 x 变化的图像,即E -x 图像和I -x 图像。 (2)分析电磁感应的具体过程。 (3)结合楞次定律、法拉第电磁感应定律、左手定则、右手定则、安培定则、欧姆定律、牛顿运动定律等规律判断方向、列出函数方程。 (4)根据函数方程,进行数学分析,如斜率及其变化、两轴的截距等。 (5)画图像或判断图像。 【典型例题】由于磁通量变化引起的 类型一、根据B t -图像的规律,选择E t -图像、I t -图像 电磁感应中线圈面积不变、磁感应强度均匀变化,产生的感应电动势为 S B E n n nSk t t φ??===??,磁感应强度的变化率B k t ?=?是定值,感应电动势是定值, 感应电流E I R r =+就是一个定值,在I t -图像上就是水平直线。 例1、矩形导线框abcd 固定在匀强磁场中,磁感线的方向与导线框所在平面垂直,规定磁场的正方向垂直纸面向里,磁感应强度B 随时间变化的规律如图所示。若规定顺时针方向为感应电流I 的正方向,下列各图中正确的是( )

第二十二讲-电磁感应与动量结合

第二十二讲电磁感应与动量结合 电磁感应与动量的结合主要有两个考点: 对与单杆模型,则是与动量定理结合。例如在光滑水平轨道上运动的单杆(不受其他力作用),由于在磁场中运动的单杆为变速运动,则运动过程所受的安培力为变力,依据动量定理 F t P ?=?安,而又由于F t BIL t BLq ?=?= 安 ,= BLx q N N R R ?Φ = 总总 , 21 P mv mv ?=-,由以上四 式将流经杆电量q、杆位移x及速度变化结合一起。 对于双杆模型,在受到安培力之外,受到的其他外力和为零,则是与动量守恒结合考察较多一、安培力冲量的应用 例1:★★如图所示,在光滑的水平面上,有一垂直向下的匀强磁场分布在宽度为L的区域内,现有一个边长为a(a﹤L)的正方形闭合线圈以初速度v0垂直磁场边界滑过磁场后,速度为v(v﹤v0),那么线圈(B ) A.完全进入磁场中时的速度大于(v0+v)/2 B.完全进入磁场中时的速度等于(v0+v)/2 C.完全进入磁场中时的速度小于(v0+v)/2 D.以上情况均有可能 分析:进入和离开磁场的过程分别写动量定理(安培力的冲量与电荷量有关,电荷量与磁通量的变化量有关,进出磁场的安培力冲量相等) 点评:重点考察了安培力冲量与电荷量关系。 例2:★★★如图所示,在水平面上有两条导电导轨MN、PQ,导轨间距为d,匀强磁场垂直于导轨所在的平面向里,磁感应强度的大小为B,两根完全相同的金属杆1、2间隔一定的距离摆开放在导轨上,且与导轨垂直。它们的电阻均为R,两杆与导轨接触良好,导轨电阻不计,金属杆的摩擦不计。杆1以初速度v0滑向杆2,为使两杆不相碰,则杆2固定与不固定两种情况下,最初摆放两杆时的最少距离之比为( C )

电磁感应典型例题和练习进步

电磁感应 课标导航 课程内容标准: 1.收集资料,了解电磁感应现象的发现过程,体会人类探索自然规律的科学态度和科学精神。 2.通过实验,理解感应电流的产生条件,举例说明电磁感应在生活和生产中的应用。 3.通过探究,理解楞次定律。理解法拉第电磁感应定律。 4.通过实验,了解自感现象和涡流现象。举例说明自感现象和涡流现象在生活和生产中的应用。 复习导航 本章内容是两年来高考的重点和热点,所占分值比重较大,复习时注意把握: 1.磁通量、磁通量的变化量、磁通量的变化率的区别与联系。 2.楞次定律的应用和右手定则的应用,理解楞次定律中“阻碍”的具体含义。 3.感应电动势的定量计算,以及与电磁感应现象相联系的电路计算题(如电流、电压、功 率等问题)。 4.滑轨类问题是电磁感应的综合问题,涉及力与运动、静电场、电路结构、磁场及能量、 动量等知识、要花大力气重点复习。 5.电磁感应中图像分析、要理解E-t、I-t等图像的物理意义和应用。 第1课时电磁感应现象、楞次定律 1、高考解读 真题品析

知识:安培力的大小与方向 例1. (09年上海物理)13.如图,金属棒ab置于水平 放置的U形光滑导轨上,在ef右侧存在有界匀强磁场B, 磁场方向垂直导轨平面向下,在ef左侧的无磁场区域cdef 内有一半径很小的金属圆环L,圆环与导轨在同一平面内当金属棒ab在水平恒力F作用下从磁场左边界ef处由静止开始向右运动后,圆环L有__________(填收缩、扩张)趋势,圆环内产生的感应电流_______________(填变大、变小、不变)。 解析:由于金属棒ab在恒力F的作用下向右运动,则abcd回路中产生逆时针方向的感应电流,则在圆环处产生垂直于只面向外的磁场,随着金属棒向右加速运动,圆环的磁通量将增大,依据楞次定律可知,圆环将有收缩的趋势以阻碍圆环的磁通量将增大;又由于金属棒向右运动的加速度减小,单位时间内磁通量的变化率减小,所以在圆环中产生的感应电流不断减小。 答案:收缩,变小 点评:深刻领会楞次定律的内涵 热点关注 知识:电磁感应中的感应再感应问题 例8、如图所示水平放置的两条光滑轨道上有可自由移动的金属棒 PQ、MN,当PQ在外力作用下运动时,MN在磁场力作用下向右运动. 则PQ所做的运动可能是 A.向右匀速运动 B.向右加速运动 C.向左加速运动 D.向左减速运动

电磁感应经典高考题综合1

高考电磁感应经典试题(精选)专题训练 1.(2013全国新课标理综1第25题)如图,两条平行导轨所在平面与水平地面的夹角为θ,间距为L。导轨上端接有一平行板电容器,电容为C。导轨处于匀强磁场中,磁感应强度大小为B,方向垂直于导轨平面。在导轨上放置一质量为m的金属棒,棒可沿导轨下滑,且在下滑过程中保持与导轨垂直并良好接触。已知金属棒与导轨之间的动摩擦因数为μ,重力加速度大小为g。忽略所有电阻。让金属棒从导轨上端由静止开始下滑,求: (1)电容器极板上积累的电荷量与金属棒速度大小的关系; (2)金属棒的速度大小随时间变化的关系。 2.(2012·上海物理)如图,质量为M的足够长金属导轨abcd放在光滑的绝缘水平面上。一电阻不计,质量为m的导体棒PQ放置在导轨上,始终与导轨接触良好,PQbc构成矩形。棒与导轨间动摩擦因数为μ,棒左侧有两个固定于水平面的立柱。导轨bc段长为L,开始时PQ左侧导轨的总电阻为R,右侧导轨单位长度的电阻为R0。以ef为界,其左侧匀强磁场方向竖直向上,右侧匀强磁场水平向左,磁感应强度大小均为B。在t=0时,一水平向左的拉力F垂直作用在导轨的bc边上,使导轨由静止开始做匀加速直线运动,加速度为a。 (1)求回路中感应电动势及感应电流随时间变化的表达式; (2)经过多长时间拉力F达到最大值,拉力F的最大值为多少 (3)某过程中回路产生的焦耳热为Q,导轨克服摩擦力做功为W,求导轨动能的增加量。

3.(22分)(2012·浙江理综)为了提高自行车夜间行驶的安全性,小明同学设计了一种“闪烁”装置。如图所示,自行车后轮由半径r1=×10-2m的金属内圈、半径r2=的金属外圈和绝缘幅条构成。后轮的内、外圈之间等间隔地接有4根金属条,每根金属条的中间均串联有一电阻值为R的小灯泡。在支架上装有磁铁,形成了磁感应强度B=、方向垂直纸面向外的“扇形”匀强磁场,其内半径为r1、外半径为r2、张角θ=π/6 。后轮以角速度ω=2πrad/s相对于转轴转动。若不计其它电阻,忽略磁场的边缘效应。 (1)当金属条ab进入“扇形”磁场时,求感应电动势E,并指出ab上的电流方向; (2)当金属条ab进入“扇形”磁场时,画出“闪烁”装置的电路图; (3)从金属条ab进入“扇形”磁场时开始,经计算画出轮子一圈过程中,内圈与外圈之间电势差U ab 随时间t变化的U ab-t图象; (4)若选择的是“、”的小灯泡,该“闪烁”装置能否正常工作有同学提出,通过改变磁感应强度B、后轮外圈半径r 2、角速度ω和张角θ等物理量的大小,优化前同学的设计方 案,请给出你的评价。 4.(2011海南物理)如图,ab和cd是两条竖直放置的长直光滑金属导轨,MN和M’N’是两根用细线连接的金属杆,其质量分别为m和2m。竖直向上的外力F作用在杆MN上,使两杆水平静止,并刚好与

高中物理必修第3册第十三章 电磁感应与电磁波测试卷专题练习(解析版)

高中物理必修第3册第十三章 电磁感应与电磁波测试卷专题练习(解析版) 一、第十三章 电磁感应与电磁波初步选择题易错题培优(难) 1.如图为两形状完全相同的金属环A 、B 平行竖直的固定在绝缘水平面上,且两圆环的圆心O l 、O 2的连线为一条水平线,其中M 、N 、P 为该连线上的三点,相邻两点间的距离满足MO l =O 1N=NO 2 =O 2P .当两金属环中通有从左向右看逆时针方向的大小相等的电流时,经测量可得M 点的磁感应强度大小为B 1、N 点的磁感应强度大小为B 2,如果将右侧的金属环B 取走,P 点的磁感应强度大小应为 A .21 B B - B .212B B - C .122B B - D .13 B 【答案】B 【解析】 对于图中单个环形电流,根据安培定则,其在轴线上的磁场方向均是向左,故P 点的磁场方向也是向左的.设1122MO O N NO O P l ====,设单个环形电流在距离中点l 位置的磁感应强度为1l B ,在距离中点3l 位置的磁感应强度为3l B ,故M 点磁感应强度 113l l B B B =+,N 点磁感应强度211l l B B B =+,当拿走金属环B 后,P 点磁感应强度2312 P l B B B B ==-,B 正确;故选B. 【点睛】本题研究矢量的叠加合成(力的合成,加速度,速度,位移,电场强度,磁感应强度等),满足平行四边形定则;掌握特殊的方法(对称法、微元法、补偿法等). 2.如图所示,两根相互平行的长直导线过纸面上的M 、N 两点,且与纸面垂直,导线中通有大小相等、方向相反的电流。O 为MN 的中点,P 为MN 连线的中垂线。一质子此时恰好经过P 点,速度方向指向O 点。下列说法正确的是 A .O 点处的磁感应强度为零 B .质子将向右偏转 C .质子将垂直于纸面向外偏转 D .质子将做直线运动 【答案】D 【解析】 【详解】

第十讲电流的磁效应和电磁感应

第十讲电流的磁效应和电磁感应 一、电流的磁效应 1.奥斯特实验 该实验证明了通电导体周围存在磁场。 2.磁场的判断:右手螺旋定则(又称安培定则) (1)通电直导线:用右手握住直导线,让大拇指指向电流方向,那么四指的弯曲方向即为磁感线的环绕方向。 磁场空间分布:以直导线上每一点为圆心的同心圆,且所在平面与直导线垂直。 磁场强弱与电流强弱有关,磁场方向与电流方向有关。 (2)通电螺线管的磁场:用右手握住螺线管,四指弯向通电螺线管的电流方向,那么大拇指的所指的方向即为通电螺线管的N极。 通电螺线管相当于空心的条形磁铁。

条形磁铁通电通电螺(外部:N极指向S极;内部:S极指向N极) 磁场强弱与电流强弱和单位长度的线圈匝数有关,磁场方向与电流方向和项圈绕法有关。 注意:通电螺线管插入铁芯后,就变成了电磁铁。点磁铁的磁性比原通电螺线管磁性大大增强。 二、磁场对电流的作用 1.通电导体在磁场中会受到力的作用。 受力方向的判断:左手定则:伸开左手,使拇指与其余四个手指垂直,并且都与手掌在同一平面内,让磁感线垂直穿过手掌心,并使四指指向电流方向,那么拇指所指方向就是通电导线在磁场中所受力的方向。 受力大小与磁场强弱和电流强弱有关;受力方向与磁场方向和电流方向有关(若一个因素改变,则感应电流方向改变,若两个因素同时改变,则感应电流方向不变)。 2.应用:直流电动机

(1)构造: (2)工作原理:通电导体在磁场中会受到力的作用 (3)能量转换:电能转换为机械能(和少部分的热能) (4)工作过程: (5)平衡位置:线圈面与磁感线垂直(线圈处于平衡位置时,受到平衡力的作用) (6)换向器的作用:当线圈转过平衡位置时,通过换向器改变电流方向,从而改变线圈的受力方向,以此保证线圈持续转动 (7)注意:直流电动机的线圈转到平衡位置时,线圈中无电流,线圈上下边受到的力为平衡力)线圈(转子)

电磁感应经典高考题

电磁感应经典高考题 (全国卷1)17.某地的地磁场磁感应强度的竖直分量方向向下,大小为4.5 10 5T。一灵敏电压表连接在当地入海河段的两岸,河宽100m该河段涨潮和落潮时有海水(视为导体)流过。设落潮时,海水 自西向东流,流速为2m/s。下列说法正确的是 A.河北岸的电势较高 B .河南岸的电势较高 C.电压表记录的电压为9mV D .电压表记录的电压为5mV 【答案】BD 【解析】海水在落潮时自西向东流,该过程可以理解为:自西向东运动的导体棒在切割竖直向下的磁场。根据右手定则,右岸即北岸是正极电势高,南岸电势低,D对C错。根据法拉第电磁感应定律 E BLv 4.5 10 5100 2 9 10 3V, B 对A错。 【命题意图与考点定位】导体棒切割磁场的实际应用题。 (全国卷2)18.如图,空间某区域中有一匀强磁场,磁感应强度方向水平,且垂直于纸面向里,磁场上边界b和下边界d水平。在竖直面内有一矩形金属统一加线圈,线圈上下边的距离很短,下边水平。线圈从水平面a开始下落。已知磁场上下边界之间的距离大于水平面a、b之间的距离。若线圈下边刚通过 圈的上下边的距离很短,所以经历很短的变速运动而进入磁场,以后线圈中磁通量不变不产生感应电流, 在c处不受安培力,但线圈在重力作用下依然加速,因此从d处切割磁感线所受安培力必然大于b处,答案D。 【命题意图与考点定位】线圈切割磁感线的竖直运动,应用法拉第电磁感应定律求解。 (新课标卷)21.如图所示,两个端面半径同为R的圆柱形铁芯同轴水平放置,相对的端面之间有一 缝隙,铁芯上绕导线并与电源连接,在缝隙中形成一匀强磁场 水平面b、c (位于磁场中)和d时,线圈所受到的磁场力的大小分别为F b、F c 和F d,则 A. F d>F c>F b B. C. F c > F b > F d D. F c < F d < F b F F 【答案】D 【解析】线圈从a到b做自由落体运动, 在b点开始进入磁场切割磁感线所有受到安培力F b,由于线 .一铜质细直棒ab水平置于缝隙中,且与圆

高二物理 知识讲解 电磁感应与电路知识、能的转化和守恒专题 提高含答案

电磁感应与电路知识、能的转化和守恒专题 【学习目标】 1.运用能的转化和守恒定律进一步理解电磁感应现象产生的条件、楞次定律以及各种电磁感应现象中能量转化关系。 2.能够自觉地从能的转化和守恒定律出发去理解或解决电磁感应现象及问题。 3.能够熟练地运用动力学的一些规律、功能转化关系分析电磁感应过程并进行计算。 4.熟练地运用法拉第电磁感应定律计算感应电动势,并能灵活地将电路的知识与电磁感应定律相结合解决一些实际的电路问题。 5.在电磁感应现象中动力学过程的分析与计算。具体地说:就是导体或线圈在磁场中受力情况和运动情况的分析与计算。 6.在电磁感应现象中,不同的力做功情况和对应的能量转化、分配情况。 【要点梳理】 要点一、运用能的转化和守恒定律理解电磁感应现象产生的条件 1.条件 穿过闭合电路的磁通量发生变化。 2.对条件的理解 (1)在电磁感应的过程中,回路中有电能产生。因此电磁感应的过程实质上是一个其它形式的能向电能转化的过程,这个转化过程必定是一个动态的过程,必定伴随着宏观或微观力做功,以实现不同形式能的转化,也就是说必须经过一个动态的或者变化的过程,才能借助磁场将其它形式的能转化为电能。 (2)导体切割磁感线在闭合回路中产生感应电流的过程:如图所示,导体棒ab 运动,回路中有感应电动势E BLv =和感应电流E I R = 产生。有感应电流I 的导体棒在磁场中受到与棒运动方向相反的安培力F BIL =安作用,要维持导体棒运动产生持续的电流必须有外力 F 外克服安培力做功,正是这一外力克服安培力做功的过程使其它形式的能转化为了回路的 电能。可见磁通量发生变化(导体棒相对于磁场运动)是外力克服安培力做功,将其它形式的能转化为电能的充要条件。 (3)闭合电路所包围的磁场随时间发生变化产生感应电流的过程:如图所示,磁感应

法拉第电磁感应定律知识点及例题

第3讲 法拉第电磁感应定律及其应用 一、感应电流的产生条件 1、回路中产生感应电动势和感应电流的条件是回路所围面积中的磁通量变化,因此研究磁通量的变化是关键,由磁通量的广义公式中φθ=B S ·sin (θ是B 与S 的夹角)看,磁通量的变化?φ可由面积的变化?S 引起;可由磁感应强度B 的变化?B 引起;可由B 与S 的夹角θ的变化?θ引起;也可由B 、S 、θ中的两个量的变化,或三个量的同时变化引起。 2、闭合回路中的一部分导体在磁场中作切割磁感线运动时,可以产生感应电动势,感应电流,这是初中学过的,其本质也是闭合回路中磁通量发生变化。 3、产生感应电动势、感应电流的条件:穿过闭合电路的磁通量发生变化。 二、法拉第电磁感应定律 公式一: t n E ??=/φ 注意: 1)该式普遍适用于求平均感应电动势。 2)E 只与穿过电路的磁通量的变化率??φ/t 有关, 而与磁通的产生、磁通的大小及变化方式、电路是否闭合、电路的结构与材料等因素无关。 公式t n E ??=φ 中涉及到磁通量的变化量?φ的计算, 对?φ的计算, 一般遇到有两种情况: 1)回路与磁场垂直的面积S 不变, 磁感应强度发生变化, 由??φ=BS , 此时S t B n E ??=, 此式中的 ??B t 叫磁感应强度的变化率, 若 ??B t 是恒定的, 即磁场变化是均匀的, 那么产生的感应电动势是恒定电动势。 2)磁感应强度B 不变, 回路与磁场垂直的面积发生变化, 则??φ=B S ·, 线圈绕垂直于匀强磁场的轴匀速转动产生交变电动势就属这种情况。 严格区别磁通量φ, 磁通量的变化量?φB 磁通量的变化率 ??φ t , 磁通量φ=B S ·, 表示穿过研究平面的磁感线的条数, 磁通量的变化量?φφφ=-21, 表示磁通量变化的多少, 磁通量的变化率??φ t 表示磁通量变化的快慢, 公式二: θsin Blv E = 要注意: 1)该式通常用于导体切割磁感线时 , 且导线与磁感线互相垂直(l B )。 2)θ为v 与B 的夹角。l 为导体切割磁感线的有效长度(即l 为导体实际长度在垂直于B 方向上的投影)。 公式Blv E =一般用于导体各部分切割磁感线的速度相同, 对有些导体各部分切割磁感线的速度不相同的情况, 如何求感应电动势? 如图1所示, 一长为l 的导体杆AC 绕A 点在纸面内以角速度ω匀速转动, 转动的区域的有垂直纸面向里的匀强磁场, 磁感应强度为B , 求AC 产生的感应电动势, 显然, AC 各部分切割磁感线的速度不相等, v v l A C ==0,ω, 且AC 上各点的线速度大小与半径成 正比, 所以AC 切割的速度可用其平均切割速v v v v l A C C =+== 222ω, 故2 21l B E ω=。 ω2 2 1BL E = ——当长为L 的导线,以其一端为轴,在垂直匀强磁场B 的平面内,以角速度ω匀速转动时,其两端感应电动势为E 。 公式三:ω···S B n E m =——面积为S 的纸圈,共n 匝,在匀强磁场B 中,以角速度ω匀速转坳,其转轴与磁

(完整版)电磁感应经典例题

电磁感应 考点清单 1 电磁感应现象 感应电流方向 (一)磁通量 1.磁通量:穿过磁场中某个面的磁感线的条数叫做穿过这一面积的磁能量.磁通量简称磁通,符号为Φ,单位是韦伯(Wb ). 2.磁通量的计算 (1)公式Φ=BS 此式的适用条件是:○1匀强磁场;○2磁感线与平面垂直. (2)如果磁感线与平面不垂直,上式中的S 为平面在垂直于磁感线方向上的投影面积. θsin S B ?=Φ 其中θ为磁场与面积之间的夹角,我们称之为“有效面积”或“正对面积”. (3)磁通量的方向性 磁通量正向穿过某平面和反向穿过该平面时,磁通量的正负关系不同.求合磁通时应注意相反方向抵消以后所剩余的磁通量. (4)磁通量的变化 12Φ-Φ=?Φ ?Φ可能是B 发生变化而引起,也可能是S 发生变化而引起,还有可能是B 和S 同时发生变化而引起的,在确定磁通量的变化时应注意. (二)电磁感应现象的产生条件 1.产生感应电流的条件:穿过闭合电路的磁通量发生变化. 2.感应电动势的产生条件:无论电路是否闭合,只要穿过电路的磁通量发生变化, 这部分电路就会产生感应电动势.这部分电路或导体相当于电源. [例1] (2004上海,4)两圆环A 、B 置于同一水平面上,其中A 为均匀带电绝缘环,B 为导体环.当A 以如图13-36所示的方向绕中心转动的角速度发生变化时,B 中产生如图所示方向的感应电流.则( ) 图13-36 A.A 可能带正电且转速减小 B.A 可能带正电且转速增大 C.A 可能带负电且转速减小 D.A 可能带负电且转速增大 [解析] 由题目所给的条件可以判断,感应电流的磁场方向垂直于纸面向外,根据楞次定律,原磁场的方向与感应电流的磁场相同时是减少的,环A 应该做减速运动,产生逆时针方向的电流,故应该带负电,故选项C 是正确的,同理可得B 是正确的.

知识讲解电磁感应与电路知识能的转化和守恒专题提高

电磁感应与电路知识、能的转化和守恒专题 编稿:张金虎审稿:李勇康 【学习目标】 1.运用能的转化和守恒定律进一步理解电磁感应现象产生的条件、楞次定律以及各种电磁感应现象中能量转化关系。 2.能够自觉地从能的转化和守恒定律出发去理解或解决电磁感应现象及问题。3.能够熟练地运用动力学的一些规律、功能转化关系分析电磁感应过程并进行计算。4.熟练地运用法拉第电磁感应定律计算感应电动势,并能灵活地将电路的知识与电磁感应定律相结合解决一些实际的电路问题。 5.在电磁感应现象中动力学过程的分析与计算。具体地说:就是导体或线圈在磁场中受力情况和运动情况的分析与计算。 6.在电磁感应现象中,不同的力做功情况和对应的能量转化、分配情况。 【要点梳理】 要点一、运用能的转化和守恒定律理解电磁感应现象产生的条件 1.条件 穿过闭合电路的磁通量发生变化。 2.对条件的理解 (1)在电磁感应的过程中,回路中有电能产生。因此电磁感应的过程实质上是一个其它形式的能向电能转化的过程,这个转化过程必定是一个动态的过程,必定伴随着宏观或微观力做功,以实现不同形式能的转化,也就是说必须经过一个动态的或者变化的过程,才能借助磁场将其它形式的能转化为电能。 (2)导体切割磁感线在闭合回路中产生感应电流的过程:如图所示,导体棒ab运 动,回路中有感应电动势EBLv?和感应电流EIR?产生。有感应电流I的导体棒在磁场中受到与棒运动方向相反的安培力FBIL?安作用,要维持导体棒运动产生持续的电 流必须有外力F外克服安培力做功,正是这一外力克服安培力做功的过程使其它形式的能转化为了回路的电能。可见磁通量发生变化(导体棒相对于磁场运动)是外力克服安培力做功,将其它形式的能转化为电能的充要条件。

2021高考物理一轮复习专题10第3讲电磁感应规律的综合题型突破练含解析

第3讲电磁感应规律的综合 考点一电磁感应中的电路问题 【典例1】在水平放置的两条平行光滑直金属导轨上放有一与其垂直的金属棒ab,匀强磁场与导轨平面垂直,磁场方向如图所示,导轨接有R1=5 Ω和R2=6 Ω的两定值电阻及电阻箱R,其余电阻不计。电路中的电压表量程为0~10 V,电流表的量程为0~3 A。现将R调至30 Ω,用F=40 N的水平向右的力使ab垂直导轨向右平移,当棒ab达到稳定状态时,两电表中有一表正好达到满偏,而另一表未达到满偏。下列说法正确的是 ( ) A.当棒ab达到稳定状态时,电流表满偏 B.当棒ab达到稳定状态时,电压表满偏 C.当棒ab达到稳定状态时,棒ab的速度大小是1 m/s D.当棒ab达到稳定状态时,棒ab的速度大小是2 m/s 【通型通法】 1.题型特征:明确电源,区分内外电路。 2.思维导引: (1)切割磁场线的导体相当于电源。 (2)清楚串并联电路的特点,灵活运用闭合电路欧姆定律。 【解析】选B、C。假设电压表满偏,则通过电流表的电流为I==2 A<3 A,所以电压表可以满偏,此时电流表的示数为2 A,故A错误,B正确;棒ab匀速运动时,水平拉力F与安培力大小相等,有F A=BIL=F,感应电动势E=U+IR1=(10+2×5)V=20 V,又E=BLv,解得v==1 m/s,故C正确,D错误。 1.五个等效:

2.解题流程: 【加固训练】 (多选)如图所示,边长为L、不可形变的正方形导线框内有半径为r的圆形磁场区域,其磁感应强度B随时间t的变化关系为B=kt(常量k>0)。回路中滑动变阻器R的最大阻值为R0,滑 动片P位于滑动变阻器中央,定值电阻R1=R0、R2=。 闭合开关S,电压表的示数为U,不考虑虚线MN右侧导体的感应电动势,则 ( ) A.R2两端的电压为 B.电容器的a极板带正电 C.滑动变阻器R的热功率为电阻R2的5倍 D.正方形导线框中的感应电动势为kL2

备战高考物理法拉第电磁感应定律-经典压轴题附详细答案

备战高考物理法拉第电磁感应定律-经典压轴题附详细答案 一、法拉第电磁感应定律 1.如图甲所示,一个电阻值为R,匝数为n的圆形金属线圈与阻值为2R的电阻R1连接成闭合回路。线圈的半径为r1。在线圈中半径为r2的圆形区域内存在垂直于线圈平面向里的匀强磁场,磁感应强度B随时间t变化的关系图线如图乙所示,图线与横、纵轴的截距分别为t0和B0。导线的电阻不计,求0至t1时间内 (1)通过电阻R1上的电流大小及方向。 (2)通过电阻R1上的电荷量q。 【答案】(1) 2 02 3 n B r Rt π 电流由b向a通过R1(2) 2 021 3 n B r t Rt π 【解析】【详解】 (1)由法拉第电磁感应定律得感应电动势为 2 202 2 n B r B E n n r t t t π π ?Φ? === ?? 由闭合电路的欧姆定律,得通过R1的电流大小为 2 02 33 n B r E I R Rt π == 由楞次定律知该电流由b向a通过R1。 (2)由 q I t =得在0至t1时间内通过R1的电量为: 2 021 1 3 n B r t q It Rt π == 2.光滑平行的金属导轨MN和PQ,间距L=1.0m,与水平面之间的夹角α=30°,匀强磁场磁感应强度B=2.0T,垂直于导轨平面向上,MP间接有阻值R=2.0Ω的电阻,其它电阻不计,质量 m=2.0kg的金属杆ab垂直导轨放置,如图(a)所示.用恒力F沿导轨平面向上拉金属杆ab,由静止开始运动,v?t图象如图(b)所示.g=10m/s2,导轨足够长.求: (1)恒力F的大小; (2)金属杆速度为2.0m/s时的加速度大小; (3)根据v?t图象估算在前0.8s内电阻上产生的热量.

经典总结电磁感应:专题1:电磁感应图像问题

专题一:电磁感应图像问题 电磁感应中经常涉及磁感应强度、磁通量、感应电动势、感应电流等随时间(或位移)变化的图像,解答的基本方法是:根据题述的电磁感应物理过程或磁通量(磁感应强度)的变化情况,运用法拉第电磁感应定律和楞次定律(或右手定则)判断出感应电动势和感应电流随时间或位移的变化情况得出图像。高考关于电磁感应与图象的试题难度中等偏难,图象问题是高考热点。 【知识要点】 电磁感应中常涉及磁感应强度B 、磁通量Φ、感应电动势E 和感应电流I 等随时间变化的图线,即B -t 图线、Φ-t 图线、E -t 图线和I -t 图线。 对于切割产生的感应电动势和感应电流的情况,有时还常涉及感应电动势和感应电流I 等随位移x 变化的图线,即E -x 图线和I -x 图线等。 还有一些与电磁感应相结合涉及的其他量的图象,例如P -R 、F -t 和电流变化率 t t I -??等图象。 这些图像问题大体上可分为两类:由给定的电磁感应过程选出或画出正确的图像,或由给定的有关图像分析电磁感应过程,求解相应的物理量。 1、定性或定量地表示出所研究问题的函数关系; 2、在图象中E 、I 、B 等物理量的方向是通过正负值来反映; 3、画图象时要注意横、纵坐标的单位长度定义或表达。 【方法技巧】 电磁感应中的图像问题的分析,要抓住磁通量的变化是否均匀,从而推知感应电动势(电流)是否大小恒定,用楞次定律或右手定则判断出感应电动势(感应电流)的方向,从而确定其正负,以及在坐标中范围。分析回路中的感应电动势或感应电流的大小,要利用法拉第电磁感应定律来分析,有些图像还需要画出等效电路图来辅助分析。 不管是哪种类型的图像,都要注意图像与解析式(物理规律)和物理过程的对应关系,都要用图线的斜率、截距的物理意义去分析问题。 熟练使用“观察+分析+排除法”。 一、图像选择问题 【例1】如图,一个边长为l 的正方形虚线框内有垂直于纸面向里的匀强磁场;一个边长也为l 的正方形导线框所在平面与磁场方向垂直;虚线框对角线ab ba 的延长线平分导线框。在t= 0时,使导线框从图示位置开始以恒定速度沿ab 方向移动,直到整个导线框离开磁场区域。以i 表示导线框中感应电流的强度, 取逆时针方向为正。下列表示i -t 关系的选项中,可能正确的是() 【解析】:从正方形线框下边开始进入到下边完全进入过程中,线框切割磁感线的有效长度逐渐增大,所以感应电流也逐渐拉增大,A 项错误;从正方形线框下边完全进入至下边刚穿出磁场边界时,切割磁感线有效长度不变,故感应电流不变,B 项错;当正方形线框下边离开磁场,上边未进入磁场的过程比正方形线框上边进入磁场过程中,磁通量减少的稍慢,故这两个过程中感应电动势不相等,感应电流也不相等,D 项错,故正确选项为C . 求解物理图像的选择类问题可用“排除法”,即排除与题目要求相违背的图像,留下正确图像;

相关文档
相关文档 最新文档