文档库 最新最全的文档下载
当前位置:文档库 › 数学建模神经网络预测模型及程序

数学建模神经网络预测模型及程序

数学建模神经网络预测模型及程序
数学建模神经网络预测模型及程序

年份

(年) 1(1988) 2(1989) 3(1990) 4(1991) 5(1992) 6(1993)

7(1994) 8(1995)

实际值

(ERI)

年份

(年) 9(1996) 10(1997) 11(1998) 12(1999) 13(2000) 14(2001)

15(2002) 16(2003)

实际值

(ERI)

BP 神经网络的训练过程为: 先用1988 年到2002 年的指标历史数据作为网络的输入,用1989 年到2003 年的指标历史数据作为网络的输出,组成训练集对网络进行训练,使之误差达到满意的程度,用这样训练好的网络进行预测.

采用滚动预测方法进行预测:滚动预测方法是通过一组历史数据预测未来某一时刻的值,然后把这一预测数据再视为历史数据继续预测下去,依次循环进行,逐步预测未来一段时期的值. 用1989 年到2003 年数据作为网络的输入,2004 年的预测值作为网络的输出. 接着用1990 年到2004 年的数据作为网络的输入,2005 年的预测值作为网络的输出.依次类推,这样就得到2010 年的预测值。

目前在BP 网络的应用中,多采用三层结构. 根据人工神经网络定理可知,只要用三层的BP 网络就可实现任意函数的逼近. 所以训练结果采用三层BP模型进行模拟预测. 模型训练误差为,隐层单元数选取8个,学习速率为,动态参数,Sigmoid参数,最大迭代次数3000.运行3000次后,样本拟合误差等于。

P=[。。。];输入T=[。。。];输出

% 创建一个新的前向神经网络

net_1=newff(minmax(P),[10,1],{'tansig','purelin'},'traingdm')

% 当前输入层权值和阈值

inputWeights={1,1}

inputbias={1}

% 当前网络层权值和阈值

layerWeights={2,1}

layerbias={2}

% 设置训练参数

= 50;

= ;

= ;

= 10000;

= 1e-3;

% 调用TRAINGDM 算法训练BP 网络

[net_1,tr]=train(net_1,P,T);

% 对BP 网络进行仿真

A = sim(net_1,P);

% 计算仿真误差

E = T - A;

MSE=mse(E)

x=[。。。]';%测试

sim(net_1,x)

既然题目说的是预测,那么倒数第二行的代码x=[。。。]';%测试,x的值怎么确定呢,是不是题目从所给的数据中随便选一组作为测试啊顺便问一下,为什么要有这个x呢对未来的预测和这个x有什么关系啊

sim(net_1,x)

net_1是已经训练好的网络(用的是1988-2003的数据)

从题目知道网络的输入-输出数据是这样产生的

输入P 对应输出T

>2003

>2004

>2005

…………

>2009

以上构成了1994-1988+1=7组输入输出对。

利用P/T进行训练,训练成功(一般还要设一个确认集进行泛化能力的检测,光是训练误差小是不行的)后。sim(net_1,x)这是对网络进行仿真。在这个仿真函数中,给一个输入,(类似训练时用的输入P,列数可以不同,但行数必须一样),网络就给出你想要的输出。

而这个x就是你最后要进行的预测的输入。由于你预测的是2010年的值,那么输入就是为1995-2009,这样“按道理”,网络就给出了2010年的值

明白没

P=[1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16];

T=[ ];

net_1=newff(minmax(P),[10,1],{'tansig','purelin'},'traingdm')

inputWeights={1,1}

inputbias={1}

layerWeights={2,1}

layerbias={2}

= 50;

= ;

= ;

= 10000;

= 1e-3;

[net_1,tr]=train(net_1,P,T);

A = sim(net_1,P);

E = T - A;

MSE=mse(E)

P1=[1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17]; T1= sim(net_1,P1);

plot(P,T,'r*');

hold on;

plot(P1,T1,'bo');

基于BP神经网络的预测模型

基于BP神经网络的国际黄金价格预测模型 公文易文秘资源网顾孟钧张志和陈友2009-1-2 13:35:26我要投稿添加到百度搜藏 [摘要] 为了寻找国际黄金价格与道琼斯工业指数、美国消费者指数,国际黄金储备等因素之间的内在关系,本文对1972年~2006年间的各项数据首先进行归一化处理,利用MATLAB神经网络工具箱进行模拟训练,建立了基于BP神经网络的国际黄金价格预测模型 [摘要] 为了寻找国际黄金价格与道琼斯工业指数、美国消费者指数,国际黄金储备等因素之间的内在关系,本文对1972年~2006年间的各项数据首先进行归一化处理,利用MATLAB神经网络工具箱进行模拟训练,建立了基于BP神经网络的国际黄金价格预测模型。 [关键词] MATLAB BP神经网络预测模型数据归一化 一、引言 自20世纪70年代初以来的30多年里,世界黄金价格出现了令人瞠目的剧烈变动。20 世纪70年代初,每盎司黄金价格仅为30多美元。80年代初,黄金暴涨到每盎司近700美元。本世纪初,黄金价格处于每盎司270美元左右,此后逐年攀升,到2006年5月12日达到了26年高点,每盎司730美元,此后又暴跌,仅一个月时间内就下跌了约160美元,跌幅高达21.9%。最近两年,黄金价格一度冲高到每盎司900多美元。黄金价格起伏如此之大,本文根据国际黄金价格的影响因素,通过BP神经网络预测模型来预测长期黄金价格。 二、影响因素 刘曙光和胡再勇证实将观察期延长为1972年~2006年时,则影响黄金价格的主要因素扩展至包含道琼斯指数、美国消费者价格指数、美元名义有效汇率、美国联邦基金利率和世界黄金储备5个因素。本文利用此观点,根据1972年~2006年各因素的值来建立神经网络预测模型。 三、模型构建

数学建模神经网络预测模型及程序

年份 (年) 1(1988) 2(1989) 3(1990) 4(1991) 5(1992) 6(1993) 7(1994) 8(1995) 实际值 (ERI) 年份 (年) 9(1996) 10(1997) 11(1998) 12(1999) 13(2000) 14(2001) 15(2002) 16(2003) 实际值 (ERI) BP 神经网络的训练过程为: 先用1988 年到2002 年的指标历史数据作为网络的输入,用1989 年到2003 年的指标历史数据作为网络的输出,组成训练集对网络进行训练,使之误差达到满意的程度,用这样训练好的网络进行预测. 采用滚动预测方法进行预测:滚动预测方法是通过一组历史数据预测未来某一时刻的值,然后把这一预测数据再视为历史数据继续预测下去,依次循环进行,逐步预测未来一段时期的值. 用1989 年到2003 年数据作为网络的输入,2004 年的预测值作为网络的输出. 接着用1990 年到2004 年的数据作为网络的输入,2005 年的预测值作为网络的输出.依次类推,这样就得到2010 年的预测值。 目前在BP 网络的应用中,多采用三层结构. 根据人工神经网络定理可知,只要用三层的BP 网络就可实现任意函数的逼近. 所以训练结果采用三层BP模型进行模拟预测. 模型训练误差为,隐层单元数选取8个,学习速率为,动态参数,Sigmoid参数,最大迭代次数3000.运行3000次后,样本拟合误差等于。 P=[。。。];输入T=[。。。];输出 % 创建一个新的前向神经网络 net_1=newff(minmax(P),[10,1],{'tansig','purelin'},'traingdm') % 当前输入层权值和阈值 inputWeights={1,1} inputbias={1} % 当前网络层权值和阈值 layerWeights={2,1} layerbias={2} % 设置训练参数 = 50; = ; = ; = 10000; = 1e-3;

基于神经网络的预测控制模型仿真

基于神经网络的预测控制模型仿真 摘要:本文利用一种权值可以在线调整的动态BP神经网络对模型预测误差进行拟合并与预测模型一起构成动态组合预测器,在此基础上形成对模型误差具有动态补偿能力的预测控制算法。该算法显著提高了预测精度,增强了预测控制算法的鲁棒性。 关键词:预测控制神经网络动态矩阵误差补偿 1.引言 动态矩阵控制(DMC)是一种适用于渐近稳定的线性或弱非线性对象的预测控制算法,目前已广泛应用于工业过程控制。它基于对象阶跃响应系数建立预测模型,因此建模简单,同时采用多步滚动优化与反馈校正相结合,能直接处理大时滞对象,并具有良好的跟踪性能和较强的鲁棒性。 但是,DMC算法在实际控制中存在一系列问题,模型失配是其中普遍存在的一个问题,并会不同程度地影响系统性能。DMC在实际控制中产生模型失配的原因主要有2个,一是诸如建模误差、环境干扰等因素,它会在实际控制的全程范围内引起DMC的模型失配;二是实际系统的非线性特性,这一特性使得被控对象的模型发生变化,此时若用一组固定的阶跃响应数据设计控制器进行全程范围的控制,必然会使实际控制在对象的非建模区段内出现模型失配。针对DMC模型失配问题,已有学者进行了大量的研究,并取得了丰富的研究成果,其中有基于DMC控制参数在线辨识的智能控制算法,基于模型在线辨识的自校正控制算法以及用神经元网络进行模型辨识、在辨识的基础上再进行动态矩阵控制等。这些算法尽管进行在线辨识修正对象模型参数,仍对对象降阶建模误差(结构性建模误差)的鲁棒性不好,并对随机噪声干扰较敏感。针对以上问题,出现了基于误差校正的动态矩阵控制算法。这些文献用基于时间序列预测的数学模型误差代替原模型误差,得到对未来误差的预测。有人还将这种误差预测方法引入动态矩阵控制,并应用于实际。这种方法虽然使系统表现出良好的稳定性,但建立精确的误差数学模型还存在一定的困难。 本文利用神经网络通过训练学习能逼近任意连续有界函数的特点,建立了一种采用BP 神经网络进行预测误差补偿的DMC预测控制模型。其中神经网络预测误差描述了在预测模型中未能包含的一切不确定性信息,可以归结为用BP神经网络基于一系列过去的误差信息预测未来的误差,它作为模型预测的重要补充,不仅降低建立数学模型的负担,而且还可以弥补在对象模型中已简化或无法加以考虑的一切其他因素。 本文通过进行仿真,验证了基于神经网络误差补偿的预测控制算法的有效性及优越性,

神经网络模型预测控制器

神经网络模型预测控制器 摘要:本文将神经网络控制器应用于受限非线性系统的优化模型预测控制中,控制规则用一个神经网络函数逼近器来表示,该网络是通过最小化一个与控制相关的代价函数来训练的。本文提出的方法可以用于构造任意结构的控制器,如减速优化控制器和分散控制器。 关键字:模型预测控制、神经网络、非线性控制 1.介绍 由于非线性控制问题的复杂性,通常用逼近方法来获得近似解。在本文中,提出了一种广泛应用的方法即模型预测控制(MPC),这可用于解决在线优化问题,另一种方法是函数逼近器,如人工神经网络,这可用于离线的优化控制规则。 在模型预测控制中,控制信号取决于在每个采样时刻时的想要在线最小化的代价函数,它已经广泛地应用于受限的多变量系统和非线性过程等工业控制中[3,11,22]。MPC方法一个潜在的弱点是优化问题必须能严格地按要求推算,尤其是在非线性系统中。模型预测控制已经广泛地应用于线性MPC问题中[5],但为了减小在线计算时的计算量,该部分的计算为离线。一个非常强大的函数逼近器为神经网络,它能很好地用于表示非线性模型或控制器,如文献[4,13,14]。基于模型跟踪控制的方法已经普遍地应用在神经网络控制,这种方法的一个局限性是它不适合于不稳定地逆系统,基此本文研究了基于优化控制技术的方法。 许多基于神经网络的方法已经提出了应用在优化控制问题方面,该优化控制的目标是最小化一个与控制相关的代价函数。一个方法是用一个神经网络来逼近与优化控制问题相关联的动态程式方程的解[6]。一个更直接地方法是模仿MPC方法,用通过最小化预测代价函数来训练神经网络控制器。为了达到精确的MPC技术,用神经网络来逼近模型预测控制策略,且通过离线计算[1,7.9,19]。用一个交替且更直接的方法即直接最小化代价函数训练网络控制器代替通过训练一个神经网络来逼近一个优化模型预测控制策略。这种方法目前已有许多版本,Parisini[20]和Zoppoli[24]等人研究了随机优化控制问题,其中控制器作为神经网络逼近器的输入输出的一个函数。Seong和Widrow[23]研究了一个初始状态为随机分配的优化控制问题,控制器为反馈状态,用一个神经网络来表示。在以上的研究中,应用了一个随机逼近器算法来训练网络。Al-dajani[2]和Nayeri等人[15]提出了一种相似的方法,即用最速下降法来训练神经网络控制器。 在许多应用中,设计一个控制器都涉及到一个特殊的结构。对于复杂的系统如减速控制器或分散控制系统,都需要许多输入与输出。在模型预测控制中,模型是用于预测系统未来的运动轨迹,优化控制信号是系统模型的系统的函数。因此,模型预测控制不能用于定结构控制问题。不同的是,基于神经网络函数逼近器的控制器可以应用于优化定结构控制问题。 在本文中,主要研究的是应用于非线性优化控制问题的结构受限的MPC类型[20,2,24,23,15]。控制规则用神经网络逼近器表示,最小化一个与控制相关的代价函数来离线训练神经网络。通过将神经网络控制的输入适当特殊化来完成优化低阶控制器的设计,分散和其它定结构神经网络控制器是通过对网络结构加入合适的限制构成的。通过一个数据例子来评价神经网络控制器的性能并与优化模型预测控制器进行比较。 2.问题表述 考虑一个离散非线性控制系统: 其中为控制器的输出,为输入,为状态矢量。控制

BP神经网络预测模型及应用

B P神经网络预测模型及 应用 IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】

B P神经网络预测模型及应用 摘要采用BP神经网络的原理,建立神经网络的预测模型,并利用建立的人工神经网络训练并预测车辆的销售量,最后得出合理的评价和预测结果。 【关键词】神经网络模型预测应用 1 BP神经网络预测模型 BP神经网络基本理论 人工神经网络是基于模仿生物大脑的结构和功能而构成的一种信息处理系统。该网络由许多神经元组成,每个神经元可以有多个输入,但只有一个输出,各神经元之间不同的连接方式构成了不同的神经网络模型,BP网为其中之一,它又被称为多层前馈神经网络。 BP神经网络预测模型 (1)初始化,给各连接权值(wij,vi)及阐值(θi)赋予随机值,确定网络结构,即输入单元、中间层单元以及输出层单元的个数;通过计算机仿真确定各系数。 在进行BP网络设计前,一般应从网络的层数、每层中的神经元个数、初始值以及学习方法等方面进行考虑,BP网络由输入层、隐含层和输出层组成。隐含层神经元个数由以下经验公式计算: (1)

式中:s为隐层节点数,m为输入层节点数,n为输出层节点数,h为正整数,一般取3―7. BP网络采用了有一定阈值特性的、连续可微的sigmoid函数作为神经元的激发函数。采用的s 型函数为: (2) 式中:s为隐层节点数,m为输入层节点数,n为输出层节点数,h为正整数,一般取3―7.计算值需经四舍五入取整。 (2)当网络的结构和训练数据确定后,误差函数主要受激励函数的影响,尽管从理论分析中得到比的收敛速度快,但是也存在着不足之处。当网络收敛到一定程度或者是已经收敛而条件又有变化的时候,过于灵敏的反映会使得系统产生震荡,难于收敛。因此,对激励函数进行进一步改进,当权值wij (k)的修正值Δwij(k) Δwij(k+1)<0时,,其中a为大于零小于1的常数。这样做降低了系统进入最小点时的灵敏度,减少震荡。 2 应用 车辆销售量神经网络预测模型 本文以某汽车制造企业同比价格差、广告费用、服务水平、车辆销售量作为学习训练样本数据。如表1。 表1 产品的广告费、服务水平、价格差、销售量 月份广告费 (百万元)服务水平价格差

数学建模分数预测论文完整版

高考录取分数预测模型 姓名: 班级: 姓名: 班级: 姓名: 班级:

关于高考录取分数预测模型的探究 摘要 本文通过差分指数平滑法和自适应过滤法分别建立模型,根据历年学校录取线预测下一年的录取分数线。最后,根据预测出来的最佳数据,给2014年报考本校的考生做出合理的建议。 对于问题一和问题二,首先根据题意和所给出的学校历年的录取分数线,不难分析出高校的录取分数线是由当年的题目难度、考生报考数量、“大年”和“小年”等因素决定的。每年的分数线还是有一定差距的,例如,本校2012在北京市电气专业的录取线是428分,而2013年是488分,相差60分。因此,预测的时候,需要通过一些方法使数据趋于平滑,使之便于预测。通过这些分析,建立了两种可靠的预测模型。 模型一通过差分的方法,利用Matlab软件将后一年Y t与前一年Y t-1的数据相减得到一个差分值,构成一个新序列。将新序列的值与实际值依次迭加,作为下一期的预测值。以此类推,预测出2014年的录取分数线。模型二是根据一组给定的权数w对历年的数据进行加权平均计算一个预测值y,然后根据预测误差调整权数以减少误差,这样反复进行直至找到一组最佳权数,使误差减小到最低限度,再利用最佳权数进行加权平均预测。这两种方法很好的解决了历年录取分数相差较大难以预测的问题。预测值相对准确。预测结果数据量较大,在此以河北省为例,给出预测结果模型一:2014年本校电气专业录取线为495,模型二:2014年本校电气专业录取线为536。 最后,通过预测出的数据,比对模型一和模型二,取最佳预测值,给报考科技学院的考生做出较为合理的建议。 关键词:序列权数差分值加权平均高考录取线

数学建模之灰色预测模型

、灰色预测模型 简介(P372) 特点:模型使用的不是原始数据列,而是生成的数据列。 优点:不需要很多数据,一般只用4个数据就能解决历史数据少,序列的完整性 和可靠性低的问题。 缺点:只适用于中短期的预测和指数增长的预测。 1、GM(1,1)预测模型 GM(1,1)表示模型为一阶微分方程,且只含有一个变量的灰色模型。 1.1模型的应用 ① 销售额预测 ② 交通事故次数的预测 ③ 某地区火灾发生次数的预测 ④ 灾变与异常值预测,如对旱灾,洪灾,地震等自然灾害的时间与程度进行预报 (百度文库) ⑤ 基于GM(1,1)模型的广州市人口预测与分析(下载的文档) ⑥ 网络舆情危机预警(下载的文档) 1.2步骤 ① 级比检验与判断 由原始数据列x (0) =(x (o ) (1),x (o ) (2),…,x (0)(n))计算得序列的级比为 2 2 若序列的级比(k) -(e^ '.e 0 2),贝U 可用x (0)作令人满意的GM(1,1)建模。 光滑比为 P (k )= k x <0) ( k) \- (0) x (I) i 珀 若序列满足 p(k 1) ::1,k =2,3,…,n-1; p(k) p(k)〔0,T,k=3,4, ,n; 「:: 0.5. ■ (k)二 x (0)(k -1) x (0) (k) ,k - 2,3, , n.

则序列为准光滑序列。 否则,选取常数c 对序列x (0)做如下平移变换 y (o )(k)=x (o ) (k) c,k=1,2「, n, 序列y (0)的级比 、 y 0(k-1) 一 'y (k) (0) ,k = 2,3, , n ? y(k) ② 对原始数据x (0)作一次累加得 x ⑴=(x ⑴(1),X (1)(2),…,x (1)(n)) =(x (0)(1,x (0)(1 +x (0) (2),…,x (0)⑴+…+x (0)(n)). 建立模型: dx ( 1 ) ——ax ⑴=b,( 1) dt ③ 构造数据矩阵B 及数据向量丫 ■ -z (1) ⑵ 1 1 f x (0) (2)1 B = -z ⑴⑶1 9 亍 ,丫二 x (0)(3) a -z ⑴(n) 1_ x (0) (n)J 其中:z ⑴(k) =0.5x ⑴(k) 0.5x ⑴(k -1),k =2,3, ,n. ④ 由 求得估计值召=b?= ⑤ 由微分方程(1)得生成序列预测值为 ( b?) b? x>(1)(k+1)= :x (0)(1)—三 ,k=0,1,…,n —V, l 召丿 召 则模型还原值为 00)(k 1)=0)化 1)-0),k =1,2, ,n-1,. ⑥ 精度检验和预测 残差 ;(k) =x (0)(k)-?(0)(k),k=1,2, ,n, -(B T B)4B T Y u?=

基于Bp神经网络的股票预测

基于神经网络的股票预测 【摘要】: 股票分析和预测是一个复杂的研究领域,本论文将股票技术分析理论与人工神经网络相结合,针对股票市场这一非线性系统,运用BP神经网络,研究基于历史数据分析的股票预测模型,同时,对单只股票短期收盘价格的预测进行深入的理论分析和实证研究。本文探讨了BP神经网络的模型与结构、BP算法的学习规则、权值和阈值等,构建了基于BP神经网络的股票短期预测模型,研究了神经网络的模式、泛化能力等问题。并且,利用搭建起的BP神经网络预测模型,采用多输入单输出、单隐含层的系统,用前五天的价格来预测第六天的价格。对于网络的训练,选用学习率可变的动量BP算法,同时,对网络结构进行了隐含层节点的优化,多次尝试,确定最为合理、可行的隐含层节点数,从而有效地解决了神经网络隐含层节点的选取问题。 【abstract] Stock analysis and forecasting is a complex field of study. The paper will make research on stock prediction model based on the analysis of historical data, using BP neural network and technical analysis theory. At the same time, making in-depth theoretical analysis and empirical studies on the short-term closing price forecasts of single stock. Secondly, making research on the model and structure of BP neural network, learning rules, weights of BP algorithm and so on, building a stock short-term forecasting model based on the BP neural network, related with the model of neural network and the ability of generalization. Moreover, using system of multiple-input single-output and single hidden layer, to forecast the sixth day price by BP neural network forecasting model structured. The network of training is chosen BP algorithm of traingdx, while making optimization on the node numbers of the hidden layer by several attempts. Thereby resolve effectively the problem of it. 【关键词】BP神经网络股票预测分析 1.引言 股票市场是一个不稳定的非线性动态变化的复杂系统,股价的变动受众多因素的影响。影响股价的因素可简单地分为两类,一类是公司基本面的因素,另一类是股票技术面的因素,虽然股票的价值是公司未来现金流的折现,由公司的基本面所决定,但是由于公司基本面的数据更新时间慢,且很多时候并不能客观反映公司的实际状况,采用适当数学模型就能在一定

神经网络预测控制综述

神经网络预测控制综述 摘要:近年来,神经网络预测控制在工业过程控制中不仅得到广泛的应用,而且其理论研究也取得了很大进展。对当前各种神经刚络预测控制方法的现状及其工业应用进行了较深入地分析,并对其存在的问题和今后可能的发展趋势作了进一步探讨。 关键词:神经网络;预测控制:非线性系统;工业过程控制 Abstract: In recent years, neural network predictive control has not only been widely used in industrial process control, but also has made great progress in theoretical research. The current status of various neural network prediction control methods and their industrial applications are analyzed in depth, and the existing question and possible future development trends are further discussed. Keywords: neural network; predictive control: nonlinear system; industrial process control

20世纪70年代以来,人们从工业过程的特点出发,寻找对模型精度要去不高而同样能实现高质量控制性能的方法,预测控制就是在这种背景下发展起的[1]。预测控制技术最初山Richalet和Cutler提出[2],具有多步预测、滚动优化、反馈校正等机理,因此能够克服过程模型的不确定性,体现出优良的控制性能,在工业过程控制中取得了成功的应用。如Shell公司、Honeywell公司、Centum 公司,都在它们的分布式控制系统DCS上装备了商业化的预测控制软件包.并广泛地将其应用于石油、化工、冶金等工业过程中[3]。但是,预测函数控制是以被控对象的基函数的输出响应可以叠加为前提的,因而只适用于线性动态系统控制。对于实际中大量的复杂的非线性工业过程。不能取得理想的控制效果。而神经网络具有分布存储、并行处理、联想记忆、自组织和自学习等功能,以神经元组成的神经网络可以逼近任意的:线性系统。使控制系统具有智能化、鲁棒性和适应性,能处理高维数、非线性、干扰强、难建模的复杂工业过程。因此,将神经网络应用于预测控制,既是实际应用的需要,同时也为预测控制理论的发展开辟了广阔的前景。本文对基于神经网络的预测控制的研究现状进行总结,并展望未来的发展趋势。 l神经网络预测控制的基本算法的发展[4] 实际中的控制对象都带有一定的菲线性,大多数具有弱非线性的对象可用线性化模型近似,并应用已有的线性控制理论的研究成果来获得较好的控制效果。而对具有强非线性的系统的控制则一直是控制界研究的热点和难点。 就预测控制的基本原理而言,只要从被控对象能够抽取出满足要求的预测模型,它便可以应用于任何类型的系统,包括线性和非线性系统。 由于神经网络理论在求解非线性方面的巨大优势,很快被应用于非线性预测控制中。其主要设计思想是:利用一个或多个神经刚络,对非线性系统的过程信息进行前向多步预测,然后通过优化一个含有这些预测信息的多步优化目标函数,获得非线性预测控制律。在实际应用与理论研究中形成了许多不同的算法。如神经网络的内模控制、神经网络的增量型模型算法控制等,近来一些学者对有约束神经网络的预测控制也作了相应的研究。文献[5]设计了多层前馈神经网络,使控制律离线求解。文献[6]采用两个网络进行预测,但结构复杂,距离实际应用还有一定的距离,文献[7]利用递阶遗传算法,经训练得出离线神经网络模型.经多步预测得出对象的预测模型,给出了具有时延的非线性系统的优化预测控制。将神经网络用于GPC的研究成果有利用Tank.Hopfield网络处理GPC矩阵求逆的算法,基于神经网络误差修正的GPC算法、利用小脑模型进行提前计算的GPC 算法、基于GPC的对角递归神经网络控制方法以及用神经网络处理约束情形的预

数学建模 人口模型 人口预测

关于计划生育政策调整对人口数量、结构及其影响的研究 【摘要】 本文着重于讨论两个问题:1、从目前中国人口现状出发,对于中国未来人口数量进行预测。2、针对深圳市讨论单独二胎政策对未来人口数量、结构及其对教育、劳动力供给与就业、养老等方面的影响。 对于问题1从中国的实际情况和人口增长的特点出发,针对中国未来人口的老龄化、出生人口性别比以及乡村人口城镇化等,提出了 Logistic 、灰色预测、等方法进行建模预测。 首先,本文建立了 Logistic 阻滞增长模型,在最简单的假设下,依照中国人口的历 史数据,运用线形最小二乘法对其进行拟合, 对 2014 至 2040 年的人口数目进行了预测, 得出在 2040 年时,中国人口有 14.32 亿。在此模型中,由于并没有考虑人口的年龄、 出生人数男女比例等因素,只是粗略的进行了预测,所以只对中短期人口做了预测,理 论上很好,实用性不强,有一定的局限性。 然后, 为了减少人口的出生和死亡这些随机事件对预测的影响, 本文建立了 GM(1,1) 灰色预测模型,对 2014 至 2040 年的人口数目进行了预测,同时还用 2002 至 2013 年的 人口数据对模型进行了误差检验,结果表明,此模型的精度较高,适合中长期的预测, 得出 2040 年时,中国人口有 14.22 亿。与阻滞增长模型相同,本模型也没有考虑年龄 一类的因素,只是做出了人口总数的预测,没有进一步深入。 对于问题2针对深圳市人口结构中非户籍人口比重大,流动人口多这一特点,我们采用了灰色GM(1,1)模型,通过matlab 对深圳市自2001至2010年的数据进行拟合,发现其人口变化近似呈线性增长,线性相关系数高达0.99,我们就此认定其为线性相关并给出线性方程。同理,针对其非户籍人口,我们进行matlab 拟合发现,其为非线性相关,并得出相关函数。并做出了拟合函数 0.0419775(1)17255.816531.2t X t e ?+=?-。 对于新政策的实施,我们做出了两个假设。在假设只有出生率改变的情况,人口呈现一次函数线性增加。并拟合出一次函数0.032735617965.017372.5t Y e ?=?-;在假设人口增长率增长20%时,做出了预测如果单独二胎政策实施,到2021年,深圳市常住人口数将会到达1137.98千万人。 关键词:GM(1,1)灰色模型 Logistic 阻滞增长模型 线性拟合 非线性拟合

对中国大学生数学建模竞赛历年成绩的分析与预测

2012年北京师范大学珠海分校数学建模竞赛 题目:对中国大学生数学建模竞赛历年成绩的分析与预测 摘要 本文研究的是对自数学建模竞赛开展以来各高校建模水平的评价比较和预测问题。我们将针对题目要求,建立适当的评价模型和预测模型,主要解决对中国大学生数学建模竞赛历年成绩的评价、排序和预测问题。 首先我们用层次分析法来评价广东赛区各校2008年至2011年及全国各大高校1994至2011年数学建模成绩,从而给出广东赛区各校及全国各大高校建模成绩的科学、合理的评价及排序;其次运用灰色预测模型解决广东赛区各院校2012年建模成绩的预测。 针对问题一,首先我们对比了2008到2011年参加建模比赛的学校,通过分析我们选择了四年都参加了比赛的学校进行合理的排序(具体分析过程见表13),同时对本科甲组和专科乙组我们分别进行排序比较。在具体解决问题的过程中,我们先分析得出影响评价结果的主要因素:获奖情况和获奖比例,其中获奖情况主要考虑国家一等奖、国家二等奖、省一等奖、省二等奖、省三等奖,我们采用层次分析法,并依据判断尺度构造出各个层次的判断矩阵,对它们逐个做出一致性检验,在一致性符合要求的情况下,通过公式与matlab求得各大学的权重,总结得分并进行排序(结果见表11);在对广东赛区各高校2012建模成绩预测问题中,我们采用灰色预测模型,我们以华南农业大学为例,得到该校2012年建模比赛获奖情况为:省一等奖、省二等奖、省三等奖及成功参赛奖分别为5、9、8、8(其它各高校预测结果见表10)。 针对问题二,我们对全国各院校的自建模竞赛活动开展以来建模成绩排序采用与问题一相同的数学模型,在获奖情况考虑的是全国一等奖、全国二等奖。运用matlab求解,结果见表12。 针对问题三,我们通过对一、二问排序的解答及数据的分析,得出在对院校进评价和预测时还应考虑到各院的师资力量、学校受重视程度、学生情况、参赛经验等因素,考虑到这些因素,为以后评价高校建模水平提供更可靠的依据。 关键词:层次分析法权向量灰色预测模型模型检验 matlab

数学建模-新产品销量预测问题

销量预测问题 一、 摘要 本文通过建立微分方程模型,探讨了新产品进入市场后销售量变化的情况。模型由简单到复杂、由理想到现实,逐步利用广告对市场的限制探讨了产品销售量变化的情况,分析了广告费用对销售量产生的影响,建立比较符合现实的模型。 问题一中,新产品的投入,没有市场竞争,有良好的市场环境,也有良好的口碑,故属于较为简单的微分方程模型,可直接建立模型。 问题二中,产品销售存在一定的市场容量N , 统计表明dt dx 与该产品的潜在容量)(t x N -成正比,故建立阻滞增长模型求解。 问题三中,则考虑了广告费用对产品销量的影响,分析了广告费用与销售速率之间的关系,建立数学微分方程模型,并运用了Matlab 软件编程求解。 二、 问题提出 一种新产品问世,经营者自然要关心产品的卖出情况。如何采取有效措施,使得产品销量大,获取更大的利润,这是每个经营者最为关注的问题。 1、设t 时刻产品销量的增长率dx dt 与)(t x 成正比, 预测t 时的产品销量()t x ; 2、设考虑到产品销售存在一定的市场容量N, 统计表明dt dx 与该产品的潜在容量)(t x N -成正比, 预测t 时的产品销量()t x ; 3、试考虑影响产品销量的广告因素,并建立模型,预测t 时的产品销量()t x . 三、 模型假设与符号系统 模型假设: 模型基本假设:; 假设1:在考虑影响商品销售的因素时,不考虑偶然因素,如经济、战争因素、政治干预等; 假设2:产品的销售量符合产品的生命周期; 假设3:产品为日常用品,不是耐用品,每个人都需要。

符号系统: x(t) 为t 时刻新产品的销售量 a 为每件新产品的宣传效率 N 为市场的销售容量 b 为产品销售量的增长率与潜在容量的比例系数 s(t) 为商品t 时刻的销售量(即新产品在此时刻一段时间的销售量,如七月份,八月份的销售量,而不是总销售量) M(t) 为t 时刻的广告费用 θ 为销售量本身的衰减系数 ? 为广告宣传对销售速率的影响 T 为商品销售速率最大的时刻 四、 模型的建立与求解 问题一模型的建立与求解: 模型的建立: t 时刻时,新产品的销售量为x (t ),把x (t )当做连续、可微函数处理。 每件新产品都是宣传品,且单位时间内每件新产品能够使a 件新产品被销售。 由假设可知: x(t+?t)-x(t)=ax(t) 即: dx ax dt = 开始时有0x 件新产品被销售 x(0)= 0x 整理得: (0)0dx ax dt x x ?=???=? 求解得: ()0at x t x e =

船舶预测数学建模 模型

模型-船舶预测数学建模. 武汉理工大学第十一届大学生数学建模竞赛 承诺书 我们仔细阅读了《武汉理工大学第十一届大学生数学建模竞赛的选手须知》。我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网

上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。 我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公 开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。 我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。如有违反竞赛规则的行为,我们将受到严肃处理。 我们的竞赛编号为: C 10 我们的选择题号为: B 参赛队员: 队员1:刘晓辉 队员2 :刘春华 :黎燕燕3队员 评阅编号:

现代船舶是为交通运输、港口建设、渔业生产和科研勘测等服务的,随着工业的发展,船舶服务面的扩大,船舶也日趋专业化。不同的部门对船舶有

不同的要求,使用权船舶的航行区域、航行状态、推进方式、动力装置、造船材料和用途等到方面也各不同,因而船舶种类繁多,而这些船舶在船型上、构造上、运用性能上和设备上又各有特点。 目前主要分类方式及特点 1、船舶的航行区域:船舶按航行区域可分为海洋船反作用、港湾船舶和内河船舶三种。航行内湖泊上的船舶一般也归入内河船舶类。 2、船舶航行的状态:船舶按航行状态可归纳为浮行、滑行、腾空航行三种。浮行是指船舶在航行时,船体的重量和排水量相等而瓢浮在水面航行的船舶(又叫做排水量船)。水下潜航的船舶也属于浮行。滑行船舶是指高速状态下航行时,船体的大部分被水的动力作用抬起,在水面滑行。滑行时船的排水量小于静止时的排水量,同时减小了湿表面积,水阻力大大减小,使船的速度加快。如快艇、水翼艇。腾空航行船舶是船身在完全脱离水面的状态下航行的。如气垫船和冲翼艇。 3、推进方式:船舶按进方式可分为原始的撑篙、拉绎、划桨、摇橹等人力推进的船舶和风力推进的帆船;机械推进的明轮船,喷水船、螺旋桨船、以及空气推进船等。明轮是船舶以机器作为动力以来,最古老的一种推进器。以后又出现把推进哭装在船的艉部水面以下部分的螺旋桨推进器,后来,对少数殊要求的船舶有的在艉部螺旋桨上加上导管,也有在艏部加装辅助的螺旋桨。大多数船舶螺旋桨的叶片是固定的,对经常驻要求改变工况的船,采用可调螺距的螺旋桨。浅水航道中的船舶还有喷水推进的。全浮式气垫船和腾空艇上则用空气螺旋桨推进。 4、动力装置:船舶按动力装置的种类可分为蒸汽机船、内燃机船,。电力推进船和核动力装置船。早期使用的蒸汽往复机目前已被淘汰。汽轮机(有蒸汽轮机和燃汽轮机)在一些高速客船和军舰上使用。现在各类船舶应用最广的是柴油机动力装置。小艇1为动力的。电动推进船是以内燃机或蒸汽机驱动发电机(上也有用汽油机作或直接用蓄电池)发电,再带动与螺旋桨联成一体的电动机来推进船舶。这种动力装置的螺旋桨转速可任意调节,且操作简单、操纵方便,为有特殊要求的船舶采用,如潜艇、破冰船厂、科学考察船、火车渡船等。核动力装置是当前世界上较先进的动力装置,它以核反应堆通过原子核的反应,产生蒸汽热能来驱动汽轮机运转。 用途场合分类及特点 民用船舶的分类: 运输船——客船、客货船、货船(杂货船、散货船、集装箱船、滚装船、载驳船、油船、液化气体船、冷藏船等)、渡船、驳船等。 工程船——挖泥船、起重船、浮船坞、救捞船、布设船(布缆船、敷管船等)、打桩船。 渔业船——网类渔船(拖网渔船、围网渔船、刺网渔船等)、钓类鱼船、捕鲸船、渔业加工船、渔业调查船、冷藏运输船等。 港务船——破冰船、引航船、消防船、供应船、交通船、工作船(测量船船、航标船等)、浮油回收船等。 海洋开发船——海洋调查船,、深潜器(艇)、钻井船、钻井平台等。 拖船和推船——海洋拖船、港作拖船、,内河拖船、海洋拖船、内河拖船等。、

数学建模常用算法模型

按模型的数学方法分: 几何模型、图论模型、微分方程模型、概率模型、最优控制模型、规划论模型、马氏链模型等 按模型的特征分: 静态模型和动态模型,确定性模型和随机模型,离散模型和连续性模型,线性模型和非线性模型等 按模型的应用领域分: 人口模型、交通模型、经济模型、生态模型、资源模型、环境模型等。 按建模的目的分: 预测模型、优化模型、决策模型、控制模型等 一般研究数学建模论文的时候,是按照建模的目的去分类的,并且是算法往往也和建模的目的对应 按对模型结构的了解程度分: 有白箱模型、灰箱模型、黑箱模型等 比赛尽量避免使用,黑箱模型、灰箱模型,以及一些主观性模型。 按比赛命题方向分: 国赛一般是离散模型和连续模型各一个,2016美赛六个题目(离散、连续、运筹学/复杂网络、大数据、环境科学、政策) 数学建模十大算法 1、蒙特卡罗算法 (该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟可以来检验自己模型的正确性,比较好用的算法) 2、数据拟合、参数估计、插值等数据处理算法 (比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用Matlab作为工具)

3、线性规划、整数规划、多元规划、二次规划等规划类问题 (建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo、Lingo软件实现) 4、图论算法 (这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备) 5、动态规划、回溯搜索、分治算法、分支定界等计算机算法 (这些算法是算法设计中比较常用的方法,很多场合可以用到竞赛中) 6、最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法 (这些问题是用来解决一些较困难的最优化问题的算法,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用) 7、网格算法和穷举法 (当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具) 8、一些连续离散化方法 (很多问题都是从实际来的,数据可以是连续的,而计算机只认的是离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的) 9、数值分析算法 (如果在比赛中采用高级语言进行编程的话,那一些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用)10、图象处理算法 (赛题中有一类问题与图形有关,即使与图形无关,论文中也应该要不乏图片的这些图形如何展示,以及如何处理就是需要解决的问题,通常使用Matlab进行处理) 算法简介 1、灰色预测模型(必掌握)

数学建模——-甲醇价格近期预测和长期预测模型

实用文档 甲醇价格近期预测和长期预测模型 摘要:合理安排产品价格是公司企业取得良好收益的主要举措。从区域经济发 展和产品产业在关系的视角,对影响产品价格的因素进行分析选择,在此基础上,利用各因素的相互联系,对产品的市场价格进行预测,又是帮助公司企业 合理安排产品价格变动的主要方法。 本文对甲醇而言进行价格预测,甲醇的价格波动受到进口量、进口均价、出口量、出口均价、月产量和开工率的影响,利用多个因素的数据进行也测, 有利于甲醇制造商对价格做出合理安排,既能让消费者满意,又能给自己带来 最大的收益。 本题的最主要的问题在于误差,误差能尽可能减小,但不会消失。为了 接减少预测误差,本文采用多种方法对甲醇的价格进行短期、长期的预测。 关键词:预测灰色预测权数神经网络

一、问题重述 1.1问题一 已知近期和近几年的甲醇市场变化和具体数值,对近期(一个月)的甲 醇行情变化做出预测。 1.2问题二 在第一问的基础上,综合更多因素,对长期(一年)的甲醇行情变化做 出预测。 1.3问题三 有代表性、指导性、真实性、前瞻性的价格指数模型(类PPI)和行业 景气指数模型(类PMI)[1],是指导公司企业做出决策的重要指导方案。 1.4 问题四 企业的发展离不开好的决策方法,根据以往数据和预测给出建议是很由必 要性参考价值和的。 二、问题分析 2.1 问题一 该题是一道短期预测题,短期预测的方法都很多,但是简单的方法受到 的限制多,适用围小,一次合理选择预测方法是一个难点。在这个题目中,大 量数据的处理同样是一个难点。为了预测下一个月的平均单价,我们简化条件,处理数据采用灰色预测法,建立G(1,1)模型求解。 2.2 问题二 该题同样是预测题目,除了问题一遇到的问题,另外,时间的变化,其 他因素的影响也会造成价格的变动,考虑的要素增多,为了全面考虑,我们利 用回归方程,建立线性方程组,多次求解,得到各因素的权重,进而解决问题。 2.3 问题三 给出价格指数模型,景气指数模型,必要的问题是对两个概念的理解, 涉及到经济方面的问题,难点在于经济预测和数学模型的联系,前两个问题的 合理解决也有助于解决该题。 2.4问题四

数学建模预测模型与案例

预测模型 最近几年,在全国大学生数学建模竞赛常常出现预测模型或是与预测有关的题目,例如疾病的传播,雨量的预报等。什么是预测模型?如何预测?有那些方法?对此下面作些介绍。 预测作为一种探索未来的活动早在古代已经出现,但作为一门科学的预测学,是在科学技术高度发达的当今才产生的。“预测”是来自古希腊的术语。我国也有两句古语:“凡事预则立,不预则废”,“人无远虑,必有近忧”。卜卦、算命都是一种预测。中国古代著名著作“易经”就是一种专门研究预测的书,现在研究易经的人也不少。古代的预测主要靠预言家,即先知们的直观判断,或是借助于某些先兆,缺乏科学根据。预测技术的发展源于社会的需求和实践。20世纪初期风行一时的巴布生图表就是早期的市场预测资料,哈佛大学的每月指数图表为商品市场、证券市场和货币市场预测提供了依据。然而这些预测都未能揭示1929-1930年经济危期的突然暴发,使工商界深感失望。尔后,经济学家们从挫折中吸取了教训,采用趋势和循环技术对商业进行分析和预测,科学预测也因此开始萌生。20世纪30年代凯思斯提出政府干预和市场机制相结合的经济模型,1937年诺依曼又提出了扩展经济模型,对近代经济模型产生重要的影响,科学的经济和商业预测也就步入发展阶段。 技术预测开始于二次世界大战后的20世纪40年代,直到20世纪50年代未才广泛应用于工农业和军事部门。由于社会、科学技术和经济的大量需求,预测技求才成为一门真正的科学,预测未来是当

代科学的重要任务。 20世纪以来,预测技术所以得以长足进步,一方面,与社会需求有很大关系,另一方面通过社会实践和长期历史验证,表明事物的发展是可以预测的。而且借助可靠的数据和科学的方法,以及预测技术人员的努力,预测结果的可靠性和准确性可以达到很高的程度,这也是预测技术迅速发展的另一个重要原因。 科学技术、经济和社会预测的应验率也是很高的。维聂尔曾预言20世纪是电子时代,法国思想家迈希尔18世纪末到19世纪初对巴黎未来几百年的发展进行了预测。从1950年的实际情况分析,他的预测中有36%得到证实,28%接近实现,只有36%是错误的。法国哲学家和数学家冠道塞在法国大革命时期曾采用外推法进行了一系列社会预测,其中75%得到证实。沙杰尔莱特1901年在《二十世纪的发明》一书中的一些预测,其中64%得到证实。凯木弗尔特在1910年和1915年公布的25项预测中,到1941年只有3项未被证实,3项是错误的。我国明朝开国功臣刘基就预测将来是天上铁鸟飞,地上铁马跑,那时还没有火车、飞机。 预测的目的在于认识自然和社会发展规律,以及在不同历史条件下各种规律的相互作用,揭示事物发展的方向和趋势,分析事物发展的途径和条件,使人们尽早地预知未来的状况和将要发生的事情,并能动地控制其发展,使其为人类和社会进步服务。因而预测是决策的重要的前期工作。决策是指导未来的,未来既是决策的依据,又是决策的对象,研究未来和预测未来是实现决策科学化的重要前提。预测

相关文档
相关文档 最新文档