文档库 最新最全的文档下载
当前位置:文档库 › 乙酰二茂铁的制备及柱色谱分离

乙酰二茂铁的制备及柱色谱分离

乙酰二茂铁的制备及柱色谱分离
乙酰二茂铁的制备及柱色谱分离

乙酰二茂铁的制备及柱色谱分离

【摘要】

通过本实验将了解半微量实验的操作方法,掌握柱色谱分离和提纯化合物的原理和技术,通过乙酰二茂铁的制备理解Friedel-Crafts酰基化反应原理。

本实验还将对之前实验所得的部分产品运用毛细管法进行熔点测定。

【关键词】

乙酰二茂铁、Friedel-Crafts酰基化反应、柱色谱分离、毛细管法熔点测定。

【引言】

(一)实验原理

二茂铁又名双环戊二烯基铁,是由两个环戊二烯负离子和一个二价铁离子键合而成。二茂铁具有类似苯的一些芳香性,比苯更容易发生亲电取代反应。以乙酸酐为酰化剂,三氟化硼、氢氟酸或磷酸为催化剂,二茂铁可以发生Friedel-Crafts酰基化反应,主要生成一元取代物及少量1,1’-二元取代物。

本实验通过柱层析分离提纯产品,主要是根据二茂铁、乙酰二茂铁和1,1’-二乙酰二茂铁对硅胶的吸附能力的差异而进行分离提纯。常用的柱层析色谱和薄层层析色谱均属于吸附色谱,因此用薄层层析可以筛选出适宜的柱层析洗脱剂。

本次实验对熔点的测定主要根据原理:熔点是1atm条件下,固体化合物从固态变为液态时的温度。

(二)反应式

【实验部分】

(一)实验仪器

1.层析柱

图1 层析柱示意图

2.毛细管法测熔点

图2 提勒管(b形管),浓硫酸作热浴

(二)试剂及产物

(三)实验步骤

一. 乙酰二茂铁的制备

称取150mg(0.81mmol)二茂铁,放入25ml茄形瓶中,加入1.0mL(1.08g,10mmol)醋酸酐。安装装有无水氯化钙干燥管的空气冷凝管。沸水浴加热并搅拌使二茂铁溶解。稍冷,打开塞子迅速加入0.5mL 85% H3PO4,反应液变成红黑色。由于第一次实验将水漏入,故重新合成。于沸水中加热搅拌8--10min。趁热用滴管将反应液滴入盛有约2g碎冰的烧杯中,搅拌下用Na2CO3饱和水溶液小心中和至无气泡产生,得到大量黄色固体和墨绿色溶液。充分冷却后抽滤,用冷水充分洗涤沉淀至中性,抽干。在红外灯下烘干。

实验得黄色粉末状固体,M = 0.16g,产率为87.01%。

称重后,取少量粗产品置于点样管中,加入乙酸乙酯溶解,用石油醚:乙酸乙酯= 20:1(体积比)的展开剂观察薄层层析现象。

层析结果如下:

图3 粗产品层析结果

层析结果说明,产品中还残留有大量未反应的原料。

二. 乙酰二茂铁的柱层析分离

1. 拌样

称取上述粗产品20mg置于干燥小烧杯中,滴加乙酸乙酯使溶解,加入约200mg硅胶(60 – 100目),搅拌均匀得桔黄色浆状物,红外灯下干燥得松散的颗粒状物。

2. 湿法装柱

将色谱柱垂直固定在铁架台上,夹子夹在柱顶端。从柱的顶端用玻棒将少许棉花推到柱的底部,向柱中加入石油醚至柱高的1/2。加入一层约3mm厚的石英砂。柱活塞下接一

乙酰二茂铁的制备及柱色谱分离预习实验报告及思考题

乙酰二茂铁的制备及柱色谱分离 一.实验目的 1. 通过乙酰二茂铁的制备,理解Friedel-Crafts 酰基化反应原理。 2. 掌握机械搅拌等操作。 3. 掌握用柱色谱分离和提纯化合物的原理和技术。 二.实验原理 1.乙酰二茂铁的制备 二茂铁及其衍生物是一类很稳定的有机过渡金属络合物。二茂铁是橙色的固体,又名双环戊二烯基铁,是由两个环戊二烯负离子和一个二价铁离子键合而成,具有夹心型结构。二茂铁具有类似苯的一些芳香性,比苯更容易发生亲电取代反应。以乙酸酐为酰化剂,三氟化硼、氢氟酸或磷酸为催化剂,二茂铁可以发生Friedel-Crafts 酰基化反应,主要生成一元取代物及少量1,1′-二元取代物。二茂铁及其衍生物可作为火箭燃料的添加剂、汽油的抗爆剂、硅树脂和橡胶的防老剂及紫外线吸收剂等。 二茂铁的乙酰化可以形成乙酰二茂铁,根据反应条件,可以生成单乙酰二茂铁或者双乙酰二茂铁。由于二茂铁分子中存在亚铁离子,对氧化的敏感限制了它在合成中的应用,如不能够用混酸对其消化。制备乙酰二茂铁的反应式如下: 32 343+3H 3二茂铁 乙酰二茂铁 1,1′-二乙酰基二茂铁 在上述条件下,主要生成单乙酰二茂铁,双乙酰二茂铁很少,但同时有未反应的二茂铁。 2.柱色谱分离 本实验用柱色谱分离提纯产品。柱色谱分离提纯是根据二茂铁和乙酰二茂铁对硅胶吸附能力的差异而进行分离提纯。 柱层析是在层析柱中装入作为固定相的吸附剂,把试样流经固定相而被吸附,然后利用薄层层析中探索到的能分离组分的溶剂流经层析柱,试样中的各组在固定相和溶剂间重新分配,分配比大的组分先流出,分配比小的组分后流出,对于不易流出的组分可另选择合适的溶剂再进行洗脱,这样就可以达到各组分的分离提纯。 柱色谱(柱上层析)常用的有吸附色谱和分配色谱两类。吸附色谱常用氧化铝和硅胶作固定相;而分配色谱中以硅胶、硅藻土和纤维素作为支持剂,以吸收较大量的液体作固定相,而支持剂本身不起分离作用。? 吸附柱色谱通常在玻璃管中填入表面积很大经过活化的多孔性或粉状固体吸附剂。当待分离的混合物溶液流过吸附柱时,各种成分同时被吸附在柱的上端。当洗脱剂流下时,由于不同化合物吸附能力不同,往下洗脱的速度也不同,于是形成了不同层次,即溶质在柱中自上而下按对吸附剂的亲和力大小分别形成若干色带,再用溶剂洗脱时,已经分开的溶质可以

有机化学实验十柱色谱

实验十柱色谱 一.实验目的: 1. 学习柱色谱的原理及方法。 二.实验重点和难点: 1.学习柱色谱的原理及方法。 实验类型:基础性实验学时:4学时 三.实验装置和药品: 主要实验仪器:色谱柱(或25mL碱式滴定管) 25mL锥形瓶 普通漏斗玻璃棉或脱脂棉量筒试管电子天平烧杯 主要化学试剂:石油醚(600C—900C)丙酮中性氧化铝(100--200目) 500g 菠菜色素95%乙醇 四.实验装置图: 五.实验原理: 柱色谱法是色谱方法之一。 图 1 柱色谱装置色谱法是分离、纯化和鉴定有机化合物的重要方法之一。 (一)色谱法的基本原理: 是利用混合物中各组分在某一物质中的吸附或溶解性能(即分配) 的不同,或其它亲 和作用的性能的差异,使混合物的溶液流经该种物质,进行反复的吸附或分配等作用,从 而将各组分分开。 (二)色谱法的分类: 1.根据组分在固定相中的作用原理不同,可分为吸附善谱、分配色谱、离子交换色谱、排阻色谱等。 2.根据操作条件的不同,可分为柱色谱、纸色谱、薄层色谱、气相色谱及高效液相 色谱等类型。 (三)柱色谱原理: 柱色谱是化合物在液相和固相之间的分配,属于固--液吸附层析。 图1就是一般柱色谱装置。柱内装有”活性”固体(固定相) 如氧化铝或硅胶等。液 体样品从柱顶加入流经吸附柱时,即被吸附在柱的上端,然后从柱顶加入洗脱溶剂冲洗。由于固定相对各组分吸附能力不同,以不同速度沿柱下移,形成若干色带。再用溶剂洗脱,吸附能力最弱的组分随溶剂首先流出,分别收集各组分,再逐个鉴定。 1.吸附剂:常用的吸附剂有:氧化铝、硅胶、氧化镁、碳酸钙和活性炭等。吸附剂一般 要经过纯化和活性处理。选择吸附剂的首要条件是与被吸附物及展开剂均无化学作用。吸 附能力与颗粒大小有关。颗粒太粗,流速快分离效果不好。颗粒小,表面积大,吸附能力 就高,但流速慢,因此应根据实际分离需要而定。色谱用的氧化铝可分酸性、中性和碱性 三种。 2.溶质的结构与吸附能力的关系:化合物的吸附能力与分子极性有关。分子极性越强,

硅胶吸附柱色谱技术实际应用

硅胶吸附柱色谱技术实际应用 2009-10-11 23:36:02| 分类:化工交流|字号订阅 色谱法,又称层析法.是一种以分配平衡为机理的分配方法.色谱体系包含两个相,一个是固定相,一个是流动相.当两相相对运动时,反复多次的利用混合物中所含各组分分配平衡性质的差异,最后达到彼此分离的目的. 色谱法从发明到现在已有八十多年的历史.它是纯化和分离有机或无机物的一种方法. 色谱法按固定相的状态可分为柱色谱.平板色谱和棒色谱三种而实验室中最常用的是柱层析和薄层层析,以及它们之间的配合应用.[1] 柱层析[2] 1 吸附色谱地原理 在一定条件下,硅胶与被分离物质之间产生作用,这种作用主要是物理和化学作用两种.物理作用来自于硅胶表表面与溶质分子之间的范德华力.化学作用主要是硅胶表面的硅羟基与待分离物质之间的氢键作用. 2操作步骤 2.1 硅胶准备[3] 硅胶一般选用250-400目(即40-63μm直径的硅胶颗粒),根据ΔRf选用硅胶的用量. 2.2 实验仪器准备 一支玻璃色谱柱,一个铁架台,烧杯,锥形瓶,径口直径较大的玻璃漏斗,一支玻璃棒, 2.3 装柱[4] 2.3.1 吸附剂的加入 ①干法:将吸附剂一次加入色谱管,振动管壁使其均匀下沉,然后沿管壁缓缓加入开始层析时使用的流动相,或将色谱管下端出口加活塞,加入适量的流动相,旋开活塞使流动相缓缓滴出,然后自管顶缓缓加入吸附剂,使其均匀地润湿下沉,在管内形成松紧适度的吸附层。操作过程中应保持有充分的流动相留在吸附层的上面。

②湿法:将吸附剂与流动相混合,搅拌以除去空气泡,徐徐倾入色谱管中,然后再加入流动相,将附着于管壁的吸附剂洗下,使色谱柱表面平整。俟填装吸附剂所用流动相从色谱柱自然流下,液面将柱表面相平时,即加试样溶液. 2.3.2试样的加入 ①将试样溶于层析时使用的流动相中,再沿色谱管壁缓缓加入。注意勿使吸附剂翻起。或将试样溶于适当的溶剂中。与少量吸附剂混匀,再使溶剂挥发去尽后使呈松散状;将混有试样的吸附剂加在已制备好的色谱柱上面。如试样在常用溶剂中不溶解,可将试样与适量的吸附剂在乳钵中研磨混匀后加入。 2.4洗脱 [5] 除另有规定外,通常按流动相洗脱能力大小,递增变换流动相的品种和比例,分别分部收集流出液,至流出液中所含成分显著减少或不再含有时,再改变流动相的品种和比例。操作过程中应保持有充分的流动相留在吸附层的上面。 2.5 检测 2.5.1 初步检测 当冲洗溶剂流出一定量后,可对流出液进行初步检测,并且将锥形瓶更换成小试管进行收集.一般只进行初步的快捷检测,因此通常是取一小薄层板,用铅笔和直尺将硅胶板分划成多个小方块,并安一定的次序编号.取一根内径为 0.3mm左右的玻璃毛细管蘸取少量流出液,点于薄层板的一个小格内,待半点干后,然后用物理的或化学的方法检测. 2.5.2 正式检测 ①点样: 取分部收集的冲洗溶液进行分别直接点样,如果冲洗溶液太稀,浓度太小,可先浓缩.点样的容器一般用玻璃毛细管,点样斑点的直径一般为 3-5mm. ②展开:在普通的展开槽中进行,展开方式常选用上行展开. ③展开剂:实用冲洗溶液. ④显色:一般常用物理检测法和化学检测法.物理检测法中首先有紫外光法,紫外光常用两种波长(254nm与365nm).其次是碘蒸气显色法.化学检出法通常惊醒显色剂直接喷雾.显色剂有通用显色剂和专用显色剂.通用显色剂最常见的是硫酸-乙醇或甲醇(1:1)溶液,喷雾后,有的化合物立即反应,但多数化合物需加热后经历数分钟才显色,不同化合物的反应不同,所以颜色也往往不同.专用显色剂是指对某个或某一类化合物显色的试剂,利用化合物本身的特有性质,或

HPLC分离技术

液相色谱分离技术 一、液相色谱分离条件选择 HPLC可供选择的固定相及流动相选择都有自身的特点和应用范围。选择分离类型应根据分离分析的目的、试样的性质和量的多少、现有设备条件等来确定最佳分离方法. 1、依据相对分子质量选择 一般的液相色谱(吸附、分配及离子交换)最适合的相对分子质量范围200—2000.对于相对分子质量大于2000的样品,则用空间排阻色谱较佳. 2、根据溶解性能选择 如果样品可溶于水并属于能离解的物质,以采用离子交换色谱为佳;如果样品溶于烃类(如苯或异辛烷),则可采用液固吸附色谱;如果样品溶于四氯化碳,则大多数可采用常规的分配或吸附色谱分离;如果样品既溶于水,又溶于异丙醇,则可采用液—液分配色谱,以水和异丙醇的混合物为流动相,以憎水性化合物为固定相. 3、根据分子结构选择 判断样品存在什么官能团.然后确定合适的色谱分离类型.例如,样品为酸、碱化合物,则采用离子交换色谱;样品为脂肪族或芳香族,可采用液—液分配色谱或液—固吸附色谱;异构体采用液—固吸附色谱;同系物不同官能团及强氢键的样品可用液—液分配色谱.现在将其 列入表18.10,作为选择分离类型的参考.

4、流动相的选择 a、液相色谱中流动相的一般要求 ①化学稳定性好.与样品不发生化学反应;与固定相不发生不可逆作用,应保持色谱柱效或柱的保留性能长期不变. ②对样品组分具有合适的极性和良好的选择性. ③必须与检测器相适应,例如,采用紫外检测器,所选用的检测波长(工作波长)应比溶剂的紫外截止波长更长.所谓溶剂的紫外截止波长是当小于外截止波长的辐射通过溶剂时,溶剂对辐射产生强烈吸收,此时溶剂被看作是光学不透明的,它严重干扰组分的吸收测量.表18.11列出了部分常用溶剂的紫外截止波长。

二茂铁和乙酰二茂铁的分离

化学与环境学院 有机化学实验报告 实验名称二茂铁与乙酰二茂铁的分离 学生姓名王君学号20132401160 专业化学(师范)年级、班级13化六 指导老师曾卓日期11月17 日

实验报告书写要求 1.实验报告应妥善保存,避免水浸、墨污、卷边,保持整洁、完好、无破损、不丢失。不得缺页或挖补;如有缺、漏页,详细说明原因。 2.实验报告应用字规范,字迹工整,须用蓝色或黑色字迹的钢笔或签字笔书写,不得使用铅笔或其它易褪色的书写工具书写(实验装置图除外)。 3.实验现象必须做到及时、真实、准确、完整记录,防止漏记和随意捏造。实验结果必须如实记录,严禁伪造数据。 4.实验前必须做好实验预习。

【实验目的】 1.了解二茂铁及乙酰二茂铁的合成方法和有关性质。 2.学习柱色谱分离技术和掌握柱色谱的操作方法。 3.学会用色谱分离法分离提纯目标化合物的方法。 4.理解色谱分离法的基本原理。 【实验原理】(包括反应机理) 硅胶层析法的分离原理是根据物质在硅胶上的吸附力不同而得到分离,一般情况下极性较大的物质易被硅胶吸附,极性较弱的物质不易被硅胶吸附,整个层析过程即是吸附、解吸、再吸附、再解吸过程。利用不同物质被吸附剂吸附能力的差异以及不同物质在流动相中溶解度的差异实现混合组分完全分离的过程。 二茂铁是一种新型的夹心过渡金属有机配合物。其茂环具有芳香性能进行亲电取代反应,可以制得二茂铁的多种衍生物,二茂铁的乙酰化形成乙酰二茂铁,根据反应条件,可以生成单乙酰二茂铁(C5H5Fe(C5H4COCH3))或双乙酰二茂铁(Fe(C5H4COCH3)2)。二茂铁的一种乙酰化反应如下: 在此反应条件下,主要生成单乙酰二茂铁,双乙酰二茂铁很少,但同时有未反应的二茂铁。本实验用柱色谱分离提纯产品。柱色谱分离提纯是根据二茂铁和乙酰二茂铁对硅胶吸附能力的差异而进行分离提纯。 柱层析是在层析柱中装入作为固定相的吸附剂,把试样流经固定相而被吸附,然后利用薄层层析中探索到的能分离组分的溶剂流经层析柱,试样中的各组在固定相和溶剂间重新分配,分配比大的组分先流出,分配比小的组分后流出,对于不易流出的组分可另选择合适的溶剂再进行洗脱,这样就可以达到各组分的分离提纯。柱色谱(柱上层析)常用的有吸附色

柱色谱分离技术

实训操作规程 柱色谱分离技术操作规程 1.装柱 装柱的好坏直接影响分离效率。装柱之前,先将空柱洗净干燥,然后将柱垂直固定在铁架台上。如果色谱柱下端没有砂芯横隔,就取一小团脱脂棉,用玻璃棒将其推至柱底,再在上面铺上一层厚0.5~1cm的石英砂,然后进行装柱。 装柱的方法有湿法和干法两种。 ①湿法装柱:将吸附剂用洗脱剂中极性最低的洗脱剂调成糊状,在柱内先加入约3/4柱高的洗脱剂,再将调好的吸附剂边敲打柱身边倒入柱中,同时打开柱子的下端活塞,在色谱柱下面放一个干净并干燥的锥形瓶,接收洗脱剂。当装入的吸附剂有一定的高度时,洗脱剂流下速度变慢,待所用吸附剂全部装完后,用流下来的洗脱剂转移残留的吸附剂,并将柱内壁残留的吸附剂淋洗下来。在此过程中,应不断敲打色谱柱,以使色谱柱填充均匀并没有气泡。柱子填充完后,在吸附剂上端覆盖一层约0.5cm厚的石英砂或覆盖 一片比柱内径略小的圆形滤纸。 ②干法装柱:在色谱柱上端放一个干燥的漏斗,将吸附剂倒入漏斗中,使其成为细流连 续地装入柱中,并轻轻敲打色谱柱柱身,使其填充均匀,再加入洗脱剂湿润。 2.加样 液体样品可以直接加入到色谱柱中,如浓度低可浓缩后再进行分离。固体样品应先用少量的溶剂溶解后再加入到柱中。在加入样品时,应先将柱内洗脱剂排至稍低于石英砂表面后停止排液,用滴管沿柱内壁把样品一次加完。在加入样品时,应注意滴管尽量向下靠近石英砂表面。样品加完后,打开下旋塞,使液体样品进入石英砂层后,再加入少量的洗脱剂将壁上的样品洗脱下来,待这部分液体的液面和吸附剂表面相齐时,即可打开安置在柱上装有洗脱剂的滴液漏斗的活塞,加入洗脱剂,进行洗脱。 3.洗脱 在洗脱过程中,样品在柱内的下移速度不能太快,如果溶剂流速较慢,则样品在柱中保留的时间长,各组分在固定相和流动相之间能得到充分的吸附或分配作用,从而使混合物,尤其是结构、性质相似的组分得以分离。但样品在柱内的下移速度也不能太慢(甚至过夜), 因为吸附剂表面活性较大,时间太长有时可能造成某些成分被破坏,使色谱带扩散,影响分离效果。因此,层析时洗脱速度要适中。通常洗脱剂流出速度为每分钟5~10滴,若洗脱剂下移速度太慢可适当加压或用水泵减压,以加快洗脱速度,直至所有色带被分开。 4.收集 如果样品中各组分都有颜色时,可根据不同的色带用锥形瓶分别进行收集,然后分别将洗脱剂蒸除得到纯组分。如果没有颜色的,只能分段收集洗脱液,再用薄层色谱或其他方法鉴定各段洗脱液的成分,成分相同者可以合并。 1.吸附剂的选择及处理 吸附剂分为无机吸附剂如硅胶、氧化铝、活性炭、氧化镁、碳酸钙、磷酸钙,有机吸附剂如纤维素、淀粉、蔗糖、聚酰胺等。一般来说,所选择吸附剂应有较大的比表面积和足够的吸附能力:对欲分离的不同物质应有不同的吸附能力,即有足够的分辨力;与洗脱剂、溶剂及样品组分不会发生化学反应;吸附剂颗粒均匀。 吸附剂一般先经过筛获得均匀的颗粒(100-200目),对含有杂质的吸附剂可用有机

柱层析分离的实验方法和技巧

柱层析分离的实验方法和技巧 常说的过柱子应该叫柱层析分离,也叫柱色谱。我们常用的是以硅胶或氧化铝作固定相的吸附柱。由于柱分的经验成分太多,所以下面我就几年来过柱的体会写些心得,希望能有所帮助。 一:柱子可以分为:加压,常压,减压 压力可以增加淋洗剂的流动速度,减少产品收集的时间,但是会减低柱子的塔板数。所以其他条件相同的时候,常压柱是效率最高的,但是时间也最长,比如天然化合物的分离,一个柱子几个月也是有的。 减压柱能够减少硅胶的使用量,感觉能够节省一半甚至更多,但是由于大量的空气通过硅胶会使溶剂挥发(有时在柱子外面有水汽凝结),以及有些比较易分解的东西可能得不到,而且还必须同时使用水泵抽气(很大的噪音,而且时间长)。以前曾经大量的过减压柱,对它有比较深厚的感情,但是自从尝试了加压后,就几乎再也没动过减压的念头了。 加压柱是一种比较好的方法,与常压柱类似,只不过外加压力使淋洗剂走的快些。压力的提供可以是压缩空气,双连球或者小气泵(给鱼缸供气的就行)。特别是在容易分解的样品的分离中适用。压力不可过大,不然溶剂走的太快就会减低分离效果。个人觉得加压柱在普通的有机化合物的分离中是比较适用的。 二:关于柱子的尺寸 应该是粗长的最好。柱子长了,相应的塔板数就高。柱子粗了,上样后样品的原点就小(反映在柱子上就是样品层比较薄),这样相对的减小了分离的难度。试想如果柱子十厘米,而样品就有二厘米,那么分离的难度可想而知,恐怕要用很低极性的溶剂慢慢冲了。而如果样品层只有0.5厘米,那么各组分就比较容易得到完全分离了。当然采用粗大的柱子要牺牲比较多的硅胶和溶剂了,不过这些成本相对于产品来说也许就不算什么了(有些不环保的说,不过溶剂回收重蒸后也就减小了部分浪费)。 现在见到的柱子径高比一般在1:5~10,书中写硅胶量是样品量的30~40倍,具体的选择要具体分析。如果所需组分和杂质分的比较开(是指在所需组分rf在0.2~0.4,杂质相差0.1以上),就可以少用硅胶,用小柱子(例如200毫克的样品,用2cm ×20cm的柱子);如果相差不到0.1,就要加大柱子,我觉得可以增加柱子的直径,比如用3cm的,也可以减小淋洗剂的极性等等。

乙酰二茂铁的制备

乙酰二茂铁的制备 一、 实验目的 1、学习相转移催化剂存在下,合成金属有机化合物的方法。 2、了解二茂铁及其衍生物的结构与性质。 3、学习乙酰二茂铁的合成。 二、 实验原理 三、 仪器与试剂 a) 仪器 有机中量制备仪 电热套 b) 试剂 DMSO 乙戊二烯 聚乙二醇 氢氧化钠 四水合氯化亚铁 18%盐酸 石油醚(60-90℃) 乙醚 无水氯化钙 10.8g (10ml )乙酸酐 磷酸 碳酸氢钠 四、 实验步骤 1、二茂铁的合成 a) 在7.5g 研成粉末的氢氧化钠和0.6ml 聚乙二醇(100ml 烧杯)加入10ml 二甲基亚砜,搅拌5min ,转入100ml 的三颈烧瓶,在搅拌条件下,加入5ml 无水乙醚和2.75ml 新解聚的环戊二烯,反应混合物颜色变化? b) 称取3.25g (0.016mol )四水合氯化亚铁于100ml 烧杯中,加入20ml 二 甲基亚砜搅拌,使氯化亚铁全溶,形成橙黄色溶液,转入100ml 恒压漏斗中。 c) FeCl 2/DMSO 溶液在15min 内滴入反应瓶,继续剧烈搅拌1hr,得棕褐色的 混合物。 d) 将上述混合物在搅拌条件下缓慢倾入50ml 18%盐酸和50g 冰的混合物 中,此时有黄色沉淀产生。抽滤,并用水充分洗涤,晾干后得橙黄色产物。 e) 粗产物在石油醚中重结晶(或升华)。熔点:173-174℃ F eC l 2D M SO ,N aO H 2+聚乙二醇Fe (C H 3C O )2O Fe C O C H 3

2、乙酰二茂铁的合成 在100ml圆底烧瓶中,加入1g二茂铁和10ml乙酸酐,在摇荡下用滴管 慢慢加入2ml 85%的磷酸。加完后用装有氯化钙干燥管的塞子塞住瓶口, 在沸水浴上加热15min,并时加摇荡。然后将反应混合物倾入盛有40g 碎冰的400ml的烧瓶中,并用10ml冷水涮洗烧瓶,将涮洗液并入烧杯。 在搅拌下,分批加入固体碳酸氢钠,到溶液呈中性为止,约需20-25g 碳酸氢钠。将中和后的反应混合物置于冰浴冷却15min,抽滤收集析出 的橙黄色固体,每次用50ml冰水洗涮两次,压干后在空气中干燥,用 石油醚(60-90℃)重结晶,产物约为0.3g,熔点84-85℃。 五、实验结果与处理 1、产品称重、计算收率。 2、测定二茂铁、乙酰二茂铁的熔点。 3、测定分析二茂铁、乙酰二茂铁红外谱图,与标准谱图作对比。 六、注意事项 1、除用柱层析外,二茂铁还可采用升华或用石油醚重结晶的方法进行纯化。 2、中和时因逸出大量二氧化碳,出现激烈鼓泡,应小心操作。

柱色谱分离的操作和注意事项

特别注意:有机溶剂对身体特有害别是心肺;肝脏等所有过柱操作都要在通风橱里进行!!!柱色谱是以硅胶或氧化铝作固定相的吸附柱。下面我就几年来过柱的体会写些心得,希望对大家能有所帮助。 1、柱子可以分为:加压,常压,减压压力可以增加淋洗剂的流动速度,减少产品收集的时间,但是会减低柱子的塔板数。所以其他条件相同的时候,常压柱是效率最高的,但是时间也最长,比如天然化合物的分离,一个柱子几个月也是有的。减压柱能够减少硅胶的使用量,感觉能够节省一半甚至更多,但是由于大量的空气通过硅胶会使溶剂挥发(有时在柱子外面有水汽凝结),以及有些比较易分解的东西可能得不到,而且还必须同时使用水泵抽气(很大的噪音,而且时间长)。以前曾经大量的过减压柱,对它有比较深厚的感情,但是自从尝试了加压后,就几乎再也没动过减压的念头了。加压柱是一种比较好的方法,与常压柱类似,只不过外加压力使淋洗剂走的快些。压力的提供可以是压缩空气,双连球或者小气泵(给鱼缸供气的就行)。特别是在容易分解的样品的分离中适用。压力不可过大,不然溶剂走的太快就会减低分离效果。个人觉得加压柱在普通的有机化合物的分离中是比较适用的。 2、关于柱子的尺寸,应该是粗长的最好柱子长了,相应的塔板数就高。柱子粗了,上样后样品的原点就小(反映在柱子上就是样品层比较薄),这样相对的减小了分离的难度。试想如果柱子十厘米,而样品就有二厘米,那么分离的难度可想而知,恐怕要用很低极性的溶剂慢慢冲了。而如果样品层只有0.5厘米,那么各组分就比较容易得到完全分离了。当然采用粗大的柱子要牺牲比较多的硅胶和溶剂了,不过这些成本相对于产品来说也许就不算什么了(有些不环保的说,不过溶剂回收重蒸后也就减小了部分浪费)。现在见到的柱子径高比一般在1:5~10,书中写硅胶量是样品量的30~40倍,具体的选择要具体分析。如果所需组分和杂质分的比较开(是指在所需组分rf在0.2~0.4,杂质相差0.1以上),就可以少用硅胶,用小柱子(例如200毫克的样品,用2cm×20cm的柱子);如果相差不到0.1,就要加大柱子,我觉得可以增加柱子的直径,比如用3cm的,也可以减小淋洗剂的极性等等。 3、关于无水无氧柱,适用于对氧,水敏感,易分解的产品可以湿柱,也可以干柱。不过在样品之前至少要用溶剂把柱子饱和一次,因为溶剂和硅胶饱和时放出的热量有可能是产品分解,毕竟要分离的是敏感的东东,小心不为过。这个我分离的次数很少,一般都是通过紫外灯查看的。 4、关于湿法、干法上样 湿法省事,一般用淋洗剂溶解样品,也可以用二氯甲烷、乙酸乙酯等,但溶剂越少越好,不然溶剂就成了淋洗剂了。有的上样后在硅胶上又会析出,这一般都是比较大量的样品才会出现,是因为硅胶对样品的吸附饱和这就应该先重结晶,得到大部分的产品后再柱分,如果不能重结晶那就不管它了,直接过就是了,样品随着淋洗剂流动会溶解的。有些样品溶解性差,能溶解的溶剂又不能上柱(比如DMF,DMSO等,会随着溶剂一起走,显色是一个很长的脱尾),这时就必须用干法上柱了。样品和硅胶的量有一种说法是1:1,我觉得是越少越好,但是要保证在旋干后,不能看到明显的固体颗粒(那说明有的样品没有吸附在硅胶上)。溶剂的选择。当然是最便宜,最安全,最环保的了。所以大多选用石油醚,乙酸乙酯。文献中有写用正己烷的,太贵了。二氯甲烷也有用的,但是要知道,它和硅胶的吸附是一个放热过程,所以夏天的时候经常会在柱子里产生气泡,天气冷的时候会好一些。甲醇,据说能溶解部分的硅胶,所以产品如果想过元素分析的话要留神,应该经过后继处理,比如说重结晶等。其他的溶剂用的相对较少,要依个人的不同需要选择了。由于某些原因,用到的淋洗剂多是大包装的(便宜嘛),我们这里是用2.5 L的塑料桶装的。另外溶剂在过柱子后最好也回收使用,一方面环保,另一方面也能节省部分经费,当然比较忙的时候我是不回收的,太费事了。这里要注意的是,一般在过柱同时进行的是减压旋蒸,石油醚和乙酸乙酯的比例由于挥发度的不同会导致极性的变化,一般会使得极性变大,在梯度淋洗时比较合适,正好极性越

色谱分析分离方法概述

色谱分析分离方法概述 本书是色谱世界《色谱技术丛书》的第一分册。全书共四章,主要说明了色谱法的发展及其在分析化学中的地位和作用,色谱法的特点、分类及性能比较,色谱法的原理,色谱模型理论等方面的内容。 第一章色谱法的发展及其在分析化学中的地位和作用 第一节色谱法发展简史 一、色谱法的出现 二、色谱法的发展 三、色谱法的现状和未来 第二节色谱法在工业生产和科学研究中的作用 一、色谱法在经济建设和科学研究中的作用 二、色谱法在分析化学中的地位和作用 第三节色谱法与其他方法的比较和配合 一、色谱法的特点和优点 二、色谱法和其他方法的配合 第二章色谱法的特点、分类及性能比较 第一节色谱法的定义与分类 一、按流动相和固定相的状态分类 二、按使用领域不同对色谱仪的分类 第二节现代色谱法的应用领域和性能比较 一、色谱法的应用领域

二、各种色谱方法的性能比较 第三章色谱法的原理 第一节色谱分析的基本原理 一、色谱分离的本质 二、色谱分离的塔板理论 第二节色谱法中常用的术语和参数 一、气相色谱中常用的术语和参数 二、液相色谱中常用的术语和参数 第三节色谱的速率理论 一、气相色谱速率理论 二、液相色谱速率理论 第四章色谱模型理论 第一节色谱模型概述 一、色谱模型理论的意义 二、色谱模型的建立 三、色谱模型的求解 第二节线性色谱 一、理想过程 二、反应色谱 三、扩散的影响 四、相间传质阻力的影响 五、同时含扩散与相同传质阻力的情形

第三节单组分理想非线性色谱 一、理想非线性色谱数学模型分析 二、谱带发展与流出曲线 三、理想非线性色谱间断解的数学意义———弱解 四、非线性反应色谱 第四节双组分理想非线性色谱 一、数学模型分析 二、情形 三、简单波的传播 四、激波 五、谱带的发展与保留值的计算 第一节色谱法发展简史 俄国植物学家茨维特于1903年在波兰华沙大学研究植物叶子的组成时,用碳酸钙作吸附剂,分离植物干燥叶子的石油醚萃取物。他把干燥的碳酸钙粉末装到一根细长的玻璃管中,然后把植物叶子的石油醚萃取液倒到管中的碳酸钙上,萃取液中的色素就吸附在管内上部的碳酸钙里,再用纯净的石油醚洗脱被吸附的色素,于是在管内的碳酸钙上形成三种颜色的6个色带。当时茨维特把这种色带叫作“色谱”.茨维特于1906年发表在德国植物学杂志上用此名,在这一方法中把玻璃管叫作“色谱柱”,碳酸钙叫作“固定相”,纯净的石油醚叫作“流动相”。把茨

气相色谱分离技术

第三章气相色谱分离技术 第一节气相色谱系统 气相色谱法是一种很重要的,以气体为流动相,以液体或固体为固定相的色谱方法,气相色谱法(GC)有以下特点: (1)高选择性GC能够分离分析性质极为相近的物质。如氢的同位素,有机物的异构体。 (2)高效GC可在较短的时间内同时分离分析极其复杂的混合物。如用空心毛细管柱一次可以分析轻油中的200个组分。 (3)高灵敏度由于使用了高灵敏度的检测器,可以检测10-11-10-13克物质。检测浓度可达到ppt级。 (4)分析速度快GC一般只要几到几十分钟的分析时间,某些快速分析,一秒可以分析十几个组分。 GC法的应用相当广泛,在一千万个化合物中,大约有20%的物质可以用GC方法进行分析,如: 生物化学分析:GC一开始就是用于生物化学领域,气-液GC的创始人Martin首先进行了脂肪酸和脂肪胺的分析。 石油化工分析:用200m的毛细管GC法一次可以分析200个化合物。 环境分析:如水中有机物分析。 食品分析:如粮食中残留农药的分析。 药物临床分析:氨基酸、兴奋剂的分析。 法庭分析:各种物证鉴定。 空间分析:如飞船中气氛分析。 军工分析:如火药、炸药分析。

图3-1是GC的流程示意图。 9 图3-1气相色谱流程示意图 1—高压瓶,2—减压阀, 3—净化器,4—气流调节阀,5—进样口,6—气化室,7—色谱柱,8—检测器, 9—记录仪 气相色谱仪的种类很多,但主要由分离系统和检测系统组成。 3.1.1 分离系统 分离系统主要由气路系统、进样系统和色谱柱组成,其核心为色谱柱。 1.气路系统 气路系统指流动相载气流经的部分,它是一个密闭管路系统,必须严格控制管路的气密性,载气的惰性及流速的稳定性,同时流量测量必须准确,才能保证结果的准确性。载气通常用N2,He,H2,Ar等。 2.进样系统 进样系统包括进样装置和气化室。气体样品可以用注射器进样,也可用旋转式六通阀进样。气化室必须预热至设定温度。 3.色谱柱

二茂铁衍生物的合成及性质鉴定

二茂铁衍生物的合成及性质鉴定 百克网:2008-4-29 10:35:16 文章来源:本站 1.前言 二茂铁是一种稳定且具有芳香性的金属有机化合物。它不仅在理论和结构研究上有重要意义,而且有很多的实际应用。自1951年Kealy T. J.和Pausen P L合成二茂铁以来,该类化合物有了很大的发展。 二茂铁它具有夹心式结构。铁原子被夹在两个平行的环戊二烯基之间,形成牢固的配位键,致使亚铁离子(Fe2+)的性质和环戊二烯基的性质均消失,而显示出芳香性,在茂环上可进行与苯类似的取代反应,形成多种取代基的衍生物。 二茂铁为橙色晶体,有樟脑气味,熔点为173~174℃,沸点为249℃。在高于100℃时就容易升华。它能溶于大多数有机溶剂,但不溶于水。 制取二茂铁的方法[1-3]很多。通常以DMSO为溶剂,用NaOH作环戊二烯的脱质子剂(环戊二烯是一种弱酸,pKa≈20),使它变成环戊二烯负离子(C5H5-),然后与FeCl2反应生成二茂铁: 二茂铁是最简单的共轭二茂铁衍生物,也是合成其它共轭有机金属配合物的一种重要的前体,文献报道的二茂铁乙炔的合成方法常见的有以下三种: ①先制备碘代二茂铁,再由碘代二茂铁和三甲基硅乙炔反应制备乙炔二茂铁,合成路线如图1所示: 图1 乙炔二茂铁合成路线Ⅰ 成方法产率不高、成本较昂贵,并且有重金属化合物作为反应的试剂,不是一条理想的合成路线。 ②利用Wittig反应制备乙炔二茂铁,合成路线如下: 图2 乙炔二茂铁合成路线Ⅱ 此方法操作繁杂,反应条件苛刻,成本也较昂贵 ③以二茂铁为初始原料,乙酸酐为亲电试剂,磷酸为催化剂,通过亲电反应得到乙酰基二茂铁,乙酰基二茂铁与三氯氧磷反应得到(2-甲酰基-1-氯乙烯基)二茂铁,然后与氢氧化钠反应、酸化后即可制得乙炔二茂铁。该条路线反应条件温和,原料易得,是一条经济合理的合成路径,具体如下: 二茂铁衍生物性质的多样性,使其应用领域非常广泛。例如在燃烧性能调节剂、不对称合成催化剂、磁性材料、液晶材料以及生化医药等诸多方面都有重要应用价值。尤其值得一提的是,二茂铁衍生物由于其独特的电化学和光学特性,以及在光电信息、通讯和集成光学等高技术领域的潜在应用价值,已经引起了研究者的广泛兴趣,并迅速成为功能材料研究领域的一个热点。

二茂铁与乙酰二茂铁的分离

. 化学与环境学院 有机化学实验报告实验名称二茂铁与乙酰二茂铁的分离 【实验目的】

1.学习柱色谱分离技术和掌握柱色谱的操作方法。 2.掌握一种新的分离化合物的方法。 【实验原理】(包括反应机理) 本实验用柱色谱分离提纯产品。柱色谱分离提纯是根据二茂铁和乙酰二茂铁对硅胶吸附能力的差异而进行分离提纯。 柱层析是在层析柱中装入作为固定相的吸附剂,把试样流经固定相而被吸附,然后利用薄层层析中探索到的能分离组分的溶剂流经层1 / 7 . 析柱,试样中的各组在固定相和溶剂间重新分配,分配比大的组分先流出,分配比小的组分后流出,对于不易流出的组分可另选择合适的溶剂再进行洗脱,这样就可以达到各组分的分离提纯。 柱色谱(柱上层析)常用的有吸附色谱和分配色谱两类。吸附色谱常用氧化铝和硅胶作固定相;而分配色谱中以硅胶、硅藻土和纤维素作为支持剂,以吸收较大量的液体作固定相,而支持剂本身不起分离作用。 吸附柱色谱通常在玻璃管中填入表面积很大经过活化的多孔性或粉 状固体吸附剂。当待分离的混合物溶液流过吸附柱时,各种成分同时被吸附在柱的上端。当洗脱剂流下时,由于不同化合物吸附能力不同,往下洗脱的速度也不同,于是形成了不同层次,即溶质在柱中自上而下按对吸附剂的亲和力大小分别形成若干色带,再用溶剂洗脱时,已经分开的溶质可以从柱上分别洗出收集;或将柱吸干,挤出后按色带分割开,再用溶剂将各色带中的溶质萃取出来。 (1)吸附剂

常用的吸附剂有氧化铝、硅胶、氧化镁、碳酸钙和活性炭等。吸附剂一般要经过纯化和活性处理,颗粒大小应当均匀。对于吸附剂而言,粒度愈小表面积愈大,吸附能力就愈高,但颗粒愈小时,溶剂的流速就太慢,因此应根据实际分离需要而定。供柱色谱使用的氧化铝有酸性、中性、碱性三种。 大多数吸附剂都能强烈地吸水,而且水分易被其它化合物置换,因此吸附剂的活性降低,通常有加热方法使吸附剂活化。氧化铝随着2 / 7 . 表面含水量的不同,而分成各种活性等级,活性等级的测定一般采用勃劳克曼(Brockmann)标准测定法。 (2)溶质的结构与吸附能力的关系 化合物的吸附性与它们的极性成正比,化合物分子中含有极性较大的基团时,吸附性也较强,各种化合物对氧化铝的吸附性按以下次序递减: 酸和碱 > 醇、胺、硫醇 > 酯、醛、酮 > 芳香族化合物 > 卤代物、醚 >烯 > 饱和烃 在本实验中,乙酰二茂铁极性大于二茂铁,因此,二茂铁首先被洗脱下来。 (3)溶剂 溶剂的选择是重要的一环,通常根据被分离物中各化合物的极性、溶解度和吸附剂的活性等来考虑。 先将要分离的样品溶于一定体积的溶剂中,选用的溶剂极性要低,体积要小。如有的样品在极性低的溶剂中溶解度很小,则可加入少量极

二茂铁基础知识

二茂铁 维基百科,自由的百科全书 跳转到: 导航, 搜索 二茂铁 IUPAC名?bis(η5-cyclopentadienyl)iron(I I) 别名双环戊二烯基合铁(II)、环戊二烯基铁、环戊二烯铁 识别 CAS号102-54-5 PubChem11985121 性质 化学式C10H10Fe 摩尔质量186.04g·mol?1外观橘黄色固体 密度(20°C) 2.69 g/cm3熔点174 °C 沸点249°C 在水中的溶解度不可溶 在大多数有机溶剂 中的溶解度 可溶 相关物质 相关化学品二茂钴、二茂镍二茂铬、二苯铬 若非注明,所有数据来自25 °C,100 kPa。

二茂铁(英文:Ferrocene),或称环戊二烯基铁,是分子式为Fe(C5 目录 [隐藏] ?1制备 ? 2 历史 ?3电子结构 ? 4 物理性质 ? 5 化学性质 o5.1 与亲电试剂反应 o5.2 锂化反应 o 5.3 氧化还原反应 ? 6 二茂铁及衍生物的应用 o 6.1 抗震剂 o6.2医药方面 o 6.3 材料学 o 6.4 配体 ?7 衍生物 ?8参考资料及注释 ?9 延伸阅读 ?10 外部链接

另一种方法是氯化亚铁与环戊二烯在一种碱(如三乙胺、二乙胺等)存在下反应: FeCl2 + 2C5H6 + 2Et3N → (C5H5)2Fe + Et3NHCl [编辑]历史 富瓦烯 错误的二茂铁结构 二茂铁的发现纯属偶然。1951年,杜肯大学的Pauson 和Kealy 用环戊二烯基溴化镁处理氯化铁,试图得到二烯氧化偶联的产物富瓦烯(Fulvalene,如图),但却意外得到了一个很稳定的橙黄色固体。[2]当时他们认为二茂铁的结构并非夹心,而是如右图所示,并把其稳定性归咎于芳香的环戊二烯基负离子。与此同时,Miller、Tebboth 和Tremaine在将环戊二烯与氮气混合气通过一种还原铁催化剂时也得到了该橙黄色固体。[3] 罗伯特·伯恩斯·伍德沃德和杰弗里·威尔金森,[4]及恩斯特·奥托·菲舍尔[5]分别独自发现了二茂铁的夹心结构,并且后者还在此

实验名称:乙酰二茂铁的制备(给学生的参考方案)

实验名称:乙酰二茂铁的制备 一、实验目的 1. 熟悉Fridel-Crafts 反应合成乙酰二茂铁的反应机理; 2. 掌握以二茂铁为原料合成乙酰二茂铁的方法。 二、实验原理 二茂铁,又称二环戊二烯合铁、环戊二烯基铁,是一种具有芳香族性质的有机过渡金属化合物。二茂铁是最重要的金属茂基配合物,也是最早被发现的夹心配合物,包含两个环戊二烯环与铁原子成键。常温下为橙黄色粉末,有樟脑气味。熔点172°C-174°C,沸点249°C,100°C以上能升华。不溶于水,易溶于苯、乙醚、汽油、柴油等有机溶剂。与酸、碱、紫外线不发生作用,化学性质稳定,400°C以内不分解。其分子呈现极性,具有高度热稳定性、化学稳定性和耐辐射性。二茂铁具有类似苯的一些芳香性,比苯更容易发生亲电取代反应。 本实验以乙酸酐为酰化剂、磷酸为催化剂合成乙酰二茂铁。在磷酸作用下,乙酸酐首先生成酰基正离子,然后和富电的茂环发生亲电取代酰基化反应,机理如下: 一般认为,如用无水三氯化铝为催化剂,酰氯或酸酐为酰化剂,当酰化剂与二茂铁的摩尔比为2:1时,反应物以1,1’-二元取代物为主。以乙酸酐为酰化剂、磷酸为催化剂时,主要生成一元取代物。在此反应条件下,主要生成单乙酰二茂铁,双乙酰二茂铁很少,但同时有未反应的二茂铁。

三、主要试剂用量 1g(0.0054mol)二茂铁,10.8g(10mL,0.1mol)乙酸酐,磷酸,碳酸氢钠,无水乙醚。 四、实验步骤 在100mL圆底烧瓶中,加入1g(0.0054mol)二茂铁和10mL(0.1mol)乙酸酐, 在振荡下用滴管慢慢加入2mL85%的磷酸。投料毕, 用装有无水氯化钙干燥管的球形冷凝管塞住瓶口,沸水浴加热15min并时加振荡。 然后将反应化合物倾入盛有40g碎冰的400ml烧杯中,并用10ml冷水涮洗烧瓶,将涮洗液并入烧杯。 在搅拌下,分批加入固体碳酸氢钠,到溶液呈中性为止(要避免溶液溢出和碳酸氢钠过量,但要足量,否则乙酰二茂铁析出不充分,pH7-8)。约需20~25g碳酸氢钠。 将中和后的反应化合物置于冰浴中冷却15min,抽滤收集析出的橙黄色固体,每次用40mL冰水洗两次,压干后在空气中干燥得粗品。 五、实验关键及注意事项 1、烧瓶要干燥,反应时应用干燥管,避免空气中的水进入烧瓶内。 2、因为磷酸有氧化性,因此滴加磷酸时一定要在振摇下用滴管慢慢加入,否则易产生深棕色粘稠氧化聚合物。 3、用碳酸氢钠中和粗产物时应小心操作,防止因加入过快使产物逸出。 4、乙酰二茂铁在水中有一定的溶解度,用冰量不可太多,洗涤时最好用冰水,洗涤次数也切忌过多。 六、思考与讨论 1、二茂铁酰化时形成二酰基二茂铁时,第二个酰基为什么不能进入第一个酰基所在的环上? 2、二茂铁比苯更容易发生亲电取代,为什么不能用混酸进行硝化?

二茂铁及其衍生物的合成、应用及展望

二茂铁及其衍生物的合成、应用及展望 摘要:二茂铁及其衍生物以其独特的结构和性质而广受关注,作为合成和应用则一直是金属有机化学等学科研究的热点。本文简要的介绍了二茂铁(η5-C5H5)2Fe)的发现结构和性质,重点介绍了二茂铁的电解合成方法和化学合成方法,以及二茂铁用作燃油添加剂、四乙基铅((C2H5)4Pb)替代剂和作为催化剂等方面的应用,并介绍了几种二茂铁衍生物以及二茂铁衍生物在电化学、医药、液晶材料和功能材料等方面的应用。同时,本文对二茂铁的研究也做了展望。 关键词:二茂铁;二茂铁衍生物;合成;应用. 一、二茂铁的结构与性质 1、二茂铁的发现 1951年Kealy和Pauson[1]利用格氏试剂C5H5MgBr与催化剂FeCl3合成富瓦烯却意外地获得了一种橙黄色晶体(式1-1),并用重量分析法确定了该化合物分子式:C10H10Fe,并初步测定了该化合物的熔点、沸点等基本物理和化学性质。与此同时,Miller[2]等人用环戊二烯和铁在300℃,N2氛及常压下也制得了该物质(式1-2)。反应式如下: Kealy和Pauson初步推断该化合物可能结构: 2、二茂铁的结构及性质 1952年,Wilkinson[3]等人对该化合物通过红外光谱(IR)、磁化 率(cm)及偶极距(μ)等的测定,判定该物质应具有夹心型结构(如 图1.1)。Fischer[4]等人通过X射线衍射的研究,提出该物质具有五角 反棱柱的结构。通过这些研究确定了该物质结构为:上下为两个带负 电荷的环戊二烯基芳环,中间为带二价正电荷的亚铁离子,类似于三 明治的夹心型结构,并正式命名为“Ferrocene(二茂铁)”。在该结构 中,亚铁离子处于激发态,这使得二茂铁具有多种催化性能[5]。 (图1.1) 二茂铁(Ferrocene,(η5-C5H5)2Fe),一种典型的过渡金属与茂环生成的具有芳香族性的 有机金属化合物,分子式为:(C5H5)2Fe,遵循有效原子序数(EAN)规则,具有18电子稳定结构;常温下为橙黄色粉末或晶体,有樟脑气味,熔点172℃-174℃,沸点249℃,100℃

色谱法的分类及其原理

色谱法的分类及其原理 (一)按两相状态 气相色谱法:1、气固色谱法2、气液色谱法 液相色谱法:1、液固色谱法2、液液色谱法 (二)按固定相的几何形式 1、柱色谱法(column chromatography):柱色谱法是将固定相装在一 金属或玻璃柱中或是将固定相附着在毛细管内壁上做成色谱柱,试样从柱 头到柱尾沿一个方向移动而进行分离的色谱法 2、纸色谱法(paper chromatography ):纸色谱法是利用滤纸作固定液的载体,把试样点在滤纸上,然后用溶剂展开,各组分在滤纸的不同位置 以斑点形式显现,根据滤纸上斑点位置及大小进行定性和定量分析。 3、薄层色谱法(thin-layer chromatography, TLC):薄层色谱法是将适 当粒度的吸附剂作为固定相涂布在平板上形成薄层,然后用与纸色谱法类 似的方法操作以达到分离目的。 (三)按分离原理 按色谱法分离所依据的物理或物理化学性质的不同,又可将其分为: 1、吸附色谱法:利用吸附剂表面对不同组分物理吸附性能的差别而使之分离的色谱法称为吸附色谱法。适于分离不同种类的化合物(例如,分离醇类与芳香烃)。

2、分配色谱法:利用固定液对不同组分分配性能的差别而使之分离的色 谱法称为分配色谱法。 3、离子交换色谱法:利用离子交换原理和液相色谱技术的结合来测定溶液中阳离子和阴离子的一种分离分析方法,利用被分离组分与固定相之间发生离子交换的能力差异来实现分离。离子交换色谱主要是用来分离离子或可离解的化合物。它不仅广泛地应用于无机离子的分离,而且广泛地应用于有机和生物物质,如氨基酸、核酸、蛋白质等的分离。 4、尺寸排阻色谱法:是按分子大小顺序进行分离的一种色谱方法,体积大的分子不能渗透到凝胶孔穴中去而被排阻,较早的淋洗出来;中等体积的分子部分渗透;小分子可完全渗透入内,最后洗出色谱柱。这样,样品分子基本按其分子大小先后排阻,从柱中流出。被广泛应用于大分子分 级,即用来分析大分子物质相对分子质量的分布。 5、亲和色谱法:相互间具有高度特异亲和性的二种物质之一作为固定相,利用与固定相不同程度的亲和性,使成分与杂质分离的色谱法。例如利用酶与基质(或抑制剂)、抗原与抗体,激素与受体、外源凝集素与多糖类及核酸的碱基对等之间的专一的相互作用,使相互作用物质之一方与不溶性担体形成共价结合化合物,用来作为层析用固定相,将另一方从复杂的混合物中选择可逆地截获,达到纯化的目的。可用于分离活体高分子物质、过滤性病毒及细胞。或用于对特异的相互作用进行研究。 (四)按原理 色谱过程的本质是待分离物质分子在固定相和流动相之间分配平衡的过程,不同的物质在两相之间的分配会不同,这使其随流动相运动速度各不相同,随着流动相的运动,混合物中的不同组分在固定相上相互分离。

相关文档
相关文档 最新文档