文档库 最新最全的文档下载
当前位置:文档库 › 液相色谱串联质谱联用仪检测技术

液相色谱串联质谱联用仪检测技术

液相色谱串联质谱联用仪检测技术
液相色谱串联质谱联用仪检测技术

液相色谱串联质谱联用仪检测技术

实验指导

(2014、2015级)

课程内容(一个实验8学时):

(1)AB Sciex Qtrap 4500 三重四级杆/离子阱液相色谱串联质谱联用仪的结构原理、操作及定性定量应用。

(2)利用液相色谱串联质谱联用仪快速测定水果中7种农药的残留量。

吉林农业大学农业部参茸质检中心

2017.03

实验一AB Sciex Qtrap 4500 三重四级杆/离子阱液相色谱串联质谱联用仪的结构原理、操作及定性定量应用

一.实验目的和意义

通过学习液质联用仪的构成和使用方法,及其在定性、定量分析中的应用,培养学生使用液质联用仪进行仪器分析的能力,并培养学生严谨的科学态度、细致的工作作风、实事求是的数据报告和良好的实验习惯(准备充分、操作规范,记录简明,台面整洁、实验有序,良好的环保和公德意识)。培养培养学生的动手能力、理论联系实际的能力、统筹思维能力、创新能力、独立分析解决实际问题的能力、查阅手册资料并运用其数据资料的能力以及归纳总结的能力等。

(一)检测仪器

1、仪器名称高效液相色谱串联质谱联用仪(简称LC-MS-MS)。型号:4500 QTRAP(美国Applied Biosystems公司)。

2、仪器组成液相色谱部分:岛津LC-30A,配有在线脱气机、超高压二元泵、自动进样器;串联质谱部分:QTRAP4500,配有ESI离子源、串联四级杆/线性离子阱。

3、主要性能指标离子化方式:ESI电离质量范围:(5 ~ 1700)amu 分辨率:> 6900 质量稳定性:0.1 amu/12h 灵敏度:1pg reserpine, ESI+, MRM扫描(m/z : 609/195),信噪比S/N > 120:1 扫描速度:4000 amu/sec 质量准确度:< 0.01%(全质量数范围)

4、方法原理高效液相色谱二元泵将流动相泵人系统并混合,自动进样器将待测样品注入流动相中,随流动相进入色谱柱,由于样品不同组分在色谱柱中保留时间不同,各组分被分开,依次进入离子源。在离子源中,各组分以ESI或APCI方式电离,被加速后进入质量分析器。4500QTRAP 的质量分析器主要由Q1、Q2、Q3三组四级杆串联组成。Q1可将分子离子按质荷比(m/z)大小分开;Q2是碰撞室,可将母离子进一步破碎为碎片离子;Q3具有四级杆和线性离子阱两种功能,作为四级杆时可将分子离子或碎片离子按质荷比大小分开,作为离子阱还可富集离子从而提高检测灵敏度。各组分的不同离子在质量分析器中被破碎、分离,并按质荷比大小依次抵达监测器,经记录即得到按不同质荷比排列的离子质谱图。4500QTRAP通过串联四级杆/线性离子阱两种不同质谱技术的结合,可以在单次分析中对复杂样本中的单个成分同时进行定性和定量,也可以对多个化合物进行定量分析。整台仪器的控制、数据采集、数据处理、结果输出均由PC计算机Windows操作系统支持下的Analyst软件控制完成。

(二)样品

1、样品要求本仪器适合分子量在5 ~ 1700 amu范围内的有机样品的定性及定量分析。待测样品必须能溶解于水或其它有机溶剂中。若样品或配制的样品溶液发生沉淀、挥发、变质等异常现象时,应重新取样或重新配制溶液。

2、试剂要求所有的试剂均选用色谱纯级,所用水的电导率应大于18KΩ。流动相必须用0.2μm 或0.45μm滤膜过滤后方可使用。

3、分离条件要求在液相色谱仪上确定分离条件,使待测组分能完全分离,且该色谱条件中流动相不应含有不挥发性盐,如磷酸盐。

(三)、操作步骤实施检测操作的人员,必须熟悉该仪器的操作规程,仪器的工作状态、包括检测灵敏度和分辨率,必须满足检测项目的要求。

1、开机前准备开机前应检查仪器室内电、气的供应情况及空调机的工作状态是否稳定,检查真空机械泵泵油是否需要更换。只有当UPS工作正常,Gas1/Gas

2、Curtain Gas和Exhaust Gas的压力分别稳定在0.35、0.35和0.7 Mpa,环境温度为10~30℃,相对湿度小于70%时才能开机。

2、开机1) 打开真空机械泵上的电源开关。2) 真空机械泵继续工作至少15分钟后,打开MS电源主开关。3) 等真空度达到2×10-5Torr(绿色指示灯不闪)后,打开PC计算机电源

3、仪器调谐

(四)、方法建立

1.在Analyst软件Tools菜单中选择Project→Create Project。在Project name项下输入新建的Project 名称。注意,不要点选窗口中的其他按钮!点击OK,确认新建Project。

2.在Analyst软件界面下,双击导航栏内Hardware Configuration。在弹出窗口中选择MassOnly,点击Activate Profile,激活MassOnly(只联接质谱主机)。

3.在导航栏内单击Tune and Calibrate,进入调谐模式。点击上方工具条中的T钮。此时,应注意到主机有“扑”声音,表明进入调谐状态。此时右下角质谱状态显示绿色。双击Manual Tuning,进入质谱参数设置及运行窗口。

4.使用1mL玻璃进样针吸取适当标准溶液,置于进样针座上。点击MS Method下拉菜单,选择Syringe Pump Method,设定针泵流速Flow Rate为10μL/min。

5.点击Start Syringe Pump按钮开针泵进样。

6.返回MS Method,选择扫描模式Scan Type为Q1 MS,设定扫描速度Scan Rate为10Da/s,设定扫描范围Start——Stop设定为50——化合物分子量。DP预输入60。

7.点击start开始采集数据。运行稳定后,注意观察是否有预期的母离子出现,并控制其响应值

在约E4以下。点击stop,选择第一个峰(后面是同位素峰)的平稳段,双击,选中母离子。点击右键,选择Delete Pane。

8.设定Scan type为产物离子扫描Product Ion(Ms2),扫描速度200Da/s,选择扫描正/负离子,输入母离子(product of),设定扫描范围start——stop为50——MW+20,覆盖可能的子离子质量范围,点击compoud标签,设定(DP)60,(CE)5。

9.点击start,开始采集数据,注意观察是否有预期的母离子出现。手动调节CE,以5eV为步长,逐渐增加。每次增加后稍作等待,直至目标化合物的子离子清晰看见。选择平稳的一段,双击,选择子离子。

10.选择Scan Type为MRM。设定参数表格中的Q1对应的母离子,Q3对应的子离子,time(ms)为50,ID值设为名称1(定量),名称2(定性)。

11.点击Edit Ramp,在Parameter下选择Collision Energy,点击OK。点击start开始采集数据,记录每个MRM通道的最佳CE电压。在MRM参数设定表中,右键点击。选择Collision Energy CE,调出表格中的CE列,输入每个MRM通道的最佳CE电压值,精确到个位数。重复以上步骤,在Parameter项下选择Declustering Potential,优化并保存DP。完成后选择菜单File/Save保存采样方法,[文件名].dam。

(五)LCMS方法的建立:

1、连接仪器:打开HPLC质谱电源,将HPLC系统接上柱子,将6号出口管线与离子源连好。调离子源喷雾针位置到2mm处,双击Hardware Configure,在硬件配置菜单下单击LCMS ( 液相与质谱联用),单击Activate profile激活仪器,会听到笛的一声,说明仪器已经连接上。

2、确认液质同步:选择项目(之前优化方法的时候已经建立的项目);双击Build acquisition method新建方法,弹出新建方法模板。在模板左侧点击acquisition method,模板右边显示对应的参数,确认synchronization mode选择LC Sync,表示液质同步。

3、设置MRM参数:点击方法模板左侧的MRM, 在模板右侧Scan Type下选择MRM;在polarity 下选择化合物极性:Positive(正离子)、Negative(负离子);Duration为15min(与液相分离相同的时间);表格中Q1:母离子分子量,Q3(Da):子离子分子量,Time(msec):50,ID栏:化合物名称(离子对名称后空格加1为定量,空格加2为定性),在表格中右键分别单击DP、CE,点击工具栏的OPEN打开之前优化的方法参数,调出DP,CE值,选中整行,Ctrl+c(复制)参数,关闭窗口,再Ctrl+v(粘贴)参数);最后点击Edit parameter设置离子源参数:Source/Gas项用以下推荐值:CUR 35,IS:5500(正离子) 或-4500(负离子),TEM 600,GS1 60,GS270,点击OK。

4、设置液相参数:点击模板左边的shimadzu LC system,①在右边的pumps栏下,设置stop time

(运行时间)为15min,flow流速为1mL/min,A为水相设为95%,B为有机相设为5%(设置时改B,A自动),泵最大压力为50;点击time program设置液相梯度:例咪唑类梯度设置:

②接着在右边的Auto sampler栏下,设置清洗时间,在Rinse mode 下选择Before and after(前后都洗),并设置清洗时间为5s,清洗液用50%甲醇水。最后点击保存按钮,在保存窗口输入该方法的名称。

(五)数据处理

双击打开Multiquilt,选择项目,点击File下的荧光棒型图标,点击sample,选择需要的标准品和样品数据,点击next,create new method,为方法命名,点击next,选择一个有代表性的样品(一般选择浓度较大的标品数据),设置分组(同一物质定量离子和定性离子设置为一组),并指定内标,next,对每个物质进行积分。

设置积分参数:

CausianSmoth(平滑):一般是0,如有毛刺可改成1或2;

Expeceted Time(保留时间):一般不动

Expected time范围:一般30s,表示在保留时间±15s范围

最小峰宽

最小峰高

背景噪音扣除:可调整目标峰基线以下被积分的面积,比例越高积分越往下,必要时调整。

分峰因子:峰有分叉时设置,如有两个分叉,设置为2,峰分叉不能大于2

单位:设置单位,勾选Apply units to all可将此单位用于所有化合物

点击next,点击finish。在新跳出窗口内将标准品选定,输入浓度。查看各化合物积分是否正常,点击第三个图标查看标准曲线。

实验二利用液相色谱串联质谱联用仪快速测定水果中7种农药

的残留量

1 实验目的:

1.1 让学生了解利用液相色谱质谱联用仪测定食品、农产品中农药残留等有害化合物的分析流程。

1.2 利用前2节课所学内容实际处理样品,增强学生实践能力。

1.3 进一步加强液相色谱质谱联用仪的操作和数据处理。

2 试剂或材料

除非另有说明,仅使用分析纯试剂,水为GB/T 6682 规定的二级水。

2.1 乙腈(C2H3N):色谱纯。

2.2 氯化钠(NaCl):140 ℃干燥4 h。

2.3 氨基固相萃取小柱:500 mg/6 mL(或性能相当的其它固相萃取柱)。

2.4 二氯甲烷-甲醇混合液: 二氯甲烷+甲醇(体积比)= 95 + 5。

2.5 标准品:见表1。

2.6 农药标准溶液配制

2.6.1 标准储备溶液

分别准确称取一定量(精确至0.1 mg)农药标准品,用甲醇溶解,逐一配成1000 mg/L 的单一农药标准储备液,密封贮存在-18 ℃冰箱中,使用期为6 个月。

表1 9 种农药标准品

2.6.2 混合农药标准溶液

分别准确吸取一定体积的9 种农药标准储备溶液(4.8.1)注入同一容量瓶中,用甲醇稀释至刻度配制成100 mg/L 的混合标准储备液,-18℃冰箱中密封闭光保存,使用期为 3 个月。

2.6.3 混合标准工作液

吸取一定体积的混合农药标准储备液,用甲醇配制成0.01mg/L、0.05 mg/L、0.1 mg/L、0.2 mg/L、1.0 mg/L、5.0 mg/L 的 7 种农药混合标准工作液,贮于 4℃以下冰箱中,需现用现配。

3 仪器设备

3.1 电子天平:感量0.01 g;

3.2 破壁食物料理机:不低于20000 r/min;

3.3 均质机:不低于20000 r/min;

3.4 恒温水浴锅;

3.5 旋转蒸发仪;

3.6 氮吹仪。

4 试验步骤

4.1 样品制备

4.1.1 鲜人参

取不少于500 g 水果于破壁食物料理机中,以不低于20000 r/min 的转速将样品制成糊浆状,充分混匀后装入样品密封盒中直接测定或-18 ℃保存,备用。

4.2 样品预处理

4.2.1 提取

称取25 g 水果样品(水果品种当季待定),精确至0.01 g,于100 mL 具塞离心管中,加入50 mL 乙腈,于匀质机中高速匀质1 min,过滤至装有7 g氯化钠的比色管中,振荡200下,静止分层,吸取10 mL 上层有机相于50 mL 浓缩管中,60 ℃水浴中氮气吹至近干,用 2 mL 二氯甲烷-甲醇混合液溶解残渣,待净化。

4.2.2 净化

氨基柱用5 mL 二氯甲烷-甲醇混合液溶解进行预处理,当溶剂液面达上层筛板表面时,再倒入上述浓缩管中待净化溶液,用浓缩瓶接收,待液面下降至上层筛板表面,用8 mL二氯甲烷-甲醇混合液溶解分2次冲洗浓缩管并洗脱小柱,将浓缩瓶中洗脱液于40 ℃水浴中旋转浓缩至尽干,氮气吹干后用2.5 mL甲醇和2.5 mL水定容,过0.22 μm滤膜待测。

4.3 仪器参考条件

4.3.1 液相色谱串联质谱联用仪: Qtrap 4500三重四级杆/离子阱质谱仪(配岛津30A超高效液相色谱仪),电喷雾离子源,美国AB SCIEX公司。

4.3.2 色谱柱:Kinetex XB-C18,2.1 mm × 150 mm × 2.6μm

4.3.3 流动相及流速见表1

4.3.4 色谱柱箱温度:40 ℃

4.3.5 进样体积:

5.0 μL

表1 流动相梯度及流速

4.4 质谱条件:

4.4.1 扫描方式:正离子扫描,多反应监测MRM ;

4.4.2 离子源温度(TEM ):550 ℃

4.4.3 电离方式:电喷雾 ESI ;

4.4.4 电喷雾电压:5500 V ;

4.4.5 雾化气压力:60 PSI ;

4.4.6 气帘气压力:30 PSI ;

4.4.7 辅助加热气压力:70 PSI ;

4.4.8 标准曲线的绘制

分别吸取 1.0 μL 0.02 mg/L 、0.05 mg/L 、0.1 mg/L 、0.5 mg/L 、1.0 mg/L 混合标准工作液按照仪器参考条件,由低浓度到高浓度依次进行测定。分别以 9 种农药的质量浓度(mg/L )为横坐标,以 9 种农药的峰面积为纵坐标绘制标准曲线。

4.5 定性分析

根据样液中被测物含量情况,选定浓度相近的标准工作溶液,标准工作溶液和待测农药的响应值均在仪器检测的线性范围内。标准工作溶液与样液等体积参差进样测定。

4.6 定量计算

试料中 7 种农药的残留量以质量分数 ω 计,数值以毫克每千克(mg/kg)表示,结果保留 3位有效数字,按公式(1)计算:

ρω???=

m

V V V 231 (1)

式中: ρ—标准曲线校正后所测定该种农药的质量浓度,单位为毫克每升(mg/L );

V 1—提取液中有机溶剂总体积,单位为毫升(mL );

V 2—吸取出用于检测的提取溶液的体积,单位为毫升(mL );

V 3—样品溶液定容体积,单位为毫升(mL );

m —称取试料的质量,单位为克(g )。

液相色谱-串联质谱法

消毒产品中丙酸氯倍他索和盐酸左氧氟沙星测定?液相色谱-串联质谱法 Determination of clobetasol propionate and levofloxacin hydrochloride in disinfection product - LC-MS-MS method 1 范围 本方法规定了膏霜类消毒产品中丙酸氯倍他索和盐酸左氧氟沙星残留量液相色谱-串联质谱测定方法。 本方法适用于膏霜类消毒产品中丙酸氯倍他索和盐酸左氧氟沙星残留量的测定。 取样量为0.1g时,本方法对丙酸氯倍他索和盐酸左氧氟沙星的检出限见表1。 表1 丙酸氯倍他索和盐酸左氧氟沙星的检出限、保留时间和特征离子 中文名称英文名称 检出限 (μg/g) 保留时 间(min) 特征离子(m/z) 丙酸氯倍他索Clobetasol propionate 0.009 7.83 467.0/355.2/373.4 盐酸左氧氟沙星Levofloxacin hydrochloride 0.06 1.11 362.0/260.9/318.2 2 规范性引用文件 3 原理 试样中丙酸氯倍他索和盐酸左氧氟沙星用甲醇提取,提取液经0.45μm滤膜过滤,用C18柱分离后,用液相色谱-串联质谱仪测定,正离子扫描,离子对定性,峰面积定量。 4 试剂和材料 除另有说明外,所用试剂均为分析纯,水为不含有机物的纯水,纯水中干扰物的浓度需低于方法中待测物的检出限。 4.1甲醇:农药残留级。 4.2乙腈:农药残留级。 4.3甲酸:分析纯。

4.4标准品:丙酸氯倍他索和盐酸左氧氟沙星均购自中国药品生物制品检定所,纯度≥99.8%。 4.5标准溶液:准确称取丙酸氯倍他索适量,用乙腈-水(1:1)配制成100μg/mL 的标准贮备液。准确称取盐酸左氧氟沙星适量,用纯水配制成100μg/mL的标准贮备液。准确量取上述标准贮备溶液适量,用乙腈稀释配制成浓度为10.0μg/mL 的混合标准中间溶液,将标准中间溶液转移到安瓿瓶中于4 C保存。临用前,再根据需要用甲醇配制成不同浓度的标准使用溶液。 4.6甲酸溶液(0.2%,v/v):量取2mL甲酸,用纯水定容至1000mL。 4.7 0.45μm滤膜。 5 仪器 5.1 液相色谱-串联质谱联用仪:HP1100高效液相色谱仪(Agilent) - API 4000质谱仪(Applied Biosystems) ,电喷雾离子化源(ESIMS,NI/PI模式)。 5.2 分析天平:感量0.1mg和0.001g。 5.3实验室纯水机:Barnstead纯水机。 5.4涡旋振荡器:Scientific Industries 涡旋振荡器。 5.5 具塞试管:10mL。 6 试样的制备与保存 6.1 试样的制备 取有代表性样品5g,搅拌均匀,制成实验室样品。 6.2 试样保存 制备好的试样置于室温保存。 7 测定步骤 7.1样品前处理 称取0.1g~0.2g样品(精确到0.001 g) ,置于10mL试管中,加入3.00mL甲醇溶液,涡旋振摇使样品分散后,超声振荡10min。静置,吸取上清液经滤膜(4.7)过滤后,供液相色谱-串联质谱测定。

气相色谱质谱联用仪技术指标(新)

气相色谱/质谱联用仪技术指标 1.2温度:操作环境15?C~35?C 1.3 湿度:操作状态25~50%,非操作状态5~95% 2.性能指标 2.1质谱检测器 2.1.1具有网络通讯功能,可实现远程操作。结构紧凑,无需冷却水及压缩空气冷却。 2.1.2*侧开式面板,无须取下质谱仪机盖即可进行维护。玻璃窗口可显示离子源类 型,灯丝运行情况和离子源连接状态。需提供彩页证明文件。 2.1.3质量数范围:2-1000amu,以0.1amu递增

2.1.4分辨率:单位质量数分辨 2.1.5质量轴稳定性: 优于0.10amu/48小时 2.1.6灵敏度: EI:全扫描灵敏度(电子轰击源EI):1pg八氟萘(OFN),信/噪比≥ 1400:1 (扫描范围: 50-300amu) 2.1.7*仪器检出限IDL:10fg八氟萘。并提供三份以上现场安装验收报告。 2.1.8最大扫描速率:大于19,000amu/秒 2.1.9动态范围:全动态范围为106 2.1.10选择离子模式检测(SIM)最多可有100组,每组最多可选择60个离子 2.1.11质谱工作站可根据全扫描得到的数据,自动选择目标化合物的特征离子并对其进 行分组,最后保存到分析方法当中,无须手动输入。(AutoSIM) 2.1.12具有全扫描/选择离子检测同时采集功能 2.1.13两根长效灯丝的高效电子轰击源,采用完全惰性的材料制成 2.1.14*离子化能量:5~241.5eV 2.1.15离子化电流:0~315uA 2.1.16离子源温度:独立控温,150~350?C可调 2.1.17*分析器:整体石英镀金双曲面四极杆,独立温控, 106?C ~200?C。非预四极杆 加热。需提供彩页等证明文件。 2.1.18质量分析器前有T-K保护透镜。 2.1.19检测器:三维离轴,检测器。长效高能量电子倍增器 2.1.20真空系统:250升/秒以上分子涡轮泵 2.1.21气质接口温度: 独立控温,100~350℃ 2.1.22TID 痕量离子检测技术,在数据采集的过程中优化信号。 2.1.23自动归一化调谐。 2.1.24EI源可以采用氢气做为载气,CI源可以采用氨气替代甲烷气。 2.1.25具备早期维护预报功能(EMF) 2.1.26可提供质量认证功能(OQ/PV) 2.2 气相色谱仪 2.2.1 主机 2.2.1.1 电子流量控制(EPC):所有流量、压力均可以电子控制,以提高重现性,配有13路电子流量控制; 2.2.1.2 压力调节:0.001psi。 2.2.1.3 大气压力传感器补偿高度或环境变化; 2.2.1.4 程序升压/升流:3阶;

液相色谱-质谱联用仪

液相色谱-质谱联用仪 院系:化学学院 液相色谱-质谱联用仪 基于核酸的重大疾病诊断新策略和新技术研究。 基于化学小分子研究STAT3与心力衰竭相关靶基因RLX的相互作用及信号转导的调 三年内利用该仪器作为主要科研手段发表学术论文(三大检索) 15 篇,其中代表论文: 论文题目期刊名年卷(期)起止页码 Mass Spectrometry Of G-Quadruplex DNA: Formation, Recognition, Property, Conversion, and Conformation. Mass Spectrometry Reviews 201136 (6) 1121-1142 The formation and stabilization of a novel G-quadruplex in 5'-?anking region of relaxin gene.PLos One2012 7 (2) 31201- 31205 Spectroscopic probing of recognition of the G4 in c-kit promoter by small-molecule natural products.Int. J. Biol. Macromol.2012 50 (4) 996-1001 Convenient Method for the Synthesis of a Cyclic Polyamide for Selective Targeting of c?myb G4 Seletive Targeting of Org. Lett.201214 (24) 6126-6129 267

气相色谱质谱联用仪操作规程(精)

气相色谱质谱联用仪操作规程(定性部分) 1.开机 ①打开高纯氦气钢瓶的阀门,调节出口压力为7kgf/cm2左右,然后依次打开GC 电源和MS 电源,点击软件[GCMS Real Time Analysis],选择用户名,登录后进入。②点击设定系统的配置。 ③点击 [Vacuum Control] 真空系统。 2. 调谐,在随即出现的对话框中点击 [Auto Startup],启动 ①点击[GCMS Real Time Analysis]辅助栏中的[Turing],打开调谐窗口。②真空稳定后,点击[Peak Monitor View],进行泄漏检验。 确认m/z18、m/z28、m/z32、m/z69的关系及确认是否漏气:通常 m/z18>m/z28,表示不漏气;如果m/z28的强度同时大于m/z18,m/z69的两倍,表明漏气。③点击[Auto Tuning Condition],设置调谐条件。 通常使用默认的条件。 ④点击[Start Auto Tuning],进行自动调谐。 ⑤结束后,输出调谐报告。

在调谐报告中确认峰形、半峰宽、基峰、检测器电压和m/z502的丰度等。一般的要求如下: 峰形:没有明显的分叉,峰形对称 半峰宽:m/z69、m/z219、m/z502的半峰宽与设定值相差0.1 基峰:在质谱图中,m/z28的强度在m/z69的50%以下 检测器电压:要求小于1.5Kv m/z502的丰度:大于2% 质量数准确性:质谱图中的测量值与标准值之间相差在0.1以内 ⑥点击[File],选择[Save Tuning File As],保存调谐文件。 ⑦关闭调谐画面。 ******************************************************************** **** 注:检查漏气的方法如 1. 点击Tuning 之中的Peak Monitor View 2. 在 Monitor Group 菜单里选择[water,air],同时确认检测器的电压是 0.7Kv 。 3. 打开灯丝,观察m/z18、m/z28和m/z32的强度。如果需要比较m/z69的强度,请先关闭灯丝,选择打开PFTBA ,等待10秒钟以上,再打开灯丝。将m/z32改成m/z69。如果发现有漏气的情况,将m/z69改成m/z43。 4. 使用石油醚,在怀疑有漏气的部位检查,如果有漏气,则m/z43的峰会非常大。 5. 确认漏气的部位,进行相应的处理。

液相色谱串联质谱的小知识

一、开机 water 2695/micromass zq4000: 开机步骤 1. 分别打开质谱、液相色谱和计算机电源,此时质谱主机内置的CPU会通过网线与计算机主机建立通讯联系,这个时间大约需要1至2分钟。 2. 等液相色谱通过自检后,进入Idle状态,依照液相色谱操作程序,依次进行操作。(具体根据液相色谱不同型号来执行,下面以2695为例)。 a.打开脱气机 (Degasser On)。 b.湿灌注(Wet Prime)。 c.Purge Injector。 d.平衡色谱柱。 3.双击桌面上的 MassLynx 4.0图标进入质谱软件。 4.检查机械泵的油的状态(每星期),如果发现浑浊、缺油等状况,或者已经累积运行超过3000小时,请及时更换机械泵油。 5.点击质谱调谐图标(MS Tune)进入质谱调谐窗口。 6.选择菜单“Options –Pump”,这时机械泵将开始工作,同时分子涡轮泵会开始抽真空。几分钟后,ZQ就会达到真空要求,ZQ前面板右上角的状态灯“Vacuum”将变绿。 7.点击真空状态图标,检查真空规的状态,以确认真空达到要求。 8. 确认氮气气源输出已经打开,气体输出压力为90 psi。 9.设置源温度(Source Temp)到目标温度。 关机 1.点击质谱调谐图标进入调谐窗口。 2.点击Standby 让MS 进入待机状态时,这时状态灯会由绿变红,这一过程是关质谱高电压的过程。 3.停止液相色谱流速,如果还需要冲洗色谱柱,可以将液相色谱管路从质谱移开到废液瓶。4.等脱溶剂气温度(ESI)或APCI探头温度降到常温,点击气体图标关闭氮气。 5.逆时针方向拧开机械泵上的Gas Ballast 阀,运行20分钟后关闭(镇气)。 a) 对于ESI源,至少每星期做一次。 b) 对于APCI源,每天做一次。 6.再次确认机械泵的Ballast阀是否已经关闭。 7.选择Option / Vent,这时质谱开始泄真空,ZQ 前面板的状态灯“Vacuum”开始闪烁,几分钟后机械泵会停止运行,这时可以关闭质谱电源。 FINNIGEN DECA 开关机及校正流程—— 1开机前准备事项 (1)确保质谱总电源开关(白色开关)及主板电源开关(黑色开关)处于关闭状态(O); (2)检查真空泵油液面,确保泵内油页面处于标定的上下两线之间; (3)查看离子源洁净程度,ESI源查看喷口是否有固体析出,毛细管口是否完好;APCI喷口是否有积液; (4)气体压力,打开高纯氮气钢瓶总阀,调节出口压力调至0.65MPa,打开高纯氦气钢瓶总阀,调节出口压力调至0.25Mpa; (5)检查壳气及辅助气接口连接紧固,松开液相管路与离子源的接口; (6)开启动力电源,电压稳定,正常;

JJF气相色谱仪质谱联用仪

台式气相色谱-质谱联用仪校准规范 1 范围 本规范适用于离子阱和四极杆型台式气相色谱-质谱联用仪(以下简称台式GC-MS)的校准,其它类型台式GC-MS 的校准可参照此规范进行。 2 引用文献 JJF 1001―1998 通用计量术语及定义 JJF 1059―1999 测量不确定度评定与表示 GB/T 15481―1995 校准和检验实验室能力的通用要求 GB/T 6041―2002 质谱分析方法通则 JJG (教委) 003―1996 有机质谱仪检定规程 JJG 700―1999 气相色谱仪检定规程 OIML/TC16/SC2/R83 Gas chromatograph/mass spectrometer system for analysis of rganic pollutants in water 使用本规范时,应注意使用上述引用文献的现行有效版本。 3 术语和计量单位 分辨力(resolution) 分辨两个相邻质谱峰的能力,对于台式GC-MS以某离子峰峰高50%处的峰宽度(简称半峰宽)表示,记为W1/2,单位 u。 基线噪声(baseline noise) 基线峰底与峰谷之间的宽度,单位计数。 信噪比(signal-to-noise ratio) 待测样品信号强度与基线噪声的比值,记为S/N。 质量色谱图(mass chromatogram)质谱仪(和色谱图是两回事)质谱仪在一定质量范围内自动重复扫描所获得的质谱数据,可以不同形式再现,其中以一个或多个离子强度随时间变化的谱图,称为质量色谱图。 质量准确性(mass accuracy) 仪器测量值对理论值的偏差。 u (atomic mass unit)

AgilentBC气相色谱质谱联用仪操作规程

1. 开机 1)打开载气钢瓶控制阀,设置分压阀压力至 0.5Mpa 。 2 ) 打开计算机,登录进入 Windows 7 系统。 3)打开 7000C(若 MSD真空腔内已无负压则应在打开 MSD电源的同时用手向右侧推真空腔的侧板直至侧面板被紧固地吸牢),等待仪器自检完毕。 4)桌面双击 GC-MS 图标,进入 MSD 化学工作站 5)在上图仪器控制界面下,单击视图菜单,选择调谐及真空控制进入调谐与真空控制界面 , 在真空菜单中选择真空状态,观察真空泵运行状态,此仪器真空泵配置为分子涡轮泵,状态显示涡轮泵转速涡轮泵转速应很快达到 100 % ,否则,说明系统有漏气,应检查侧板是否压正、放空阀是否拧紧、柱子是否接好。 2. 调谐 调谐应在仪器至少开机 2 个小时后方可进行,若仪器长时间未开机为得到好的调谐结果将时间延长至 4 小时。 1)首先确认打印机已连好并处于联机状态。 2 ) 在操作系统桌面双击 7000C 图标进入工作站系统。 3)在上图仪器控制界面下,单击仪器菜单,选择MS调谐进入调谐与真空控制界面。 4 ) 进行自动调谐 , 调谐结果自动打印。 5 ) 如果要手动保存或另存调谐参数,将调谐文件保存到 atune.u 中。 6 ) 然后点击视图然后选择仪器控制返回到仪器控制界面。注意 : 自动调谐文件名为 ATUNE.U 标准谱图调谐文件名为 STUNE.U 其余调谐方式有各自的文件名 . 3. 样品测定 3.1 方法建立 1 ) 7890B配置编辑 点击仪器菜单 , 选择编辑 GC 配置进入画面。在连接画面下,单击【仪器】【GC 参数】,设置ALS,进样口,色谱柱,柱温箱参数。 2)分流不分流进样口参数设定,点击【仪器】【GC参数】在空白框内输入进样口的温度为250℃,选择隔垫吹扫流量模式标准,输入隔垫吹扫流量为 3ml/min 。对于特

液相色谱串联质谱联用专业技术实验指导(许煊炜)

液相色谱串联质谱联用仪检测技术 实验指导 (2014、2015级) 课程内容(一个实验8学时): (1)AB Sciex Qtrap 4500 三重四级杆/离子阱液相色谱串联质谱联用仪的结构原理、操作及定性定量应用。 (2)利用液相色谱串联质谱联用仪快速测定水果中7种农药的残留量。 吉林农业大学农业部参茸质检中心 2017.03

实验一AB Sciex Qtrap 4500 三重四级杆/离子阱液相色谱串联质谱联用仪的结构原理、操作及定性定量应用 一.实验目的和意义 通过学习液质联用仪的构成和使用方法,及其在定性、定量分析中的应用,培养学生使用液质联用仪进行仪器分析的能力,并培养学生严谨的科学态度、细致的工作作风、实事求是的数据报告和良好的实验习惯(准备充分、操作规范,记录简明,台面整洁、实验有序,良好的环保和公德意识)。培养培养学生的动手能力、理论联系实际的能力、统筹思维能力、创新能力、独立分析解决实际问题的能力、查阅手册资料并运用其数据资料的能力以及归纳总结的能力等。 (一)检测仪器 1、仪器名称高效液相色谱串联质谱联用仪(简称LC-MS-MS)。型号:4500 QTRAP(美国Applied Biosystems公司)。 2、仪器组成液相色谱部分:岛津LC-30A,配有在线脱气机、超高压二元泵、自动进样器;串联质谱部分:QTRAP4500,配有ESI离子源、串联四级杆/线性离子阱。 3、主要性能指标离子化方式:ESI电离质量范围:(5 ~ 1700)amu 分辨率:> 6900 质量稳定性:0.1 amu/12h 灵敏度:1pg reserpine, ESI+, MRM扫描(m/z : 609/195),信噪比S/N > 120:1 扫描速度:4000 amu/sec 质量准确度:< 0.01%(全质量数范围) 4、方法原理高效液相色谱二元泵将流动相泵人系统并混合,自动进样器将待测样品注入流动相中,随流动相进入色谱柱,由于样品不同组分在色谱柱中保留时间不同,各组分被分开,依次进入离子源。在离子源中,各组分以ESI或APCI方式电离,被加速后进入质量分析器。4500QTRAP 的质量分析器主要由Q1、Q2、Q3三组四级杆串联组成。Q1可将分子离子按质荷比(m/z)大小分开;Q2是碰撞室,可将母离子进一步破碎为碎片离子;Q3具有四级杆和线性离子阱两种功能,作为四级杆时可将分子离子或碎片离子按质荷比大小分开,作为离子阱还可富集离子从而提高检测灵敏度。各组分的不同离子在质量分析器中被破碎、分离,并按质荷比大小依次抵达监测器,经记录即得到按不同质荷比排列的离子质谱图。4500QTRAP通过串联四级杆/线性离子阱两种不同质谱技术的结合,可以在单次分析中对复杂样本中的单个成分同时进行定性和定量,也可以对多个化合物进行定量分析。整台仪器的控制、数据采集、数据处理、结果输出均由PC计算机Windows操作系统支持下的Analyst软件控制完成。

Agilent7890A5975C气相色谱质谱联用仪操作规程

Agilent 7890 A/ 5975C气相色谱质谱联用仪操作规程 1.开机 1)打开载气钢瓶控制阀,设置分压阀压力至0.5Mpa。 2打开计算机,登录进入Windows XP系统,初次开机时使用5975C的小键盘LCP 输入IP地址和子网掩码,并使用新地址重起,否则安装并运行Bootp Service。 3)依次打开7890AGC、5975MSD电源(若MSD真空腔内已无负压则应在打开MSD电源的同时用手向右侧推真空腔的侧板直至侧面板被紧固地吸牢),等待仪器自检完毕。 4)桌面双击GC-MS图标,进入MSD化学工作站 5)在上图仪器控制界面下,单击视图菜单,选择调谐及真空控制进入调谐与真空控制界面,在真空菜单中选择真空状态,观察真空泵运行状态,此仪器真空泵配置为分子涡轮泵,状态显示涡轮泵转速涡轮泵转速应很快达到100%,否则,说明系统有漏气,应检查侧板是否压正、放空阀是否拧紧、柱子是否接好。 2.调谐 调谐应在仪器至少开机2个小时后方可进行,若仪器长时间未开机为得到好的调

谐结果将时间延长至4小时。 1)首先确认打印机已连好并处于联机状态。 2在操作系统桌面双击GC-MS图标进入工作站系统。 3)在上图仪器控制界面下,单击视图菜单,选择调谐及真空控制进入调谐与真空控制界面。 4单击调谐菜单,选择自动调谐调谐MSD,进行自动调谐,调谐结果自动打印。 5如果要手动保存或另存调谐参数,将调谐文件保存到atune.u中。 6然后点击视图然后选择仪器控制返回到仪器控制界面。 注意: 自动调谐文件名为ATUNE.U 标准谱图调谐文件名为STUNE.U 其余调谐方式有各自的文件名. 3.样品测定 3.1方法建立 1)7890A配置编辑 点击仪器菜单,选择编辑GC配置进入画面。在连接画面下,输入GC Name:GC 7890A;可在Notes处输入7890A的配置,写7890A GC with 5975C MSD。点击获得GC配置按钮获取7890A的配置。 2)柱模式设定 点击图标,进入柱模式设定画面,在画面中,点击鼠标右键,选择从GC下载方法,再用同样的方法选择从GC上传方法;点击1处进行柱1设定,然后选中On左边方框;选择控制模式,流速或压力。 3)分流不分流进样口参数设定 ?点击图标,进入进样口设定画面。点击SSL-后按钮进入毛细柱进样口设定画

气相色谱质谱联用仪

气相色谱-质谱联用仪 本装置用于沥青及相关材料分析,包括以下三部分: 一、气相色谱/质谱联用仪 1.工作条件 1.1电源:220V,50Hz 1.2温度:操作环境15?C-35?C 1.3湿度:操作状态25-50%,非操作状态10-95% 2.性能指标 2.1气相色谱仪 2.1.1柱箱 2.1.1.1操作温度:室温以上4?C-450?C 2.1.1.2温度分辨:1?C温度设定,0.1?C程序设定 2.1.1.3最大升温速率: 100?C/分钟 2.1.1.4最大运行时间:999.99分钟 2.1.1.5程序升温:18阶19平台 2.1.1.6温度稳定性:<0.01?C每1?C环境变化 2.1.1.7温度准确性:±1% 2.1.1.8*降温速率:从450?C降至50?C<300秒(22℃室温下) 2.1.2 毛细柱分流/无分流进样口(带电子气路控制,简称EPC)2.1.2.1 最高使用温度:400?C 2.1.2.2 电子参数设定压力,流速和分流比 2.1.2.1*压力设定范围:0-100Psi,精度0.001Psi 2.1.2.1流量范围:0-200mL/分钟N2, 0-1250mL/minH2 or He 2.1.3 氢火焰检测器(FID) 2.1. 3.1 最高使用温度:450?C 2.1. 3.2自动点火装置,具有自动灭火检测功能 *2.1.3.3最低检测限:≤ 2.0pg碳/秒(丙烷) 2.1. 3.4 线性动态范围:≥107 2.1.3自动进样器: 2.1. 3.2样品位数:8位 2.1. 3.3进样量范围:0.1-50ul,可调 2.2质谱检测器 2.2.1具有网络通讯功能,可实现远程操作 2.2.2面板控制器可显示质谱状态信息及质谱工作参数的输入2.2.3质量数范围:1.6-1020amu,以0.1amu递增

液相色谱串联质谱的小知识知识讲解

液相色谱串联质谱的 小知识

一、开机 water 2695/micromass zq4000: 开机步骤 1. 分别打开质谱、液相色谱和计算机电源,此时质谱主机内置的CPU会通过网线与计算机主机建立通讯联系,这个时间大约需要1至2分钟。 2. 等液相色谱通过自检后,进入Idle状态,依照液相色谱操作程序,依次进行操作。(具体根据液相色谱不同型号来执行,下面以2695为例)。 a.打开脱气机 (Degasser On)。 b.湿灌注(Wet Prime)。 c.Purge Injector。 d.平衡色谱柱。 3.双击桌面上的 MassLynx 4.0图标进入质谱软件。 4.检查机械泵的油的状态(每星期),如果发现浑浊、缺油等状况,或者已经累积运行超过3000小时,请及时更换机械泵油。 5.点击质谱调谐图标(MS Tune)进入质谱调谐窗口。 6.选择菜单“Options –Pump”,这时机械泵将开始工作,同时分子涡轮泵会开始抽真空。几分钟后,ZQ就会达到真空要求,ZQ前面板右上角的状态灯“Vacuum”将变绿。 7.点击真空状态图标,检查真空规的状态,以确认真空达到要求。 8. 确认氮气气源输出已经打开,气体输出压力为90 psi。 9.设置源温度(Source Temp)到目标温度。 关机 1.点击质谱调谐图标进入调谐窗口。 2.点击Standby 让MS 进入待机状态时,这时状态灯会由绿变红,这一过程是关质谱高电压的过程。 3.停止液相色谱流速,如果还需要冲洗色谱柱,可以将液相色谱管路从质谱移开到废液瓶。 4.等脱溶剂气温度(ESI)或APCI探头温度降到常温,点击气体图标关闭氮气。 5.逆时针方向拧开机械泵上的Gas Ballast 阀,运行20分钟后关闭(镇气)。 a) 对于ESI源,至少每星期做一次。 b) 对于APCI源,每天做一次。 6.再次确认机械泵的Ballast阀是否已经关闭。 7.选择Option / Vent,这时质谱开始泄真空,ZQ 前面板的状态灯“Vacuum”开始闪烁,几分钟后机械泵会停止运行,这时可以关闭质谱电源。 FINNIGEN DECA 开关机及校正流程—— 1开机前准备事项 (1)确保质谱总电源开关(白色开关)及主板电源开关(黑色开关)处于关闭状态(O); (2)检查真空泵油液面,确保泵内油页面处于标定的上下两线之间; (3)查看离子源洁净程度,ESI源查看喷口是否有固体析出,毛细管口是否完好;APCI喷口是否有积液; (4)气体压力,打开高纯氮气钢瓶总阀,调节出口压力调至0.65MPa,打开高纯氦气钢瓶总阀,调节出口压力调至0.25Mpa;

液相色谱-串联质谱(LCMSMS)方法 - 岛津中国

液相色谱-串联质谱(LC/MS/MS)法测定癫痫患者血清中 卡马西平的浓度 谢 华ì,王 荣,贾正平?, 徐丽婷 (兰州军区兰州总医院临床药理基地,兰州 730050) 摘要目的:本文建立了液相色谱-串联质谱(LC/MS/MS)法测定患者血清中的卡马西平浓度的方法。方法:色谱柱:Zorbax Extend-C18柱(150×4.6 mm I.D,5μm);流动相:甲醇-0.01mmol·L-1乙酸 胺溶液(80:20,v/v);流速:0.3 mL·min-1。结果:卡马西平浓度在2~40 ng·mL-1范围内,峰面积与浓度线性关系良好,平均回收率为101.1%,日内精密度、日间精密度的RSD分别为3.39%和4.11%。并测定了10名患者血清中卡马西平的浓度。结论:本方法具有良好的灵敏度、准确度、精确度及专属性,结果准确,重现性好,易于操作,可用于患者血清中卡马西平浓度的测定。 关键词卡马西平;LC/MS/MS;血清 Content Determination of Carbamazepine in epileptic patient serum by Liquid Chromatographic Tandem Mass Spectrometry XIE Hua, JIA Zheng-ping*, WANG Rong, XU Li-ting (Base of Clinic Pharmacology, Lanzhou General Hospital, Lanzhou Command, Lanzhou 730050, China) ABSTRACT OBJECTIVE:An analytical method based on Liquid Chromatography with tandem Mass Spectrometry (LC-MS/MS) detection was developed for the content determination of carbamazepine in epileptic patient serum. METHODS: The method included that the column was Zorbax Extend-C18(150×4.6 mm I.D.,5μm ); mobile phase was methanol-0.01mmol·L-1amine acetic acid (80:20,v/v) at a flow rate of 0.3 mL·min-1. RESULTS: The method was proved to be linear in the range of 2~40ng·mL-1 with a regression confficient of 0.9976. The average recovery rate was 101.1%(n=5). The RSD of average contents of intra-day and inter-day was 3.39% and 4.11% respectively. The carbamazepine concentrations of ten epileptic patient’s serums were detected. CONCLUSION: This method is accurate, precise, sensitive and specific to be used in the content determination of carbamazepine serum. KEY WORDS Carbamazepine; LC/MS/MS; Serum ?基金项目:国家科技部重大项目(2008ZXJ09014-010) ì主管药师。研究方向:临床治疗药物监测。电话:(0931)8994675; E-mial: xiehua-72@https://www.wendangku.net/doc/7710813810.html, ?通讯作者:教授,主任药师,博士。研究方向:临床药学。电话:(0931)8994652。

实验1 气相色谱-质谱联用仪实验

实验一(1)气相色谱-质谱联用仪的基础操作 实验目的: 1.了解气相色谱-质谱联用仪的基础操作; 2.学习正确执行仪器的开机、关机; 3.参观资源综合利用与清洁生产重点实验室。 实验原理: 1.气相色谱-质谱联用仪的调谐目的:采用标准物质全氟三丁胺(FC-43)对质 谱仪的质量指示进行校正;对质谱参数进行优化,以实现最好的峰形和分辨率;消除质量歧视; 2.EI离子源可获得特征谱图以表征组分分子结构,目前有大量的有机物标准质 谱图。由计算机自动将未知质谱图处理成归一化棒状质谱图,按一定的检索方法与谱库中的标准谱图进行比较,计算它们的相似性指数(匹配度),把最相似的谱图化合物最为未知组分的鉴定结果,并按照相似性指数大小顺序,列出其名称、相对分子质量、分子式等以供分析参考。 仪器与试剂: 仪器:气相色谱-质谱联用仪(美国安捷伦,型号7890A-5975C) 试剂:全氟三丁胺标准品、高纯氦气 实验内容: 1.打开氦气(纯度99.999%以上)瓶开关;打开UPS电源;打开打印机电源;启动联机电脑后打开气相色谱仪电源开关; 2.待气相色谱仪自检完成后,打开质谱仪电源开关。若质谱长时间未使用,真空仓侧门已打开,开质谱电源时需用手轻按真空仓侧门1min,以利于抽真空。3.开机约1.5小时后打开工作站预热;待开机约2小时,检查真空度合格后,进入调谐菜单,点击自动调谐,进行调谐。 4.待调谐完毕,进入仪器操作界面,建立方法,进行定性分析(即进行实验项目2. 苯系物的GC-MS定性分析) 5.分析完关机。进入view菜单,点击“诊断”后,进入“真空”菜单,点击“V ent”,等V ent 结束后(≥50分钟),同时气相色谱仪进样口温度降至80℃以下后,退出工作站,依次关闭气相色谱仪、质谱仪和气瓶开关,关闭UPS电源开关。 注意事项: 1.必须严格按操作手册规定顺序进行开、关机程序; 2.仪器通过调谐后才能进行样品分析; 3.谱库检索结果并非定性分析的唯一方法,匹配度大小只表示可能性大小。 思考题(任选一题简单作答即可,鼓励全部回答): 1.质谱仪为什么采用FC-43作为标准物质? 2.质谱仪真空度不好会造成什么影响? 3.溶剂延迟的意义是什么? *注:NIST质谱库是美国国家标准技术研究院建立的标准质谱库,通过未知化合物的质谱库

高效液相色谱-串联质谱法

附件 面膜类化妆品中氟轻松检测方法 (高效液相色谱-串联质谱法) 1范围 本方法规定了面膜类化妆品中氟轻松的高效液相色谱-串联质谱测定方法。 本方法适用于面膜类化妆品中氟轻松的定性定量测定。 2方法提要 面膜类化妆品用饱和氯化钠溶液分散,用乙腈从分散液中提取氟轻松,用亚铁氰化钾和乙酸锌沉淀提取液中大分子基质,经固相萃取小柱净化,用高效液相色谱仪分离,质谱检测器检测,采用保留时间和特征离子对丰度比定性,以待测物质相对应离子峰面积定量,以标准曲线法计算含量。 本方法的检出限为0.03 μg/g,定量限为0.05 μg/g。 3试剂和材料 除另有规定外,本方法所用试剂均为分析纯或以上规格,水为纯化水。 3.1甲醇:色谱纯。 3.2乙腈:色谱纯。 3.3冰醋酸:优级纯。 3.4饱和氯化钠溶液。 3.5 10%亚铁氰化钾溶液:称取115 g亚铁氰化钾K4Fe(CN)6·3H2O固体,

用水溶解定容至1000 mL。 3.6 20%乙酸锌溶液:称取239 g乙酸锌C4H6O4Zn·2H2O固体,用水溶解定容至1000 mL。 3.7Oasis HLB固相萃取小柱或相当者:60 mg,3 mL。 3.8 标准物质:氟轻松,纯度不小于99.0%;标准物质的分子式、相对分子质量、CAS登录号、化学结构图参见附录A。 3.9 标准储备液(ρ=1g/L):准确称取氟轻松标准物质(3.8)10mg,精确到0.01 mg,置于10 mL量瓶中,用甲醇溶解并定容,于-18℃下冷冻保存。 3.10 标准工作溶液:临用时,取标准储备液(3.9)适量,用乙腈稀释成0.05μg/mL、0.10μg/mL、0.20μg/mL、0.40μg/mL、0.80μg/mL系列浓度的标准工作溶液。 4仪器和设备 4.1 高效液相色谱-三重四极杆质谱联用仪(ESI源)。 4.2 分析天平:感量0.0001g;0.00001g。 4.3 涡旋混合器。 4.4离心机:转速5000r/min,容量10mL;50mL。 4.5 固相萃取装置。 5分析步骤 5.1样品处理 5.1.1提取 称取样品(带有载体的面膜,去除载体后取样)0.2 g,精确至0.0001 g,置15 mL具塞离心管中,加入3 mL饱和氯化钠溶液(3.4),于涡旋混合器上混合使样品分散,准确加入2 mL乙腈,充分涡旋提取2 min,以

JJF气相色谱仪质谱联用仪

台式气相色谱质谱联用仪校准规范 1范围 本规范适用于离子阱和四极杆型台式气相色谱 -质谱联用仪(以下简称台式GC-MS)的校准,其它类型台式GC-MS的校准可参照此规范进行。 2引用文献 JJF 1001—1998通用计量术语及定义 JJF 1059-1999测量不确定度评定与表示 GB/T 15481—1995校准和检验实验室能力的通用要求 GB/T 6041 — 2002质谱分析方法通则 JJG (教委)003—1996有机质谱仪检定规程 JJG 700-1999气相色谱仪检定规程 OIML/TC16/SC2/R83 Gas chromatograph/mass spectrometer system for an alysis of rganic polluta nts in water 使用本规范时,应注意使用上述引用文献的现行有效版本。 3术语和计量单位 3.1分辨力(resolution) 分辨两个相邻质谱峰的能力,对于台式 GC-MS以某离子峰峰高50%处的峰宽度(简称半峰宽)表示,记为W1/2,单位u。 3.2基线噪声(baseline noise 基线峰底与峰谷之间的宽度,单位计数。 3.3信噪比(signal-to-noise ratio) 待测样品信号强度与基线噪声的比值,记为SN。 3.4质量色谱图(mass chromatogram质谱仪(和色谱图是两回事) 质谱仪在一定质量范围内自动重复扫描所获得的质谱数据,可以不同形式再现,其中 以一个或多个离子强度随时间变化的谱图,称为质量色谱图。 3.5质量准确性(mass accuracy 仪器测量值对理论值的偏差。 3.6u (atomic mass unit) 原子质量单位。 4概述 气相色谱-质谱联用仪是将气相色谱仪与质谱仪通过一定接口耦合到一起的分析仪 器。样品通过气相色谱的分离后的各个组分依次进入质谱检测器,组分在离子源被电离, 产生带有一定电荷、质量数不同的离子。不同离子在电场和 /或磁场中的运动行为不同,米用不同质量分析器把带电离子按质荷比(m/z)分开,得到依质量顺序排列的质谱图。通过对质谱图的分析处理,可以得到样品的定性、定量结果。气相色谱-质谱联用仪主要包括

气相色谱-质谱联用技术

气相色谱-质谱联用技术 本章目录(查看详细信息,请点击左侧目录导航) 第一节气相色谱质谱联用仪器系统 一、GC-MS系统的组成 二、GC-MS联用中主要的技术问题 三、GC-MS联用仪和气相色谱仪的主要区别 四、GC-MS联用仪器的分类 五、一些主要的国外GC-MS 联用仪产品简介 第二节气相色谱质谱联用的接口技术 一、GC-MS联用接口技术评介 二、目前常用的GC-MS接口 第三节气相色谱质谱联用中常用的衍生化方法 一、一般介绍 二、硅烷化衍生化 三、酰化衍生化 四、烷基化衍生化 第四节气相色谱质谱联用质谱谱库和计算机检索 一、常用的质谱谱库 二、NIST/EPA/NIH库及其检索简介 三、使用谱库检索时应注意的问题 四、互联网上有关GC-MS和的信息资源 第五节气相色谱质谱联用技术的应用 一、GC-MS检测环境样品中的二噁英 二、GC-MS在兴奋剂检测中的应用 三、GC-MS区分空间异构体 四、常用于GC-MS 检测提高信噪比的方法 五、GC-MS(TOF)的应用 气质联用仪是分析仪器中较早实现联用技术的仪器。自1957年霍姆斯和莫雷尔首次实现 GC-M S系统的组成 气相色谱和质谱联用以后,这一技术得到长足的发展。在所有联用技术中气质联用,即

GC-MS发展最完善,应用最广泛。目前从事有机物分析的实验室几乎都把GC-MS作为主要的定性确认手段之一,在很多情况下又用GC-MS进行定量分析。另一方面,目前市售的有机质谱仪,不论是磁质谱、四极杆质谱、离子阱质谱还是飞行时间质谱(TOF),傅里叶变换质谱(FTMS)等均能和气相色谱联用。还有一些其他的气相色谱和质谱联接的方式,如气相色谱! 燃烧炉! 同位素比质谱等。GC-MS逐步成为分析复杂混合物最为有效的手段之一。 GC-MS联用仪系统一般由图11-3-1所示的各部分组成。 气相色谱仪分离样品中各组分,起着样品制备的作用;接口把气相色谱流出的各组分送入质谱仪进行检测,起着气相色谱和质谱之间适配器的作用,由于接口技术的不断发展,接口在形式上越来越小,也越来越简单;质谱仪对接口依次引入的各组分进行分析,成为气相色谱仪的检测器;计算机系统交互式地控制气相色谱、接口和质谱仪,进行数据采集和处理,是GC-MS的中央控制单元。 GC-M S联用中主要的技术问题 气相色谱仪和质谱仪联用技术中主要着重要解决两个技术问题: 1.仪器接口 众所周知,气相色谱仪的入口端压力高于大气压,在高于大气压力的状态下,样品混合物的气态分子在载气的带动下,因在流动相和固定相上的分配系数不同而产生的各组分在色谱柱内的流速不同,使各组分分离,最后和载气一起流出色谱柱。通常色谱往的出口端为大气压力。质谱仪中样品气态分子在具有一定真空度的离子源中转化为样品气态离子。这些离子包括分子离子和其他各种碎片离子在高真空的条件下进入质量分析器运动。在质量扫描部件的作用下,检测器记录各种按质荷比分离不同的离子其离子流强度及其随时间的变化。因此,接口技术中要解决的问题是气相色谱仪的大气压的工作条件和质谱仪的真空工作条件的联接和匹配。接口要把气相色谱柱流出物中的载气,尽可能多的除去,保留或浓缩待测物,使近似大气压的气流转变成适合离子化装置的粗真空,并协调色谱仪和质谱仪的工作流量。

(完整word版)超高效液相色谱-四极杆飞行时间高分辨质谱联用仪

附件:技术参数 一、超高效液相色谱-四极杆飞行时间高分辨质谱联用仪 1.应用范围: 系统主要用于有机化合物的定性和定量分析。可分别通过多目标未知物筛查流程、完全未知物筛查流程等来开展未知物的发现和鉴定工作;还可以开展药物代谢、代谢物鉴定和代谢组学研究等。 2.工作环境条件: 2.1 电源:230Vac,±10%,50/60Hz,30A。 2.2 环境温度:15 ~ 26?C。 2.3 相对湿度:20 ~ 80%。 3.总体要求: 3.1 该系统基本组成包括超高效液相色谱部分和具有超高灵敏度、超快扫描速度的落地式高频四极杆-飞行时间串联质谱仪部分。仪器由计算机控制、配有独立的ESI和APCI离子源。软件包括仪器调节、数据采集、数据处理、定量分析和报告。 3.2 仪器灵敏度要高,性能稳定,重复性好。 3.3 国际知名质谱公司(10年以上商品化四极杆-飞行时间质谱生产经验)推出的主流产品,产品全部为原装进口,其性能达到或超过以下要求。 4. 质谱性能指标: 4.1 离子源:配有电喷雾离子源(ESI)、大气压化学电离源(APCI),离子源切换方便、快速,清洗、维护方便。

4.1.1 插拔式可互换ESI及APCI喷针,可实现ESI源及APCI源的快速更换。 4.1.2 大气压离子源采用锥孔结构,使用气帘气技术,而无毛细管(半径<1mm)设计装置,以同时保持高灵敏度和优异的抗污染能力。(要求提供接口结构图) 4.1.3 电喷雾离子源流速范围:在确保灵敏度不损失的前提下,实现高流速,无需分流,即可达到3ml/min;加快样品的分析速度同时,还可避免分流对样品造成损失。 4.1.4 大气压化学电离源流速范围:在确保灵敏度不损失的前提下,实现高流速,无需分流,即可达到3ml/min;加快样品的分析速度同时,还可避免分流对样品造成损失。 4.1.5 脱溶剂能力:离子源内采用辅助气体加热,气体最高温度可达700℃,确保最佳的离子化效率。(要求提供硬件结构图和软件界面截图作为证明文件) 4.1.6 离子源内废气排放:有主动废气排放装置,防止气体在密闭的离子源腔体中的回流,降低离子源的记忆效应和污染,降低机械泵的负荷延长机械泵泵油使用时间,维护试验环境,保障工作人员健康。 4.1.7 Q0聚焦技术:离子引入部分拥有高压离子聚焦技术,压力至少达7.5mtorr,以确保最佳的离子聚焦效果和离子传输效率,有效消除“记忆效应”和“交叉污染”。 4.1.8 校正方式:外置CDS辅助校正。 4.2 质量分析器:落地式四极杆-飞行时间串联质谱。

相关文档
相关文档 最新文档