文档库 最新最全的文档下载
当前位置:文档库 › 气相色谱-质谱(GC-MS)联用技术及其应用

气相色谱-质谱(GC-MS)联用技术及其应用

气相色谱-质谱(GC-MS)联用技术及其应用
气相色谱-质谱(GC-MS)联用技术及其应用

气相色谱-质谱(GC-MS)联用技术及其应用

摘要:气相色谱法—质谱(GC-MS)联用技术是一种结合气相色谱和质谱的特性,在试样中鉴别不同物质的方法。其在环境中的应用主要包括药物检测(主要用于监督药物的滥用)、火灾调查、环境分析、爆炸调查和未知样品的测定。本文主要列举了GC-MS在职业卫生检测、医药、农药残留检测、食品、刑事鉴识和社会安全方面的应用。

关键词:GC-MS,应用,药物检测,环境

1 气相色谱-质谱(GC-MS)联用

气相色谱法–质谱法联用(Gas chromatography–mass spectrometry,简称气质联用,英文缩写GC-MS)是一种结合气相色谱和质谱的特性,在试样中鉴别不同物质的方法。GC-MS 的使用包括药物检测(主要用于监督药物的滥用)、火灾调查、环境分析、爆炸调查和未知样品的测定。GC-MS也用于为保障机场安全测定行李和人体中的物质。另外,GC-MS还可以用于识别物质中以前认为在未被识别前就已经蜕变了的痕量元素。

气相色谱—质谱(GC—MS)联用技术是由两个主要部分组成:即气相色谱(GC)部分和质谱(MS)部分。气相色谱使用毛细管柱,其关键参数是柱的尺寸(长度、直径、液膜厚度)以及固定相性质(例如,5%苯基聚硅氧烷)。GC是用气体作为流动相的色谱法,当试样流经柱子时,根据混合物组分分子的化学性质的差异而得到分离。分子被柱子所保留,然后,在不同时间(叫做保留时间)流出柱子。GC可以将混合物分离为纯物质,但是GC 只依靠保留时间定性,很大程度上具有不可靠性。MS是通过将每个分子断裂成离子化碎片并通过其质荷比来进行测定,可以确定待测物的分子量、分子式,但MS只能对纯物质进行定性,对混合组分定性无能为力。

把气相色谱和质谱这两部分放在一起使用要比单独使用那一部分对物质的识别都会精细很多倍。单用气相色谱或质谱是不可能精确地识别一种特定的分子的。通常,经质谱仪处理的需要是非常纯的样品,而使用传统的检测器的气相色谱(如火焰离子化检测器)当有多种分子通过色谱柱的时间一样时(即具有相同的保留时间)不能予以区分,这样会导致两种或多种分子在同一时间流出柱子。在单独使用质谱检测器时,也会出现样式相似的离子化碎

片。将这两种方法结合起来则能减少误差的可能性,因为两种分子同时具有相同的色谱行为和质谱行为实属非常罕见。因而,当一张分子识别质谱图出现在某一特定的GC-MS 分析的保留时间时,将典型地增高了对样品种感兴趣的被分析物的确定性。

GC-MS 已经被广泛地誉为司法学物质鉴定的金标方法,因为它被用于进行―专一性测试‖。所谓―专一性测试‖就是能十分肯定地在一个给定的试样中识别出某个物质的实际存在。而非专一性测试则只能指出试样中有哪类物质存在。尽管非专一性测试能够用统计的方法提示该物质具体是那种物质,但存在识别上的正偏差。

图1 GC-MS 原理图

2 GC-MS 在环境中的应用

2.1 GC-MS 在职业卫生检测中的应用

(1)国外GC-MS 联用技术的应用

气相色谱—质谱法在国外职业卫生检测工作中应用极为普遍,美国的职业安全与健康国家研究所(NIOSH )分析方法手册标准方法2539采用甲苯溶剂解吸样品,GC-MS 检测方法测定乙醛、丙烯醛、丙醛、正戊醛等醛类化合物;标准方法2549采用热解吸法解吸样品,GC-MS 方法测定丙酮、乙酸戊酯、苯甲醛、苯、2-丁酮乙酸异丁酯、丁醇、乙二醇单丁醚、卡必醇、环己酮、正癸烷、二氯甲烷、二乙二醇乙醚、乙醇、乙酸乙酯、正庚烷、乙醛、正己烷、异丙醇、柠檬油精、甲醇、三氯乙烷、丁酮、甲基异丁基甲酮、甲酚、正辛烷、八甲

载气:

He,N 2,H 2 样品注射器

色谱柱

质谱检测器

基环四硅氧烷、正戊烷、四氯乙烯、苯酚、蒎烯、甲苯、1,1,1—三氯乙烷、1,1,2—三氯三氟乙烷、松脂、二甲苯等挥发性有机物。

(2)国内GC-MS联用技术的应用

周靖平研究建立了工作场所空气中甲基叔丁基醚(MTBE)测定方法,空气MTBE用活性炭管吸附采集,二硫化碳解吸,FFAP弹性石英毛细管柱分离,质谱SM方式检测。

王玉江等人利用硅胶采样管采集空气中气态硝基苯,甲醇解析后注入气相色谱/质谱仪,选择离子扫描方式(SIM)下用标准曲线进行定量分析。吴宇峰等人利用硅胶采样管采集空气中气态硝基苯类化合物,二氯甲烷解吸后注入气相色谱/质谱,根据其浓度在全扫描方式(can)或选择离子扫描方式(Sin)下用内标标准曲线法进行定量分析。

刘奋等研究建立了GC-MS法同时测定车间空气中丙酮、丁酮、甲基异丁基甲酮、环乙酮、苯、甲苯、二甲苯等24种有机溶剂的方法,该方法采用活性炭采集空气中有机溶剂,经FFAP毛细管柱分离,用GC-MS仪全扫描方式检测。陈华宜等人采用气相色谱—质谱联用法鉴定一起职业中毒事件中车间空气的毒物,实验结果确定车间空气中毒物为三氯乙烯和甲苯。

随着当前职业病危害因素的种类越来越多,以及突发性职业病危害事故的发生,GC-MS 联用技术具有气相色谱的高柱效、高分离及定量功能以及质谱对位置样品的定性功能,其在职业卫生检测工作中将发挥举足轻重的作用。

2.2 GC-MS在医药方面的应用

(1)在体内药物分析方面的应用

1)兴奋剂体内药物分析

a苯丙胺类药物

苯丙胺类药物属于精神运动兴奋剂,最早被国际奥委会规定为运动类禁用药,魏万里发明了快速检测尿液中苯丙胺类毒品成分的方法,在尿液中加入0.1mol/L碳酸钾水溶液后,以丙酸酐进行衍生化反应,用正己烷1mL萃取后,再用GC-MS法分析,该方法快速、简便、灵敏、准确,适用于快速检测尿液中的苯丙胺类毒品成分。

b甾体类兴奋剂

用GC-MS联用及多离子监测技术(MID)可建立人尿中3种甾体激素类药物(康力龙、克伦特罗、5β—4—羟基甲睾)在低浓度时的检测方法。

c特殊管理药物体内药物分析

吗啡类镇痛药物

Ute Hofmann等以可待因与吗啡为内标,利用GC-tandem MS法,同时测定人血清中二氢可待因及二氢吗啡的药代动力学参数。此法灵敏度高,非常适合二氢可待因的药代动力学及其在人体中代谢过程的研究。吴筠用GC-MSD法检测了人尿中氢可酮及其代谢物双氢吗啡,该方法灵敏、准确,可快速鉴别氢可酮、可待因、双氢可待因等结构相似药物。William等用GC-MS法成功检测了人尿中鸦片及其代谢物。

安定类药物体内药代动力学研究

朱昱等以7-氨基氯硝西泮为内标,尿样用乙醚—醋酸乙酯(体积比为99:1)萃取,再用N,O-双(三甲基硅)三氟乙酰胺衍生化后,用GC-MS法检测人尿中硝西泮的主要代谢产物7-氨基硝西泮,发现7-氨基硝西泮的萃取率为82.8%,检出限为1.2ug/L,适合用于人尿中硝西泮的检测。李榕等建立了以正二十一烷为内标用GC-MS法测定抗焦虑新药(AE-5)血药浓度的分析方法,并对AE-5不同剂型的血药浓度进行了测定。

心血管类药物研究

杨丽莉等以布洛芬为内标、N,O—双(三甲基硅基)三氟乙酰胺为衍生化试剂,用GC-MS 法监测了人体血浆中的吉非贝齐浓度,结果最低检测限为0.1mg/L。孙春华等采用GC-MS 法测定血浆中国产和进口辛伐他汀的体内水解物β—羟基酸代谢物浓度,经3p97生物利用度计算程序处理拟合,结果符合一室模型。

非甾体抗炎药分析

杨丽莉等建立人血浆中阿司匹林和水杨酸GC-MS法,并研究了肠溶阿司匹林片在健康人体内的药代动力学。该法以苯甲酸为内标,血样酸化后经乙醚—二氯甲烷(4:1)提取,BSTFA衍生化进样,采用选择离子方式检测、定量。结果阿司匹林、水杨酸的日内及日间RSD 分别小于4.78%及6.16%,平均回收率大于96.9%,最小检测浓度阿司匹林为10ug/L,水杨酸为0.1mg/L;8名健康志愿者口服单剂量50mg肠溶阿司匹林片后,阿司匹林、水杨酸体内过程符合一室模型。该法用于同时测定阿司匹林和水杨酸的体内浓度,灵敏度高,数据准确可靠。

(2)在中药研究中的应用

GC-MS法对中药中挥发油成分的分析见表1:

表1 GC-MS法对中药中挥发油成分的分析

名称主要成分色谱—质谱条件

干姜莰烯、水芹烯、桉叶素Pye-240 GC色谱仪;SE-54石英毛细管色谱柱;柱温40~220℃;VGMM-70H质谱仪;

分辨率600;加速电压4kV

淫羊藿棕榈酸、癸烯醛、十四酸HPC1800A GCD sys;HP-5弹性石英毛细管柱;柱温90~250℃;加速电压1.647KV;质

量扫描范围45~425

西洋参金合欢烯JMSD300-GMA2000;石英毛细管柱;柱温:50~250℃;分辨率500

砂仁樟脑、乙酸龙脑酯HP 5890型GC仪和HP-5971质量选择器联用;HP-5柱;柱温:70~200℃

(3)在保健食品违禁化学物质分析中的应用

1)减肥食品

GC/MS主要被用来分析减肥食品中的违禁添加物(如芬氟拉明、苯丁胺、苄非他明、氯苯丁胺、氯苄苯丙胺、苯双甲吗啉、苯甲吗啉及安非拉酮和马吲哚等)食欲抑制剂。样品用HP-5MS柱分离,EI源电离,全扫描(SCAN)或选择离子方式(SIM)监测方式分析。NIST 谱库中标准图谱在违禁添加物定性确证方面发挥了重要作用。潘振球等建立了减肥食品中马吲哚的GC/MS测定方法。样品采用甲醇水超声提取,再加入与甲醇等量的水沉淀杂质后,过C18固相萃取柱(SPE)净化,洗脱液进行GC/MS(SIM)分析,以保留时间和特征离子峰(m/z268、266、231、176)的相对丰度定性。方法的加标回收率在94.2%~102%之间,相对准标偏差(RSD)小于5%,最低检测限(LOD)和定量限(LOQ)分别为0.02~0.07mg/kg 和0.068~0.23mg/kg。王杉等建立了同时测定减肥保健品中芬氟拉明、苯丁胺、苄非他明、氯苯丁胺、氯苄苯丙胺、苯双甲吗啉、苯甲吗啉及安非拉酮等8种合成食欲抑制剂的方法。以二苯胺为内标,用GC-NPD初筛,再用GC/MS(SCAN)方式确证。

2)抗疲劳食品分析

抗疲劳保健食品中的违禁添加物主要以同化激素、5-磷酸二酯酶(PDE-5)抑制剂和糖皮质激素为主。这些药物通过补充能量,提高机体器官功能,特别是循环系统功能,加速体内代谢物质的清除以达到缓解疲劳的目的。但多为激素类物质,对机体代谢和生长发育具有重要影响,是严格禁止添加到保健食品中的物质。

同化激素、PDE-5抑制剂主要采用GC/MS分析。王占良等采用GC/MS法同时检测了抗疲劳保健品中的睾酮、醋酸睾酮、异己酸睾酮、庚酸睾酮、环戊丙酸睾酮、葵酸睾酮、苯丙酸睾酮和十一酸睾酮等9种睾酮酯类药物、样品用叔丁基甲醚提取,针对保健食品剂型的不同分别采取C18反相SPE柱和硅胶正相SPE柱净化,经V(三甲基硅基三氟乙酰胺(MSTFA)):V(三甲基碘硅烷(TMSI)):V(二硫代赤糖藓醇(DTE))=1000:3:1的溶液衍生化后,采用

HP-1MS柱程序升温后分离,EI源电离,以甲基睾酮作为内标,SIM检测。方法LOD和回收率满足日常检测要求。

3)安神镇静食品分析

安神镇静保健食品中的违禁添加物以本二氮卓类和巴比妥类为主。这些药物除具有镇静催眠作用外,还有抗焦虑、抗惊厥和中枢性骨骼肌松弛的作用,但能够对中枢神经系统产生抑制,甚至麻痹呼吸中枢致死,且易产生耐受性及依赖性,是严格管控的药物,严禁在保健食品中添加。

王占良等采用GC/MS法同时检测保健品中的地西泮、咪达唑仑、硝基安定、唑吡坦、氯硝安定、艾司唑仑、阿普唑仑和佐匹克隆等8种苯二氮卓类药物。样品用叔丁基甲醚-磷酸盐-碳酸盐缓冲液提取,HP-1MS柱分离,程序升温,EI源电离,以甲基睾酮作为内标,SCAN方式检测。采用CLARKE’s Analysis of Drugs和Possons 2004标准质谱图确认。方法回收率在85%~97%之间,LOD能够满足日常检测要求。刘

4)降血压食品分析

降血压保健食品中的违禁添加物以钙离子通道抑制剂、利尿剂为主。前者使血管(主要是动脉血管)平滑肌舒张或心肌细胞收缩力减弱,从而产生降血压效应;后者通过其利尿和排钠作用,减少血容量,使心排出量降低而降压,但它们都有导致血压下降或者体位性低血压、心率不齐、失眠等副作用,而且对性功能有影响,因此严禁添加到保健食品中。GC/MS 主要用于钙离子通道抑制剂分析。李涛等建立了GC/MS法检测降压类保健食品中非法添加化学药物的方法。样品采用无水乙醇-氯仿-丙酮混合溶液超声提取,或水-氯仿液液分配富集,Rtx-5ms柱程序升温分离,EI源电离,SCAN模式分析,NIST标准质谱库检索确证。方法LOD在5~20ng之间,能够在30~60min内快速检测降压类保健食品中非法添加的尼群地平、尼莫地平、尼索地平、非洛地平、可乐定、桂利嗪、卡托普利等7种化学药物。

5)消炎镇痛食品分析

消炎镇痛保健食品中的违禁添加物以非甾体抗炎药为主。该类药物通过抑制前列腺素的合成,发挥其解热、镇痛、消炎作用,但对胃肠道、肝脏、心血管系统、神经系统等具有一定的毒副作用,严禁用于保健食品添加剂。GC/MS和LC/MS均可用于该类药物的分析。苏小川等应用GC/MS联用技术对可疑添加违禁药物的保健胶囊进行筛查。样品分别采用丙酮和正己烷超声提取,用HP-5MS柱程序升温分离,EI源电离,SCAN检测。准确定性出布洛芬、非那西丁、消炎痛8种违禁添加药物及6种药物分解物。

2.3 GC-MS在农药残留检测方面的应用

(1)气相色谱—质谱联用进行农药残留分析样品的预处理

进行农药残留检测往往需要进行样品的提取和净化,常用的提取溶剂主要有乙腈、丙酮、乙酸乙酯以及二氯甲烷,几年来更多的是用乙腈作为提取液,样品在提取后需经净化处理,液—液分配法和吸附柱层析法是用于样品净化的最主要方法。

(2)气相色谱—质谱联用技术近年来的应用

美国的Steven J.JulieFillion等人于2000年建立了水果和蔬菜样品中251种农药及其代谢物的残留GC-MS检测方法。样品用乙腈提取,然后盐析。乙腈提取物的一部分用C18固相萃取净化柱除去共提取物,然后用另一个碳柱和一个氨基丙基柱串联进行第二次进化。样品的检测用气相色谱和质量选择检测器的选择离子模式完成。氨基甲酸酯类农药用液相色谱柱后衍生化和荧光检测器进行检测。该方法已适用于各种水果和蔬菜样品中的分析。在并且,实验得出,用污水MgSO4能有效地去除液液分配时有机溶剂中的水分,更适合做干燥剂。

我国于2005年颁布了用气质联用来进行蔬菜水果和粮食中的农药多残留测定的国家标准(GB/T 19648-2005)。标准中规定了水果和蔬菜中446种农药残留量的气相色谱—质谱和液相色谱—串联质谱的测定方法(其中,383种农药用气相色谱—质谱检测)。标准适用于苹果、梨、西红柿、黄瓜等多种果蔬的测定。标准的方法检出限为0.0002~0.6000mg/kg。试样用乙腈匀浆提取,盐析离心后,取上清液,经固相萃取柱净化,用乙腈+甲苯(3=1)洗脱农药,洗脱液旋转浓缩至约1mL,上机以选择离子监测。采用以环氧七氯为内标的内标法单离子定量测定。并于2005年8月1日在全国实施。

李云飞等用GC/MS以选择离子检测方式对果蔬类农产品中含有机氯、有机磷、氨基甲酸酯及除虫菊酯类4类12种农药的残留量进行定性和定量分析,结果表明方法回收率在80%~120%,变异系数在6%~20%之间。刘永波等采用SIM/GC/MS方式,依据保留时间和特征离子丰度比,在36min之内检测有机磷、有机氯、拟除虫菊酯和氨基甲酸酯等48种农药,并可同时定性和定量,可用于蔬菜、水果等多种农产品的检测。

2.4 GC-MS在在食品中的应用

标准GB/T19648-2006用气相色谱-质谱法测定水果和蔬菜中500种农药及相关化学品残留量。黄惠玲等人选择GC-MS/SIM与大体积进样技术结合,测定蔬菜、水果中包括有机磷、氨基甲酸酯、有机氯类、菊酯类在内的17种农药残留。

(1)分析牛奶饮品和奶粉中的有机磷农药残留量

林竹光等将气相色谱-负离子化学源质谱法(GC-NCIMS)应用于牛奶饮品和奶粉中19种有机磷农药残留的同时分析,牛奶饮品和奶粉经乙腈提取剂超声提取、Florisil硅藻土和中性氧化铝双净化剂同时净化及正己烷-乙酸乙酯(体积比1:1)混合剂洗脱后,以三苯基磷酸酯为内标物,采用GC- NCIMS的选择离子监测方式(SM)定性与定量分析,当牛奶饮品和奶粉的加标浓度水平为20、100、500ug/kg时,平均加标回收率为64.5%~129%,相对标准偏差为2%~20%;除喹硫磷的方法检出限(MDL)为2.4ug/kg外,其余18种有机磷农药的MDL均小于1.0ug/kg。线性范围为10~500ug/kg,相关系数均大于0.9988.此分析方法成功地应用于牛奶饮品和奶粉中多种痕量有机磷农药残留的分析。

图2 GC-NCIMS色谱图(a)内标物(200ug/kg)与19种有机磷农药混合标准样品(10ug/kg),

(b)花生牛奶样品和(c)试剂空白。

(2)检测大米中农药的残留量

张伟国等建立了一种以气相色谱/离子阱质谱(GC/MS),选择离子技术为基础的多种农药同时检测方法。净化采用凝胶渗透色谱(GPC)和Florisil小柱。通过GC/MS/SM技术对农药进行检测,在对色谱条件,扫描离子进行优化后,前处理余留下的杂质通过检测方法得到了进一步的去除,实现了一次进样同时对敌敌畏、速灭磷、甲基内吸磷、氟乐灵、六氯苯、莠去津、林丹、乙硫甲威、呋草黄、敌稗、毒死蜱、特效唑、乙酯杀螨醇、氟硅菊酯、溴氰菊酯等107种农药进行分析,对于大部分农药回收率保持在70%~110%;相对标准偏差小于20%;检出限保持在0.01~0.2mg/kg之间(信噪比3)。

(3)测定饮用水中邻苯二甲酸酯类化合物

李伟等采用液液萃取气相色谱-质谱法测定三个小瓶水、两个大桶水、五个自来水中邻苯二甲酸酯类化合物的含量;采用正己烷提取后,气相色谱-质谱分析,选择离子扫描(SIM)。该方法能有效分离16种邻苯二甲酸酯类化合物,检出限均<0.2ug/L,加标回收率在

85.5%~110.2%,相对标准偏差0.35%~1.94%。

2.4 GC-MS在刑事鉴识中的应用

GC-MS分析人身体上的小颗粒将帮助罪犯与罪行建立联系。GC-MS在麻醉毒品的监测方面的应用逐渐增多,甚至最终会取代嗅药犬。GC-MS也普遍地用于刑侦毒理学,可在嫌疑人、受害者或死者的生物标本中发现药物和毒物。

2.5 GC-MS在社会安全中的应用

(1)GC-MS在爆炸物监测的应用

9.11后开发的爆炸物监测系统已经成为全美国飞机场设施的一部分。这些监测系统的操作依赖大量的技术,其中,许多是基于GC/MS的。美国联邦航空管理局仅授权三家制造商提供这些系统,其中之一是Thermo Detection公司,以前叫Thermedics,它生产Egis爆炸物检测器(EGIS是一个基于GC-MS爆炸物检测线)。另外两家制造商是Barringer Technologies,现在被Smith’s Detection Systems收买,和Ion Track Instruments,它是General Electric Infrastructure Security Systems 的一部分。

(2)气相色谱-质谱技术在火灾物证鉴定中的应用

用GC-MS进行火灾残留物的分析方法已经很好地确立了起来。甚至,美国试验材料学会确定了火灾残留物的分析标准

GC /MS 可将火场中易燃液体放火物与干扰物燃烧生成物区分开, 利用气相色谱的色谱峰鉴定出它们的结构和成分。通过试验, 分析人员可以找到汽油燃烧的一些色谱特征峰(汽油高温燃烧断链重组生成稠环化合物四环、五环化合物),而干扰物燃烧时不会生成这些特征结构物, 利用这些特征可鉴定汽油成分存在与否。公安部四川消防研究所的祝兴华等人, 利用气相色谱/质谱技术检测火灾现场中的汽油残留物, 取得了良好的效果。

气相色谱- 质谱联用技术在火灾残留助燃剂分析中已得到了很好的应用,ASTM 有标准ASTME1618来规范气相色谱/质谱法对可燃液体残留物的分析。在该标准中逐个列出了火场残留物鉴定中汽油、中质石油馏分(油漆稀料)、重质石油馏分(柴油、煤油)等的目标检测组分和谱库检索CAS号, 以及包括了详尽的火灾残留物中多种可燃液体(汽油、石油馏分、芳香族、异链烷烃、环烷烃/链烷烃)的气相色谱/质谱仪器分析条件和气相色谱/质谱图谱。3气相色谱—质谱联用技术的新改进

(1)GC/MS/MS

质谱检测器在使用全扫描(full scan)时,对很低浓度的样品要求预富集。选择离子监测(SIM)可以使灵敏度大幅度提高,但降低被测物的定性信息,串联质谱的出现在不降低定性信息的前提下使得选择性和灵敏度都有很大的提高,如Goncalvs C等利用GC/MS/MS 测定水样中的农残,并对不同操作模式SCAN,SIS,SIM和MS-MS进行了比较,灵敏度要比SIM提高113~20倍。在MS/MS中,先驱离子在离子阱中被排出,这样就提高信噪比。MS/MS 可以同时使用不同的离子源进行监测。Hernondo MD等使用GC/2CI/MS/MS测定防污剂中的灭杀剂,在分析过程中不断改变离子源从PCI到NCI,使其绝对检出限低于ng/g级。

(2)二维气相色谱

二维气相色谱是由Liu和Phillips在1991年最先使用的,它是由两根不同性能的色谱柱通过一个调制装置串联,第一根柱子的流出物聚焦后再进入第二根色谱柱,使用计算机程序得到一张二维气相色谱图。二维气相色谱具有突出的分离性能,与质谱的联用技术更大地开阔了二维气相色谱的应用前景。

通过使用惰性离子源达到提高检测的准确性和灵敏度,利用保留时间锁定功能(RTL)及保留时间锁定农药质谱库的应用也使得复杂样品中痕量农药残留的检测更加准确、可靠。现在采用大体积进样技术,进样量最多可达1000uL,并可使检测灵敏度提高数十倍。

4 结语

气相色谱-质谱(GC-MS)联用技术在职业卫生、医药、农药残留、食品饮料、刑事鉴识以及社会安全中均有着重要作用,随着GC/MS/MS、二维气相色谱等新技术的不断发展,气相色谱-质谱联用的显著优点,使得它在各个领域的应用越来越广。

参考文献:

[1]张伟国,储晓刚.气相色谱/离子阱质谱选择离子方法同时检测大米中百种农药残留[J].分析化学研究报告.2006, 4(34):484~488.

[2]刘博伟,张健.质谱技术在火灾物证鉴定中的应用[J].武警学院学报,2009,2(25):79~80.

[3]马秀琛,冯有龙.气相色谱-质谱联用法在中药研究中的应用[J].中医药学报,1999,5:40~42.

[4]祝海珍,韩雪莲.气相色谱-质谱(GC-MS)联用技术在职业卫生检测中的应用[J].中国卫生检验杂质.2012,10(22):2529~2530.

[5]李伟.气相色谱-质谱法测定饮用水中16种邻苯二甲酸酯类化合物[J].食品工业科技.2011,4(32):391~393.

[6]吴建伟,张梓民.气相色谱/质谱(GC/MS)联用在我国环境监测中的应用[J].中国环境监测.1999,4(15):52~59.

[7]林竹光,陈美瑜.气相色谱-负离子化学源质谱法分析牛奶饮品和奶粉中19种有机磷农药残留[J].分析测试学报.2007,5(26):331~334.

[8]吴永江,朱炜.气相色谱-质谱联用检测中药材中16种残留农药[J].中国药学杂志.2006,10(41):1497~1501.

气相色谱质谱联用仪技术指标(新)

气相色谱/质谱联用仪技术指标 1.2温度:操作环境15?C~35?C 1.3 湿度:操作状态25~50%,非操作状态5~95% 2.性能指标 2.1质谱检测器 2.1.1具有网络通讯功能,可实现远程操作。结构紧凑,无需冷却水及压缩空气冷却。 2.1.2*侧开式面板,无须取下质谱仪机盖即可进行维护。玻璃窗口可显示离子源类 型,灯丝运行情况和离子源连接状态。需提供彩页证明文件。 2.1.3质量数范围:2-1000amu,以0.1amu递增

2.1.4分辨率:单位质量数分辨 2.1.5质量轴稳定性: 优于0.10amu/48小时 2.1.6灵敏度: EI:全扫描灵敏度(电子轰击源EI):1pg八氟萘(OFN),信/噪比≥ 1400:1 (扫描范围: 50-300amu) 2.1.7*仪器检出限IDL:10fg八氟萘。并提供三份以上现场安装验收报告。 2.1.8最大扫描速率:大于19,000amu/秒 2.1.9动态范围:全动态范围为106 2.1.10选择离子模式检测(SIM)最多可有100组,每组最多可选择60个离子 2.1.11质谱工作站可根据全扫描得到的数据,自动选择目标化合物的特征离子并对其进 行分组,最后保存到分析方法当中,无须手动输入。(AutoSIM) 2.1.12具有全扫描/选择离子检测同时采集功能 2.1.13两根长效灯丝的高效电子轰击源,采用完全惰性的材料制成 2.1.14*离子化能量:5~241.5eV 2.1.15离子化电流:0~315uA 2.1.16离子源温度:独立控温,150~350?C可调 2.1.17*分析器:整体石英镀金双曲面四极杆,独立温控, 106?C ~200?C。非预四极杆 加热。需提供彩页等证明文件。 2.1.18质量分析器前有T-K保护透镜。 2.1.19检测器:三维离轴,检测器。长效高能量电子倍增器 2.1.20真空系统:250升/秒以上分子涡轮泵 2.1.21气质接口温度: 独立控温,100~350℃ 2.1.22TID 痕量离子检测技术,在数据采集的过程中优化信号。 2.1.23自动归一化调谐。 2.1.24EI源可以采用氢气做为载气,CI源可以采用氨气替代甲烷气。 2.1.25具备早期维护预报功能(EMF) 2.1.26可提供质量认证功能(OQ/PV) 2.2 气相色谱仪 2.2.1 主机 2.2.1.1 电子流量控制(EPC):所有流量、压力均可以电子控制,以提高重现性,配有13路电子流量控制; 2.2.1.2 压力调节:0.001psi。 2.2.1.3 大气压力传感器补偿高度或环境变化; 2.2.1.4 程序升压/升流:3阶;

气相色谱质谱联用仪操作规程(精)

气相色谱质谱联用仪操作规程(定性部分) 1.开机 ①打开高纯氦气钢瓶的阀门,调节出口压力为7kgf/cm2左右,然后依次打开GC 电源和MS 电源,点击软件[GCMS Real Time Analysis],选择用户名,登录后进入。②点击设定系统的配置。 ③点击 [Vacuum Control] 真空系统。 2. 调谐,在随即出现的对话框中点击 [Auto Startup],启动 ①点击[GCMS Real Time Analysis]辅助栏中的[Turing],打开调谐窗口。②真空稳定后,点击[Peak Monitor View],进行泄漏检验。 确认m/z18、m/z28、m/z32、m/z69的关系及确认是否漏气:通常 m/z18>m/z28,表示不漏气;如果m/z28的强度同时大于m/z18,m/z69的两倍,表明漏气。③点击[Auto Tuning Condition],设置调谐条件。 通常使用默认的条件。 ④点击[Start Auto Tuning],进行自动调谐。 ⑤结束后,输出调谐报告。

在调谐报告中确认峰形、半峰宽、基峰、检测器电压和m/z502的丰度等。一般的要求如下: 峰形:没有明显的分叉,峰形对称 半峰宽:m/z69、m/z219、m/z502的半峰宽与设定值相差0.1 基峰:在质谱图中,m/z28的强度在m/z69的50%以下 检测器电压:要求小于1.5Kv m/z502的丰度:大于2% 质量数准确性:质谱图中的测量值与标准值之间相差在0.1以内 ⑥点击[File],选择[Save Tuning File As],保存调谐文件。 ⑦关闭调谐画面。 ******************************************************************** **** 注:检查漏气的方法如 1. 点击Tuning 之中的Peak Monitor View 2. 在 Monitor Group 菜单里选择[water,air],同时确认检测器的电压是 0.7Kv 。 3. 打开灯丝,观察m/z18、m/z28和m/z32的强度。如果需要比较m/z69的强度,请先关闭灯丝,选择打开PFTBA ,等待10秒钟以上,再打开灯丝。将m/z32改成m/z69。如果发现有漏气的情况,将m/z69改成m/z43。 4. 使用石油醚,在怀疑有漏气的部位检查,如果有漏气,则m/z43的峰会非常大。 5. 确认漏气的部位,进行相应的处理。

实验7 气相色谱-质谱联用技术定性鉴定混合溶剂的成分

实验七 气相色谱-质谱联用技术 定性鉴定混合溶剂的成分 I.实验目的 (1) 了解气相色谱-质谱联用技术的基本原理; (2) 学习气相色谱-质谱联用技术定性鉴定的方法; (3) 了解色谱工作站的基本功能。 II. 实验原理 质谱法是一种重要的定性鉴定和结构分析方法,但没有分离能力,不能直接分析混合物。色谱法则相反,它是一种有效的分离分析方法,特别适合于复杂混合物的分离,但对组分的定性鉴定有一定难度。如果把这两种方法结合起来,将色谱仪作为质谱仪的进样和分离系统,即混合试样进入色谱柱分离,得到的单个组分按保留时间的大小依次进入质谱仪测定质谱,这样就可以实现优势互补,解决复杂混合物的快速分离和定性鉴定。气相色谱-质谱联用(GC-MS )于1957年首次实现,并很快成为一种重要的分析手段广泛应用于化工、石油、食品、药物、法医鉴定及环境监测等领域。 气相色谱-质谱联用的主要困难是两者的工作气压不匹配。质谱仪器必须在10-3~10-4Pa 的高真空条件下工作,而气相色谱仪的流出物为常压(约100kPa ),因此需要一个硬件接口来协调两者的工作条件。当气相色谱仪使用毛细管柱时,因为每分钟几毫升的流量不足以破坏质谱仪的真空状态,所以可直接与质谱仪联用。 挥发性混合物从气相色谱仪进样,经色谱柱分离后,按组分的保留时间大小依次以纯物质形式进入质谱仪,质谱仪自动重复扫描,计算机记录和储存所有的质谱信息,然后将处理结果显示在屏幕上。质谱仪的每一次扫描都得到一张质谱图,色谱组分流入时得到的是组分的质谱图,没有色谱组分时得到的是背景的质谱图,计算机将质谱仪重复扫描得到的所有离子流信号(不分质荷比大小)的强度总和对扫描信号(即色谱保留时间)作图得到总离子流图,总离子流强度的变化正是流入质谱仪的色谱组分变化的反映,所以在GC-MS 中,总离子流图相当于色谱图,每一个谱峰代表了一个组分,谱峰的强度与组分的相对含量有关。下图是混合溶剂试样的总离子流图(a )和其中第4号峰的质谱图(b )。从总离子流图中出现的6个谱峰可以得知该混合溶剂中有6个组分;对质谱图(b )进行解析可知该组分的相对分子质量为100,图中有m/z29,43,57,71等一系列间隔14(相当于CH 2)的离子峰,说明该组分的结构中有长碳链,结合相对分子质量推测为庚烷,通过质谱标准谱库的检索验证,确定试样总离子流图的4号峰为正庚烷。 混合溶剂的总离子流图(a )和4号峰的质谱图(b ) III. 实验用品 仪器: 岛津公司GCMS-QP5050A 气相色谱-质谱联用仪,GCMS Solution 工作站,NIST 谱库。微量注射器(1μL ) 试剂: 混合试剂 异丙醇、乙酸乙酯、苯3种试剂(纯度≥99.5% )混合而成,甲

气相色谱-质谱联用 原理和应用介绍

气相色谱法-质谱联用 气相色谱法–质谱法联用(英语:Gas chromatography–mass spectrometry,简称气质联用,英文缩写GC-MS)是一种结合气相色谱和质谱的特性,在试样中鉴别不同物质的方法。GC-MS的使用包括药物检测(主要用于监督药物的滥用)、火灾调查、环境分析、爆炸调查和未知样品的测定。GC-MS也用于为保障机场安全测定行李和人体中的物质。另外,GC-MS 还可以用于识别物质中以前认为在未被识别前就已经蜕变了的痕量元素。 GC-MS已经被广泛地誉为司法学物质鉴定的金标方法,因为它被用于进行“专一性测试”。所谓“专一性测试”就是能十分肯定地在一个给定的试样中识别出某个物质的实际存在。而非专一性测试则只能指出试样中有哪类物质存在。尽管非专一性测试能够用统计的方法提示该物质具体是那种物质,但存在识别上的正偏差。 目录 1 历史 2 仪器设备 2.1 GC-MS吹扫和捕集 2.2 质谱检测器的类型 3 分析 3.1 MS全程扫描 3.2 选择的离子检测 3.3 离子化类型 3.3.1 电子离子化 3.3.2 化学离子化 3.4 GC-串联MS 4 应用 4.1 环境检测和清洁 4.2 刑事鉴识 4.3 执法方面的应用

4.4 运动反兴奋剂分析 4.5 社会安全 4.6 食品、饮料和香水分析 4.7 天体化学 4.8 医药 5 参考文献 6 参考书目 7 外部链接 历史用质谱仪作为气相色谱的检测器是上个世纪50年代期间由Roland Gohlke和Fred McLafferty首先开发的。当时所使用的敏感的质谱仪体积庞大、容易损坏只能作为固定的实验室装置使用。 价格适中且小型化的电脑的开发为这一仪器使用的简单化提供了帮助,并且,大大地改善了分析样品所花的时间。1964年,美国电子联合公司(Electronic Associates, Inc. 简称EAI)-美国模拟计算机供应商的先驱在开始开发电脑控制的四极杆质谱仪Robert E. Finnigan的指导下[3]开始开发电脑控制的四极杆质谱仪。到了1966年,Finnigan和Mike Uthe的EAI分部合作售出500多台四极杆残留气体分析仪。1967年,Finnigan仪器公司the (Finnigan Instrument Corporation,简称FIC)组建就绪,1968年初就给斯坦福大学和普渡大学发送了第一台GC/MS的最早雏型。FIC最后重新命名为菲尼根公司(Finnigan Corporation)并且继续持世界GC/MS系统研发、生产之牛耳。 1966年,当时最尖端的高速GC-MS (the top-of-the-line high-speed GC-MS units)单元在不到90秒的时间里,完成了火灾助燃物的分析,然而,如果使用第一代GC-MS至少需要16分钟。到2000年使用四极杆技术的电脑化的GC/MS仪器已经化学研究和有机物分析的必不可少的仪器。今天电脑化的GC/MS仪器被广泛地用在水、空气、土壤等的环境检测中;同时也用于农业调控、食品安全、以及医药产品的发现和生产中。 气质联用色谱是由两个主要部分组成:即气相色谱部分和质谱部分。气相色谱使用毛细管柱,其关键参数是柱的尺寸(长度、直径、液膜厚度)以及固定相性质(例如,5%苯基

气相色谱质谱联用原理和应用

气相色谱质谱联用原理 和应用 WTD standardization office【WTD 5AB- WTDK 08- WTD 2C】

气相色谱-质谱联用测定农药多残留 摘要:本文研究了气相色谱-质谱联用(GS-MS)仪检测农药残留的方法,辅助以样品前处理技术,对蔬菜、水果、食用油、土壤中的农药多残留的检测方法进行了研究,取得了比较理想的效果。 关键词:气相色谱-质谱联用仪;农药多残留;检测 1引言 当前人类环境持续恶化,世界各国在工业、民用、科技、商业和军事防御等领域都面临着严重的环境污染问题。随着人们对环境污染、食品安全的关注,环境、食品中有机污染物检测方面的规范越来越严格,相应的检测技术也越来越先进。在各种有机物检测技术中,色谱仪器与质谱仪器联用作为一种比较成熟的检测手段,既可发挥色谱法的高分离能力,又兼具质谱准确鉴定化合物结构的优点,即可定性又可定量,尤其适用于环境样品中微量、痕量有机污染物的分析检测工作。1979 年美国环保局(EPA)将GC-MS(Gas Chromatography-Mass Spectrometry)联用技术列为检测饮用水、地表水中有机物的标准分析方法。随着仪器的不断完善与发展,检测技术的成熟与推广,GC-MS 法应用范围越来越广。除了在传统挥发油、脂肪油等的分析测定方面不断发展与普及外,在环境有机污染物检测、食品安全、农药残留、化妆品禁用成分研究等方面的应用也得到了广泛开展。 近年来,由于农药的大量使用引起的食品安全问题已被人们广泛的认识、关注和重视。人们食用了受到农药严重污染的蔬菜水果,而造成人体急性中毒或者慢性中毒的事件屡有发生。为保证食品的质量,世界卫生组织和世界各国制订了严格的限量标准,与此同时,许多国家也借此施行技术壁垒,使得农药残留问题不仅是影响人的身体健康,而且也严重影响到国家的对外贸易。 由于各类食品组成成分复杂,不同农药品种的理化性质存在较大差异,并且近年来高效、低毒、低残留农药品种不断涌现,给农药残留检测技术提出了更高的要求。发展快速、可靠、灵敏和实用的农药残留分析技术无疑是控制农药残留、保证食品安全和避免国际间有关贸易争端的基础。目前,我国农药残留限量标准制定工作滞后,残留监测体系不健全,残留检测能力有限、覆盖面窄。因此,我国应该根据自己的技术条件及农产品市场制定相应的多残留分析方法。 食品中的农药残留污染影响着人民生活质量的提高和食品贸易的顺利进行。日常食用的果蔬施用的农药种类繁多,常见的农药如有机磷类农药、氨基甲酸酯类农药、菊酯类农药和除草剂,抑菌剂等。由于果蔬中往往同时残留不同种类的农药,这对多残留同时检测条件提出很高要求。由于气相色谱-质谱联用( GC-MS) 具有灵敏度

质谱联用技术及应用

质谱联用技术及应用 摘要:色谱质谱联用是最具发展和应用前景的技术之一,克服了色谱难以获得结构信息和质谱需要预处理的缺点。本文主要讲述了气相色谱-质谱联用、液相色谱-质谱联用及质谱-质谱联用技术的优点,以及质谱联用技术在生物、医药、化工、农业等领域的应用。 关键词:气相色谱-质谱联用、液相色谱-质谱联用、质谱-质谱联用 质谱分析是一种测量离子荷质比(电荷-质量比)的分析方法,其基本原理是使试样中各组分在离子源中发生电离,生成不同荷质比的带正电荷的离子,经加速电场的作用,形成离子束,进入质量分析器。在质量分析器中,再利用电场和磁场使发生相反的速度色散,将它们分别聚焦而得到质谱图,从而确定其质量。色谱-质谱联用技术是当代最重要的分离和鉴定的分析方法之一。色谱的优势在于分离,色谱的分离能力为混合物分离提供了最有效的选择,但色谱方法难以得到结构信息,其主要靠与标样对比达到对未知物结构的推定;在对复杂混合未知物的结构分析方面显得薄弱;在常规的紫外检测器上对于无紫外吸收化合物的检测和大量未知化合物的定性分析还需依赖于其他手段。质谱法能提供丰富的结构信息,用样量又是几种谱学方法中用量最少的,但其样品需经预处理(纯化、分离),程序复杂、耗时长。长期以来,人们为解决这两种技术的弱点发展了许多技术,其中色谱. 质谱联用技术是最具发展和应用前景的技术之一。目前应用较多的是气相色谱-质谱(GC-MS)联用。但是GC要求样品具有一定的蒸气压,只有20%的药品可不经过预先的化学处理而能满意地用气相色谱分离,多种情况下所研究的药物需要经过适当的预处理和衍生化,以使之成为易汽化的样品才能进行GC-MS分析。而HPLC可分离极性的、离子化的、不易挥发的高分子质量和热不稳定的化合物,同时LC-MS联机弥补了传统LC检测器的不足,具有高分离能力,高灵敏度,应用范围更广和具有极强的专属性等特点,越来越受到人们的重视。据估计已知化合物中约80%的化合物均为亲水性强、挥发性低的有机

气相色谱-质谱联用技术

气相色谱-质谱联用技术 本章目录(查看详细信息,请点击左侧目录导航) 第一节气相色谱质谱联用仪器系统 一、GC-MS系统的组成 二、GC-MS联用中主要的技术问题 三、GC-MS联用仪和气相色谱仪的主要区别 四、GC-MS联用仪器的分类 五、一些主要的国外GC-MS 联用仪产品简介 第二节气相色谱质谱联用的接口技术 一、GC-MS联用接口技术评介 二、目前常用的GC-MS接口 第三节气相色谱质谱联用中常用的衍生化方法 一、一般介绍 二、硅烷化衍生化 三、酰化衍生化 四、烷基化衍生化 第四节气相色谱质谱联用质谱谱库和计算机检索 一、常用的质谱谱库 二、NIST/EPA/NIH库及其检索简介 三、使用谱库检索时应注意的问题 四、互联网上有关GC-MS和的信息资源 第五节气相色谱质谱联用技术的应用 一、GC-MS检测环境样品中的二噁英 二、GC-MS在兴奋剂检测中的应用 三、GC-MS区分空间异构体 四、常用于GC-MS 检测提高信噪比的方法 五、GC-MS(TOF)的应用 气质联用仪是分析仪器中较早实现联用技术的仪器。自1957年霍姆斯和莫雷尔首次实现 GC-M S系统的组成 气相色谱和质谱联用以后,这一技术得到长足的发展。在所有联用技术中气质联用,即

GC-MS发展最完善,应用最广泛。目前从事有机物分析的实验室几乎都把GC-MS作为主要的定性确认手段之一,在很多情况下又用GC-MS进行定量分析。另一方面,目前市售的有机质谱仪,不论是磁质谱、四极杆质谱、离子阱质谱还是飞行时间质谱(TOF),傅里叶变换质谱(FTMS)等均能和气相色谱联用。还有一些其他的气相色谱和质谱联接的方式,如气相色谱! 燃烧炉! 同位素比质谱等。GC-MS逐步成为分析复杂混合物最为有效的手段之一。 GC-MS联用仪系统一般由图11-3-1所示的各部分组成。 气相色谱仪分离样品中各组分,起着样品制备的作用;接口把气相色谱流出的各组分送入质谱仪进行检测,起着气相色谱和质谱之间适配器的作用,由于接口技术的不断发展,接口在形式上越来越小,也越来越简单;质谱仪对接口依次引入的各组分进行分析,成为气相色谱仪的检测器;计算机系统交互式地控制气相色谱、接口和质谱仪,进行数据采集和处理,是GC-MS的中央控制单元。 GC-M S联用中主要的技术问题 气相色谱仪和质谱仪联用技术中主要着重要解决两个技术问题: 1.仪器接口 众所周知,气相色谱仪的入口端压力高于大气压,在高于大气压力的状态下,样品混合物的气态分子在载气的带动下,因在流动相和固定相上的分配系数不同而产生的各组分在色谱柱内的流速不同,使各组分分离,最后和载气一起流出色谱柱。通常色谱往的出口端为大气压力。质谱仪中样品气态分子在具有一定真空度的离子源中转化为样品气态离子。这些离子包括分子离子和其他各种碎片离子在高真空的条件下进入质量分析器运动。在质量扫描部件的作用下,检测器记录各种按质荷比分离不同的离子其离子流强度及其随时间的变化。因此,接口技术中要解决的问题是气相色谱仪的大气压的工作条件和质谱仪的真空工作条件的联接和匹配。接口要把气相色谱柱流出物中的载气,尽可能多的除去,保留或浓缩待测物,使近似大气压的气流转变成适合离子化装置的粗真空,并协调色谱仪和质谱仪的工作流量。

气相色谱-质谱联用原理和应用

气相色谱-质谱联用测定农药多残留 摘要:本文研究了气相色谱-质谱联用(GS-MS)仪检测农药残留的方法,辅助以样品前处理技术,对蔬菜、水果、食用油、土壤中的农药多残留的检测方法进行了研究,取得了比较理想的效果。 关键词:气相色谱-质谱联用仪;农药多残留;检测 1引言 当前人类环境持续恶化,世界各国在工业、民用、科技、商业和军事防御等领域都面临着严重的环境污染问题。随着人们对环境污染、食品安全的关注,环境、食品中有机污染物检测方面的规范越来越严格,相应的检测技术也越来越先进。在各种有机物检测技术中,色谱仪器与质谱仪器联用作为一种比较成熟的检测手段,既可发挥色谱法的高分离能力,又兼具质谱准确鉴定化合物结构的优点,即可定性又可定量,尤其适用于环境样品中微量、痕量有机污染物的分析检测工作。1979 年美国环保局(EPA)将GC-MS(Gas Chromatography-Mass Spectrometry)联用技术列为检测饮用水、地表水中有机物的标准分析方法。随着仪器的不断完善与发展,检测技术的成熟与推广,GC-MS 法应用范围越来越广。除了在传统挥发油、脂肪油等的分析测定方面不断发展与普及外,在环境有机污染物检测、食品安全、农药残留、化妆品禁用成分研究等方面的应用也得到了广泛开展。 近年来,由于农药的大量使用引起的食品安全问题已被人们广泛的认识、关注和重视。人们食用了受到农药严重污染的蔬菜水果,而造成人体急性中毒或者慢性中毒的事件屡有发生。为保证食品的质量,世界卫生组织和世界各国制订了严格的限量标准,与此同时,许多国家也借此施行技术壁垒,使得农药残留问题不仅是影响人的身体健康,而且也严重影响到国家的对外贸易。 由于各类食品组成成分复杂,不同农药品种的理化性质存在较大差异,并且近年来高效、低毒、低残留农药品种不断涌现,给农药残留检测技术提出了更高的要求。发展快速、可靠、灵敏和实用的农药残留分析技术无疑是控制农药残留、保证食品安全和避免国际间有关贸易争端的基础。目前,我国农药残留限量标准制定工作滞后,残留监测体系不健全,残留检测能力有限、覆盖面窄。因此,我国应该根据自己的技术条件及农产品市场制定相应的多残留分析方法。 食品中的农药残留污染影响着人民生活质量的提高和食品贸易的顺利进行。日常食用的果蔬施用的农药种类繁多,常见的农药如有机磷类农药、氨基甲酸酯类农药、菊酯类农药和除草剂,抑菌剂等。由于果蔬中往往同时残留不同种类的农药,这对多残留同时检测条件提出很高要求。由于气相色谱-质谱联用( GC

JJF气相色谱仪质谱联用仪

台式气相色谱质谱联用仪校准规范 1范围 本规范适用于离子阱和四极杆型台式气相色谱 -质谱联用仪(以下简称台式GC-MS)的校准,其它类型台式GC-MS的校准可参照此规范进行。 2引用文献 JJF 1001—1998通用计量术语及定义 JJF 1059-1999测量不确定度评定与表示 GB/T 15481—1995校准和检验实验室能力的通用要求 GB/T 6041 — 2002质谱分析方法通则 JJG (教委)003—1996有机质谱仪检定规程 JJG 700-1999气相色谱仪检定规程 OIML/TC16/SC2/R83 Gas chromatograph/mass spectrometer system for an alysis of rganic polluta nts in water 使用本规范时,应注意使用上述引用文献的现行有效版本。 3术语和计量单位 3.1分辨力(resolution) 分辨两个相邻质谱峰的能力,对于台式 GC-MS以某离子峰峰高50%处的峰宽度(简称半峰宽)表示,记为W1/2,单位u。 3.2基线噪声(baseline noise 基线峰底与峰谷之间的宽度,单位计数。 3.3信噪比(signal-to-noise ratio) 待测样品信号强度与基线噪声的比值,记为SN。 3.4质量色谱图(mass chromatogram质谱仪(和色谱图是两回事) 质谱仪在一定质量范围内自动重复扫描所获得的质谱数据,可以不同形式再现,其中 以一个或多个离子强度随时间变化的谱图,称为质量色谱图。 3.5质量准确性(mass accuracy 仪器测量值对理论值的偏差。 3.6u (atomic mass unit) 原子质量单位。 4概述 气相色谱-质谱联用仪是将气相色谱仪与质谱仪通过一定接口耦合到一起的分析仪 器。样品通过气相色谱的分离后的各个组分依次进入质谱检测器,组分在离子源被电离, 产生带有一定电荷、质量数不同的离子。不同离子在电场和 /或磁场中的运动行为不同,米用不同质量分析器把带电离子按质荷比(m/z)分开,得到依质量顺序排列的质谱图。通过对质谱图的分析处理,可以得到样品的定性、定量结果。气相色谱-质谱联用仪主要包括

气相色谱-质谱联用技术..

气相色谱-质谱联用技术 气相色谱-质谱联用技术,简称质谱联用,即将气相色谱仪与质谱仪通过接口组件进行连接,以气相色谱作为试样分离、制备的手段,将质谱作为气相色谱的在线检测手段进行定性、定量分析,辅以相应的数据收集与控制系统构建而成的一种色谱-质谱联用技术,在化工、石油、环境、农业、法医、生物医药等方面,已经成为一种获得广泛应用的成熟的常规分析技术。 1、产生背景 色谱法是一种很好的分离手段,可以将复杂混合物中的各种组分分离开,但它的定性、鉴定结构的能力较差,并且气相色谱需要多种检测器来解决不同化合物响应值的差别问题;质谱对未知化合物的结构有很强的鉴别能力,定性专属性高,可提供准确的结构信息,灵敏度高,检测快速,但质谱法的不同离子化方式和质量分析技术有其局限性,且对未知化合物进行鉴定,需要高纯度的样本,否则杂质形成的本底对样品的质谱图产生干扰,不利于质谱图的解析。气相色谱法对组分复杂的样品能进行有效的分离,可提供纯度高的样品,正好满足了质谱鉴定的要求。 气相色谱-质谱联用(gas chromatography-mass sepetrometry , GC-MS)技术综合了气相色谱和质谱的优点,具有GC的高分辨率和质谱的高灵敏度、强鉴别能力。GC-MS可同时完成待测组分的分离、鉴定和定量,被广泛应用于复杂组分的分离与鉴定。 2、技术原理与特点 气相色谱技术是利用一定温度下不同化合物在流动相(载气)和固定相中分配系数的差异,使不同化合物按时间先后在色谱柱中流出,从而达到分离分析的目的。保留时间是气象色谱进行定性的依据,而色谱峰高或峰面积是定量的手段,所以气相色谱对复杂的混合物可以进行有效地定性定量分析。其特点在于高效的分离能力和良好的灵敏度。由于一根色谱柱不能完全分离所有化合物,以保留时间作为定性指标的方法往往存在明显的局限性,特别是对于同分异构化合物或者同位素化合物的分离效果较差。 质谱技术是将汽化的样品分子在高真空的离子源内转化为带电离子,经电离、引出和聚焦后进入质量分析器,在磁场或电场作用下,按时间先后或空间位置进行质荷比(质量和电荷的比,m/z)分离,最后被离子检测器检测。其主要特点是迁建的结构鉴定能力,能给出化合物的分子量、分子式及结构信息。在一定条件下所得的MS碎片图及相应强度,犹如指纹图,易与辨识,方法专属灵敏。但质谱拘束最大的不足之处在与要求样品是单一组分,无法满足复杂物质的分析。

实验三 气相色谱-质谱联用仪定性分析液体混合物

实验三气相色谱-质谱联用仪定性分析液体混合物 一、实验目的 1. 了解质谱检测器的基本组成及功能原理 2. 了解色谱工作站的基本功能,掌握利用气相色谱-质谱联用仪进行定性分析的基本操作。 二、实验原理 气相色谱法(gas chromatography, GC)是一种应用非常广泛的分离手段,它是以惰性气体作为流动相的柱色谱法,其分离原理是基于样品中的组分在两相间分配上的差异。气相色谱法虽然可以将复杂混合物中的各个组分分离开,但其定性能力较差,通常只是利用组分的保留特性来定性,这在欲定性的组分完全未知或无法获得组分的标准样品时,对组分定性分析就十分困难了。随着质谱(mass spectrometry, MS)、红外光谱及核磁共振等定性分析手段的发展,目前主要采用在线的联用技术,即将色谱法与其它定性或结构分析手段直接联机,来解决色谱定性困难的问题。气相色谱-质谱联用(GC-MS)是最早实现商品化的色谱联用仪器。目前,小型台式GC-MS已成为很多实验室的常规配置。 1. 质谱仪的基本结构和功能 质谱系统一般由真空系统、进样系统、离子源、质量分析器、检测器和计算机控制与数据处理系统(工作站)等部分组成。 质谱仪的离子源、质量分析器和检测器必须在高真空状态下工作,以减少本底的干扰,避免发生不必要的分子-离子反应。质谱仪的高真空系统一般由机械泵和扩散泵或涡轮分子泵串联组成。机械泵作为前级泵将真空抽到10-1-10-2Pa,然后由扩散泵或涡轮分子泵将真空度降至质谱仪工作需要的真空度10-4-10-5Pa。虽然涡轮分子泵可在十几分钟内将真空度降至工作范围,但一般仍然需要继续平衡2小时左右,充分排除真空体系内存在的诸如水分、空气等杂质以保证仪器工作正常。 气相色谱-质谱联用仪的进样系统由接口和气相色谱组成。接口的作用是使经气相色谱分离出的各组分依次进入质谱仪的离子源。接口一般应满足如下要

气相色谱质谱连用的原理、应用和进展

气相色谱-质谱连用的原理、应用和进展

————————————————————————————————作者:————————————————————————————————日期:

气相色谱-质谱连用的原理、应用和进展 物理化学 2015111154 魏斌娟1、引言 气相色谱法是一种新的分离分析技术。其出现在二十世纪五十年代,经过多年的发展,气相色谱法已经广泛应用于国防,农业等领域。将气体作为流动相的色谱法成为气相色谱法,因为气相中样品的传递速度是最快的,所以将样品非别放在流动相和固定相之间可以迅速使其达到平衡状态。随着科技的发展,近年来,将高灵敏度选择性检测器与气相色谱法相结合,可以大大提高其分析灵敏度,扩大其应用范围。但是由于气相色谱的定性能力不强,所以只能依靠组分的保留特性来对样品进行定性,应用很不方便,随着计算机技术的发展,气相色谱质谱联用技术应运而生。气相色谱质谱联用技术涵盖了气相色谱法的优点,并且弥补了其定性不强的缺点。随着技术的日益成熟,其功能也日益完善,目前,气相色谱质谱联用技术在食品、药物、生命科学等领域都有着广泛的应用。[1] 2、气质联用技术的基本原理 质谱法(Mass Spectrometry , MS)的基本原理是有机物 样品在离子源中发生电离,生成不同质荷比(m/z)的带正电荷离子,经加速电场的作用形成离子束,进入质量分析器,在其中再利用电场和磁场使其发生色散、聚焦,获得质谱图。根

据质谱图提供的信息可进行有机物、无机物的定性、定量分析,复杂化合物的结构分析,同位素比的测定及固体表面的结构和组成的分析。 气相色谱法(Gas chromatography, GC)是近年来应用日趋广泛的分析技术。由于是以气体作为流动相,所以传质速度快,一般的样品分析可在20~30s完成,具有分离效能高,灵敏度高的特点。总体而言,色谱法对有机化合物是一种有效的分离和分析方法 ,特别适合进行有机化合物的定量分析 ,但定性分析则比较困难。 气-质联用(GC-MS)法利用了色谱的高分离能力和质谱的高鉴别特性,可对复杂的混合样品进行分离、定性、定量分析的一次完成,是一种完美的现代分析方法 ,因此两者的有效结合必将为化学家及生物化学家提供一个进行复杂化合物高效的定性定量分析的工具。色谱—质谱联用已经是一个比较成熟的技术,它结合了色谱对混合有机化合物较强的分离能力和质谱的极高的灵敏度和强大的鉴定能力,成为目前剖析有机混合物的强有力的武器[2]。 气-质联用(GC-MS)法在对样品进行分析检测时,混合物样品经过分离进入质谱仪离子源,经过电离过程转化成离子,然后离子再逐步经过质量分析器和检测器成为质谱信号录入到计算机中。在检测过程中,样品不断的流入离子源,只需将分析器的扫描的质量和扫描的时间设置在一定范围

液相色谱质谱联用技术(LCMS)的各种模式探索

实验七液相色谱-质谱联用技术(LC-MS)的各种模式探索 093858 张亚辉 一、实验目的 1、了解LC-MS的主要构造和基本原理; 2、学习LC-MS的基本操作方法; 3、掌握LC-MS的六种操作模式的特点及应用。 二、实验原理 1、液质基本原理及模式介绍 液相色谱-质谱法(Liquid Chromatography/Mass Spectrometry,LC-MS)将应用范围极广的分离方法——液相色谱法与灵敏、专属、能提供分子量和结构信息的质谱法结合起来,必然成为一种重要的现代分离分析技术。 但是,LC是液相分离技术,而MS是在真空条件下工作的方法,因而难以相互匹配。LC-MS经过了约30年的发展,直至采用了大气压离子化技术(Atmospheric pressure ionization,API)之后,才发展成为可常规应用的重要分离分析方法。现在,在生物、医药、化工、农业和环境等各个领域中均得到了广泛的应用,在组合化学、蛋白质组学和代谢组学的研究工作中,LC-MS已经成为最重要研究方法之一。 质谱仪作为整套仪器中最重要的部分,其常规分析模式有全扫描模式(Scan)、选择离子监测模式(SIM)。 (一)全扫描模式方式(Scan):最常用的扫描方式之一,扫描的质量范围覆盖被测化合物的分子离子和碎片离子的质量,得到的是化合物的全谱,可以用来进行谱库检索,一般用于未知化合物的定性分析。实例:(Q1 = 100-259m/z)(二)选择离子监测模式(Selective Ion Monitoring,SIM):不是连续扫描某一质量范围,而是跳跃式地扫描某几个选定的质量,得到的不是化合物的全谱。主要用于目标化合物检测和复杂混合物中杂质的定量分析。实例:(Q1 =

气相色谱-质谱(GC-MS)联用技术及其应用

气相色谱-质谱(GC-MS)联用技术及其应用 摘要:气相色谱法—质谱(GC-MS)联用技术是一种结合气相色谱和质谱的特性,在试样中鉴别不同物质的方法。其在环境中的应用主要包括药物检测(主要用于监督药物的滥用)、火灾调查、环境分析、爆炸调查和未知样品的测定。本文主要列举了GC-MS在职业卫生检测、医药、农药残留检测、食品、刑事鉴识和社会安全方面的应用。 关键词:GC-MS,应用,药物检测,环境 1 气相色谱-质谱(GC-MS)联用 气相色谱法–质谱法联用(Gas chromatography–mass spectrometry,简称气质联用,英文缩写GC-MS)是一种结合气相色谱和质谱的特性,在试样中鉴别不同物质的方法。GC-MS 的使用包括药物检测(主要用于监督药物的滥用)、火灾调查、环境分析、爆炸调查和未知样品的测定。GC-MS也用于为保障机场安全测定行李和人体中的物质。另外,GC-MS还可以用于识别物质中以前认为在未被识别前就已经蜕变了的痕量元素。 气相色谱—质谱(GC—MS)联用技术是由两个主要部分组成:即气相色谱(GC)部分和质谱(MS)部分。气相色谱使用毛细管柱,其关键参数是柱的尺寸(长度、直径、液膜厚度)以及固定相性质(例如,5%苯基聚硅氧烷)。GC是用气体作为流动相的色谱法,当试样流经柱子时,根据混合物组分分子的化学性质的差异而得到分离。分子被柱子所保留,然后,在不同时间(叫做保留时间)流出柱子。GC可以将混合物分离为纯物质,但是GC 只依靠保留时间定性,很大程度上具有不可靠性。MS是通过将每个分子断裂成离子化碎片并通过其质荷比来进行测定,可以确定待测物的分子量、分子式,但MS只能对纯物质进行定性,对混合组分定性无能为力。 把气相色谱和质谱这两部分放在一起使用要比单独使用那一部分对物质的识别都会精细很多倍。单用气相色谱或质谱是不可能精确地识别一种特定的分子的。通常,经质谱仪处理的需要是非常纯的样品,而使用传统的检测器的气相色谱(如火焰离子化检测器)当有多种分子通过色谱柱的时间一样时(即具有相同的保留时间)不能予以区分,这样会导致两种或多种分子在同一时间流出柱子。在单独使用质谱检测器时,也会出现样式相似的离子化碎

气相色谱-质谱联用(GC-MS)

气相色谱-质谱联用(GC-MS) 一、实验目的 1. 了解质谱检测器的基本组成及功能原理,学习质谱检测器的调谐方法; 2. 了解色谱工作站的基本功能,掌握利用气相色谱-质谱联用仪进行定性分析的基本操作。 二、实验原理 气相色谱法(gas chromatography, GC)是一种应用非常广泛的分离手段,它是以惰性气体作为流动相的柱色谱法,其分离原理是基于样品中的组分在两相间分配上的差异。气相色谱法虽然可以将复杂混合物中的各个组分分离开,但其定性能力较差,通常只是利用组分的保留特性来定性,这在欲定性的组分完全未知或无法获得组分的标准样品时,对组分定性分析就十分困难了。随着质谱(mass spectrometry, MS)、红外光谱及核磁共振等定性分析手段的发展,目前主要采用在线的联用技术,即将色谱法与其它定性或结构分析手段直接联机,来解决色谱定性困难的问题。气相色谱-质谱联用(GC-MS)是最早实现商品化的色谱联用仪器。目前,小型台式GC-MS已成为很多实验室的常规配置。 1. 质谱仪的基本结构和功能 质谱系统一般由真空系统、进样系统、离子源、质量分析器、检测器和计算机控制与数据处理系统(工作站)等部分组成。 质谱仪的离子源、质量分析器和检测器必须在高真空状态下工作,以减少本底的干扰,避免发生不必要的分子-离子反应。质谱仪的高真空系统一般由机械泵和扩散泵或涡轮分子泵串联组成。机械泵作为前级泵将真空抽到10-1-10-2Pa,然后由扩散泵或涡轮分子泵将真空度降至质谱仪工作需要的真空度10-4-10-5Pa。虽然涡轮分子泵可在十几分钟内将真空度降至工作范围,但一般仍然需要继续平衡2小时左右,充分排除真空体系内存在的诸如水分、空气等杂质以保证仪器工作正常。

气相色谱质谱GCMS联用技术及其应用精

气相色谱-质谱(G C-M S)联用技术及其应用 摘要:气相色谱法—质谱(GC-MS )联用技术是一种结合气相色谱和质谱的特性,在试样中鉴别不同物质的方法。其在环境中的应用主要包括药物检测(主要用于监督药物的滥用)、火灾调查、环境分析、爆炸调查和未知样品的测定。本文主要列举了GC-MS 在职业卫生检测、医药、农药残留检测、食品、刑事鉴识和社会安全方面的应用。 关键词:GC-MS ,应用,药物检测,环境 1 气相色谱-质谱(GC-MS )联用 气相色谱法–质谱法联用(Gas chromatography–mass spectrometry,简称气质联用,英文缩写GC-MS )是一种结合气相色谱和质谱的特性,在试样中鉴别不同物质的方法。GC-MS 的使用包括药物检测(主要用于监督药物的滥用)、火灾调查、环境分析、爆炸调查和未知样品的测定。GC-MS 也用于为保障机场安全测定行李和人体中的物质。另外,GC-MS 还可以用于识别物质中以前认为在未被识别前就已经蜕变了的痕量元素。 气相色谱—质谱(GC —MS )联用技术是由两个主要部分组成:即气相色谱(GC )部分和质谱(MS )部分。气相色谱使用毛细管柱,其关键参数是柱的尺寸(长度、直径、液膜厚度)以及固定相性质(例如,5%苯基聚硅氧烷)。GC 是用气体作为流动相的色谱法,当试样流经柱子时,根据混合物组分分子的化学性质的差异而得到分离。分子被柱子所保留,然后,在不同时间(叫做保留时间)流出柱子。GC 可以将混合物分离为纯物质,但是GC 只依靠保留时间定性,很大程度上具有不可靠性。MS 是通过将每个分子断裂成离子化碎片并通过其质荷比来进行测定,可以确定待测物的分子量、分子式,但MS 只能对纯物质进行定性,对混合组分定性无能为力。

气相色谱-质谱联用技术在药物分析及体内药物分析中的应用

药物分析课程论文 气相色谱-质谱联用技术在药物分析及体内药 物分析中的应用 药物制剂09(1)班 指导教师:宋粉云 2012年10月

摘要:气相色谱-质谱联用法(GC-MS)是一种高效能、高选择性、高灵敏度的分离分析方法,其在很多领域的分离分析中都得到应用,本文主要综述气相色谱-质谱联用法在药物分析和体内药物分析中的使用,相信随着科学技术的发展,气相色谱-质谱联用法在药物分析中的使用将会越来越受到重视,其应用领域也将越来越广泛。 关键字:气相色谱法–质谱法联用、药物分析、体内药物分析 面对成分越来越复杂的分析样品, 以及痕量甚至超痕量水平的目标分析物, 如何能快速、准确的获取目标分析物的信息,是目前乃至未来样品分析技术研究领域中一个重要的环节。近几十年来, 体内药物分析技术经历了常规分析、光谱法分析、色谱法分析、色谱-质谱联用法分析等发展阶段,不断推动了药物代谢研究的发展。自从1957年JC Homlmes和FA Morrell首先实现气相色谱-质谱(gas chromatography-mass spectrometry, GC-MS) 联用以来, 该技术随着仪器的不断完善与发展, 检测技术的成熟与推广, 其应用范围越来越广。 GC-MS是一种高效能、高选择性、高灵敏度的分离分析方法,结合了色谱、质谱两者的优点,主要由两个主要部分组成:即气相色谱部分和质谱部分。气相色谱使用毛细管柱,其关键参数是柱的尺寸(长度、直径、液膜厚度)以及固定相性质(例如,5%苯基聚硅氧烷)。当试样流经柱子时,根据个组分分子的化学性质的差异而得到分离。分子被柱子所保留,然后,在不同时间(即保留时间)流出柱子。流出柱子的分子被下游的质谱分析器所俘获,离子化、加速、偏向、最终分别测定离子化的分子。质谱仪是通过把每个分子断裂成离子化碎片并通过其质荷比来进行测定的。样品通过气质联用色谱在短时间内即可实现样品的分离、分析、定性及定量, 使分析能够便捷,准确的进行,因此其在生物样品中的分析应用越来越广泛。 作为一种新型、先进的分离分析方法,气质联用色谱使药物分析:药物的成分、含量、未知物的定性变得简单、快捷,如今,该技术在药物分析中的地位已不可忽视,以下将主要介绍气质联用色谱法在药物分析及体内药物分析中的应用。 1. 气质联用色谱法在药物分析中的应用 1.1 GC-MS检测川芎中挥发油的化学成分 川芎(Ligusticumchuanxiong Hort.)是常用传统中药,川芎的挥发油具有较强的生理活性,如作用于心脑血管,改善微循环等[1]。这类中药材挥发油中主要含苯酞类化合

气相色谱-质谱联用法

仪器分析课程实验 《气相色谱-质谱联用法测定混合物中的多环芳烃》 学院:环境学院 专业班级:环境工程091班 姓名:许道全 学号:0908010105 指导老师:郭送军

气相色谱-质谱联用法测定混合物中的多环芳烃 学生姓名:许道全 ;学院:环境学院 ;学号:0908010105 ;分数: 摘 要:为了获得混合物(水体、气体、土壤等)中多环芳烃的测定方法,选择使用气相色谱-质谱联用技术,采用内标法定量。本设计实验选择测定得出卷烟烟气中15中多环芳烃的含量组分,实验结果中各化合物浓度呈良好的线性关系,每种多环芳烃均具有明显的峰形,除苯并[k]荧蒽外,其余的相对标准偏差均小于10%,重复性较好。气相色谱-质谱联用法具有高分辨度、高灵敏度、重复性好,适用于检测混合物中多环芳烃。 关键词:气相色谱-质谱联用法 多环芳烃 卷烟烟气 气相色谱-质谱联技术(Gas Chromatography-mass Spectrometry ,GC-MS ),被广泛应用于复杂组分的分离与鉴定,其具有气相色谱的高分辨率和质谱的高灵敏度,气相色谱-质谱联用技术主要适用于定性定量分析沸点较低、热稳定性好的化合物,在环保、食品、石油化工、轻工、农药、医药、法医毒品和兴奋剂等的各个利于得到广泛应用[1]。 多环芳烃(PAHs )主要产生于工业生产、有机物热解或不完全燃烧,是广泛分布在环境中的一种有机污染物,对人体存在致癌作用,是重点监控的一类污染物质[2],需了解和监控环境中多环芳烃的存在形式和状态,本设计实验利用气相色谱-质谱联用法对混合物中的多环芳烃进行分析。 1 气相色谱-质谱联用仪 该仪器是气相色谱-质谱联用法的核心组成部分,气相色谱仪经接口与质谱计结合而构成的气相色谱-质谱法的分析仪器,仪器结合了气相色谱仪的分离效果和质谱仪的定性分析功能,是比较理想的分离与鉴定同步进行的分析仪器,仪器的结构示意图如图1所示。 2 气相色谱-质谱联用法测定混合物中的多环芳烃 2.1实验目的 a) 了解气质联用法的原理与气质联用仪 b) 了解选择离子扫描法 2.2实验原理 气相色谱-质谱联用联用法利用气相色谱作为质谱的进样系统,使复杂的化学组分得到分离,利用质谱仪作 为监测器进行定性和定量分析。 气相色谱作为一种分离手段能将混合物中的各个组分较好地分离,从实验得到的具有特征性的质谱图中,可以获得非常有意义的信息用以定性分析。GC-MS 连用技术对混合多环芳烃(PAHs) 试样的分析能力已大大超过至今存在的任何一种分析方法[1]。与其他类型的有机化合物相比,多环芳烃的常规电子轰击质谱的最大特点是谱图非

相关文档
相关文档 最新文档