文档库 最新最全的文档下载
当前位置:文档库 › 数学建模--选修课策略模型

数学建模--选修课策略模型

数学建模--选修课策略模型
数学建模--选修课策略模型

科技大学题目:选课策略数学模型

班级:

姓名:

学号:

摘要

本问题要求我们为了解决学生最优选课问题,本文利用0-1规划模型先找出目标函数,再列出约束条件,分三步得出对最终问题逐层分析化多目标规划为单目标规划,从而建立模型,模型建立之后,运用LINGO软件求解,得到最优解,满足同学选修课程的数量少,又能获得的学分多。

特点:根据以上分析,特将模型分成以下几种情况,(1)考虑获得最多的学分,而不考虑所选修的课程的多少;(2)考虑课程最少的情况下,使得到的学分最多;(3)同时考虑学分最多和选修科目最少,并且所占比例三七分。在不同的情况下建立不同的模型,最终计算出结果。

关键词 0-1规划选修课要求多目标规划

模型一:同时要求课程最少而且获得的学分最多,并按3:7的重要性建立模型。

模型二:要求选修课的课程最少,学分忽略;约束条件只有,每人至少学习2门数学,3门运筹学,2 门计算机,和先修课的要求建立模型一。

模型三:要求科目最少的情况下,获得的学分尽可能最多,只是目标函数变了,约束条件没变。

一.问题的重述

某学校规定,运筹学专业的学生毕业时必须至少学过两门数学课,三门运筹学课,两门计算机。这些课程的编号,名称,学分,所属类别和选修课的要求如表所示。那么,毕业时最少可以学习这些课程中的哪些课程。

如果某个学生即希望选修课程的数量最少,又希望所获得的学分最多,他可以选修哪些课程?

二.模型的假设及符号说明

1.模型假设

1)学生只要选修就能通过;

2)每个学生都必须遵守规定;

2. 符号说明

1)xi:表示选修的课程(xi=0表示不选,xi=1表示选i=1,2,3,4,5,6,7,8,9);

三.问题分析

对于问题一,在忽略所获得学分的高低,只考虑课程最少,分析题目,有先修课要求,和最少科目限制,建立模型一,计算求出结果;

对于问题二,在模型一的条件下,考虑分数最高,把模型一的结果当做约束条件,建立模型二,计算求出结果;

对于问题三,同时考虑两者,所占权重比一样,建立模型三;

四.模型的建立及求解

模型一

目标函数:

min=0.7*(x1+x2+x3+x4+x5+x6+x7+x8+x9)-0.3*(5*x1+4*x2+4*x3+3*x4+4*x5+3*x6+2*x 7+2*x8+3*x9)

约束条件:

x1+x2+x3+x4+x5>=2;

x3+x5+x6+x8+x9>=3;

x4+x6+x7+x9>=2;

2*x3-x1-x2<=0;

x4-x7<=0;

2*x5-x1-x2<=0;

x6-x7<=0;

x8-x5<=0;

2*x9-x1-x2<=0;

模型的求解:

输入:

min=0.7*(x1+x2+x3+x4+x5+x6+x7+x8+x9)-0.3*(5*x1+4*x2+4*x3+3*x4+4*x5+3*x6+2*x 7+2*x8+3*x9;

x1+x2+x3+x4+x5>=2;

x3+x5+x6+x8+x9>=3;

x4+x6+x7+x9>=2;

2*x3-x1-x2<=0;

x4-x7<=0;

2*x5-x1-x2<=0;

x6-x7<=0;

x8-x5<=0;

2*x9-x1-x2<=0;

bin(x1);bin(x2);bin(x3);bin(x4);bin(x5);bin(x6);bin(x7);bin(x9);

输出:

Global optimal solution found.

Objective value: -2.800000

Extended solver steps: 0

Total solver iterations: 0

Variable Value Reduced Cost X1 1.000000 -0.8000000 X2 1.000000 -0.5000000 X3 1.000000 -0.5000000 X4 1.000000 -0.2000000 X5 1.000000 -0.5000000 X6 1.000000 -0.2000000 X7 1.000000 0.1000000 X8 0.000000 0.1000000 X9 1.000000 -0.2000000

Row Slack or Surplus Dual Price

1 -2.800000 -1.000000

2 3.000000 0.000000

3 1.000000 0.000000

4 2.000000 0.000000

5 0.000000 0.000000

6 0.000000 0.000000

7 0.000000 0.000000

8 0.000000 0.000000

9 1.000000 0.000000

10 0.000000 0.000000 1.模型二:

目标函数:

min z=x1+x2+x3+x4+x5+x6+x7+x8+x9

约束条件:

X1+x2+x3+x4+x5>=2

X3+x5+x6+x8+x9>=3

X4+x6+x7+x9>=2

2*x3-x1-x2<=0

x4-x7<=0

2*x5-x1-x2<=0

x6-x7<=0

x8-x5<=0

2*x9-x1-x2<=0

模型的求解

本文运用lingo运算球的结果:

输入

min=x1+x2+x3+x4+x5+x6+x7+x8+x9;

x1+x2+x3+x4+x5>=2;

x3+x5+x6+x8+x9>=3;

x4+x6+x7+x9>=2;

2*x3-x1-x2<=0;

x4-x7<=0;

2*x5-x1-x2<=0;

x6-x7<=0;

x8-x5<=0;

2*x9-x1-x2<=0;

bin(x1);bin(x2);bin(x3);bin(x4);bin(x5);bin(x6);bin(x7);bin(x9);

输出:

Global optimal solution found.

Objective value: 6.000000

Extended solver steps: 0

Total solver iterations: 1

Variable Value Reduced Cost X1 1.000000 1.000000 X2 1.000000 1.000000 X3 1.000000 1.000000 X4 0.000000 1.000000 X5 0.000000 1.000000 X6 1.000000 1.000000 X7 1.000000 1.000000 X8 0.000000 1.000000 X9 1.000000 1.000000

Row Slack or Surplus Dual Price

1 6.000000 -1.000000

2 1.000000 0.000000

3 0.000000 0.000000

4 1.000000 0.000000

5 0.000000 0.000000

6 1.000000 0.000000

7 2.000000 0.000000

8 0.000000 0.000000

9 0.000000 0.000000

10 0.000000 0.000000

模型三:

目标函数:

Max W=5*x1+4*x2+4*x3+3*x4+4*x5+3*x6+2*x7+2*x8+3*x9;

约束条件:

X1+x2+x3+x4+x5>=2

X3+x5+x6+x8+x9>=3

X4+x6+x7+x9>=2

2*x3-x1-x2<=0

x4-x7<=0

2*x5-x1-x2<=0

x6-x7<=0

x8-x5<=0

2*x9-x1-x2<=0

x1+x2+x3+x4+x5+x6+x7+x8+x9=6

运用lingo解题:

输入:

max=5*x1+4*x2+4*x3+3*x4+4*x5+3*x6+2*x7+2*x8+3*x9;

x1+x2+x3+x4+x5>=2;

x3+x5+x6+x8+x9>=3;

x4+x6+x7+x9>=2;

2*x3-x1-x2<=0;

x4-x7<=0;

2*x5-x1-x2<=0;

x6-x7<=0;

x8-x5<=0;

2*x9-x1-x2<=0;

x1+x2+x3+x4+x5+x6+x7+x8+x9=6;

bin(x1);bin(x2);bin(x3);bin(x4);bin(x5);bin(x6);bin(x7);bin(x9);

输出:

Global optimal solution found.

Objective value: 22.00000

Extended solver steps: 0

Total solver iterations: 0

Variable Value Reduced Cost

X1 1.000000 -3.000000

X2 1.000000 -2.000000

X3 1.000000 -2.000000

X4 0.000000 -1.000000

X5 1.000000 -2.000000

X6 1.000000 -1.000000

X7 1.000000 0.000000

X8 0.000000 0.000000

X9 0.000000 -1.000000

Row Slack or Surplus Dual Price

1 22.00000 1.000000

2 2.000000 0.000000

3 0.000000 0.000000

4 0.000000 0.000000

5 0.000000 0.000000

6 1.000000 0.000000

7 0.000000 0.000000

8 0.000000 0.000000

9 1.000000 0.000000

10 2.000000 0.000000

11 0.000000 2.000000

五.结果的检验与分析

经过检验输入式子正确,结果多次验证一样。结果分析:

模型一分析:模型一的结果为x1=x2=x3=x6=x7+x9=1即选修编号为1,2,3,6,7,9的选修课时达到了,在选修课的课程最少。最少为6门。

模型二分析:模型二的结果为x1=x2=x3=x5=x6=x7=1即选修编号为1,2,3,5,6,7的选修课时达到了,在选修课程最少的情况下,尽可能的分数最多,最多为22学分。

模型三分析:课程数与学分数按权重三七分,结果为x1+x2+x3+x4+x5+x6+x7+x9=1即只有编号为8的不用选修,共28学分。

六.模型的评价与推广

本文运用了0-1规划解决了学修课选择的难题,但是还没有建立满足不同需要的

学生,还需要进一步的建立模型和计算。如建立以学分最多为目标的模型,或建立以课程数和学分数等权重的模型。解决不同的问题。

七.参考文献

【1】峰照强,数学建模,大学,2005年

【2】何勇启帆谈之奕,数学建模,大学,2005年

【3】启源金星叶俊,数学模型,高等教育,2003年8月

【4】王庚实用计算机数学建模,大学,2000年

什么是数学模型与数学建模

1. 什么是数学模型与数学建模 简单地说:数学模型就是对实际问题的一种数学表述。 具体一点说:数学模型是关于部分现实世界为某种目的的一个抽象的简化的数学结构。 更确切地说:数学模型就是对于一个特定的对象为了一个特定目标,根据特有的内在规律,做出一些必要的简化假设,运用适当的数学工具,得到的一个数学结构。数学结构可以是数学公式,算法、表格、图示等。 数学建模就是建立数学模型,建立数学模型的过程就是数学建模的过程(见数学建模过程流程图)。数学建模是一种数学的思考方法,是运用数学的语言和方法,通过抽象、简化建立能近似刻划并"解决"实际问题的一种强有力的数学手段。 2.美国大学生数学建模竞赛的由来: 1985年在美国出现了一种叫做MCM的一年一度大大学生数学模型(1987年全称为Mathematical Competition in Modeling,1988年改全称为Mathematical Contest in Modeling,其所写均为MCM)。这并不是偶然的。在1985年以前美国只有一种大学生数学竞赛(The william Lowell Putnam mathematial Competition,简称Putman(普特南)数学竞赛),这是由美国数学协会(MAA--即Mathematical Association of America的缩写)主持,于每年12月的第一个星期六分两试进行,每年一次。在国际上产生很大影响,现已成为国际性的大学生的一项著名赛事。该竞赛每年2月或3月进行。 我国自1989年首次参加这一竞赛,历届均取得优异成绩。经过数年参加美国赛表明,中国大学生在数学建模方面是有竞争力和创新联想能力的。为使这一赛事更广泛地展开,1990年先由中国工业与应用数学学会后与国家教委联合主办全国大学生数学建模竞赛(简称CMCM),该项赛事每年9月进行。

第1章 数学建模与误差分析

第1章数学建模与误差分析 1.1 数学与科学计算 数学是科学之母,科学技术离不开数学,它通过建立数学模型与数学产生紧密联系,数学又以各种形式应用于科学技术各领域。数学擅长处理各种复杂的依赖关系,精细刻画量的变化以及可能性的评估。它可以帮助人们探讨原因、量化过程、控制风险、优化管理、合理预测。近几十年来由于计算机及科学技术的快速发展,求解各种数学问题的数值方法即计算数学也越来越多地应用于科学技术各领域,相关交叉学科分支纷纷兴起,如计算力学、计算物理、计算化学、计算生物、计算经济学等。 科学计算是指利用计算机来完成科学研究和工程技术中提出的数学问题的计算,是一种使用计算机解释和预测实验中难以验证的、复杂现象的方法。科学计算是伴随着电子计算机的出现而迅速发展并获得广泛应用的新兴交叉学科,是数学及计算机应用于高科技领域的必不可少的纽带和工具。科学计算涉及数学的各分支,研究它们适合于计算机编程的数值计算方法是计算数学的任务,它是各种计算性学科的联系纽带和共性基础,兼有基础性和应用性的数学学科。它面向的是数学问题本身而不是具体的物理模型,但它又是各计算学科共同的基础。 随着计算机技术的飞速发展,科学计算在工程技术中发挥着愈来愈大的作用,已成为继科学实验和理论研究之后科学研究的第三种方法。在实际应用中所建立的数学模型其完备形式往往不能方便地求出精确解,于是只能转化为简化模型,如将复杂的非线性模型忽略一些因素而简化为线性模型,但这样做往往不能满足精度要求。因此,目前使用数值方法来直接求解较少简化的模型,可以得到满足精度要求的结果,使科学计算发挥更大作用。了解和掌握科学计算的基本方法、数学建模方法已成为科技人才必需的技能。因此,科学计算与数学建模的基本知识和方法是工程技术人才必备的数学素质。 1.2 数学建模及其重要意义 数学,作为一门研究现实世界数量关系和空间形式的科学,在它产生和发展的历史长河中,一直是和人们生活的实际需要密切相关。用数学方法解决工程实际和科学技术中的具体问题时,首先必须将具体问题抽象为数学问题,即建立起能描述并等价代替该实际问题的数学模型,然后将建立起的数学模型,利用数学理论和计算技术进行推演、论证和计算,得到欲求解问题的解析解或数值解,最后用求得的解析解和数值解来解决实际问题。本章主要介绍数学建模基本过程和求解数学问题数值方法的误差传播分析。 1.2.1 数学建模的过程 数学建模过程就是从现实对象到数学模型,再从数学模型回到现实对象的循环,一般通过表述、求解、解释、验证几个阶段完成。数学建模过程如图1.2.1所示,数学模型求解方法可分为解析法和数值方法,如图1.2.2所示。 表述是将现实问题“翻译”成抽象的数学问题,属于归纳。数学模型的求解方法则属于演绎。归纳是依据个别现象推出一般规律;演绎是按照普遍原理考察特定对象,导出结论。演绎利用严格的逻辑推理,对解释现象做出科学预见,具有重要意义,但是它要以归纳的结论作为公理化形式的前提,只有在这个前提下

数学建模中常见的十大模型

数学建模常用的十大算法==转 (2011-07-24 16:13:14) 转载▼ 1. 蒙特卡罗算法。该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟来检验自己模型的正确性,几乎是比赛时必用的方法。 2. 数据拟合、参数估计、插值等数据处理算法。比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用MA TLAB 作为工具。 3. 线性规划、整数规划、多元规划、二次规划等规划类算法。建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo、Lingo 软件求解。 4. 图论算法。这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备。 5. 动态规划、回溯搜索、分治算法、分支定界等计算机算法。这些算法是算法设计中比较常用的方法,竞赛中很多场合会用到。 6. 最优化理论的三大非经典算法:模拟退火算法、神经网络算法、遗传算法。这些问题是用来解决一些较困难的最优化问题的,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用。 7. 网格算法和穷举法。两者都是暴力搜索最优点的算法,在很多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具。 8. 一些连续数据离散化方法。很多问题都是实际来的,数据可以是连续的,而计算机只能处理离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的。 9. 数值分析算法。如果在比赛中采用高级语言进行编程的话,那些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用。 10. 图象处理算法。赛题中有一类问题与图形有关,即使问题与图形无关,论文中也会需要图片来说明问题,这些图形如何展示以及如何处理就是需要解决的问题,通常使用MA TLAB 进行处理。 以下将结合历年的竞赛题,对这十类算法进行详细地说明。 以下将结合历年的竞赛题,对这十类算法进行详细地说明。 2 十类算法的详细说明 2.1 蒙特卡罗算法 大多数建模赛题中都离不开计算机仿真,随机性模拟是非常常见的算法之一。 举个例子就是97 年的A 题,每个零件都有自己的标定值,也都有自己的容差等级,而求解最优的组合方案将要面对着的是一个极其复杂的公式和108 种容差选取方案,根本不可能去求解析解,那如何去找到最优的方案呢?随机性模拟搜索最优方案就是其中的一种方法,在每个零件可行的区间中按照正态分布随机的选取一个标定值和选取一个容差值作为一种方案,然后通过蒙特卡罗算法仿真出大量的方案,从中选取一个最佳的。另一个例子就是去年的彩票第二问,要求设计一种更好的方案,首先方案的优劣取决于很多复杂的因素,同样不可能刻画出一个模型进行求解,只能靠随机仿真模拟。 2.2 数据拟合、参数估计、插值等算法 数据拟合在很多赛题中有应用,与图形处理有关的问题很多与拟合有关系,一个例子就是98 年美国赛A 题,生物组织切片的三维插值处理,94 年A 题逢山开路,山体海拔高度的插值计算,还有吵的沸沸扬扬可能会考的“非典”问题也要用到数据拟合算法,观察数据的

数学建模 选修课策略模型

科技大学 题目:选课策略数学模型 班级: 姓名: 学号:

摘要 本问题要求我们为了解决学生最优选课问题,本文利用0-1规划模型先找出目标函数,再列出约束条件,分三步得出对最终问题逐层分析化多目标规划为单目标规划,从而建立模型,模型建立之后,运用LINGO软件求解,得到最优解,满足同学选修课程的数量少,又能获得的学分多。 特点:根据以上分析,特将模型分成以下几种情况,(1)考虑获得最多的学分,而不考虑所选修的课程的多少;(2)考虑课程最少的情况下,使得到的学分最多;(3)同时考虑学分最多和选修科目最少,并且所占比例三七分。在不同的情况下建立不同的模型,最终计算出结果。 关键词0-1规划选修课要求多目标规划 模型一:同时要求课程最少而且获得的学分最多,并按3:7的重要性建立模型。 模型二:要求选修课的课程最少,学分忽略;约束条件只有,每人至少学习2门数学,3门运筹学,2 门计算机,和先修课的要求建立模型一。 模型三:要求科目最少的情况下,获得的学分尽可能最多,只是目标函数变了,约束条件没变。 一.问题的重述 某学校规定,运筹学专业的学生毕业时必须至少学过两门数学课,三门运筹学课,两门计

算机。这些课程的编号,名称,学分,所属类别和选修课的要求如表所示。那么,毕业时最少可以学习这些课程中的哪些课程。 如果某个学生即希望选修课程的数量最少,又希望所获得的学分最多,他可以选修哪些课程? 二.模型的假设及符号说明 1.模型假设 1)学生只要选修就能通过; 2)每个学生都必须遵守规定;

2. 符号说明 1)xi:表示选修的课程(xi=0表示不选,xi=1表示选i=1,2,3,4,5,6,7,8,9); 三.问题分析 对于问题一,在忽略所获得学分的高低,只考虑课程最少,分析题目,有先修课要求,和最少科目限制,建立模型一,计算求出结果; 对于问题二,在模型一的条件下,考虑分数最高,把模型一的结果当做约束条件,建立模型二,计算求出结果; 对于问题三,同时考虑两者,所占权重比一样,建立模型三; 四.模型的建立及求解 模型一 目标函数: min=0.7*(x1+x2+x3+x4+x5+x6+x7+x8+x9)-0.3*(5*x1+4*x2+4*x3+3*x4+4*x5+3*x6+2*x7+2* x8+3*x9) 约束条件: x1+x2+x3+x4+x5>=2; x3+x5+x6+x8+x9>=3;

数学模型与数学建模-2

2.1MATLAB MATLAB Matrix Laboratory , MathWorks 20 80 , , MATLAB Simulink .MATLAB 1) , ; 2) , ; 3) , ; 4) ( ), . 2.1.1MATLAB MATLAB , , . , MATLAB , 2.1.1 . MATLAB “>>” , MATLAB . , Enter ,MATLAB .

·8· 2 ? ? 2.1.1MATLAB 1.help , help . poly?t . help polyfit POLYFIT Fit polynomial to data..P=POLYFIT(X,Y,N)finds the coeffici-ents of a polynomial P(X)of degree N that fits the data Y best in a least-squares sense.P is a row vector of length N+1containing the polynomial coefficients in descending powers,P(1)*X^N+P(2)*X^(N-1) +···+P(N)*X+P(N+1). , MATLAB Help . Help Product Help , ( 2.1.2) 2.1.2Help

2.1MATLAB ·9· Seach , . 2.clear clear . “a=1”, >>a=1. 1 a. a , clear . >>clear a???Undefined function or variable a . 3.format MATLAB format . format short , 5 ; format rational ; format long g 15 ; >>format short>>pi ans=3.1416;>>format rational >>pi ans=355/113; >>format long g>>pi ans=3.14159265358979 2.1.2MATLAB 1. 2.1.1 MATLAB . MATLAB 1 , .MATLAB , B b . 2.1.1MATLAB pi i,j inf . n/0 inf, n 0 ans , . ,MATLAB ans NaN , . 0/0 inf/inf 2. MATLAB , . . MATLAB , , , . A=[1?256?49] A=[1,?2,5,6,?4,9] 6 A.

实验一 控制系统的数学模型

实验一 控制系统的数学模型 一 实验目的 1、学习用MATLAB 创建各种控制系统模型。 2、掌握传递函数模型、零-极点增益模型以及连续系统模型与离散系统模型之间的转化,模型的简化。 二 相关理论 1传递函数描述 (1)连续系统的传递函数模型 连续系统的传递函数如下: ? 对线性定常系统,式中s 的系数均为常数,且a1不等于零,这时系统在MATLAB 中 可以方便地由分子和分母系数构成的两个向量唯一地确定出来,这两个向量分别用num 和den 表示。 num=[b1,b2,…,bm,bm+1] den=[a1,a2,…,an,an+1] 注意:它们都是按s 的降幂进行排列的。 tf ()函数可以表示传递函数模型:G=tf(num, den) 举例: num=[12,24,0,20];den=[2 4 6 2 2]; G=tf(num, den) (2)零极点增益模型 ? 零极点模型实际上是传递函数模型的另一种表现形式,其原理是分别对原系统传递 函数的分子、分母进行分解因式处理,以获得系统的零点和极点的表示形式。 K 为系统增益,zi 为零点,pj 为极点 在MATLAB 中零极点增益模型用[z,p,K]矢量组表示。即: z=[z1,z2,…,zm] p=[p1,p2,...,pn] K=[k] zpk ()函数可以表示零极点增益模型:G=zpk(z,p,k) (3)部分分式展开 ? 控制系统常用到并联系统,这时就要对系统函数进行分解,使其表现为一些基本控 制单元的和的形式。 ? 函数[r,p,k]=residue(b,a)对两个多项式的比进行部分展开,以及把传函分解为微 分单元的形式。 ? 向量b 和a 是按s 的降幂排列的多项式系数。部分分式展开后,余数返回到向量r , 极点返回到列向量p ,常数项返回到k 。 ? [b,a]=residue(r,p,k)可以将部分分式转化为多项式比p(s)/q(s)。 11 211121......)()()(+-+-++++++++==n n n n m n m m a s a s a s a b s b s b s b s R s C s G ))...()(())...()(()(2121n m p s p s p s z s z s z s K s G ------=22642202412)(23423++++++=s s s s s s s G

lingo实现 建立选课策略多目标模型

数学模型实验—实验报告9 一、实验项目:选课策略模型建立和求解 二、实验目的和要求 a.根据题目要求建立优化模型 b.通过Lingo软件求解模型 三、实验内容 1.根据教材4.4节内容建立选课策略多目标模型。 目标一:课程数最少;目标二:学分最多, 1)课程数最少前提下,学分最多模型.即在选修6门课的条件下使得总学分尽可能的多,这样应在原规划问题中增加约束条件x1+x2+x3+x4+x5+x6+x7+x8+x9=6; 2)引入权重将两目标转化为单目标模型 一般的,将权重记为λ1,λ2,且令λ1+ λ2=1, 0≤λ1,λ2≤1,则0—1规划模型的新目标为 min Y= λ1Z-λ2W 2. 编写lingo程序求解: 1)以课程数最少为单目标的优化模型(注意xi为0-1变量) min x1+x2+x3+x4+x5+x6+x7+x8+x9 x1+x2+x3+x4+x5>=2; x3+x5+x6+x8+x9>=3; x4+x6+x7+x9>=2; 2*x3-x1-x2<=0; x4-x7<=0; 2*x5-x1-x2<=0; x6-x7<=0; x8-x5<=0; 2*x9-x1-x2<=0; @BIN(X1);@BIN(X2);@BIN(X3);@BIN(X4);@BIN(X5);@BIN(X6);@BIN(X7);@BIN(X8);@BIN(X9); 运行结果如下: Global optimal solution found. Objective value: 6.000000 Objective bound: 6.000000 Infeasibilities: 0.000000 Extended solver steps: 0 Total solver iterations: 0

数学建模基础(入门必备)

一、数学模型的定义 现在数学模型还没有一个统一的准确的定义,因为站在不同的角度可以有不同的定义。不过我们可以给出如下定义:“数学模型是关于部分现实世界和为一种特殊目的而作的一个抽象的、简化的结构。”具体来说,数学模型就是为了某种目的,用字母、数学及其它数学符号建立起来的等式或不等式以及图表、图象、框图等描述客观事物的特征及其内在联系的数学结构表达式。一般来说数学建模过程可用如下框图来表明: 数学是在实际应用的需求中产生的,要解决实际问题就必需建立数学模型,从此意义上讲数学建模和数学一样有古老历史。例如,欧几里德几何就是一个古老的数学模型,牛顿万有引力定律也是数学建模的一个光辉典范。今天,数学以空前的广度和深度向其它科学技术领域渗透,过去很少应用数学的领域现在迅速走向定量化,数量化,需建立大量的数学模型。特别是新技术、新工艺蓬勃兴起,计算机的普及和广泛应用,数学在许多高新技术上起着十分关键的作用。因此数学建模被时代赋予更为重要的意义。 二、建立数学模型的方法和步骤 1. 模型准备 要了解问题的实际背景,明确建模目的,搜集必需的各种信息,尽量弄清对象的特征。 2. 模型假设 根据对象的特征和建模目的,对问题进行必要的、合理的简化,用精确的语言作出假设,是建模至关重要的一步。如果对问题的所有因素一概考虑,无疑是一种有勇气但方法欠佳的行为,所以高超的建模者能充分发挥想象力、洞察力和判断力,善于辨别主次,而且为了使处理方法简单,应尽量使问题线性化、均匀化。 3. 模型构成 根据所作的假设分析对象的因果关系,利用对象的内在规律和适当的数学工具,构造各个量间的等式关系或其它数学结构。这时,我们便会进入一个广阔的应用数学天地,这里在高数、概率老人的膝下,有许多可爱的孩子们,他们是图论、排队论、线性规划、对策论等许多许多,真是泱泱大国,别有洞天。不过我们应当牢记,建立数学模型是为了让更多的人明了并能加以应用,因此工具愈简单愈有价值。 4. 模型求解 可以采用解方程、画图形、证明定理、逻辑运算、数值运算等各种传统的和近代的数学方法,特别是计算机技术。一道实际问题的解决往往需要纷繁的计算,许多时候还得将系统运行情况用计算机模拟出来,因此编程和熟悉数学软件包能力便举足轻重。 5. 模型分析 对模型解答进行数学上的分析。“横看成岭侧成峰,远近高低各不同”,能否对模型结果

数学建模选修课策略模型

黑龙江科技大学 题目:选课策略数学模型 班级: 姓名: 学号: 摘要 本问题要求我们为了解决学生最优选课问题,本文利用0-1规划模型先找出目标函数,再列出约束条件,分三步得出对最终问题逐层分析化多目标规划为单目标规划,从而建立模型,模型建立之后,运用LINGO软件求解,得到最优解,满足同学选修课程的数量少,又能获得的学分多。 特点:根据以上分析,特将模型分成以下几种情况,(1)考虑获得最多的学分,而不考虑所选修的课程的多少;(2)考虑课程最少的情况下,使得到的学分最多;(3)同时考虑学分最多和选修科目最少,并且所占比例三七分。在不同的情况下建立不同的模型,最终计算出结果。 关键词 0-1规划选修课要求多目标规划 模型一:同时要求课程最少而且获得的学分最多,并按3:7的重要性建立模型。 模型二:要求选修课的课程最少,学分忽略;约束条件只有,每人至少学习2门数学,3门运筹学,2 门计算机,和先修课的要求建立模型一。 模型三:要求科目最少的情况下,获得的学分尽可能最多,只是目标函数变了,约束条件没变。 一.问题的重述 某学校规定,运筹学专业的学生毕业时必须至少学过两门数学课,三门运筹学课,两门计算机。这些课程的编号,名称,学分,所属类别和选修课的要求如表所示。那么,毕业时最少可以学习这些课程中的哪些课程。 如果某个学生即希望选修课程的数量最少,又希望所获得的学分最多,他可以选修哪些课程?

二.模型的假设及符号说明 1.模型假设 1)学生只要选修就能通过; 2)每个学生都必须遵守规定; 2. 符号说明 1)xi:表示选修的课程(xi=0表示不选,xi=1表示选i=1,2,3,4,5,6,7,8,9); 三.问题分析 对于问题一,在忽略所获得学分的高低,只考虑课程最少,分析题目,有先修课要求,和最少科目限制,建立模型一,计算求出结果; 对于问题二,在模型一的条件下,考虑分数最高,把模型一的结果当做约束条件,建立模型二,计算求出结果; 对于问题三,同时考虑两者,所占权重比一样,建立模型三; 四.模型的建立及求解 模型一 目标函数: min=0.7*(x1+x2+x3+x4+x5+x6+x7+x8+x9)-0.3*(5*x1+4*x2+4*x3+3*x4+4*x5+3*x6+2*x7+2*x8+3*x 9) 约束条件: x1+x2+x3+x4+x5>=2; x3+x5+x6+x8+x9>=3; x4+x6+x7+x9>=2; 2*x3-x1-x2<=0; x4-x7<=0; 2*x5-x1-x2<=0; x6-x7<=0; x8-x5<=0; 2*x9-x1-x2<=0; 模型的求解: 输入: min=0.7*(x1+x2+x3+x4+x5+x6+x7+x8+x9)-0.3*(5*x1+4*x2+4*x3+3*x4+4*x5+3*x6+2*x7+2*x8+3*x 9; ); x1+x2+x3+x4+x5>=2; x3+x5+x6+x8+x9>=3; x4+x6+x7+x9>=2; 2*x3-x1-x2<=0; x4-x7<=0; 2*x5-x1-x2<=0; x6-x7<=0; x8-x5<=0; 2*x9-x1-x2<=0; @bin(x1);@bin(x2);@bin(x3);@bin(x4);@bin(x5);@bin(x6);@bin(x7);@bin(x9); 输出: Global optimal solution found.

选修课策略问题

选修课策略问题 某学校规定,运筹学专业的学生毕业时必须至少学习过两门数学课、三门运筹学课和两门计算机课。这些课程的编号、名称、学分、所属类别和先修课要求如表1所示。那么,毕业时学生最少可以学习这些课程中哪些课程。 如果某个学生既希望选修课程的数量少,又希望所获得的学分多,他可以选修哪些课程? 模型的建立 1不考虑学分情形: 记i=1,2,…,9表示9门课程的编号。设1=i x 表示第i 门课程选修,0=i x 表示第i 门课程不选。问题的目标为选修的课程总数最少,即 9 1 min i i Z x ==∑ 约束条件包括两个方面: 第一方面是课程数量的约束: 每个人最少要学习2门数学课,则 123452x x x x x ++++≥ 每个人最少要学习3门运筹学课 ,则 356893x x x x x ++++≥ 每个人最少要学习2门计算机课,则有: 46792x x x x +++≥ 第二方面是先修课程的关系约束: 如“数据结构”的先修课程是“计算机编程”,这意味着如果14=x ,必须17=x ,这个条件可以表示为74x x ≤(注意当04=x 时对7x 没有限制)。这样,所有课程的先修课要求可表为如下的约束

“最优化方法”的先修课是“微积分”和“线性代数”,有: 2313,x x x x ≤≤ “数据结构”的先修课程是“计算机编程”,有: 47x x ≤ “应用统计”的先修课是“微积分”和“线性代数”,有: 5152,x x x x ≤≤ “计算机模拟”的先修课程是“计算机编程”,有: 67x x ≤ “预测理论”的先修课程是“应用统计”,有: 85x x ≤ “数学实验”是“微积分”和“线性代数”,有: 9192,x x x x ≤≤ 这样一来,总的0-1规划模型为: 9 1 min i i Z x ==∑ 1234535689467931324751526785 9192 1292 32,..,,,,,01 x x x x x x x x x x x x x x x x x x x x s t x x x x x x x x x x x x x x x ++++≥??++++≥??+++≥? ≤≤??≤??≤≤??≤? ≤??≤≤??=? 或 解得: 1236791,1,1,1,1,1x x x x x x ======。 即选修课程为:微积分,线性代数.最优化方法,计算机模拟,计算机编程,数学实验。 LINGO 程序为: model: sets: item/1..9/:c,x; endsets data:

选课策略模型论文

绍兴文理学院数学建模题目:选课策略数学模型 数学系数学与应用数学专业081班学生徐贝贝姚慧张楚 指导老师胡金杰

摘要 为解决学生选课问题最优解,本文利用0-1规划模型先找出目标函数,再列出约束条件,分三步骤对最终问题逐层分析化多目标规划为单目标规划,分别建立不同的模型,运用LINGO软件求解。从而解决学生既希望选修课程的数量少,又希望所获得的学分多的问题。 特点:根据以上分析,特将模型分为以下四个 (1)只考虑尽可能多的学分,而不管所修课程的多少,可建立单目标规划模型。 显然,这个问题不必计算就知道最优解是选修全部课程。 (2)在考虑课程最少的情况下,使学分最多; 模型一,选修课的课程最少,不考虑学分多少;约束条件只有,每人至少学习5门数学,2门运筹学,2 门计算机,1门物理学,1门经济学,2门艺术类和先修课的要求建立模型一。 模型二:在科目最少的基本前提下,使获得的学分尽可能得多,约束条件没变,化单目标为多目标求解。 (3)同时考虑学分最多和选修科目最少,并且假设所占比例三七分。在此假设情况下对模型二稍加调整形成新的目标函数,最终计算出结果。 模型三:同时考虑课程最少和所获得的学分最多,并按3:7的重要性建立模型。 关键词 0-1规划选修课要求单目标规划多目标规划 一.问题的重述 某学校规定,运筹学专业的学生毕业时必须至少学过五门数学课,两门运筹学课,两门计算机,一门物理学,一门经济学和两门艺术类。这些课程的编号,名称,学分,所属类别和选修课的要求如表所示。那么,毕业时最少可以学习这些课程中的哪些课程。 如果某个学生即希望选修课程的数量最少,又希望所获得的学分最多,他可以选修哪些课程?

数学建模 选修课策略模型

黑龙江科技大学题目:选课策略数学模型 班级: 姓名: 学号:

摘要 本问题要求我们为了解决学生最优选课问题,本文利用0-1规划模型先找出目标函数,再列出约束条件,分三步得出对最终问题逐层分析化多目标规划为单目标规划,从而建立模型,模型建立之后,运用LINGO软件求解,得到最优解,满足同学选修课程的数量少,又能获得的学分多。 特点:根据以上分析,特将模型分成以下几种情况,(1)考虑获得最多的学分,而不考虑所选修的课程的多少;(2)考虑课程最少的情况下,使得到的学分最多;(3)同时考虑学分最多和选修科目最少,并且所占比例三七分。在不同的情况下建立不同的模型,最终计算出结果。 关键词0-1规划选修课要求多目标规划 模型一:同时要求课程最少而且获得的学分最多,并按3:7的重要性建立模型。 模型二:要求选修课的课程最少,学分忽略;约束条件只有,每人至少学习2门数学,3门运筹学,2 门计算机,和先修课的要求建立模型一。 模型三:要求科目最少的情况下,获得的学分尽可能最多,只是目标函数变了,约束条件没变。 一.问题的重述 某学校规定,运筹学专业的学生毕业时必须至少学过两门数学课,三门运筹学课,

两门计算机。这些课程的编号,名称,学分,所属类别和选修课的要求如表所示。那么,毕业时最少可以学习这些课程中的哪些课程。 如果某个学生即希望选修课程的数量最少,又希望所获得的学分最多,他可以选修哪些课程? 二.模型的假设及符号说明 1.模型假设 1)学生只要选修就能通过; 2)每个学生都必须遵守规定;

2. 符号说明 1)xi:表示选修的课程(xi=0表示不选,xi=1表示选i=1,2,3,4,5,6,7,8,9); 三.问题分析 对于问题一,在忽略所获得学分的高低,只考虑课程最少,分析题目,有先修课要求,和最少科目限制,建立模型一,计算求出结果; 对于问题二,在模型一的条件下,考虑分数最高,把模型一的结果当做约束条件,建立模型二,计算求出结果; 对于问题三,同时考虑两者,所占权重比一样,建立模型三; 四.模型的建立及求解 模型一 目标函数: min=0.7*(x1+x2+x3+x4+x5+x6+x7+x8+x9)-0.3*(5*x1+4*x2+4*x3+3*x4+4*x5+3*x6+2* x7+2*x8+3*x9) 约束条件: x1+x2+x3+x4+x5>=2; x3+x5+x6+x8+x9>=3;

数学建模中常见的十大模型

数学建模中常见的十大 模型 Document serial number【KKGB-LBS98YT-BS8CB-BSUT-BST108】

数学建模常用的十大算法==转 (2011-07-24 16:13:14) 1. 蒙特卡罗算法。该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟来检验自己模型的正确性,几乎是比赛时必用的方法。 2. 数据拟合、参数估计、插值等数据处理算法。比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用MATLAB 作为工具。 3. 线性规划、整数规划、多元规划、二次规划等规划类算法。建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo、Lingo 软件求解。 4. 图论算法。这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备。 5. 动态规划、回溯搜索、分治算法、分支定界等计算机算法。这些算法是算法设计中比较常用的方法,竞赛中很多场合会用到。 6. 最优化理论的三大非经典算法:模拟退火算法、神经网络算法、遗传算法。这些问题是用来解决一些较困难的最优化问题的,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用。 7. 网格算法和穷举法。两者都是暴力搜索最优点的算法,在很多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具。

8. 一些连续数据离散化方法。很多问题都是实际来的,数据可以是连续的,而计算机只能处理离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的。 9. 数值分析算法。如果在比赛中采用高级语言进行编程的话,那些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用。 10. 图象处理算法。赛题中有一类问题与图形有关,即使问题与图形无关,论文中也会需要图片来说明问题,这些图形如何展示以及如何处理就是需要解决的问题,通常使用MATLAB 进行处理。 以下将结合历年的竞赛题,对这十类算法进行详细地说明。 以下将结合历年的竞赛题,对这十类算法进行详细地说明。 2 十类算法的详细说明 蒙特卡罗算法 大多数建模赛题中都离不开计算机仿真,随机性模拟是非常常见的算法之一。 举个例子就是97 年的A 题,每个零件都有自己的标定值,也都有自己的容差等级,而求解最优的组合方案将要面对着的是一个极其复杂的公式和108 种容差选取方案,根本不可能去求解析解,那如何去找到最优的方案呢随机性模拟搜索最优方案就是其中的一种方法,在每个零件可行的区间中按照正态分布随机的选取一个标定值和选取一个容差值作为一种方案,然后通过蒙特卡罗算法仿真出大量的方案,从中选取一个最佳的。另一个例子就是去年的彩票第二问,要求设计一种更好的方案,首先方案的优劣取决于很多复杂的因素,同样不可能刻画出一个模型进行求解,只能靠随机仿真模拟。

数学建模_四大模型总结

四类基本模型 1 优化模型 1.1 数学规划模型 线性规划、整数线性规划、非线性规划、多目标规划、动态规划。 1.2 微分方程组模型 阻滞增长模型、SARS 传播模型。 1.3 图论与网络优化问题 最短路径问题、网络最大流问题、最小费用最大流问题、最小生成树问题(MST)、旅行商问题(TSP)、图的着色问题。 1.4 概率模型 决策模型、随机存储模型、随机人口模型、报童问题、Markov 链模型。 1.5 组合优化经典问题 ● 多维背包问题(MKP) 背包问题:n 个物品,对物品i ,体积为i w ,背包容量为W 。如何将尽可能多的物品装入背包。 多维背包问题:n 个物品,对物品i ,价值为i p ,体积为i w ,背包容量为W 。如何选取物品装入背包,是背包中物品的总价值最大。 多维背包问题在实际中的应用有:资源分配、货物装载和存储分配等问题。该问题属于NP 难问题。 ● 二维指派问题(QAP) 工作指派问题:n 个工作可以由n 个工人分别完成。工人i 完成工作j 的时间为ij d 。如何安排使总工作时间最小。 二维指派问题(常以机器布局问题为例):n 台机器要布置在n 个地方,机器i 与k 之间的物流量为ik f ,位置j 与l 之间的距离为jl d ,如何布置使费用最小。 二维指派问题在实际中的应用有:校园建筑物的布局、医院科室的安排、成组技术中加工中心的组成问题等。 ● 旅行商问题(TSP) 旅行商问题:有n 个城市,城市i 与j 之间的距离为ij d ,找一条经过n 个城市的巡回(每个城市经过且只经过一次,最后回到出发点),使得总路程最小。 ● 车辆路径问题(VRP) 车辆路径问题(也称车辆计划):已知n 个客户的位置坐标和货物需求,在

数学建模选修课策略模型

科技大学题目:选课策略数学模型 班级: 姓名: 学号:

摘要 本问题要求我们为了解决学生最优选课问题,本文利用0-1规划模型先找出目标函数,再列出约束条件,分三步得出对最终问题逐层分析化多目标规划为单目标规划,从而建立模型,模型建立之后,运用LINGO软件求解,得到最优解,满足同学选修课程的数量少,又能获得的学分多。 特点:根据以上分析,特将模型分成以下几种情况,(1)考虑获得最多的学分,而不考虑所选修的课程的多少;(2)考虑课程最少的情况下,使得到的学分最多;(3)同时考虑学分最多和选修科目最少,并且所占比例三七分。在不同的情况下建立不同的模型,最终计算出结果。 关键词0-1规划选修课要求多目标规划 模型一:同时要求课程最少而且获得的学分最多,并按3:7的重要性建立模型。 模型二:要求选修课的课程最少,学分忽略;约束条件只有,每人至少学习2门数学,3门运筹学,2 门计算机,和先修课的要求建立模型一。 模型三:要求科目最少的情况下,获得的学分尽可能最多,只是目标函数变了,约束条件没变。 一.问题的重述 某学校规定,运筹学专业的学生毕业时必须至少学过两门数学课,三门运筹学课,

两门计算机。这些课程的编号,名称,学分,所属类别和选修课的要求如表所示。那么,毕业时最少可以学习这些课程中的哪些课程。 如果某个学生即希望选修课程的数量最少,又希望所获得的学分最多,他可以选修哪些课程? 二.模型的假设及符号说明 1.模型假设 1)学生只要选修就能通过; 2)每个学生都必须遵守规定;

2. 符号说明 1)xi:表示选修的课程(xi=0表示不选,xi=1表示选i=1,2,3,4,5,6,7,8,9); 三.问题分析 对于问题一,在忽略所获得学分的高低,只考虑课程最少,分析题目,有先修课要求,和最少科目限制,建立模型一,计算求出结果; 对于问题二,在模型一的条件下,考虑分数最高,把模型一的结果当做约束条件,建立模型二,计算求出结果; 对于问题三,同时考虑两者,所占权重比一样,建立模型三; 四.模型的建立及求解 模型一 目标函数: min=0.7*(x1+x2+x3+x4+x5+x6+x7+x8+x9)-0.3*(5*x1+4*x2+4*x3+3*x4+4*x5+3*x6+ 2*x7+2*x8+3*x9) 约束条件: x1+x2+x3+x4+x5>=2; x3+x5+x6+x8+x9>=3;

选修课之学习方法与策略大纲

《大学英语学习方法与策略》教学大纲一、课程简介: 《大学英语课程教学要求》指出:“教学模式改革成功的一个重要标志就是学生个性化学习方法的形成和学生自主学习能力的发展。教学模式的改变不仅仅是教学活动或教学手段的转变,而是教学理念的转变,是实现从以教师为中心、单纯传授语言知识和技能的教学模式,向以学生为中心、既传授一般的语言知识与技能,更加注重培养语言运用能力和自主学习能力的教学模式的转变。”这就要求对学生的学习方法需要加以科学引导。学习策略是指对语言习得过程的理想调控。帮助学习者制定学习计划,确立学习目标,培养元认知计划能力,确立学习目标是一种元认知策略。 《大学英语学习方法与策略》以《课程要求》为依据,注重学生学习英语的方法和策略指导,本着“授人以鱼不如授人以渔”的教学思想和理念,分英语学习模块为框架,涉及听、说、读、写、译等的综合能力的学习策略讲授,重视学生实际问题的解决,提出可行性方法,并以实验形式检验方法的合理性,因材施教、不断改进。 二、课程性质、目的与任务: 课程性质简介:作为面向大一新生各个专业的选修课,设置1学分,考试考察通过的学生获得学分。 理论证明,成功的语言学习者会及时地根据自身的认知风格、学习任务、水平基础等进行策略调整。良好的心理素质、稳定的情绪、坚强的意志力和自制力影响语言学习策略的选择,关系语言学习的效率和成败。个性因素制约语言学习策略的选择,优秀的语言学习者能够有效地选择适合自己的语言学习策略。学生人格量化是学习方法指导的重要范畴,Oxford 于1989 年使用MBTI人格量表(Myers-BriggsType Indicator)对学习者的人格、学习风格进行研究,将学习者的人格和学习风格分为:外向型(extraversion)——内向型(introversion)、理智型(sensing)等。这一理论对于本课程的其意义就在于,根据学生的人格特点为其制定合理可行的英语学习方法指导,督其坚持,助其获得学习成就感,对学生大学四年的英语学习甚至将来的外语学习指导都有很好的效果;学生乐于建立人格认知库,并量身定制学习计划,因此效果明显,受到广大学生好评,课程成为一门极受欢迎的选修课。 课程目的与任务介绍: 大学英语教学包括四个方面的内容:英语语音知识、应用技能、跨文化交际、

数学建模数学模型作业题

一、对于6.4节蛛网模型讨论下列问题: (1)因为一个时段上市的商品不能立即售完,其数量也会影响到下一时段的价格,所以第1k +时段的价格1k y +由第1k +和k 时段的数量1k x +和k x 决定,如果设 1k x +仍只取决于k y ,给出稳定平衡的条件,并与6.4节的结果进行比较。 (2)若除了1k y +由1k x +和k x 决定之外, 1k x +也由前两个时段的价格k y 和1k y -确定,试分析稳定平衡的条件是否还会放宽。 解:(1)因为一个时段上市的商品不能立即售完,其数量也会影响到下一个时段的价格,所以第k+1时段的价格1+k y 由第k+1和第k 时段的数量1+k x 和k x 决定,设1k y +由1k x +和k x 的平均值决定,即二者平均值 2 1k k x x ++,模型为: 110 0100(),02(),0 k k k k k x x y y x x x y y ααββ++++? -=-->?? ?-=->? 由此可以得到 22022(1)k k k x x x x αβαβαβ++++=+, 其特征方程为 022=++αβαβλλ, 得出其特征根: 4 8--2 2,1αβ αβαβλ)(±= * 当8>αβ时,有: 4 -48---2 2αβ αβαβαβλ<=)( 由以上可算出: 2 2,1αβ λ= 即:2<αβ 所以与6.4节的结果相同,平衡点稳定的条件为2αβ<。 (2)设k x 也由k y 和1k y -的平均值决定,模型为: 1100110 0(),02 (),02 k k k k k k x x y y x y y x x y ααββ++-++? -=-->??? +?-=->??

数学建模课程设计——优化问题

在手机普遍流行的今天,建设基站的问题分析对于运营商来说很有必要。本文针对现有的条件和题目的要求进行讨论。在建设此模型中,核心运用到了0-1整数规划模型,且运用lingo 软件求解。 对于问题一: 我们引入0-1变量,建立目标函数:覆盖人口最大数=所有被覆盖的社区人口之和,即max=15 1j j j p y =∑,根据题目要求建立约束条件,并用数学软件LINGO 对其模型求解,得到最优解。 对于问题二: 同样运用0-1整数规划模型,建立目标函数时,此处假设每个用户的正常资费相同,所以68%可以用减少人口来求最优值,故问题二的目标函数为:max=∑=15 1j j j k p 上述模型得到最优解结果如下: 关键字:基站; 0-1整数规划;lingo 软件

1 问题的重述.........................3 2 问题的分析.........................4 3 模型的假设与符号的说明...................5 3.1模型的假设...................... 5 3.2符号的说明...................... 5 4 模型的建立及求解...................... 5 4.1模型的建立...................... 5 4.2 模型的求解...................... 6 5 模型结果的分析.......................7 6 优化方向..........................7 7 参考文献..........................8 8、附录........................... 9

相关文档
相关文档 最新文档