文档库 最新最全的文档下载
当前位置:文档库 › 上流式厌氧污泥床反应器(UASB)调试计划

上流式厌氧污泥床反应器(UASB)调试计划

上流式厌氧污泥床反应器(UASB)调试计划
上流式厌氧污泥床反应器(UASB)调试计划

上流式厌氧污泥床反应器(UASB)调试计划:

1、UASB反应器的反应原理

UASB反应器可分为两个区域,反应区和气、液、固三相分离区。在反应区下部,是由沉淀性能良好的污泥(颗粒污泥或絮状污泥),形成厌氧污泥床。当废水由反应器底部进入反应器后,由于水的向上流动和产生的大量气体上升形成了良好的自然搅拌作用,并使一部分污泥在反应区的污泥床上方形成相对稀薄的污泥悬浮层。悬浮液进入分离区后,气体首先进入集气室被分离,含有悬浮液的废水进入分离区的沉降室,由于气体已被分离,在沉降室扰动很小,污泥在此沉降,由斜面返回反应区。

2、UASB反应器运行的三个重要前提:

2.1反应器内形成沉淀性能良好的颗粒污泥或絮状污泥。

2.2由于产气和进水的均匀分布所形成的良好的自然搅拌作用。

2.3合理的三相分离器使沉淀性能良好污泥能保留在反应区内。

3、UASB反应器启动运行的四个阶段:

3.1第一阶段:启动前的准备:

UASB投入运行前必须进行充分实验和气密性实验,充分实验要求无漏水现象。气密性实验要求池内加压到350mm水柱,稳定15分钟后,压力降小于10mm 水柱。而且在厌氧污泥培养和驯化之前使用氮气吹扫。

3.2第二阶段:UASB启动运行初始阶段:

3.2.1选用接种污泥:

a选用颗粒污泥或污水厂污泥消化池的消化污泥接种。

b选用同类废水同一温度范围的(中温污泥)种污泥。

c添加部分颗粒污泥或破碎的颗粒污泥,也可提高颗粒化过程

d也可以从市政下水道及污水集积处等处于厌氧环境下的淤污泥。甚至还可以使用好氧活性污泥法的剩余污泥进行转性培养,但培养时间相当长。

e牛粪和各类粪肥也可以用于接种污泥,但各类污泥中均不应当有太多的砂子。

3.2.2接种污泥的方法:接种污泥量、接种污泥的浓度

a方法:将含固80%的接种污泥加水搅拌后,用污泥泵均匀的输入到UASB 反应池各布泥点

b接种污泥量:接种污泥量为UASB反应器的有效容积的30%到50%,最少15%,一般为30%。接种污泥的填充量不超过UASB反应器的有效容积的60%。

c接种污泥的浓度:初启动时,稠型污泥的接种量为20到30kg VSS/m3,浓

度小于40 kg TSS/m3的稀消化污泥接种量可以略小些。

3.2.3接种污泥时的水质:

a配制低浓度的废水有利于颗粒污泥的形成,但浓度也应当足够维持良好的细菌生长条件,因此,初始配水最低COD浓度为1000毫克/升,然后逐步提高有机负荷直到可降解的COD去除率达到80%为止。

b当进水COD浓度高时,可采用出水循环或稀释水进水,出水循环回流比为30到50%,调节到适宜的COD浓度值。

3.2.4第二阶段(初始运行阶段)(估计45天)

初始阶段是指反应器负荷低于2kgCOD/m3〃d的运行阶段,此阶段反应器

的负荷由0.1kgCOD/m3〃d开始,内循环一个周期后,逐步分多次提升到

2kgCOD/m3〃d。

提升COD浓度标准为:当可生物降解的COD去除率达到80%后方可提高,直到达2kgCOD/m3〃d为初始阶段。

在这段运行中,有少量的非常细小的分散污泥带出,其主要原因是水的上

流速度和逐渐产生的少量沼气

初始运行阶段,每日测定进,出水流量、PH、COD、ALK、VFA、SS等项目,经测定结果判断,若出水VFA<3mmol/l,VFA/ALK=0.3以下,表示UASB 系统运行正常。

3.2.5第三阶段:(预计45天)反应器的有机负荷由2kgCOD/m3〃d到4.9kgCOD/m3〃d的运行阶段

此阶段的反应负荷由2kgCOD/m3〃d开始,每次0.1kgCOD/m3〃d有机负荷提升,也可以每次负荷增加20%,每次操作所需时间长短不同,有时可长达两周,有时仅几天,经过多次重复操作可达到设计指标。

但提升有机负荷的标准与监测项目判断运行正常的方法同初始运行阶段。

在这段运行中,由于提升水量大,COD浓度高,产气量和上流速度的增加引起污泥膨胀,污泥量带出量多,大多为细小非分散的污泥或部分絮状污泥。这种污泥的带出,有利于颗粒化污泥的形成。

3.2.6第四阶段:(30天)

这一阶段是指反应器的有机负荷达到设计指标4.9kgCOD/m3〃d,以后的稳定运行阶段。在这段的运行中,PH值、温度、有机负荷、VFA、ALK等各项操作参数严格控制,逐步形成颗粒污泥。

注:

1、自初始阶段开始,每日监测项目一次,进、出水PH值、COD、SS、VFA、ALK、流量。

2、根据监测结果进行分析、判断、及时调整进水量、浓度、保持稳定运行。

4、UASB反应器调试运行控制工艺参数

4.1反应温度:35±2℃,指反应器内反应液的温度,高出细菌的生长温度的上限,将导致细菌死亡。当温度下降并低于温度范围的下限时,从整体上讲,细菌不会死亡,而只是逐渐停止或减弱代谢活动,菌种处于休眠状态。

4.2 PH值:PH值范围为6.8~7.8,最佳PH值范围为6.8~7.2。PH值范围是指UASB反应器内反应区的PH,而不是进液的PH。因为废水进入反应器内,生物化学过程和稀释作用可以迅速改变进液的PH值。对PH值改变最大的影响因素是酸的形成,特别是乙酸的形成。因此含有大量溶解性碳水化合物(如糖、淀粉)等废水进入反应器后PH将迅速降低。而乙酸化的废水进入反应器后

PH将上升。对于含大量蛋白质或氨基酸的废水,由于氨的形成,PH会略有上升。对不同的废水可选择不同的进液PH值。

4.3出水VFA的浓度与组成

因为VFA的去除程度可以直接反映出反应器运行的状况,在正常情况下,底物由酸化菌转化为VFA,VFA可被甲烷菌转化甲烷,因此甲烷菌活跃时,出水VFA浓度较低,当出水VFA浓度低于3mmol/l(或200mg乙酸/L)时,反应器运行状态最为良好。

4.4营养物与微量元素

主要营养物氮、磷、钾和硫等以及其他的生长必须的微量元素。例如(Fe、Ni、Co)应当满足微生物生长的需要。一般N和P的要求大约为COD BD:N:P=(350~500):5:1,但由于发酵产酸菌的生长速率大大高于甲烷菌,因此较为精确的估算应当是COD BD:N:P:S=(50/Y):5:1,其中Y为细胞产率,对于发酵产酸菌Y=0.15;对于产甲烷菌Y=0.03,此外,甲烷菌细胞组成中有较高浓度的铁、镍和钴。

4.5毒物:毒性化合物应当低于抑制浓度或应给于污泥足够的驯化时间。如:氨氮、无机硫化物、盐类、重金属、非极性有机化合物(挥发性脂肪酸)等,在运行中都要根据监测结果进行判断,及时调整处理。

5、UASB初次启动过程的注意事项:

5.1对初期启动UASB目标要明确。对UASB(第一阶段)启动初期,不要追求反应器的处理效率和出水质量。初期的目标是使反应器逐渐进入“工作”状态。是使菌种由休眠状态恢复、活化的过程。在这一过程中,当菌种从休眠状态中恢复到营养细胞的状态后,它们还要经历对废水性质的适应。在整个驯化增殖过程中,而原种污泥中可能浓度较低甲烷菌增长速度相对于产酸菌要慢得多。因此在颗粒污泥出现前的这一段相当长。这一段不可能快,也不能有较大的负荷。

5.2当废水COD浓度低于2000毫克/升时,一般不需要稀释,可直接进液。当废水COD浓度高于2000毫克/升时,可采取出水回流方式,回流比一般在30%~50%之间。有效的回流可以降低进水浓度,增大进水量,促使处理设施水流分布均匀。

5.3负荷增加的操作方法:启动最初负荷可从0.1~2.0 kgCOD/m3〃d开始,当降解的COD去除率达到80%后,再逐步增大负荷。负荷不应增加太快,只要略高于容积负荷0.1 kgCOD/m3〃d即可。水力保留时间大于24小时。连续运行。直到有气体产生。5天后检查产气是否达到略高于0.1 M3/M3〃d。如果5天后反应器产气量仍未达到这一数值,可以停止进水,3天后再恢复进液,直到产气量增加达到0.1 m3/m3〃d。

检查出水VFA,VFA过高,则表示反应器负荷相当于当时的菌种活力偏高。出水VFA若高于8mmol/l,则停止进水,直到反应器内VFA低于3mmol/l后,再继续以原浓度、原负荷进水,如果出水VFA低于3mmol/l,说明反应器运行良好。

5.4增加负荷量:

增加负荷量可以通过增大进水量,或者降低进水稀释比的方法,负荷每次可提升20~30%,可以重复进行。每次操作所需时间长短不同,有时长达两周,有时仅需几天,要根据监测数据判断,直到达到设计负荷为止。

5.5水力停留时间:水力停留时间对于厌氧工艺的影响是通过上升流速来表现的。一方面高的液体流速增加污水系统内进水区的扰动,因此增加了生物污泥与进水有机物之间的接触,有利于提高去除率。在采用传统的UASB系统的情况下,上升流速的平均值一般不超过0.5m/h。这是为保证颗粒污泥形成的重要条件之一。

5.6运行中始终保持VFA/ALK=0.3以下。否则挥发性脂肪酸积累运行失败。

UASB厌氧反应器操作说明书

UASB厌氧反应器操作说明书 一 UASB厌氧反应器的原理: 在UASB厌氧反应器内,厌氧细菌对有机物进行三个步骤的降解:(1)水解、酸化阶段;(2)产氢产乙酸阶段;(3)产甲烷阶段,使污染物质得到去除,并产生沼气和厌氧污泥。 通过UASB内部的三相分离器的作用,实现水、污泥、沼气的分离,污泥回流至UASB底部,沼气经收集后进行沼气利用系统,清水至后续处理。 UASB厌氧反应器的操作说明 1开车: 认真执行交接班制度,提前5分钟上岗,了解上一班的情况(如UASB进水水温、水量、COD、PH值、NH3-N、SO42-,以及UASB出水水温、COD、PH 值、VFA等,并要上厌氧反应器巡视出水有无异常现象)掌握本班的生产要求,做好班前检查工作,熟悉厌氧塔进水泵的运行情况。 在预处理中废水达到工艺控制参数后,既可开启厌氧泵往UASB进水。 2操作过程: 1)在预处理的废水满足厌氧处理所需的进水条件后,启动厌氧泵向UASB反应器进水。启动厌氧泵之前检查需检查泵是否正常,开启泵后,检查流量计显示,判断废水是否正常输出。调节泵的出口阀门,将各厌氧反应器的流量调节到规定范围;起用泵前一定要详细检查该泵的运转纪录,确认该泵无异常后方可启用。2)密切注意厌氧反应器上部出水情况,要注意跑泥现象,防止出水带泥过多,一般小于20%,定期清理溢流堰口的堵塞物,但需注意防止跌落溺水。 3)密切关注厌氧反应器出水的COD、PH值、VFA、温度等指标,防止反应器

工艺指标变化过大; 4)经常巡视厌氧反应器顶部水面的情况,防止大量气体溢出; 5)经常观察水封中的水位,将水封水位控制在一定高度; 6)根据需要,每班进行取样送检,并根据化验结果判断厌氧反应器的运行状况。3停止: 1)当预处理没有足够的废水或预处理水质达不到工艺控制控制要求时,反应器停止进水,待预处理正常后,再恢复进水;但在停水时要密切注意反应器内的温度变化,如温度下降多(超过5℃),再次进水时就先需将反应器的温度升至原正常运行时的温度,防止因温度变化的原因使反应器运行出现问题; 2)当反应器出水带泥过多(SV≥20%要密切关注)或出水水质变差时,减少反应器的进水量或改为间歇进水,防止反应器的深度恶化; 3)当UASB出水VFA大于8或UASB的COD去除率小于50%,适当减少反应器的进水量或改为间歇进水,甚至停止进水,防止反应器的深度恶化。 4、设备使用和维修说明: 1)定期对UASB反应器的拦杆、平台、水封、机泵等设备进行清洗、油漆等保养;清理时要注意正在运转的设备内部不能清理; 2)经常对UASB出水堰进行清理,防止水堰的堵塞;对于清理溢流堰口的时,应在溢流堰口上铺上木板、搭上平台,防止溺水; 1)厌氧进水泵在运行时,需经常检查,并注意水泵的压力变化,以及出口流量变化,防止泵烧坏或泵空转等现象出现; 2)经常检查流量计计数的变化,防止进水量的波动;

厌氧反应器的运行控制

1、污泥的培养、类型和主要性能 UASB反应器是目前各种厌氧处理工艺所能达到的处理负荷较高的高浓度有机废水处理装置,这是因为反应器内以甲烷菌为主体的厌氧微生物形成了粒径为1~5mm的颗粒污泥。不同的水质与环境条件会有不同的颗粒污泥的形成过程,颗粒污泥的类型和性质也会不同。 2、进水基质的类型及营养比的控制 为满足厌氧微生物的营养要求,运行过程中需保证一定比例的营养物数量,一般应控制C:N:P在(200~300)∶5∶1为宜。在反应器启动时,稍加一些氮、磷、微量元素等有利于微生物的生长繁殖。 3、进水中悬浮固体浓度的控制 对进水中悬浮固体(SS)浓度的严格控制要求是UASB反应器处理工艺与其他厌氧处理工艺的明显不同之处。对低浓度废水而言,其废水中的SS、COD的典型值为0.5,对于高浓度有机废水而言一般应将SS、COD的比值控制在0.5以下。

4、有毒有害物质的控制 ①氨氮(NH3-N)浓度的控制:氨氮浓度的高低对厌氧微生物产生2种不同影响。当其浓度在5~200mgL时,对反应器中的厌氧微生物有刺激作用;浓度在1500~3000mgL时,将对微生物产生明显的抑制作用。一般宜将氨氮浓度控制在100mg/L以下。 ②硫酸盐(SO42-)浓度的控制:UASB反应器中的硫酸盐离子浓度不应大于5000mgL,在运行过程中UASB的COD、SO42-比值应大于10。 ③其他有毒物质:导致UASB反应器处理工艺失败的原因,除上述几种以外,其他有毒物质的存在也必须加以十分注意。这些物质主要是:重金属、碱土金属、三氯甲烷、氰化物、酚类、硝酸盐和氯气等。 5、碱度和挥发酸浓度的控制 ①碱度(HCO3-):操作合理的反应器中的碱度一般应控制在2000~4000mgL之间,正常范围为1000~5000mgL。 ②VFA:在UASB反应器中挥发酸的安全浓度控制在500mgL(以HAC计)以内,当VFA的浓度小于200mgL时,一般是最好的。 6、沼气产量及其组分 当反应器运行稳定时,沼气中的CH4含量和CO2的含量也是基本稳定的。其中甲烷的含量一般为65%~75%,二氧化碳的含量为20%~30%。沼气中的氢(H2)含量一般测不出,如其含量较多,则说明反应器的运行不正常。当沼气中含有大量硫化氢气体时,反应器将受到严重的抑制而使甲烷和二氧化碳的含量大大降低。厌氧反应过程中的沼气产量及其组分的变化直接反映了处理工艺的运行状态。

IC厌氧反应器运行注意事项

IC厌氧反应器运行注意事项 IC反应器,即内循环厌氧反应器,相似由2层UASB反应器串联而成。其由上下两个反应室组成。与UASB反应器相比,在获取相同处理速率的条件下,IC反应器具有更高的进水容积负荷和污泥负荷率,IC反应器的平均升流速度可达到处理同类废水UASB反应器的20倍左右。以下是简易示意图。 IC反应器的构造及其工作原理决定了其在控制厌氧处理影响因素方面比其它反应器更具有优势。 (1). 容积负荷高:IC反应器内污泥浓度高,微生物量大,且存在内循环,传质效果好,进水有机负荷可超过普通厌氧反应器的3倍以上。 (2). 节省投资和占地面积:IC反应器容积负荷率高出普通UASB反应器3倍左右,其体积相当于普通反应器的1/4—1/3左右,大大降低了反应器的基建投资;而且IC反应器高径比很大(一般为4~8),所以占地面积少。 (3). 抗冲击负荷能力强:处理低浓度废水(COD=2000~3000mg/L)时,反应器内循环流量可达进水量的2~3倍;处理高浓度废水(COD=10000~15000mg/L)时,内循环流量可达进水量的10~20倍。大量的循环水和进水充分混合,使原水中的有害物质得到充分稀释,大大降低了毒物对厌氧消化过程的影响。 IC反应器在运行过程中的日常注意事项 由于该污水站厌氧工艺处理设备主要是IC厌氧反应器,其主要的控制参数有以下内1、污泥菌种的成分 污泥菌种的成分:厌氧污泥中具有处理污染物能力的就是细菌等有机物质,菌群的组成及菌种的成分决定了其颗粒强度、产甲烷活性及对污水的适应能力。一般来说,污泥中有机物的成分占70%左右,污泥外部菌种主要为丝菌,污泥内部主要为杆菌、球菌等。

高浓度有机废水厌氧处理反应器类型总结

高浓度有机废水厌氧处理反应器总结 1厌氧生物滤池(AF) 厌氧生物滤池是一种内部装填有微生物载体(即滤料)的厌氧生物反应器。厌氧微生物部分附着生长在滤料上,形成厌氧生物膜,部分在滤料空隙间悬浮生长。污水流经挂有生物膜的滤料时,水中的有机物扩散到生物膜表面,并被生物膜中的微生物降解转化为沼气,净化后的水通过排水设备排至池外,所产生的沼气被收集利用。厌氧生物滤池值所以能够成为高速反应器,是在于它采用了生物固定化技术,是污泥在反应器内停留时间(SRT)极大的延长。 1.1构造 (1)升流式厌氧生物滤池 升流式厌氧生物滤池的污水有底部进入,向上流动通过滤层,处理水从滤池顶部的旁侧流出,沼气则通过设于滤池顶部的收集管排出滤池; (2)降流式厌氧滤池 降流式厌氧滤池中,布水系统设于池顶,污水由顶部均匀向下直流到底部,生物反应产生的气体的流动可起一定的搅拌作用,因而无需复杂的配水系统,微生物附着在定向排列的滤料上,起降解有机物的作用。 1.2反应器特点 (1)是一种内部填充有微生物载体的厌氧生物反应器。厌氧微生物部分附着生长在填料上,形成厌氧生物膜,部分在填料空隙间处于

悬浮状态。废水流过被淹没的填料,污染物被去除并产生沼气; (2)AF能承受较高的有机物体积负荷[生产性使用装置的最大有机负荷通常在10~16kgCOD/(m3·d)之间]; (3)AF具有良好的运行稳定性,较能承受水质或水量的冲击负荷。 (4)出水可不回流,但如果出水回流,可降低进水浓度,减小堵塞的可能性,使填料中生物量趋向于均匀分布; (5)反应器内污泥产率低,运行启动快。 (6)AF具有生物浓度高、微生物停留时间长、耐冲击负荷;停止运行后,再启动容易;无需污泥回流.运行管理简便等优点。 1.3 存在的问题 ①反应器放大设计的相似理论问题;②加强反应器颗粒化规律及生物膜附着过程机理的研究,以缩短启动时间;③加强填料技术的研究,以开发性能更好、价格低廉的新型填料;④从生态学角度深入研究AF中微生物的组成及其相互关系,以明了AF性能的本质因素等。 2 厌氧流化床反应器(AFB) 厌氧流化床( Anaerobic Fluidized-bed,AFB)反应器用于高浓度有机废水处理的优越性已为众多研究者证实。 这种反应器的典型结构是圆柱形, 其中充填有载体粒子。载体粒径一般为0.3-3.0mm。构成生物膜的厌氧微生物附着在其上生长而形成生物粒子。污水作为流化介质流经床层使生物粒子克服重力和液体

UASB基础知识

一、概述 UASB是升流式厌氧污泥床反应器废水厌氧生物处理技术的简称。 1971年荷兰瓦格宁根(Wageningen)农业大学拉丁格(Lettinga)教授通过物理结构设计,利用重力场对不同密度物质作用的差异,发明了三相分离器。使活性污泥停留时间与废水停留时间分离,形成了上流式厌氧污泥床(UASB)反应器的雏型。 1974年荷兰CSM公司在其6m3反应器处理甜菜制糖废水时,发现了活性污泥自身固定化机制形成的生物聚体结构,即颗粒污泥(granular sludge)。颗粒污泥的出现,不仅促进了以UASB为代表的第二代厌氧反应器的应用和发展,而且还为第三代厌氧反应器的诞生奠定了基础。 继荷兰之后,德国,瑞士,美国以及我国也相继开展了对UASB的深入研究和技术开发工作,并将其作为一种新型厌氧处理工艺在高浓度有机废水处理中快速的推广应用。目前全世界已有1000余座UASB反应器在实际生产中使用。 二、反应器的基本构造与原理 UASB反应器是集有机物去除及泥(生物体)、水(废水)和气(沼气)三相分离于一体的集成化废水处理工艺,其工艺的突出特征是反应器中可培养形成沉降性能良好的颗粒污泥、形成污泥浓度极高的污泥床,使其具有容积负荷高,污泥截留效果好,反应器结构紧凑等一系列优良的运行特征。 1、UASB反应器的构造 图1是UASB反应器的示意图。UASB反应器的主体部分主要分为两个区域,即反应区和三相分离区。其中反应区为UASB 反应器的工作主体。 反应器的基本构造主要由污泥床、污泥悬浮层、沉淀区、三相分离器及进出水系统等各功能部分组成。 2、UASB工作原理 (1)反应过程

UASB由污泥反应区、气液固三相分离器(包括沉淀区)和气室三部分组成。在底部反应区内存留大量厌氧污泥,具有良好的沉淀性能和凝聚性能的污泥在下部形成污泥层。要处理的污水从厌氧污泥床底部流入与污泥层中污泥进行混合接触,污泥中的微生物分解污水中的有机物,把它转化为沼气。沼气以微小气泡形式不断放出,微小气泡在上升过程中,不断合并,逐渐形成较大的气泡。 在污泥床上部由于沼气的搅动形成一个污泥浓度较稀薄的污泥和水一起上升进入三相分离器,沼气碰到分离器下部的反射板时,折向反射板的四周,然后穿过水层进入气室;集中在气室的沼气,用导管导出,固液混合液经过反射进入三相分离器的沉淀区,污水中的污泥发生絮凝,颗粒逐渐增大,并在重力作用下沉降。沉淀至斜壁上的污泥沿着斜壁滑回厌氧反应区内,使反应区内积累大量的污泥,与污泥分离后的处理出水从沉淀区溢流堰上部溢出,然后排出污泥床。 3、工艺特点 UASB 反应器运行的3 个重要的前提是: ①反应器内形成沉降性能良好的颗粒污泥或絮状污泥; ②出产气和进水的均匀分布所形成的良好的搅拌作用; ③设计合理的三相分离器,能使沉淀性能良好的污泥保留在反应器内。 (1)污泥颗粒化 UASB 反应器利用微生物细胞固定化技术-污泥颗粒化实现了水力停留时间和污泥停留时间的分离,从而延长了污泥泥龄,保持了高浓度的污泥。颗粒厌氧污泥具有良好的沉降性能和高比产甲烷活性,且相对密度比人工载体小,靠产生的气体来实现污泥与基质的充分接触,节省了搅拌和回流污泥的设备和能耗;也无需附设沉淀分离装置。同时反应器内不需投加填料和载体,提高了容积利用率。 (2)良好的自然搅拌作用 在UASB反应器中,由产气和进水形成的上升液流和上窜气泡对反应区内的污泥颗粒产生重要的分级作用。这种作用不仅影响污泥颗粒化进程,同

污水处理系统操作规程

污水处理系统操作规程 一、污水处理运行安全操作要求 1.正确穿戴好个人劳动防护用品。 2.仔细阅读上班次的运行记录、化验记录,确认设备运行参数是否发生了变化,掌握系统存在的问题。 3.维护好值班室、加药间、现场的环境卫生。 4.检查系统管路阀门是否在运行位置。 5.检查各运转设备是否有异响,是否有“跑、冒、滴、漏”现象。 6.根据系统运行情况、水质情况及时调整加药量和控制参数。 7.检查叠螺机运行是否正常,药剂与污泥的比例是否恰到好处。 8.检查加药罐内药剂是否充足。 9.检查水池表面泡沫、浮泥情况。 10.检查各水池是否有杂物,整理并打扫干净。 11.检查各设备是否正常运转,若发现设备故障立即切换至备用设备并安排检修。 12.检查各水泵流量是否正常,若发现异常立即进行排查恢复。 二、污水处理工艺流程图

工艺流程说明: 工艺流程说明:生产废水进入均质调节池,均匀水质水量,调节PH 值后,通过泵提进入水解酸化池,在水解酸化池中部分大分子有机物被水解成小分子有机物,有效加快厌氧反应进程,提高有机物去除率;酸化后的废水进入ACS 厌氧反应器,去除大部分COD ,出水沉淀后进入AmOn 池,通过调节回流比去除绝大部分COD 和总氮;最后通过二沉池去除SS 后,达标外排,进入清水池后达标排放。厌氧、兼氧和沉淀池剩余污泥进入污泥浓缩池,通过污泥脱水机脱水后外运处理,污泥浓缩池上清液和污泥脱水机压滤液进入均质调节池,继续处理。 三、加药装置的控制 (1)碱液的配制和投加 ①先将清水放入碱药剂箱2/3处,打开气搅装置,同时将所需片碱慢慢地、均匀地加入箱内,一边搅拌继续加水,至药箱3/4处后停止加水,继续搅拌使NaOH 完全溶解,NaOH 不能即配即用,必须充分溶解后才能使用;碱液的浓度根据污水调节pH 所需的浓度为准。 ②打开NaOH 溶液加药球阀,启动NaOH 溶液加药泵,进行药剂投加,药剂投加量由现场反 生产废水均质调节池 ACS厌氧池 中间沉淀池一级A池 一级O池 二级A池 二级O池 达标排放泵提 加压空气 硝化水回流硝化水回流 污泥回流沼气处理系统流失污泥回流污泥浓缩池上清液自流至均质调节池叠螺式污泥脱水机压滤液自流至均质调节池提升池 泵提 清水池

详细介绍IC厌氧反应器工作过程

详细介绍IC厌氧反应器工作过程 厌氧塔又叫厌氧设备厌氧反应器等别名,主要有三部分组成分别由污泥反应区、气液固三相分离器和气室,设备内仓留有大量厌氧污泥,具有良好的沉淀性能和凝聚性能的污泥在下部形成活性污泥层。 厌氧塔反应器设备的运行流程: 污水从厌氧设备底部流入污泥中层进行混合反应,中层部分的厌氧生物分解污水中的COD等有机物并转化成气体。产生的气泡不断合并成大气泡,在厌氧塔中上部由于气体的上升产生搅动使较稀薄的污泥和水一起上升进入厌氧设备三相分离器,气体碰到分离器下部的挡板时转向挡板的四周过水层进入气室,集中在气室中的气体通过管道排出,固液混合液经过反射进入三相分离器的沉淀区,污水中的污泥发生絮凝,颗粒逐渐增大,并在重力作用下沉降。沉淀至斜壁上的污泥沼着斜壁滑回厌氧反应区内,与污泥分离后的上清液通过溢流堰上部溢出流入污水处理工艺中的下一道好氧工序。 IC厌氧反应器工作原理: 废水好氧生物处理方法的实质是利用电能的消耗来达到改善废水水质的一种技术措施,因此能、低能耗的厌氧废水处理技术在近代废水处理技术中得到了广泛的应用,厌氧生物处理法有了较大的发展。厌氧消化工艺由普通厌氧消化法演变发展为厌氧接触法(厌氧活性污泥法)、生物滤池法、上流式厌氧污泥床反应器(UASB)、厌氧流化床、复合厌氧法等,其中普通消化池法、厌氧接触法等为*代厌氧反应器,生物滤池法、UASB、厌氧流化床等为第二代厌氧反应器,随着厌氧技

术的发展,由UASB衍生的EGSB和IC(内循环)厌氧反应器为第三代厌氧反应器。EGSB相当于把UASB反应器的厌氧颗粒污泥处于流化状态,而IC反应器则是把两个UASB反应器上下叠加,利用污泥床产生的沼气作为动力来实现反应器内混合液的循环。 IC厌氧反应器工作过程: 通过以下的对IC厌氧反应器的描述,您可以很清楚的了解到其所具有的优点的基本原理。 一般可以理解为IC是由上、下两个UASB组成两个反应室,下反应室负荷高,上反应室负荷低,在反应器内部,对应分为三个反应区。 高负荷区 利用特殊的多旋流式防堵塞的布水系统,高浓度的有机废水均匀进入反应器底部,完成与反应器内污泥的充分混合,由于内循环作用、高的水力负荷和产气的搅动,导致反应器底部的污泥膨胀状态良好,使废水与污泥能够充分接触,如此良好的传质作用和较高的污泥活性才保证了IC反应器具有较高的有机负荷。 低负荷区 低负荷区也是精处理区,在这个反应区内水力负荷和污泥负荷较低,产气量少,产气搅动作用小,因此可以有效的对废水中的有机物进行再处理。 沉降区 IC反应器顶部为污泥沉降区,有机物已基本去除的废水中的少量悬浮物在本区内进一步进行沉降,保证IC出水水质达到规定要求。

渗滤液工艺操作规程

渗滤液工艺操作规程

————————————————————————————————作者:————————————————————————————————日期: ?

工艺操作规程 (2006第一版) 深圳市慧源环境技术有限公司编制

目录 一、工艺流程说明 (附工艺流程图) 二、操作规程 1.进水的操作规程 2.生化池操作规程 3.超滤系统操作规程 4.纳滤系统操作规程 5.实验室操作规程 附件一盐酸使用安全知识 附件二烧碱使用安全知识

一、 工艺流程说明 工艺流程(详见工艺流程图)可分为以下四个子系统: ● U ASB 厌氧反应器 ● 膜生化反应器(反硝化池、硝化罐、超滤装置) ● 纳滤装置 ● 污泥处理系统 膜 上 生 污 清 化 泥 液 反 回 应 流 剩余污泥 器 纳滤浓液 浓缩污泥 达标排放 工 艺 流 程 图 硝化池 超滤系统 污泥 浓缩 池 渗滤液调节池 反硝化池 回喷垃圾坑或回填埋场 厌氧反应池 纳滤系统

1.厌氧反应器 垃圾渗滤液经过收集进入调节池,用水泵抽送到厌氧反应器。为保护后续的超滤膜,厌氧反应器进水前加了排污过滤器,以祛除进水中的小颗粒物、绳子、头发等。为了使厌氧反应器在气温较低的时候维持一定的反应温度,在厌氧进水前、过滤器后增加一套换热装置,用于加热进到厌氧池的污水,使反应器水温达到30。C~35。C。 注:厌氧反应器在某些工程中没有设置。 2.膜生化反应器系统 膜生化反应器系统由生化池和超滤两部分组成。 生化池由反硝化池和硝化池组成,污水中含有碳、氮和磷等元素的有机物经过生物降解得到有效祛除。 反硝化池内安装有混合搅拌装置(液下搅拌机)。泥水混合物由反硝化池溢流至硝化池。 硝化池内采用自吸式射流曝气装置提供氧气。 在硝化池中,通过高活性的好氧微生物作用,降解大部分有机物,并使氨氮氧化为硝酸盐和亚硝酸盐。 硝化池内的泥水混合物通过超滤进水泵进入超滤系统(UF)。超滤过程如下:在压力作用下,料液中含有的溶剂及各种小的溶质从高压料侧透过超滤膜到达低压侧,从而得到清液,清液排放或进入下一级处理系统;而尺寸比膜孔大的溶质分子被膜截留成为浓缩液,浓液大部分回流到反硝化池,少部分作为剩余污泥通过排泥管排到污泥浓缩池。 回流到反硝化池的超滤浓液和系统进水混合,在缺氧环境中硝酸盐和亚硝酸盐还原成氮气排出,达到脱氮的目的。 3.纳滤和纳滤浓液的处理系统 为达到严格的排放标准,在UF后加上纳滤系统(NF),NF的作用是截留那些不可生化的大分子有机物COD,纳滤的清液可以达到很低的COD 浓度水平。 产生的纳滤浓缩液经过流量计计量后与絮凝剂在管道混合器中混凝再到污泥处置系统。 4.污泥处理与处置系统 每天产生的剩余污泥和絮凝后的纳滤浓液进入污泥浓缩池沉淀浓缩,清液溢流到调节池,浓缩污泥从池的底部抽到槽车回灌垃圾坑或填埋场。

厌氧反应器设备参数

IC厌氧系统技术要求 一、工艺要求 1.1预处理段及IC厌氧反应器进水水质 罐体直径:10.0m 罐体高度:15.0m 单体容积:1175m3 气体压力: 1000毫米汞柱

反应器内件:三相分离器模块 模块支撑系统 进水布水系统(含分水包) 内部管道系统 管道与人孔 径DN250,保温厚度50㎜,保温材质为玻璃丝 棉,满足相关规范要求。 3.排除内容: 土建基础:钢筋混凝土、表面敷设沥青砂垫层 2.2 反应器壳体材料要求:

?底板: Q235 *12mm ?1-2层板: Q235 *12mm ?3-6层板: Q235 *10mm ?7-10层板: Q235 *8mm ?出水堰:碳钢防腐材质4mm ?母体所属管道及阀门 2)布水系统 布水系统包括: ?布水管

?导流罩/布水罩(δ=4mm) ?支撑 3)三相分离器模块 ?IC三相分离系统由上部和下部三相分离器模块组成,模块由优质聚丙烯(PP)材料制成,三相分离器模块使用插接模式,保证整体牢固、 使用寿命。三角板采用折弯而成。 ?碳钢防腐材质的布水支管 6)气液分离器 位于IC反应器的顶部,它包括: 数量: 4个 ?碳钢防腐材质圆柱形罐体(δ=5mm)

?采用刮刀式视镜(每个气液分离器不得低于两个); 7)顶部平台 ?材质为碳钢防腐材质。 ?主要作为罐顶气液分离器的支撑平台,方便气液分离器的巡检观察; ?罐顶平台踏步为碳钢防腐花纹钢板。 所有机械除锈为St2.0级标准。 3) 调试培训工作 乙方负责设备的调试工作,以及调试所用颗粒污泥等材料物品,直至设备运 行正常。 乙方负责培训甲方操作人员,保证操作人员能独立操作,并能处理运行日常

厌氧反应器的发展历程与应用现状.

厌氧反应器的发展历程与应用现状 迟文涛1, 赵雪娜2, 江翰3, 李伟涛3, 王凯军1 (1. 北京市环境保护科学研究院, 北京100037;2. 天津城建学院, 天津300384;3. 北京科技大学, 北京100083 摘要:污水厌氧反应器因其能耗少, 运行费用低等优点在全世界范围内得到了广泛的应用。对厌氧反应器的发展历程进行了系统的论述, 重点介绍了第三代厌氧反应器的特点并展望了厌氧反应器的发展前景。关键词:厌氧; EGSB 反应器; IC 反应器; 厌氧流化床; 新型反应器 中图分类号:X505文献标识码:B文章编号:1008-2271(2004 01-0031-03水环境污染和水资源短缺是全球正面临的两大问题。目前, 我国每年污水排放总量为395亿m 3, 根据预测, 到2050年, 我国污水排放总量将高达1200亿m 3[1]。 研制高效低耗并具有多种附加功能的厌氧污水处理工艺已经成为亟待解决的重大课题。1100多年的历史。1860年法国工程师Mouras 就采用厌氧方法处理废 水中经沉淀的固体物质。1896年英国出现了第一座用于处理生活污水的厌氧消化池, 所产生的沼气用于照明 [2] 。1904年德国的Imhoff 将其发展成为 Imhoff 双层沉淀池(即腐化池 , 这一工艺至今仍然 在有效地利用[3] 。在1910年至1950年, 高效的、可

加温和搅拌的消化池得到了发展, 其比腐化池有明显的优势。Schroepfer 在20世纪50年代开发了厌氧接触反应器。这种反应器是在出水沉淀池中增设了污泥回流装置, 增大了厌氧反应器中的污泥浓度, 处理负荷和效率显著提高。上述反应器被称为第一代厌氧反应器。 由于厌氧微生物生长缓慢, 世代时间长, 而厌氧 收稿日期:2003-12-11 作者简介:迟文涛,1977年生, 男, 吉林扶余人, 在读研究生。 消化池无法将水力停留时间和污泥停留时间分离, 由此造成水力停留时间必须较长, 一般来讲第一代厌氧反应器处理废水的停留时间至少需要20~30天[4]。 2:。(2 反应 。 依据这一原则,20世纪60年代末,Mccarty 和Y oung 推出了第一个基于微生物固定化原理的高速 厌氧反应器———厌氧滤池。它的成功之处在于在反应器中加入固体填料(如沙砾等 , 微生物由于附着生长在填料的表面, 免于水力冲刷而得到保留, 巧妙地将平均水力停留时间与生物固体停留时间相分离, 其固体停留时间可以长达上百天, 这就使得厌氧处理高浓度污水的停留时间从过去的几天或几十天缩短到几小时或几天。 在相同的温度下, 厌氧滤池的负荷高出厌氧接触工艺2~3倍, 同时有很高的COD 去除率, 而且反应器内易于培养出适应有毒物质的厌氧污泥。1972年, 厌氧滤池首次较大规模地应用于小麦淀粉废水处理。 1974年, 荷兰Wagningen 农业大学的Lettinga

升流式固体厌氧反应器

升流式固体厌氧反应器(USR),是一种结构简单、适用于高悬浮固体有机物原料的反应器。原料从底部进入消化器内,与消化器里的活性污泥接触,使原料得到快速消化。未消化的有机物固体颗粒和沼气发酵微生物靠自然沉降滞留于消化器内,上清液从消化器上部溢出,这样可以得到比水力滞留期高得多的固体滞留期(SRT)和微生物滞留期(MRT),从而提高了固体有机物的分解率和消化器的效率。在当前畜禽养殖行业粪污资源化利用方面,有较多的应用。许多大中型沼气工程,均采用该工艺。 经过USR处理后产生的沼液属于高浓度有机废水。该废水具有有机物浓度高、可生化性好、易降解的特点,不能达到排放标准,因此除用于花卉蔬菜等的肥料外,剩余沼液须回流至集水池,经过好氧处理后达标回用或排放。针对该沼液含氨氮较高的特点,通过预处理可将溶于水的挥发性氨氮部分去除。沼液中的有机物则通过生物法进行处理。即利用水中微生物的新陈代谢作用,将有机污染物降解,达到净化水质、消除污染的目的 前处理 7.1前处理工艺类型 7.1.1 “能源生态型”沼气工程 污水通过管道自流入调节池,在调节池前设有格栅,以清除较大的杂物,人工清出的粪便运至调节池,与污水充分地混合,然后流入到计量池,计量池的容积根据厌氧消化器的要求确定。当以鸡粪为原料时,应在调节池后设沉砂池。粪便的加入点与厌氧消化器类型有关,一般在调节池加入,带有搅拌装置的塞流式反应器也可直接加入到厌氧消化器。 7.1.2 “能源环保型”沼气工程 污水通过管道自流入调节池,在调节池前设有格栅,以清除较大的杂物,调节池的污水用泵抽入到固液分离机,分离的粪渣用作有机肥原料,分离出的污水流入沉淀池,沉淀的污泥进入污泥处理设施,上清液自流入集水池。 7.2前处理的一般规定 7.2.1 “能源生态型”沼气工程前处理的一般规定

沼气安全操作规程及注意事项

沼气安全操作规程及注意事项 ●沼气进锅炉操作规 ★点火前准备 A.检查锅炉引起风机,燃烧器等正常完好,确保无误后告知厌氧处理站开放沼气供应。 B.锅炉燃烧使用沼气前,先关停引风机,鼓风机,再用点火把点燃(明火)正常后方能打开沼气阀送气,沼气燃烧正常后,方能启动引风机,鼓风机。 C.锅炉燃烧正常后,关闭阻火器,排空阀。 D.锅炉停止使用沼气时,必须先打开阻火器排空阀,然后再关闭锅炉进气阀,并通知厌氧操作人员打开厌氧罐排空阀。 ●沼气安全操作流程 开气顺序:打开锅炉膛进所阀→关闭2#阻火器排空阀→关闭1#阻火器排空阀→关闭厌氧罐排空阀。 关停顺序:打开厌氧罐排空阀→打开1#阻火器排空阀→打开2#阻火器排空阀→关闭锅炉膛进气阀。 特别提示:司炉工上班前要阅读沼气安全操作规程,掌握操作技术,确保环保设施的安全运行。 厂安全生产管理领导小组。 污水治理设施应急预案

污水处理站污水超标排放应急措施 1.立即通知处生产计划科减少送水量,同时对进入工艺的污水进行 减量处理。 2.厂生产技术人员立即对进厂水质、工艺运行参数、出水水质数据 进行分析,根据超标数据对相关的工艺进行及时调整。如BOD、COD超标,则调整进水量、风量、回流量等。如SS超标,则及时排泥,增加污泥处理量等。以最短时间使工艺运行、出水水质达到正常排放标准。 污水处理站台风应急措施 1.及时通知各部门做好防台风的准备,将各岗位门窗关紧对变电所 架空进户线进行不间断地巡视检查,发现情况立即进行紧急处置。 2.尽量减少操作人员在构筑物上巡视或操作次数,待风力减小后再 外出巡视操作。 3.厂抢险队员、车辆做到随叫随到,严阵以待,以处置突发事件的 发生。 污水处理厂暴雨应急措施 1.根据天气预报,预先对各设备进行检查,确保完好。对厂内雨 水管道进行疏通,确保畅通。 2.增加水泵,降低集水井水位,直到所有水泵满负荷运行。对易 进水的电缆沟安装潜水泵。 3.将各岗位门窗关紧,防止雨水流进操作间影响机器设备的正常 运行。

厌氧处理操作

厌氧处理操作 UASB厌氧处理系统包括:东配水池、西配水池、凉水塔、竖流沉降罐、换热间、UASB厌氧罐、一沉池、沼气间 一、主要任务 1.1 对各排水车间、生活污水所排原水取样送化验室监测各项指标; 1.2 竖流沉降罐溢流堰板的调节,重力曲筛筛上杂物的清理,竖流沉降罐内污泥清理、外运; 1.3 调节配水池原水水质及预酸化池水质,调节进水COD、温度及pH值,使其符合厌氧进水要求; 1.4 操作污水提升泵,控制UASB(升流式厌氧污泥床)及IC(内循环厌氧反应器)进水流量; 1.5 UASB厌氧反应器和一沉池溢流堰板的调节,保证出水均匀; 1.6 监测厌氧出水情况,取样化验出水的各项指标; 1.7 控制沼气水封罐水位,负责沼气缓冲罐积水

排放、水封罐定期更换水操作; 1.8 一沉池污泥的清理和外运; 1.9 监测IC反应器出水情况及产气情况,调整进水流量; 1.10 厌氧各种加药量的控制及加药系统的日常维护; 1.11 及时清理涤气塔间积液。 二、工艺参数 原水: COD≤4500mg/L; pH值:3.5~9.0,最佳范围:6.8~7.2 ; 硫酸盐≤500mg/L,COD/硫酸盐浓度≥5,最佳范围:COD/硫酸盐浓度:≥10; 温度:30~40℃;最佳温度:35~38℃;

氨氮≤500 mg/L; 上升流速:0.5~1.5m/h 三、质量标准 厌氧出水: COD≤1500 mg/L,最佳COD≤400 mg/L;(与进水COD高低而定,保证去除率在70%以上即可) VFA:≤1000mg/L,最佳≤400 mg/L; pH值6.0~8.0,最适pH值6.8~7.2; 四、操作标准 4.1东配水池 控制流量,合理配水控制各车间来水水量,根据各车间来水水质情况,混合调配;pH值不足时加纯碱或液碱;温度不足时向配水池通入蒸汽;温度高时把高温水引致凉水塔降温;定时加营养物质氯化钙和微量元素;控制配水池液位不要过低 导致污水泵进气抽空,同时不能太高导致池子冒水; 4.2 西配水池

IC厌氧反应器调试

IC厌氧反应器调试总结 此次调试的污水处理工艺采用厌氧—好氧组合方式处理来去除污水中COD、SS以及N、P等富营养化物质,经过半年的调试运行,工艺已经日趋成熟,出水质量均符合国家排放标准。工艺的稳定运行离不开重要参数的严格控制, 下面就IC厌氧工艺阶段的主要控制参数进行简要分析说明 厌氧工艺处理设备主要是IC厌氧反应器,其主要的控制参数有以下内容: PH值:反应器进水PH值要求控制在6.5~8.0之间,过低或过高的PH值都会对工艺造成巨大的影响,其影响主要体现在对厌氧菌(主要是产甲烷菌)的方面,包括:①影响菌体及酶系统的生理功能和活性②影响环境的氧化还原电位③影响基质的活性。产甲烷菌的这些性质功能遭到破坏后,处理COD的活性就会大大的降低。 温度:反应器进水温度要求控制在35.5~37.5之间,因为产甲烷菌大多数都属于中温菌,在这个范围内,其处理效率是很高的。温度高于40℃时,处理效率会急剧下降;最好也不要低于35℃,温度过低,处理效率也会下降很多。 预酸化度:废水进入厌氧反应器之前要保持足够的预酸化度,一般在30%~50%之间,最好是在40%左右。预酸化度高的情况下,VFA高,进水PH值会降低,为调解PH值,会增高污水处理的运行费用,同时还会影响污泥的颗粒化。 有毒物质:对厌氧颗粒污泥有抑制性作用的有毒物质主要是H2S和亚硫酸盐。H2S的允许浓度为小于150㎎/L,否则可能会使大部分产甲烷菌降低50%的活性;亚硫酸盐的允许浓度是小于150ppm,否则将会导致一半的产甲烷菌失去活性,所以一定要严格控制这两样有毒物质的含量,对其进行定期的检测。 容积负荷率:厌氧反应器具有很高的容积负荷率,操作手册上为16~24㎏COD /m3/d,而一些学者认为其容积负荷率还可以更高可达30~40㎏COD /m3/d,但是这个数值的短期内变化幅度最好不要过大,就是说要让厌氧菌有一定的适应时间,逐步增加或降低负荷。如果条件可以,尽量使其负荷率在一个范围之间,趋于稳定的状态。 上升流速:IC反应器的上升流速一般在4~10m/h, 当污水的进水COD值浓度较低时,需要提高流量来增加COD的负荷率,较高的上升流速会有助于颗粒污泥与有机物之间的传质过程,避免了混合不均匀对设备的影响。 污泥菌种的成分:厌氧污泥中具有处理污染物能力的就是细菌等有机物质,菌群的组成及菌种的成分决定了其颗粒强度、产甲烷活性及对污水的适应能力。一般来说,污泥中有机物的成分占70%左右,污泥外部菌种主要为丝菌,污泥内部主要为杆菌、球菌等。 除了以上这些因素外,IC反应器的运行控制条件还有很多,如进水COD浓度,污泥颗粒化程度等等,工艺正常运行,每个工艺条件都是不可缺少的,因为各个条件之间是环环相扣的的关系,一个参数出了问题,所有的问题就都会显现出来。为了避免问题的出现,就应该及时监测、化验、分析,发现异常现象,立即采取措施进行处理,防止更多问题的出现。 污水经过厌氧反应器处理后,会进入好氧段进行氧化处理。好氧段分为两个部分,即兼氧池和曝气池,兼氧池作为厌氧段与好氧段过度过成,主要用于处理N、P等富营养化物质,根

污水处理中试二段设备操作规程

污水处理中试二段设备操作规程

文档仅供参考 新疆广汇污水处理操作规程 延庆水处理设备制造有限公司 .1.18

文档仅供参考批准: 审核: 编制:

文档仅供参考 目录 一段 (6) 二段 (6) 一罐中罐操作规程 (6) 1、投运前的检查 (6) 2、调试及启停操作要点 (6) 3、日常操作及注意事项 (7) 二气浮装置操作规程 (9) 1、投运前准备工作 (9) 2、调试步骤 (10) 3、参数控制 (12) 4、日常维护及管理 (14) 三IC 厌氧塔操作规程. (15) 1、投运前准备 (15) 2、投运步骤 (15) 3、停运步骤............... 错误!未定义书签。 4、运行维护 (16) 5、注意事项 (17) 6、厌氧生物反应器的控制指标 (19) 7、厌氧生物反应器维持高效率的基本条件 (20) 8、厌氧反应器启动 (21) 9、厌氧生物处理中存在的问题及解决方法 (24) 2020 年4 月19 日

四水解酸化池操作规程 (25) 1、厌氧发酵阶段 (25) 2、水解酸化曝气操作 (25) 3、增强水解酸化池的处理效果 (26) 4、水解酸化池停运 (27) 五A/0池操作规程 (27) 1、简介 (27) 2、活性污泥的培养和驯化 (27) 3、投运步骤 (29) 4、因素合理控制 (29) 5、工艺参数控制 (30) 6、停运步骤 (33) 六二沉池操作规程 (34) 七微电解塔操作规程 (34) 1、基本原理 (34) 2、填料填充 (35) 3、投运前检查 (35) 4、投运步骤 (35) 5、运行参数控制 (36) 6、注意事项 (37) 7、运行中的常见故障 (37)

UASB升流式厌氧污泥床

UASB 一、引言 厌氧生物处理作为利用厌氧性微生物的代谢特性,在毋需提供外源能量的条件下,以被还原有机物作为受氢体,同时产生有能源价值的甲烷气体。厌氧生物处理法不仅适用于高浓度有机废水,进水BOD最高浓度可达数万mg/l,也可适用于低浓度有机废水,如城市污水等。 厌氧生物处理过程能耗低;有机容积负荷高,一般为5-10kgCOD/m3.d,最高的可达30-50kgCOD/m3.d;剩余污泥量少;厌氧菌对营养需求低、耐毒性强、可降解的有机物分子量高;耐冲击负荷能力强;产出的沼气是一种清洁能源。 在全社会提倡循环经济,关注工业废弃物实施资源化再生利用的今天,厌氧生物处理显然是能够使污水资源化的优选工艺。近年来,污水厌氧处理工艺发展十分迅速,各种新工艺、新方法不断出现,包括有厌氧接触法、升流式厌氧污泥床、档板式厌氧法、厌氧生物滤池、厌氧膨胀床和流化床,以及第三代厌氧工艺EGSB和IC厌氧反应器,发展十分迅速。 而升流式厌氧污泥床UASB( Up-flow Anaerobic Sludge Bed,注:以下简称UASB)工艺由于具有厌氧过滤及厌氧活性污泥法的双重特点,作为能够将污水中的污染物转化成再生清洁能源——沼气的一项技术。对于不同含固量污水的适应性也强,且其结构、运行操作维护管理相对简单,造价也相对较低,技术已经成熟,正日益受到污水处理业界的重视,得到广泛的欢迎和应用。 本文试图就UASB的运行机理和工艺特征以及UASB的设计启动等方面作一简要阐述。 二、UASB的由来 1971年荷兰瓦格宁根(Wageningen)农业大学拉丁格(Lettinga)教授通过物理结构设计,利用重力场对不同密度物质作用的差异,发明了三相分离器。使活性污泥停留时间与废水停留时间分离,形成了上流式厌氧污泥床(UASB)反应器的雏型。1974年荷兰CSM公司在其6m3反应器处理甜菜制糖废水时,发现了活性污泥自身固定化机制形成的生物聚体结构,即颗粒污泥(granular sludge)。颗粒污泥的出现,不仅促进了以UASB为代表的第二代厌氧反应器的应用和发展,而且还为第三代厌氧反应器的诞生奠定了基础。 三、UASB工作原理 UASB由污泥反应区、气液固三相分离器(包括沉淀区)和气室三部分组成。在底部反应区内存留大量厌氧污泥,具有良好的沉淀性能和凝聚性能的污泥在下部形成污泥层。要处理的污水从厌氧污泥床底部流入与污泥层中污泥进行混合接触,污泥中的微生物分解污水中的有机物,把它转化为沼气。沼气以微小气泡形式不断放出,微小气泡在上升过程中,不断合并,逐渐形成较大的气泡,在污泥床上部由于沼气的搅动形成一个污泥浓度较稀薄的污泥和水一起上升进入三相分离器,沼气碰到分离器下部的反射板时,折向反射板的四周,然后穿过水层进入气室,集中在气室沼气,用导管导出,固液混合液经过反射进入三相分离器的沉淀区,污水中的污泥发生絮凝,颗粒逐渐增大,并在重力作用下沉降。沉淀至斜壁上的污泥沼着斜壁滑回厌氧反应区内,使反应区内积累大量的污泥,与污泥分离后的处理出水从沉淀区溢流堰上部溢出,然后排出污泥床。 基本出要求有: (1)为污泥絮凝提供有利的物理、化学和力学条件,使厌氧污泥获得并保持良好的沉淀性能;

厌氧规程初稿

QJYZ 泰格林纸业集团沅江纸业有限责任公司企业标准 QJ/YZ04●14-2009 厌氧操作规程 (供排水车间) . 2013.12.12发布2013.12.14实施 沅江纸业有限公司技术中心颁发

受控编号:受控状态:编写:初审:复审:批准:

各单元操作规程 1 集水池 ?作用: 由生产车间压力输送至厌氧污水处理厂的废水首先经过两台0.3mm的旋转滤网,脱除废水中的大部分以纤维物质为主的悬浮固形物后,自流入集水池中。 ?操作步骤及运行: (1)转筒过滤筛:3台,24小时运行,转筒过滤筛截留的纤维,需经常清理,运送到纤维堆场,保持地面清洁。 (2)进水提升泵:1用1备,根据集水池液位启停提升泵。 (3)pH仪1套,显示来水pH。 (4)超声波液位计1套,控制开泵、关泵和低位报警。 ?注意事项: 操作人员应注意及时清理纤维,保持地面清洁。 2 斜网 ?作用: 去除污水中的纤维物质,纤维可回收利用。 ?运行: 涞水由进水提升泵泵入斜网,经处理后,出水自流进入冷却水池1。 ?注意事项: 斜网需经常冲洗,防止堵塞。 3 冷却水池1 ?作用: 收集斜网出水,废水经泵提升去一级冷却塔装置。 ?运行: (1)一级冷却塔装置:1套,冷却废水温度,将温度从75℃冷却至55℃。 (2)配套冷却塔风机:1台 (3)一级冷却塔供料泵:1用1备,根据冷却水池1液面启动水泵。 (4)超声波液位计:1台,控制开泵、关泵和低位报警。

(5)温度计:1台,一级冷却塔供料泵输送管道上设置插入式温度计1台,连续显示和记录来水温度,并据此决定一级冷却塔供料泵的开停。 ?注意事项: 冷却塔装置的维护维修保养详见设备说明书。 4 絮凝反应池 ?作用: 在絮凝反应池中投加PAC、PAM,使混凝反应进行的较为充分、彻底,增强废水的沉淀性。 ?运行: 框式搅拌机:3台,转速:三档分别为:60~80r/min,60~80r/min,10~20r/min 涞水通过斜网直接自流进入絮凝反应池,或者通过冷却水池1自流进入。?注意事项: 经过一段时间的运行,可能在池子的底部产生积泥,因此应视情况一年清泥1-2次。 5 初沉池 ?作用: 使混凝沉淀后的泥水分离,达到去除大部分SS的目的。 ?运行: 废水自流进入,经集水堰溢流排出。 (1)周边传动刮泥机:1台,将沉淀池底部污泥收集到污泥斗中。 (2)初沉排泥泵:1用1备,定期将初沉池污泥斗污泥排至污泥池。 (3)流量计:1台,测量初沉池出水流量。 ?注意事项: 应视情况一天内排泥1-2次。 6 冷却水池2 ?作用: 初沉池出水经集水池停留片刻后用泵抽入至冷却塔装置。 ?运行:

UASB厌氧反应器的结构和原理

UASB厌氧反应器的结构和原理 IC和UASB是厌氧反应器中最常见的两种结构形式。在之前的文章中,我们详细介绍了厌氧反应器-IC的结构,今天我们就来讲一讲UASB的结构和原理。 1. UASB厌氧反应器的原理 在UASB反应器中,废水被尽可能均匀的引入反应器的底部,污水向上通过包含颗粒污泥或絮状污泥的污泥床。厌氧反应发生在废水和污泥颗粒接触的过程中。在厌氧状态下产生的沼气(主要是甲烷和二氧化碳)引起了内部的循环,这有利于颗粒污泥的形成和维持。 在污泥层形成的一些气体附着在污泥颗粒上,向反应器顶部上升,上升到表面的污泥撞击三相分离器气体发射板的底部,引起附着气泡的污泥絮体脱气。气泡释放后污泥颗粒将沉淀到污泥床的表面,而气体则被收集到三相分离器的集气室。

在集气室单元缝隙之下设置挡板(气体反射器),其作用是为了防止沼气气泡进入沉淀区,否则将引起沉淀区的紊动,而阻碍颗粒沉淀。包含一些剩余固体和污泥颗粒的液体经过分离器缝隙进入沉淀区。 由于三相分离器斜壁沉淀区的过流面积在接近水面时增加,因此上升流速在接近排放点降低。同时随着流速降低,污泥絮体在沉淀区可以絮凝和沉淀。累积在三相分离器上的污泥絮体在一定程度上将超过其保持在斜壁上的摩擦力,而滑回反应区,这部分污泥又将与进水有机物发生反应。 2. UASB反应器的构成 USAB反应器包括进水和配水系统、反应器的池体和三相分离器。如果考虑整个厌氧系统,还应该包括沼气收集和利用系统。但是由于沼气利用的途径和目标不确定,其利用系统也有很大的差别。 在USAB反应器中最重要的设备是三相分离器,这一设备安装在反应器的顶部并将反应器分为下部的反应区和上部的沉淀区。为了在沉淀器中取得对上升流中污泥絮体颗粒的沉淀效果,三相分离器最主要的目的就是尽可能有效地分离从污泥床中产生的沼气。

相关文档
相关文档 最新文档