文档库 最新最全的文档下载
当前位置:文档库 › 2100T整机优化设计说明书

2100T整机优化设计说明书

2100T整机优化设计说明书
2100T整机优化设计说明书

内燃机设计与优化

课程设计说明书

学院求是学部

专业热能与动力工程年级2010级

姓名徐露

学号3010218154

2014 年3 月25 日

2100T柴油机主要技术参数设计与优化

摘要:为了研究柴油机结构参数和运行参数对整机性能的影响,用发动机工作过程仿真软件GT-power对2100T柴油机进行了建模和模拟计算。改变压缩比、喷油提前角及配气相位等参数,比较了不同参数下发动机转矩、功率、油耗、缸内燃气最高压力等性能参数,选定了最优化的参数组合。利用优化后的参数再次进行工作过程仿真,通过对比其整机性能参数发现,优化后的柴油机动力性、经济性均有所提高。

关键词:柴油机性能;优化设计;GT-power;压缩比;配气相位、喷油提前角

1.2100T柴油机简介

2100T柴油机为我国70年代左右的产品。该柴油机是100系列的柴油机之一,为立式水冷四冲程柴油机。具有工作可靠性能好,结构紧凑,经济指标低,寿命长,使用方便等特点。移动式,可做拖拉机动力。其主要技术参数如下:

缸径100mm ;

冲程120mm;

压缩比16 ;

额定功率18.4kw ;

额定转速2000r/min ;

比油耗<=252g/kw.h;

1)外形布置特点

2100T型柴油机结构紧凑,外廓尺寸不大。其外形布置的特别之处主要在于进排气门的两侧布置和供油系统和电启动系统的分开布置。

2100T型柴油机为顶置式气门机构。与侧置式相比,结构较为复杂,零件数目较多,在高速往复运动中,使震动和噪声增加,可靠性降低。但在高压缩比的柴油机中,侧置式气门布置在结构上难以实现,必须采用顶置式。

2)主要零部件结构特点

a)活塞连杆组

活塞连杆组由活塞、活塞环、活塞销、连杆螺栓、轴瓦等组成。

i.2100T柴油机活塞顶部有一浴盆形深坑,活塞头部加工有安装活塞环的活塞环槽,

活塞裙部较长和受侧向里,活塞呈椭圆形。

ii.活塞环包括三道气环及一道油环。第一道气环内侧有挖槽,安装时有挖槽的一面必须朝上;第二、三道气环外侧有挖槽。采用合金铸铁制造气环,第一道气环表面镀高性能覆盖层,其余气环表面一般镀锡或进行磷化、硫化处理,使环表面更易于气缸磨合。

iii.2100T型柴油机采用圆柱形中空活塞销,利于减少离心惯性力的影响。一般采用优质低碳钢或低碳合金淬火。

iv.连杆的材料采用40或45号钢,优质中碳钢,主坯用模锻处理或滚压成形,并经调质处理。

连杆小头为短圆管形,小头与杆身之间则采用半径较大的圆弧圆滑过渡,以减少过

渡处得应力集中。

●杆身采用工字形断面,这种形状可以在重量较轻的情况下获得足够的强度和刚度。

●连杆大头采用斜切口,便于装拆是将大头从气缸中抽出。

v.在2100T型柴油机的轴瓦上钻有小孔或铣出环形油槽以便主轴承向连杆轴承输送润滑油,或由连杆小头衬套送油。

b)曲轴飞轮组

曲轴飞轮组是由曲轴、飞轮、齿圈、曲轴正时齿轮、三角皮带轮组成。曲轴主轴颈与连杆轴颈之间有润滑油孔相通。

2100T型柴油机的飞轮直径为Ф440毫米,飞轮齿圈的倒角的一面向外装配到飞轮上面。飞轮内壁钻有小孔,这样可以使飞轮外的部分润滑油通过小孔回到油底壳,以保证飞轮面与离合器更好的摩擦传动。主轴颈直径粗而短,空心。曲柄销是枣核型空腔。主轴瓦、连杆轴瓦和止推片的材料均为轧制的耐磨合金。

c)配气正时传动机构

配气机构包括气缸盖总成中的气门和气门驱动机构,还包括齿轮轴、正时齿轮、空气滤清器、进排气管及消音器。

i.凸轮轴

凸轮轴上的凸轮通过气门挺柱、气门推杆和摇臂驱动进、排气门,控制进、排气门得开闭时间。

ii.正时齿轮

凸轮轴和喷油泵均由曲轴前端的正时齿轮经过中间惰轮驱动。机油泵则由曲轴正时齿轮通过其下过机油泵上的中间齿轮驱动。

iii.气门

进气门工作温度低,一般采用合金钢。排气门则用耐热合金钢如4CrSi2等。

d)齿轮传动系

齿轮传动系有曲轴驱动主动轮,通过惰轮带动齿轮轴正时齿轮和机油泵齿轮,以控制配气定时和供油。正时齿轮要求加工精度高,一般用45钢制造。

e)机体组

机体内嵌有高磷铸铁制成的湿式汽缸套,其上部的缸套凸缘的下端面边缘在机体缸孔的肩胛上,下部以两只橡胶做的防水圈密封。在机体右侧面有检查窗口,为拆装活塞连杆和检视曲轴连杆机构及轴承。机体上平面除了气缸孔和气门推杆孔外,还有一个通向气缸摇臂轴的润滑油孔及以下与气缸盖相同的冷却水孔。

机体的前端有正时齿轮室,齿轮室内装传动齿轮,后端为飞轮盖和盖板,左侧中间装有配气凸轮轴。机体的拱门上有主轴承座,轴承盖同螺栓紧固在轴承座上,曲轴后部有甩油盘,飞轮壳。机体与气缸盖用双头螺栓固紧,各缸套凸肩高出机体平面的高度应一致,高低相差控制在0.05毫米以内。

油底用铸铁制成,侧面插有油标尺,便于检查油面的高度。

气缸盖装于气缸体上部,用于密封,材料为灰铸铁。气缸盖上装有喷油器,进排气管,摇臂轴总成等,气缸盖内部还有进排气道,冷却水道,机油道。

3)主要系统分析

a)燃烧系统

2100T型柴油机燃烧室是深坑形燃烧室,这样燃烧室是不与冷却水直接接触的,可以减少散热损失,燃烧室布置时本要求与喷油嘴以及气缸在同一中心线上,这样对称布置使热气流都均匀,为使气缸盖中冷却水道易于布置,喷油嘴倾斜150~250。这样,利于组织进气涡流,形成挤流,对喷雾质量的要求不会太高,利于混合气形成和燃烧。深坑形燃烧室对燃油系统要求降低,并且,由于利用进气涡流加强混合气形成,使空气利用率大大提高,此外,还可以保持燃油率低及起动容易的优点。

b)燃料供应系统

柴油机燃料供应系统包括油泵、柴油滤清器、输油泵、柴油细滤器、喷油泵和燃烧室等。

柴油由油泵首先进入沉流杯,柴油中的水及其基本机械杂质沉积于杯中,较清洁的柴油经管道流向柴油滤清器。同时设有两级滤清器,分别滤除大小颗粒不同的杂质。经过滤清的柴油由输油泵压入喷油泵内。输油泵的作用是提高泵油的压力,以克服流动阻力,定时定量的向喷油泵供油,输油泵装在喷油泵上,利用喷油泵凸轮轴上的偏心推动压油。柴油进入油泵后,一部分通过柱塞的压缩使油压提高,高压油按各缸工作次序流向各缸喷油器,然后喷入燃烧室进行燃烧,多余的柴油则经回油管流回柴油滤清器。c)润滑系统

2100T型柴油机的润滑系统为湿式曲轴箱,压力循环与飞溅复合供油式。

油底壳内的机油经过吸滤器的滤网被机油泵吸入,再压送至机油滤清器,经过滤清的机油被送入机体内的主油道。机油由此分为两路:一路通至各主轴承,并经过曲轴内侧的油孔到达曲柄销,主轴承上还有油孔与各凸轮轴轴承孔向通。凸轮轴后轴承并有一经过机体与气缸盖到达摇臂轴内的油孔,另一路经过惰轮轴和惰轮轴辐板流出,润滑惰轮轴及传动齿轮。即曲轴、连杆大头、凸轮轴、摇臂等轴承与传动齿轮均为压力润滑;而气缸套与活塞、连杆衬套及活塞销、凸轮表面等处则为飞溅润滑。

喷油泵与减速器单独成一系统,另外加油润滑。

机体侧盖板上备有加油口及油游标尺,供加油及测量油量用。

润滑系统主要由机油泵、机油滤清器及机油吸滤器等组成。机油滤清器为全流压力绕线式滤芯,而机油吸滤器为网式粗滤器,安装在油底壳内。

d)冷却系统

2100T型柴油机的冷却介质是水,即水冷系统且为强制冷却。水冷系统是由散热器、空气-蒸汽阀、风扇、水泵等部件组成。

利用装在水流通路内的水泵,向内燃机压力供水,强制冷却。水在内燃机中循环流动,具有一定压力的冷却水由水泵的出水口通过分水管进入气缸体内水套,冷却了高温零件后的热水经过节温器和回水管流入上水箱,热水在流经散热器时,它的热量散入空气,温度降低,低温的水进入下水箱后,在水泵的作用下再去冷却内燃机的高温零件。

风扇用来增加流经散热器芯部空气的流量,以提高散热器的散热效率。利用装在散热器水管中的节温器调节流经散热器芯部的热水量,以调节冷却强度,气缸体中的分水

管用来使多缸内燃机多个气缸散热均匀的冷却,在分水管纵向位置开有大小不同的出水口,离水泵越近,出口面积越大,多个气缸的冷却强度就越均匀。此外,为控制冷却水强度,在出水处装有计温计。

1.2100T柴油机GT-power建模

其基本结构参数如下表

根据结构参数建模图如下

2.参数优化计算及分析

对上述柴油机模型,额定转速2000r/min。设定23个case,转速由600r/min以100r/min 的幅度增加至2800/min。对该工作过程进行模拟计算,研究一些重要参数对柴油机性能影响的变化规律,绘出速度特性曲线图,并对结果做了相应的分析。

1)压缩比对柴油机性能的影响

压缩比ε=12,14,15,16,17,18,19,20得到柴油机的速度特性曲线

有效燃油消耗率vs 转速

有效转矩vs 转速

有效功率vs 转速

有效热效率vs 转速

缸内最大压力vs 转速

n=2000r/min,不同压缩比对发动机性能的影响

结果分析:压缩比增大,压缩终点时缸内压力和温度升高,缩短了滞燃期,改善了燃烧过程。换气过程的完善性直接影响着柴油机的动力性、经济性、排放性,压缩比适当增大,压缩余隙减小,充气效率提高,残余废气系数较小,换气质量好,有利于燃烧。但压缩比过大,则不仅使柴油机工作粗暴、出功减少、经济性下降外,还使活塞连杆组、曲轴等机件受力剧增。综合考虑ε=15,柴油机动力性经济性最好。

2)喷油提前角对柴油机性能的影响

喷油提前角θ= -5,-10,-13,-15,-17,-20

比油耗vs转速

有效转矩vs转速

有效功率vs转速

有效热效率vs转速

最大缸压力vs转速

n=2000r/min,不同喷油提前角对发动机性能的影响

结果分析:点火提前角过大或过小都会影响柴油机动力性、经济性。喷油提前角过大,喷油提前,导致燃烧过早地发生在上止点之前,使缸内压力急剧上升,增加压缩负功及功率的消耗。喷油提前角过小,则使燃烧发生在下行期,柴油机的后燃严重油耗增加。综合考虑,喷油提前角θ= -15°,柴油机的动力性、经济性最好。

3)排气门配气相位对柴油机性能的影响

排气门配气相位角γ=122°,124°,126°,128°,130°

比油耗vs转速

有效转矩vs转速

有效功率vs转速

有效热效率vs转速

最大缸压力vs转速

n=2000r/min,不同排气门配气相位角对发动机性能的影响

结果分析:排气门早开始为了使排气冲程开始时,气门已有较大的开启角度,便于废气排出,并降低排气消耗功能,但开起过早,气体尚未完全膨胀即被排除气缸,将使膨胀功能减小而降低发动机功率。但其门开启过晚,导致排气不充分缸内残余废气系数增加,排气功增加,影响发动机的动力性、经济性。综合考虑排气门配气相位角γ=128°,发动机动力性、经济性最好。

3.2100T柴油机参数优化前后对比

油耗vs转速

转矩vs转速

功率vs转速

有效热效率vs转速

优化前后发动机性能对比

由上图可以看出,选择优化参数组合压缩比15、喷油提前角15°、排气门开启角128°优化后柴油机的动力性、经济性均有不同程度的改善。

4.总结

本文中,首先在GT-power上对2100T柴油机建模。之后,修改原模型的压缩比、喷油提前角、排气相位,完成了优化参数的模拟计算及选择优化参数,最后对优化参数组合进行模拟计算,对比柴油机的动力性、经济性指标,发现均有不同程度的改善实现了对2100T柴油机的优化。

参考文献:

[1] 高文志.内燃机课程设计.北京:中国水利水电出版社,2010.

[2] 柴油机设计手册编辑委员会.柴油机设计手册.北京:中国农业机械出版社,1984.

基于matlab的齿轮优化设计说明书

机械装备优化设计三级项目题目:基于MATLAB的齿轮优化设计的优化设计班级:12级机械装备二班 设计人员:王守东(120101010236) 荆雪松(120101010215) 武吉祥(120101010219)

一、优化设计问题分析: 所谓优化就是在处理各种事物的一切可能的方案中寻求最优的方案。机械优化设计是把优化理论和技术应用到机械设计中,通过对机械零件、机构乃至整个机械系统的优化设计,使其中某些设计参数和指标获得最优值。绝对的最优,只有在某些理论计算中才能达到,但对于实际的机械优化设计,都带有一定的客观性和相对性。 Matlab 是美国 Mathworks 公司于1967年推出的用于科学计算的可视化软件包。其方便、友好的用户环境、强大的扩展能力使许多领域的科学计算和工程应用节省时间、降低成本和提高效率。 许多机械工程设计都需要进行优化。优化过程可以分为三个部分:综合与分析、评价、改变参数三部分组成。其中,综合与分析部分的主要功能是建立产品设计参数与设计性能、设计要求之间的关系,这也就是一个建立数学模型的过程。评价部分就是对该产品的性能和设计要求进行分析,这就相当于是评价目标函数是否得到改善或者达到最优,也就是检验数学模型中的约束条件是否全部得到满足。改变参数部分就是选择优化方法,使得目标函数(数学模型)得到解,同时根据这种优化方法来改变设计参数 二、优化设计方案选择: 机械设计优化设计中常采用的优化设计方法有进退法、黄金分割法、共轭梯度法、坐标轮换法、复合形法等。下面设计一种齿轮系统,并基于Matlab对系统进行优化设计。 高速重载齿轮时常会受到加速度大、冲击载荷大、启动、制动等

机械优化设计论文(基于MATLAB工具箱的机械优化设计)

基于MATLAB工具箱的机械优化设计 长江大学机械工程学院机械11005班刘刚 摘要:机械优化设计是一种非常重要的现代设计方法,能从众多的设计方案中找出最佳方案,从而大大提高设计效率和质量。本文系统介绍了机械优化设计的研究内容及常规数学模型建立的方法,同时本文通过应用实例列举出了MATLAB 在工程上的应用。 关键词:机械优化设计;应用实例;MATLAB工具箱;优化目标 优化设计是20世纪60年代随计算机技术发展起来的一门新学科, 是构成和推进现代设计方法产生与发展的重要内容。机械优化设计是综合性和实用性都很强的理论和技术, 为机械设计提供了一种可靠、高效的科学设计方法, 使设计者由被动地分析、校核进入主动设计, 能节约原材料, 降低成本, 缩短设计周期, 提高设计效率和水平, 提升企业竞争力、经济效益与社会效益。国内外相关学者和科研人员对优化设计理论方法及其应用研究十分重视, 并开展了大量工作, 其基本理论和求解手段已逐渐成熟。 国内优化设计起步较晚, 但在众多学者和科研人员的不懈努力下, 机械优化设计发展迅猛, 在理论上和工程应用中都取得了很大进步和丰硕成果, 但与国外先进优化技术相比还存在一定差距, 在实际工程中发挥效益的优化设计方案或设计结果所占比例不大。计算机等辅助设备性能的提高、科技与市场的双重驱动, 使得优化技术在机械设计和制造中的应用得到了长足发展, 遗传算法、神经网络、粒子群法等智能优化方法也在优化设计中得到了成功应用。目前, 优化设计已成为航空航天、汽车制造等很多行业生产过程的一个必须且至关重要的环节。 一、机械优化设计研究内容概述 机械优化设计是一种现代、科学的设计方法, 集思考、绘图、计算、实验于一体, 其结果不仅“可行”, 而且“最优”。该“最优”是相对的, 随着科技的发展以及设计条件的改变, 最优标准也将发生变化。优化设计反映了人们对客观世界认识的深化, 要求人们根据事物的客观规律, 在一定的物质基和技术条件下充分发挥人的主观能动性, 得出最优的设计方案。 优化设计的思想是最优设计, 利用数学手段建立满足设计要求优化模型; 方法是优化方法, 使方案参数沿着方案更好的方向自动调整, 以从众多可行设计方案中选出最优方案; 手段是计算机, 计算机运算速度极快, 能够从大量方案中选出“最优方案“。尽管建模时需作适当简化, 可能使结果不一定完全可行或实际最优, 但其基于客观规律和数据, 又不需要太多费用, 因此具有经验类比或试验手段无可比拟的优点, 如果再辅之以适当经验和试验, 就能得到一个较圆满的优化设计结果。 传统设计也追求最优结果, 通常在调查分析基础上, 根据设计要求和实践

优化设计试卷练习及答案

-- 一、填空题 1.组成优化设计数学模型的三要素是 设计变量 、 目标函数 、 约束条件 。 2.函数()22121212,45f x x x x x x =+-+在024X ??=????点处的梯度为120-?? ????,海赛矩阵 为2442-????-?? 3.目标函数是一项设计所追求的指标的数学反映,因此对它最基本的要求是能用 来评价设计的优劣,,同时必须是设计变量的可计算函数 。 4.建立优化设计数学模型的基本原则是确切反映 工程实际问题,的基础上力求简洁 。 5.约束条件的尺度变换常称 规格化,这是为改善数学模型性态常用的一种方法。 6.随机方向法所用的步长一般按 加速步长 法来确定,此法是指依次迭代的步 长按一定的比例 递增的方法。 7.最速下降法以 负梯度 方向作为搜索方向,因此最速下降法又称为 梯 度法,其收敛速度较 慢 。 8.二元函数在某点处取得极值的充分条件是()00f X ?=必要条件是该点处的海赛矩 阵正定 9.拉格朗日乘子法的基本思想是通过增加变量将等式约束 优化问题变成 无 约束优化问题,这种方法又被称为 升维 法。 10改变复合形形状的搜索方法主要有反射,扩张,收缩,压缩 11坐标轮换法的基本思想是把多变量 的优化问题转化为 单变量 的优化问题 12.在选择约束条件时应特别注意避免出现 相互矛盾的约束, ,另外应当尽量减少不必要的约束 。 13.目标函数是n 维变量的函数,它的函数图像只能在n+1, 空间中描述出来,为了在n 维空间中反映目标函数的变化情况,常采用 目标函数等值面 的方法。 14.数学规划法的迭代公式是 1k k k k X X d α+=+ ,其核心是 建立搜索方向, 和 计算最佳步长 15协调曲线法是用来解决 设计目标互相矛盾 的多目标优化设计问题的。 16.机械优化设计的一般过程中, 建立优化设计数学模型 是首要和关键的一步,它是取得正确结果的前提。 二、名词解释 1.凸规划 对于约束优化问题 ()min f X ..s t ()0j g X ≤ (1,2,3,,)j m =??? 若()f X 、()j g X (1,2,3,,)j m =???都为凸函数,则称此问题为凸规划。 2.可行搜索方向 是指当设计点沿该方向作微量移动时,目标函数值下降,且不会越出可行域。 3.设计空间:n个设计变量为坐标所组成的实空间,它是所有设计方案的组合 4..可靠度 5.收敛性 是指某种迭代程序产生的序列(){}0,1,k X k =???收敛于1lim k k X X +*→∞ = 6.非劣解:是指若有m 个目标()()1,2,i f X i m =???,当要求m-1个目标函数值不变坏时,找不到一个X,使得另一个目标函数值()i f X 比()i f X *,则将此X *为非劣解。 7. 黄金分割法:是指将一线段分成两段的方法,使整段长与较长段的长度比值等于较长段与较短段长度的比值。 8.可行域:满足所有约束条件的设计点,它在设计空间中的活动范围称作可行域。 9.维修度 略 三、简答题 1.什么是内点惩罚函数法?什么是外点惩罚函数法?他们适用的优化问题是什么?在构造惩罚函数时,内点惩罚函数法和外点惩罚函数法的惩罚因子的选取有何不同?

机械优化设计方法论文

浅析机械优化设计方法基本理论 【摘要】在机械优化设计的实践中,机械优化设计是一种非常重要的现代设计方法,能从众多的设计方案中找出最佳方案,从而大大提高设计的效率和质量。每一种优化方法都是针对某一种问题而产生的,都有各自的特点和各自的应用领城。在综合大量文献的基础上,总结机械优化设计的特点,着重分析常用的机械优化设计方法,包括无约束优化设计方法、约束优化设计方法、基因遗传算方法等并提出评判的主 要性能指标。 【关键词】机械;优化设计;方法特点;评价指标 一、机械优化概述 机械优化设计是适应生产现代化要求发展起来的一门科学,它包括机械优化设计、机械零部件优化设计、机械结构参数和形状的优化设计等诸多内容。该领域的研究和应用进展非常迅速,并且取得了可观的经济效益,在科技发达国家已将优化设计列为科技人员的基本职业训练项目。随着科技的发展,现代化机械优化设计方法主要以数学规划为核心,以计算机为工具,向着多变量、多目标、高效率、高精度方向发展。]1[ 优化设计方法的分类优化设计的类别很多,从不同的角度出发,可以做出各种不同的分类。按目标函数的多少,可分为单目标优化设计方法和多目标优化设计方法按维数,可分为一维优化设计方法和多维优化设计方法按约束情况,可分为无约束优化设计方法和约束优化设计方法按寻优途径,可分为数值法、解析法、图解法、实验法和情况研究法按优化设计问题能否用数学模型表达,可分为能用数学模型表达的优化设计问题其寻优途径为数学方法,如数学规划法、最优控制法等。 1.1 设计变量 设计变量是指在设计过程中进行选择并最终必须确定的各项独立参数,在优化过程中,这些参数就是自变量,一旦设计变量全部确定,设计方案也就完全确定了。设计变量的数目确定优化设计的维数,设计变量数目越多,设计空间的维数越大。优化设计工作越复杂,同时效益也越显著,因此在选择设计变量时。必须兼顾优化效果的显著性和优化过程的复杂性。

常见火花机操作说明书

亚特火花机(F型)操作说明书 亚特火花机F型与E型的区别是E型功能键属于动旋钮式,可以随时调原加工参数;F型属可程序放电加工机,可以根据加工者及加工要求,分成几单节,每单节作出相应参数设定,一次可将工件加工之理想尺寸.在加工时,需要进行程序编辑.在操作F型机台前,我们首先需掌握各功能键之作用,使用围以及如何调整与程序编辑. 荧幕各功能操作说明: 1.面板、屏幕各功能名称及使用

3.屏幕中间一排加工深度设定栏1~12之阿拉伯数字即表示系统允许使用者输入12段单节之加工程序,而每一单节之后有该单节加工深度设定,使用者可输入每一单节所欲加工之深度,而加深度之设定,允许输入正、负值,但必须由大而小,依顺序排列,如:第一节单节加工深度为-1,则第二单节必须比-1mm更深,则程序就可在第一单节加工完毕后自动转入第二单节加工.同理第三单节的加工深度又必须比第二单节更深,若第三单节的加工深度比第二单节浅,则第二单节加工完毕后会自动停止加工,无法转入第三单节加工. 4.工作坐标: 即放电加工时所用的坐标;绝对坐标即机台启动后的原始坐标;无法改变该坐标数值,故可作为记忆加工位置之坐标.记忆坐标即相对绝对坐标位置所记下的坐标.此坐标可在加工两工件时,将一工件工作坐标确定后,利用记忆坐标将绝对坐标记下,可继续确定第二个工件工作坐标.当第二个工件加工ok后,可将记忆

坐标移至与绝对坐标相同,即为第一个工件的加工坐标,但要注意Z轴记忆坐标无使用价值,在使用记忆坐标加工另一工件时,Z轴需重新设定,并且在加工记忆坐标前,若丧失电源再次开启机台时,记忆坐标失效,需重新确定工作坐标。 5.加工参数设定或修改方式: 利用键盘上4个游动键 来移动光标至欲修改的参数上.例如: 现修改加工深度为-1.05时,除将光标移至该单节上外,还需:先接“Z”键,输入加工深度“+/-”“+”“.”“0”“5”再接输入键即可.若欲关闭下一单节时要输入“END”即先按“˙”再接输入键即可.若移动加工起始单节记号时,须利用移动光标来牵引“ ”号移至欲开始加工之单节上,在设定放电参数时,应分单节来设定.如在设定第一单节时应先将光标移至加工深度第一单节上,再由此将光标移至放电参数设定表中,此时”GENERATOR( )”括号中就显示你当前所修改参数居于哪一单节.当此数字显示正确后再用INC (增加键)和DEC (减小键)及光标移动键来进行修改.每一个参数设定OK后,都需按输入键进行确定,并自动转入下一

提出的问题要优化设计

提出的问题要优化设计 陶行知先生说:“发展千千万,起点是一问”。课堂教学中,教师每提出一个问题,就给学生提供一次学习、思考、提高的机会,就能促进学生的不断发展。但也并不意味着提问越多越好。教师的提问要适时、适度、适量,提出的问题要有教学价值,问题设计要科学精当。教师一般可在新课导入、主题学习、课堂小结等阶段进行提问,引发学生思考,有效地组织课堂教学。 1、导入新课。良好的开端等于成功的一半。上课之初的提问,其主要功能在于迅速吸引学生注意力,使学生立即进入学习状态,激发学习兴趣,为课堂学习创设良好的学习氛围。 德国著名教育家赫尔巴特指出:“兴趣是教学的基础,教师在任何一个阶段里都要注意激发学生的兴趣,必须注视学生的反应是否自然发生,如果自然发生则被称为是注意的,教学本身就是有兴趣的”。因此,导入新课时的提问,其目的是为了创设学习的条件,其要旨在于激发兴趣。教师可因生、因时、因材,细观察、巧琢磨,创设新颖的情景,设计新奇的问题。问题的设置一定要巧妙、生动、形象、直观、贴近学生实际经验,发人深思,给学生以强烈的刺激,引起其反映,吸引其注意力,激发其求知欲。比较好的做法是,教师根据学习知识间的内在联系,设计成由浅入深的问题链,进行诱导式提问,不断激发学生的兴趣,使学生及早进入最佳学习状态,从而提高课堂教学效率。 2、主题学习。历史教材的每一节内容就是学习的一个大主题,其下的每一个子目就是一个小主题。这些主题是教学的主体内容,是学习的重点。学习主题时,提问的有效性往往决定着一节课教学的成败。因此,教师要采用多种形式,如设疑启智、联系实际、以旧促新等,科学地设计问题,最大限度地激发学生学习的积极性。(1)设疑启智:“疑是思之始,学之端”。著名教育家第斯多惠认为教学的基本方法是一种归纳的或诱导的、分析的、回归的、启发式的教学方式。这就要求教师在教学中善于设疑,创设科学的诱导源或启发源,以最大化地激发学生的求知欲,引导学生积极探索,勇于创新。设疑启智的要旨在于“设疑—探疑—质疑—释疑”,在这一过程中,让疑问激发学生兴趣,让学生在解决疑问的过程中,体验成功与快乐,提高思维的广度与深度,启迪智慧。 (2)联系实际:就是从社会热点与生活热点入手,从学生的认知实际出发,设计问题,提高学习效率。如台湾问题,教师可提供当前的重要材料,如台独活动的猖獗、两岸的交流、我国政府对台湾的政策、美国政府有关台海问题的政策等,进行设计问题,引发学生的思考,使学生加深对台湾问题的认识,从而激发学生的爱国情感,培养奋发向上的斗志。联系实际,贴近生活,生动活泼,使学生感到亲切,容易激发学生学习的热情,有助于引导学生以史为鉴、古为今用,从历史的高度来把握问题,总揽全局,提高对历史学习的驾驭能力。 (3)以旧促新:就是从学生已有的认知水平与学习经验出发,抓住新旧知识之间的内在联系,创设问题情景,以旧启新,新旧整合。在巩固学生已有知识的前提下,突破学习的

机械优化设计复习总结.doc

1. 优化设计问题的求解方法:解析解法和数值近似解法。解析解法是指优化对象用数学方程(数学模型)描述,用 数学 解析方法的求解方法。解析法的局限性:数学描述复杂,不便于或不可能用解析方法求解。数值解法:优 化对象无法用数学方程描述,只能通过大量的试验数据或拟合方法构造近似函数式,求其优化解;以数学原理 为指导,通过试验逐步改进得到优化解。数值解法可用于复杂函数的优化解,也可用于没有数学解析表达式的 优化问题。但不能把所有设计参数都完全考虑并表达,只是一个近似的数学描述。数值解法的基本思路:先确 定极小点所在的搜索区间,然后根据区间消去原理不断缩小此区间,从而获得极小点的数值近似解。 2. 优化的数学模型包含的三个基本要素:设计变量、约束条件(等式约束和不等式约束)、目标函数(一般使得目 标 函数达到极小值)。 3. 机械优化设计中,两类设计方法:优化准则法和数学规划法。 优化准则法:x ;+, = c k x k (为一对角矩阵) 数学规划法:X k+x =x k a k d k {a k \d k 分别为适当步长\某一搜索方向一一数学规划法的核心) 4. 机械优化设计问题一般是非线性规划问题,实质上是多元非线性函数的极小化问题。重点知识点:等式约束优 化问 题的极值问题和不等式约束优化问题的极值条件。 5. 对于二元以上的函数,方向导数为某一方向的偏导数。 函数沿某一方向的方向导数等于函数在该点处的梯度与这一方向单位向量的内积。梯度方向是函数值变化最快的方 向(最速上升方向),建议用单位向暈表示,而梯度的模是函数变化率的最大值。 6. 多元函数的泰勒展开。 7. 极值条件是指目标函数取得极小值吋极值点应满足的条件。某点取得极值,在此点函数的一阶导数为零,极值 点的 必要条件:极值点必在驻点处取得。用函数的二阶倒数来检验驻点是否为极值点。二阶倒数大于冬,取得 极小值。二阶导数等于零时,判断开始不为零的导数阶数如果是偶次,则为极值点,奇次则为拐点。二元函数 在某点取得极值的充分条件是在该点岀的海赛矩阵正定。极值点反映函数在某点附近的局部性质。 8. 凸集、凸函数、凸规划。凸规划问题的任何局部最优解也就是全局最优点。凸集是指一个点集或一个区域内, 连接 英中任意两点的线段上的所有元素都包含在该集合内。性质:凸集乘上某实数、两凸集相加、两凸集的交 集仍是凸集。凸函数:连接凸集定义域内任意两点的线段上,函数值总小于或等于用任意两点函数值做线性内 插所得的值。数学表达:/[^+(l-a )x 2]

YJK软件的优化设计

Y J K软件的优化设计Prepared on 21 November 2021

一、当前软件(PKPM)主要问题 1、计算模型落后甚至不正确的若干方面 2、采用的算法不完全满足规范要求的若干方面 3、采用的过于简化的计算模型的若干方面 4、设计观念已经落后的若干方面 5、计算模型粗放忽略了结构有利要素的若干方面 6、涉及优化的关键环节缺失的若干方面 7、不开放接口的封闭观念 1、计算模型落后甚至不正确的若干方面 (1)基础筏板、桩筏或桩承台有限元计算常给出配筋异常大的结果(2)楼板按照单房间的导致支座钢筋偏大; (3)基础冲切计算流程错误导致筏板承台厚度过大; (4)承台独基与地基梁的重复计算造成重复布置 2、采用的算法不完全满足规范要求的若干方面 (1)剪力墙边缘构件配筋的单肢配筋方式配筋过大或不够; (2)柱剪跨比按简化计算方法常导致短柱过多超限过多; (3)型钢混凝土柱的配筋按不同规程才可优化 3、采用的过于简化的计算模型的若干方面 (1)对弹性时程分析结果只能作全楼统一的地震作用放大; (2)对活荷载的折减系数、重力荷载代表值系数只能设置全楼统一的数值; (3)施工模拟计算不能胜任目前多种工程需要; (4)转换梁按照梁杆件计算模型导致易发生抗剪抗弯超限; (5)地下室外墙的计算模型不合理导致地下室外墙过大的配 筋设计; (6)基础考虑上部楼层刚度的计算不全面; 4、设计观念已经落后的若干方面 认为梁设计时考虑楼板的壳元计算减少梁的配筋偏于不安全 5、计算模型粗放忽略了结构有利要素的若干方面 (1)地下1层以下地下室的不需按抗震设计; (2)梁配筋计算没有考虑支承梁的柱的宽度影响; (3)应正确区分框架梁与非框架梁; 6、涉及优化的关键环节缺失的若干方面 (1)基础承载力验算;

立式成型机操作说明书

立式成型机操作说明书 一.目的: 为使公司操作员能够更多的了解和掌握成型机的专业知识和技术,从 而提高生产效率, 减少成本浪费. 二. 立式成型机简介 (1) 立式成型机原理: 电路带动油路 (2) 立式成型机功率大小,可依盎司来确定, 我们常用的成型机一般为, , , 盎司, 盎司越大,机器功率就越大,反之就越小,功率大的机器,成型的产品体积也 较大,盎司小的一般适用于成型较小的产品或内模,SR 等. 三.立式成型机有5个压力. (1) 一压:射胶压力, 起填充料的作用,一般调整在15~80KG左右. (2) 二压:保压压力,起保模作用, 一般调整在5~40KG左右. (3) 高压:也可以称锁模压力, 一般调整为70-110KG,最大不能超过140KG, 模具小 调整的一般较小, 反之就越大. (4) 低压:清除开模之躁音, 一般调整在3-~5KG. (5) 螺旋背压:使胶料在被螺杆输送和压缩过程中能够更紧密, 胶料中的空 气和水气, 在经过压缩段压缩后, 气体由料管后方排出, 使射进模穴的胶料 没有任何气体. (6) 一般情况下, 一压要比二压大, 实际压力大小快慢也取决于PVC的流质及 硬度. 四. 开模停, 关模慢速, 关模高压感应介绍 五. 操作开关, 机器正前方有三个按钮,左右两边绿色的为半自动启动键,中间红 色的为紧急启动键 六. 一般立式成型机有3 节温度, 分别为上节、中节、下节, 三节之间的温差一般 为3~5 度, 温控指示灯由绿变红则表示温度已达到. 七. 冷却时间:用于保护成型好之模型, 使其不变形,一般调至5~10S. 八. 射出时间:料管开始射料到射出成品叫射出时间, 依成品大小而定, 一般调至 1~8S. 九. 松退时间: 防止胶料因螺旋加料时, 压缩加热所造成的胶料膨胀溢出, 余料到料 嘴,阻塞模具进料口, 一般适用于成型PE胶料. 十. 温度开关:打至NO为开,打到OFF为关,控制上,中,下三节温度之开关,温度打开 后,指示灯由绿变红, 则表示温度已达到设定之温.( 注: 温度未达到禁止开启马达) 十一. 自动/手动开关:打至自动,机器面板上所有旋钮均处于锁定状态, 此时只需按下操作开关,机器将自动完成一个行程的动作;打至手动,面板上的旋钮均可以用

机械优化设计复合形方法及源程序

机械优化设计——复合形方法及源程序 (一) 题目:用复合形法求约束优化问题 ()()()2 22 1645min -+-=x x x f ;0642 22 11≤--=x x g ;01013≤-=x g 的最优解。 基本思路:在可行域中构造一个具有K 个顶点的初始复合形。对该复合形各顶点的目标函数值进行比较,找到目标函数值最大的顶点(即最坏点),然后按一定的法则求出目标函数值有所下降的可行的新点,并用此点代替最坏点,构成新的复合形,复合形的形状每改变一次,就向最优点移动一步,直至逼近最优点。 (二) 复合形法的计算步骤 1)选择复合形的顶点数k ,一般取n k n 21≤≤+,在可行域内构成具有k 个顶点的初始 复合形。 2)计算复合形个顶点的目标函数值,比较其大小,找出最好点x L 、最坏点x H 、及此坏点 x G.. 3)计算除去最坏点x H 以外的(k-1)个顶点的中心x C 。判别x C 是否可行,若x C 为可行点, 则转步骤4);若x C 为非可行点,则重新确定设计变量的下限和上限值,即令 C L x b x a ==,,然后转步骤1),重新构造初始复合形。 4)按式()H C C R x x x x -+=α计算反射点x R,必要时改变反射系数α的值,直至反射成 功,即满足式()()()()H R R j x f x f m j x g

旅游线路的优化设计

2011年第八届苏北数学建模联赛 承诺书 我们仔细阅读了第八届苏北数学建模联赛的竞赛规则。 我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与本队以外的任何人(包括指导教师)研究、讨论与赛题有关的问题。 我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。 我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。如有违反竞赛规则的行为,我们愿意承担由此引起的一切后果。 我们的参赛报名号为: 3979 参赛组别(研究生或本科或专科): 本科组 参赛队员 (签名) : 队员1: 队员2: 队员3: 获奖证书邮寄地址: 浙江省杭州市滨文路浙江中医药大学

编号专用页 参赛队伍的参赛号码:(请各个参赛队提前填写好): 3979 竞赛统一编号(由竞赛组委会送至评委团前编号): 竞赛评阅编号(由竞赛评委团评阅前进行编号):

题目旅游线路的优化设计 摘要 本文主要研究最佳旅游路线的设计问题。线路的设计主要受旅游费用、旅游时间、可游览景点数的制约。这三个因素只要有一个或两个确定,那么就能建立数学模型求出第三个因素的最优解,然后在满足相应约束条件下,设计出最佳旅游线路。 第一问是在时间不限,旅游景点数确定的条件下,设计出旅游费用最少的旅游线路。我们建立了一个最优规划模型,以最少的旅游费用游完十个景点为目标。先通过网络查出一个地点到其他十个地点的最便宜的交通费,再引入0-1变量表示游客是否在一个点住宿,从而推导出总旅游花费的函数表达式,给出相应的约束条件,使用lingo编程对模型求解。最佳路线:徐州→常州市恐龙园→黄山市黄山→舟山市普陀山→武汉市黄鹤楼→九江市庐山→洛阳市龙门石窟→西安市秦始皇兵马俑→祁县乔家大院→八达岭长城→青岛市崂山→徐州 第二问是在旅游费用不限的情况下,设计出以最少的时间游完十个景点的旅游路线。同样是建立一个最优规划模型,以最短时间游完十个景点为目标,先通过网络查出一个地点到其他十个地点最快捷的交通方式的时间,推导出总交通花费时间和在各景点的总停留时间的函数表达式,给出相应的约束条件,使用lingo编程对模型求解。最佳路线:徐州→常州市恐龙园→九江市庐山→武汉市黄鹤楼→西安市秦始皇兵马俑→祁县乔家大院→洛阳市龙门石窟→八达岭长城→青岛市崂山→舟山市普陀山→黄山市黄山→徐州 第三问是在旅游时间不限,以用2000元的旅游费用游览的景点数最多为目标。这里要引入0-1变量来判断游客是否游览某景点,再利用问题一建立的旅游费用模型,得

机械优化设计方法基本理论

机械优化设计方法基本理论 一、机械优化概述 机械优化设计是适应生产现代化要求发展起来的一门科学,它包括机械优化设计、机械零部件优化设计、机械结构参数和形状的优化设计等诸多内容。该领域的研究和应用进展非常迅速,并且取得了可观的经济效益,在科技发达国家已将优化设计列为科技人员的基本职业训练项目。随着科技的发展,现代化机械优化设计方法主要以数学规划为核心,以计算机为工具,向着多变量、多目标、高效率、高精度方向发展。]1[ 优化设计方法的分类优化设计的类别很多,从不同的角度出发,可以做出各种不同的分类。按目标函数的多少,可分为单目标优化设计方法和多目标优化设计方法按维数,可分为一维优化设计方法和多维优化设计方法按约束情况,可分为无约束优化设计方法和约束优化设计方法按寻优途径,可分为数值法、解析法、图解法、实验法和情况研究法按优化设计问题能否用数学模型表达,可分为能用数学模型表达的优化设计问题其寻优途径为数学方法,如数学规划法、最优控制法等 1.1 设计变量 设计变量是指在设计过程中进行选择并最终必须确定的各项独立参数,在优化过程中,这些参数就是自变量,一旦设计变量全部确定,设计方案也就完全确定了。设计变量的数目确定优化设计的维数,设计变量数目越多,设计空间的维数越大。优化设计工作越复杂,同时效益也越显著,因此在选择设计变量时。必须兼顾优化效果的显著性和优化过程的复杂性。 1.2 约束条件 约束条件是设计变量间或设计变量本身应该遵循的限制条件,按表达方式可分为等式约束和不等式约束。按性质分为性能约束和边界约束,按作用可分为起作用约束和不起作用约束。针对优化设计设计数学模型要素的不同情况,可将优化设计方法分类如下。约束条件的形式有显约束和隐约束两种,前者是对某个或某组设计变量的直接限制,后者则是对某个或某组变量的间接限制。等式约束对设计变量的约束严格,起着降低设计变量自由度的作用。优化设计的过程就是在设计变量的允许范围内,找出一组优化的设计变量值,使得目标函数达到最优值。

光整机操作说明

光整机控制系统操作说明书 一、系统通电操作流程 1、打开控制柜后门,将电源空气开关(QF)打开。 2、确认下位机(在控制柜内)已启动成功,并且进入程序界面。 3、确认操作台上的触摸屏已启动成功,并且已进入程序界面。 二、系统断电操作流程 当需要关闭系统时,确认所有操作已完成,执行“泵站停止操作流程”(见三、2),打开操作台后门,将电源空气开关(QF)关闭,系统断电,下位机和触摸屏关闭。 三、泵站启动和停止操作流程 图1 操作台按钮位置示意图 1、泵站启动操作流程 (1)确认操作台上的“卸荷”按钮已经按下。 (2)必须先将“3#泵启/停”二位开关打到启,启动循环冷却泵。再将“1#泵启/停”二位开关打到启,“1#泵启/停”和“2#泵启/停”是互为备用的。 即1#泵和2#泵同时只能启动其中的一个。

2、泵站停止操作流程 (1)按下操作台上的“卸荷”按钮。 (2)确认操作台上的“卸荷”按钮已经按下,根据实际的泵站工作情况,将“1#泵启/停”按钮和“3#泵启/停”二位开关打到停,或者将“2#泵启/停”和“3#泵启/停”二位开关打到停,泵站停止工作。 四、光整机操作流程 当泵站正常启动后,系统即可投入光整工作。系统的各项工作由操作台按钮和触摸屏共同设置和操作。 1、触摸屏功能介绍 (1)触摸屏主界面 触摸屏启动后,即进入触摸屏程序主界面,如图2所示。点击任意位置即进入程序功能界面。 图2 触摸屏程序主界面 (2)触摸屏程序功能界面 点击触摸屏主程序界面上任意位置,即进入触摸屏程序功能界面,如图3所示。触摸屏程序功能界面下方共有六个功能选择按钮,按下不同按钮即可进入相应的功能界面。主界面右侧有五个状态显示灯。其中,“辊缝控制”状态灯和“压力控制”状态灯反映的是用户选择的控制状态。“机组联动”状态灯灯亮则表示现在可以执行“闭辊缝”操作,否者只能执行“开辊缝”操作。“泵站就绪”状态灯反映的是泵站是否启动好。“卸荷”状态灯反映是否执行了“卸荷”操作。触摸屏主界面上的各个数值显示框,除“设定值”所对应的两个数值框可设定数

优化设计小论文

优化设计小论文

机械优化设计 优化设计是20世纪60年代初发展起来的一门新的学科,也是一项新的设计技术。它是将数学规划理论与计算技术应用于设计领域, 按照预定的设计目标,以电子计算机及计算程序作为设计手段,寻求最优设计方案的有关参数,从而获 得较好的技术经济效益。机械的研究和应用具有悠久的历史,它伴随甚至推动了人类社会和人类文明的发展。机构学研究源远流长, 但从古到今,机构学领域主要研究三个核心问题, 即机构的构型原理与新机构的发明创造、机构分析与设 计的运动学与动力学性能评价指标、根据性能评价指标分析和设计机构。机构 是组成机械的基本单元,一般机械都是由一个或多个机构组成。对于机构的研究, 能够为发明、创造新机械提供理论、资料和经验。而对于机构的优化设计, 使 机构具有确定的几何尺寸,能够满足运动学要求, 并能实现给定的运动规律,这 些能够为某些具体的机械设计, 使机械满足某些特定的功能提供了可靠的依 据。 机械设计是机械工程的重要组成部分,是决定机械性能最主要的因素。从 工程设计基础和目标上可将设计分为:新型设计(开发性设计)、继承设计、变 型设计(基于标准型的修改)。所谓新型设计,即应用成熟的科学技术或经过实 验证明可行的新技术,设计未曾有过的新型机械,主要包括功能设计和结构设计,是机械设计发展的方向所在,然而贯穿其中的关键环节即是设计的方法和 实现的手段。人类一直都在不断探索新方法和新设计理念。从17 世纪前形成的直觉设计过渡到经验设计和传统设计,直到目前的现代设计[1],从静态、经验、手工式的‘安全寿命可行设计’方法发展到动态、科学、计算机化、自动化的 优化设计方法,已将科学领域内的实用方法论应用于工程设计中了。 机械优化设计基本思路是在保证基本机械性能的基础上,借助计算机,应 用一些精度较高的力学/ 数学规划方法进行分析计算,让某项机械设计在规定 的各种设计限制条件下,优选设计参数,使某项或几项设计指标(外观、形状、结构、重量、成本、承载能力、动力特性等)获得最优值。

下料问题的优化设计

题1、[下料问题的优化设计]某车间有一大批长130cm的棒料,根据加工零件的要求,需要从这批棒料中成套截取70cm长的毛坯不少于100根,32cm 长的毛坯不少于100根,35cm长的毛坯不大于100根。要求合理设计下料方案,使剩下的边角料总长最短。 根据题目意义,运用优化设计理论和方法,完成设计全过程;工程问题分析:数学模型建立及特征分析:优化方法选择;优化程序设计(解析优化);计算结果分析;结论及体会。 基于MATLAB一维优化下料问题分析 0 前言 生产中常会通过切割、剪裁、冲压等手段,将原材料加工成所需大小零件,这种工艺过程,称为原料下料问题。在生产实践中,毛坯下料是中小企业的一个重要工序。怎样减少剩余料头损失是节约钢材、降低产品成本、提高企业经济效益的一个重要途径。在毛坯下料中我们常会遇到毛坯种类多、数量大的情况,如不进行周密计算则因料头而造成的钢材损失是相当可观的。为使料头造成的钢材损失减少到最小程度,我们可依据预定的目标和限制条件统筹安排,以最少的材料完成生产任务。

1 一维优化下料问题的具体模型分析 设原材料长度为L,数量充足。需要切割成n (n≥0)种不同规格的零件,根据既省材料容易操作的原则,人们已经设计好了n 种不同的下料方式,设第j 种下料方式中可下得第i 种零件 ij a 个,又已知第i 种零件得需要量为i b 个, j x 表示第 j B 种下料方式所消耗得零件数目, j c 表示第 j B 种下料方式所得余料(j=1, 2 , ?, n, j x ∈ Z)。满足条件的切割方案有很多种,现在要求既满足需要又使所用原材料数量最少,即最优下料方案满足:μp=min (∑j c j x )约束条件:∑ ij a j x =i b , j x ∈Z 。 线性规划数学模型 根据线性规划算法,约束条件包括两部分:一是等式约束条件,二是变量的非负性。出变量的非负要求外,还有其他不等式约束条件,可通过引入松弛变量将不等式约束化成等式约束形式。如果是求最大值的,则松弛模型最优解对应的目标函数值必大于或等于整数规划最优解对应的目标函数值;如果问题是求最小值,则松弛模型最优解对应的目标函数值必于或等于整数规划最优解对应的目标函数值。因此对于最优下料方案模型为: []()1 1 min 1n p j j j n ij j j j j f c x a x b x z μ==+? ==???=???∈??∑∑ 由式(1)的线性规划(LP)引入松弛变量

机械优化设计习题及答案

机械优化设计习题及参考答案 1-1.简述优化设计问题数学模型的表达形式。 答:优化问题的数学模型是实际优化设计问题的数学抽象。在明确设计变量、约束条件、目标函数之后,优化设计问题就可以表示成一般数学形式。求设计变量向量[]12T n x x x x =L 使 ()min f x → 且满足约束条件 ()0 (1,2,)k h x k l ==L ()0 (1,2,)j g x j m ≤=L 2-1.何谓函数的梯度?梯度对优化设计有何意义? 答:二元函数f(x 1,x 2)在x 0点处的方向导数的表达式可以改写成下面的形式:??? ?????????????=??+??= ??2cos 1cos 212cos 21cos 1θθθθxo x f x f xo x f xo x f xo d f ρ 令xo T x f x f x f x f x f ?? ????????=????=?21]21[)0(, 则称它为函数f (x 1,x 2)在x 0点处的梯度。 (1)梯度方向是函数值变化最快方向,梯度模是函数变化率的最大值。 (2)梯度与切线方向d 垂直,从而推得梯度方向为等值面的法线方向。梯度)0(x f ?方向为函数变化率最大方向,也就是最速上升方向。负梯度-)0(x f ?方向为函数变化率最小方向,即最速下降方向。 2-2.求二元函数f (x 1,x 2)=2x 12+x 22-2x 1+x 2在T x ]0,0[0=处函数变化率最 大的方向和数值。 解:由于函数变化率最大的方向就是梯度的方向,这里用单位向量p 表示,函数变化率最大和数值时梯度的模)0(x f ?。求f (x1,x2)在

优化设计习题答案精编版

第一、填空题 1.组成优化设计数学模型的三要素是 设计变量 、 目标函数 、 约束条件 。 2.函数()2 2 121 212,45f x x x x x x =+-+在024X ??=????点处的梯度为120-?? ???? ,海赛矩阵 为2442-????-?? 3.目标函数是一项设计所追求的指标的数学反映,因此对它最基本的要求是能用 来评价设计的优劣,,同时必须是设计变量的可计算函数 。 4.建立优化设计数学模型的基本原则是确切反映 工程实际问题,的基础上力求简洁 。 5.约束条件的尺度变换常称 规格化,这是为改善数学模型性态常用的一种方法。 6.随机方向法所用的步长一般按 加速步长 法来确定,此法是指依次迭代的步 长按一定的比例 递增的方法。 7.最速下降法以 负梯度 方向作为搜索方向,因此最速下降法又称为 梯 度法,其收敛速度较 慢 。 8.二元函数在某点处取得极值的充分条件是()00f X ?=必要条件是该点处的海赛矩阵正定 9.拉格朗日乘子法的基本思想是通过增加变量将等式约束 优化问题变成 无 约束优化问题,这种方法又被称为 升维 法。 10改变复合形形状的搜索方法主要有反射,扩张,收缩,压缩 11坐标轮换法的基本思想是把多变量 的优化问题转化为 单变量 的优化问题 12.在选择约束条件时应特别注意避免出现 相互矛盾的约束, ,另外应当尽量减少不必要的约束 。 13.目标函数是n 维变量的函数,它的函数图像只能在n+1, 空间中描述出来,为了在n 维空间中反映目标函数的变化情况,常采用 目标函数等值面 的方法。 14.数学规划法的迭代公式是 1k k k k X X d α+=+ ,其核心是 建立搜索方向, 和 计算最佳步长 15协调曲线法是用来解决 设计目标互相矛盾 的多目标优化设计问题的。

激光机操作说明

激光机操作操作使用说明 ●粤铭激光机操作规程 机床上电 a.确保台面无异物 b.打开机床电源开关,机床复位。 c.确保水冷机组启动。 d.确保气泵启动(辅助气源)。 e.确保离心风机启动(排烟除尘装置) f.确保循环冷却水到达正常工作温度后(10~30度)。 g.选择加工文件。 执行程序 a.放置材料,调节焦距,焦距为6mm,定义加工原点。 b.在绘图软件中,将图形排版。 c.确保文件中的图形在页面中心的位置。且线条保证为最细的的线条 d.选择打印工具,选择打印机为“Topwisdom virtual printer”打印机,点击打印; e.在雕刻对话框中修改加工参数,选择加工模式,设定加工速度和能量。 f.点击加工输出,激光机开始运行。 g.加工完毕。 机床断电 a.将激光头移动到台面右上角。 b.关闭机床电源。 c.将电气柜上的电源开关关断(Off)。 d.关气泵(辅助气源)。 e.关闭计算机 注意事项 a.冷水机显示温度不能低于15度,不能高于30度,如果有异常温度需要检修 b.切割过程中一定要保证吹气气压正常,在7kg以上 c.切割过程要做到有人职守,防止材料燃烧 d.不要直接注视切割点,防止灼伤 e.切割过程中不能将身体伸入加工区域 ●在CorelDRAW中的使用注意事项: 1.点工具栏上的打印按钮或者菜单->文件->打印。

2.选择Topwisdom virtual printer打印机。 3.请选择相应的打印(雕刻)范围,比如只打印(雕刻)选定内容,请勾选<打印范围>的<选定内容>。如果需要改变打印设备页面大小(雕刻机机器幅面的大小),请点击< 属性>按钮设置。

机械结构优化设计

机械结构优化设计 ——周江琛2013301390008 摘要:机械优化设计是一门综合性的学科,非常有发展潜力的研究方向,是解决复杂设计问题的一种有效工具。本文重点介绍机械优化设计方法的同时,对其原理、优缺点及适用范围进行了总结,并分析了优化方法的最新研究进展。关键词:优化方法约束特点函数 优化设计是一门新兴学科,它建立在数学规划理论和计算机程序设计基础上,通过计算机的数值计算,能从众多的设计方案中寻到尽可能完善的或最适宜的设计方案,使期望的经济指标达到最优,它可以成功地解决解析等其它方法难以解决的复杂问题,优化设计为工程设计提供了一种重要的科学设计方法,因而采用这种设计方法能大大提高设计效率和设计质量。优化设计主要包括两个方面:一是如何将设计问题转化为确切反映问题实质并适合于优化计算的数学模型,建立数学模型包括:选取适当的设计变量,建立优化问题的目标函数和约束条件。目标函数是设计问题所要求的最优指标与设计变量之间的函数关系式,约束条件反映的是设计变量取得范围和相互之间的关系;二是如何求得该数学模型的最优解:可归结为在给定的条件下求目标函数的极值或最优值的问题。机械优化设计就是在给定的载荷或环境条件下,在机械产品的形态、几何尺寸关系或其它因素的限制范围内,以机械系统的功能、强度和经济性等为优化对象,选取设计变量,建立目标函

数和约束条件,并使目标函数获得最优值一种现代设计方法,目前机械优化设计已广泛应用于航天、航空和国防等各部门。优化设计是20世纪60年代初发展起来的,它是将最优化原理和计算机技术应用于设计领域,为工程设计提供一种重要的科学设计方法。利用这种新方法,就可以寻找出最佳设计方案,从而大大提高设计效率和质量。因此优化设计是现代设计理论和方法的一个重要领域,它已广泛应用于各个工业部门。优化方法的发展经历了数值法、数值分析法和非数值分析法三个阶段。20世纪50年代发展起来的数学规划理论形成了应用数学的一个分支,为优化设计奠定了理论基础。20世纪60年代电子计算机和计算机技术的发展为优化设计提供了强有力的手段,使工程技术人员把主要精力转到优化方案的选择上。最优化技术成功地运用于机械设计还是在20世纪60年代后期开始,近年来发展起来的计算机辅助设计(CAD),在引入优化设计方法后,使得在设计工程中既能够不断选择设计参数并评选出最优设计方案,又可加快设计速度,缩短设计周期。在科学技术发展要求机械产品更新日益所以今天,把优化设计方法与计算机辅助设计结合起来,使设计工程完全自动化,已成为设计方法的一个重要发展趋势。 优化设计方法多种多样,主要有以下几种:1无约束优化设计法;无约束优化设计是没有约束函数的优化设计,无约束可以分为两类,一类是利用目标函数的一阶或二阶导数的无约束优化方法,如最速下降法、共轭梯度法、牛顿法及变尺度法等。另一类是只利用目标函数值的无约束优化方法,如坐标轮换法、单形替换法及鲍威尔法等。此法具有计算

相关文档