文档库 最新最全的文档下载
当前位置:文档库 › EMC 测试作业指导书

EMC 测试作业指导书

EMC 测试作业指导书
EMC 测试作业指导书

TV EMC测试作业指导书

一.目的

为了使本厂(数码媒体厂)之产品LCD TV的EMC测试规范化和程序化,特制定本作业指导书。

二.范围

本作业指导书适用于数码媒体厂之QRE 部门。

三.EMC 测试类型

EMC测试包括ESD测试,EFT测试,Surge 测试,Harmonic 测试,Flicker 测试,Conducted Immunity 测试,Power Dip测试和EMI 测试,相应的测试标准和测试方法将在下面详细介绍。

四.名词定义:

ESD:静电放电

EFT:电快速瞬变脉冲群

Harmonic :谐波

Flicker :闪烁发射

Surge :浪涌

Power Dip:电压跌落

Conducted Immunity : 传导免疫性

EUT:受试设备

五.测试规划

5.1 ESD测试

5.11测试目的

验证产品设计的成熟度,模拟在干燥地区易遭受静电放电的情况,保证产品在ESD下性能保持完好,功能正常,不被损害。

5.12 测试标准

按照EN61000-4-2 进行,测试电压为8KV(空气放电)和4KV(接触放电).

5.13 测试场地

BQC EMC实验室

5.14 测试设备

NoiseKen ESS-2002(静电测试器)

5.15 ESD原理

一个充电的导体接近另一个导体时,就有可能发生ESD。首先,两个导体之间会建立一个很强的电场,产生由电场引起的击穿。两个导体之间的电压超过它们之间空气和绝缘介质的击穿电压时,就会产生电弧。在0.7ns到10ns的时间里,电弧电流会达到几十安培,有时甚至会超过100安培。电弧将一直维持直到两个导体接触短路或者电流低到不能维持电弧为止。可能产生电弧的实例有人

体、带电器件和机器。人的自然动作摩擦会形成400~600V电势,如果他们在打开或包装泡沫衬底纸箱或气泡塑料袋过程中一直接触的都是绝缘体,其身体表面上的净电荷积累可能达到约26,000V。针对大多数环境的产品和通用标准决定使用如5.12标准所列的测试水平.

5.16 测试方法

1.EUT 按照正常运行时的典型安装进行布局和配置,并将所有电缆都连接上.对地的连接尤为重要.EUT放置在离地平面80cm的木桌上,设备下面放置一个水平耦合板,但该耦合板与设备之间绝缘隔离.如图5.1.

2.信号输入

将Notebook 的信号输入到EUT的D-Sub端口,将DVD Player 信号输入到EUT,运行一段程序.

3.静电放电发生器设置

静电放电发生器的面板如图5.2所示。通过模式选择可以选“电压设定”“时间参数”“放电次数”,分别对应数字屏的第一栏,第二栏,第三栏,一旦选择好一项,相应的栏会闪烁,可以通过上下键来改变参数,通过“SET”键确认。“清零”键将所有的参数归零。参数设定后,就可以通过START和END 键控制静电放电发生器的动作。开始后,警示灯会闪烁。注意,只有在接触放电也即AIR/CONDUCT按下后,相应的第二栏和第三栏参数才可设定。

4.施加放电

4.1 接触放电

接触放电是首选的测试方式,要求EUT具有导电的表面或不被认为是起绝缘作用的喷涂表面.在相同的点选用正负极性电压(±4KV )施加单次放电,每个点单次放电的次数不少于10次,每次之间的间隔不小于1S.接触放电使用尖头端子.静电放电发生器应与EUT表面垂直,或者与耦合平面在同一平面内且对准耦合平面的中心边缘.

4.2 空气放电

空气放电是指在不具备接触放电测试条件的某些点,在这些点上施加空气放电有可能会引发内部电路产生故障,例如:按键边缘,连接器或通风孔等.对于空气放电,使用圆头端子,放电尖端应尽可能快的接近EUT,但注意不能导致设备受损,由于这种测试不能慢慢接近受EUT,因此需要测试者精力充沛且有积极性.空气放电的电压为±8KV.

4.3模拟放电

这种间接放电施加到距EUT固定距离的一个耦合板上,耦合板的大小为50cm×50cm,与EUT的距离为10cm,并行放置,包括垂直耦合和水平耦合.EUT的四个面都要施加这种耦合放电.耦合放电的方法:在耦合板的边缘中间用尖头端子单点施加±4KV电压,至少十次,每次间隔不小于1S.

5.17 测试结果

图5.2

5.2 EFT 测试

5.21测试目的

验证产品设计的成熟度,评估EUT 对来自操作暂态过程(诸如开断感性负载、继电器触头弹跳等)中各种瞬态扰动的抗扰性。 5.22测试标准

按照IEC 61000-4-4进行。 5.23测试场地

BQC EMC 实验室 5.24测试设备

TRANIENT 2000,PC 5.25EFT 原理

快速瞬间脉冲群被规定为:源阻抗50Ω、上升时间与持续时间为5ns/50ns 的单脉冲(如图5.2.1),并以5KHz (在最大测试电压时为2.5KHz )的重复频率持续15ms,每300ms 施加一次的脉冲群(如图 5.2.2),电压水平变化的范围为250V ~4KV 。

10%

50%90%Pulse

Rate

T

50 nsec +30 %

5nsec+30 %

图5.2.1 单脉冲波形图

Incident Burst

P ossible IC input

V st aircase due t o Burst

. Must not be synched to AC line

300msec +20 %

15msec 20 %

图5.2.2 脉冲群规格

电源线耦合网络以共模方式通过电容(相对于地面)向每一根电源线施加脉冲,同时每根电源线的源通过一个LC 网络去耦 。对信号的耦合可以使用容性耦合夹,这实质上是连接到发生器上的两块金属板,它可将受测试线夹在其中,以提供一个分布式耦合电容。测试布置简图如图5.2.3 。

图5.2.3 EFT 布置简图

5.26 测试水平

5.27测试方法

将台式EUT放置在地平面上80cm高的一个绝缘桌上,同时,使用1m长的电源电缆将EUT连接到耦合网络,该网络本身与地平面连接在一起。若EUT外壳上有一个单独的保护接地端,那么它也要通过这一耦合网络连接到地平上,这是因为瞬态干扰也会直接作用在其上。I/O电缆则需要穿过放置在地平面上方10cm高处的容性耦合夹。

测试软件Genecs.设置和操作如附件一。

5.3 Surge 测试

5.31测试目的

在电源线和长信号线上可能出现高能量但相对较慢的瞬态过电压现象,它通常是由线缆附近的雷击所引起的.Surge 测试的目的是确保EUT能够承受得起规定水平的瞬态干扰,而不会出现故障或者工作状态混乱.

5.32测试标准

按IEC 61000-4-5进行.

5.33测试场地

BQC EMC 实验室

5.34测试设备

TRANSIENT 2000, PC

5.35 Surge原理

浪涌瞬态被耦合进电源、I/O端口,因为EUT中的保护装置(如果没有保护装置,可能发生闪络或元件击穿)动作时将自动地从高阻抗转换到低阻抗,所以测试中使用的浪涌发生器输出的是电压和电流的组合波.发生器的电路元件值必须加以限制,以使发生器可以在高阻抗负载上产生 1.2/50μs的电压浪涌波形,以及在短路负载上产生8/20μs的电流浪涌波形(如图5.3.1),对EUT施加波形时必须通过耦合/去耦网络(参见图5.3.2 )。

图5.3.1 浪涌波形图

图5.3.2 浪涌波形的规格及其耦合方法5.36测试水平

口的浪涌信号幅度为0.5 KV 。

5.37测试方法

对于电源端口,高能浪涌需要施加在相线之间和相线与地之间;对于I/O线缆,需要施加线对线的浪涌和线对地的浪涌,只是源阻抗稍高一些.2Ω代表电源网络的差模源阻抗,12Ω代表线对地的电源网络阻抗,42Ω代表所有其他线缆的线对线源阻抗和线对地源阻抗.

施加浪涌的次数:10次(正、负极性各5次);

重复率: >1次/min.

软件操作: 参见附录一,相应的软件程式不同。

5.38测试结果

5.4Power Dip 测试

5.41测试目的

模拟EUT在供电电源不连续和中断的情况下的抗扰度。

5.42测试标准

按EN61000-4-11进行测试;

5.43 测试场地

BQC EMC 试验室

5.44测试设备

TRANSIENT 2000, PC

5.45测试原理

电气和电子设备可能会受到电源电压跌落、短时中断或电压变化的影响。电压跌落和短时中断是由网络和设备中的故障引起的,或者由突发的、大的负载变化导致。在特定情况下,可能会发生多次跌落或中断。电压变化则由连接到网络上的连续变化的负载所导致的。这些现象在本质上都是随机的。

电压跌落和短时中断不总是突然的。如果大型电源网络被切断,则因为在该网络上连接有大量电动机设备,电压会逐步下降。在短时间内,这些电动机设备相当于向电源网络中发送能量的发电机。

由于跌落和中断测试在通用的抗扰度标准和一些产品中被引用,所以这些测试非常重要。

5.46测试水平

照预定的方式使用,则不允许有任何在生产商规定的性能水平以下的性能降级或者功能丧失。但是在测试期间,允许有性能降级,但不允许有实际的工作状态或者存储数据的改变。

性能指标C:暂时的功能丧失是允许的,只是功能丧失可以自动恢复,或者可以通过控制操作恢复正常。

跌落电压波形如图5.4.1 和5.4.2.

图5.4.1 70%的电压跌落 图5.4.2 >95%的电压跌落

5.47 测试方法

在Surge 测试完毕后,将相应的程序换成Power Dip 的测试程序,分别为short, interruptions, voltage variation, 相应的软件操作同Surge ,参见附录一。 5.48 测试结果

5.5Flicker 测试

5.51测试目的

验证产品设计的成熟度,限制EUT 的电压波动对公共电网的影响程度。 5.52测试标准 EN61000-3-3 5.53测试场地

BQC EMC 实验室 5.54测试设备

Harmonics 1000 5.55测试原理

闪烁(Flicker )的定义为:由光线刺激(光线的亮度和谱分布随着时间变化)所带来的视觉上的不稳定性的主观感受。就EMC 而言,这个问题是指由电力网络上负载的变化所产生的在公共连接点上的电压的变化,这个变化大到足以使连接到其上的光源产生闪烁,而受影响的光源可能与导致变化的负载设备并没有什么关联。

能产生闪烁的典型设备包括:任何在运行期间切换变化的负载的装置,大多数家用电器都归入这一类设备;其他特殊的产品是指具有温度由脉冲点火控制加热器的设备。

闪烁总共包括以下三个主要因素:1.相对电压变化;2.短期闪烁值Pst ;3.长期闪烁值Plt ;

电压变化本身不足以形成闪烁的可感知性,在闪烁的频率变化时,人类的眼脑结合对闪烁的感觉是变化的。标准规定Pst 不能大于1 ;

标准同时表明,对于

通常一次工作超过30分钟的设备,长期闪烁是必须要做的。观察周期是2小时,也就是连续记录12个Pst值,Plt的值不允许大于0.65。有效的正当理由是:尽管一般人可以忍受高达1的Pst值达10分钟,但如果闪烁能持续更长的时间,则人的过敏阈值会更低。

5.56测试方法

1.打开Harmonics1000电源开关;

2.将Harmonics 1000的电源输出线插入到EUT机台;

3.给EUT输入信号(PC),用最大的分辨率运行一段程序(Run “H”);

4.打开软件,操作如附录二;

5.电压电流限制依据不同的EUT ,以TV为例,一般选“230V 5A”,此值仅供参考,可以参见机台的铭牌标示。

5.57测试结果

5.6Harmonic

5.61测试目的

验证产品设计成熟度,限制EUT将谐波电流注入到公共电力系统.

5.62测试标准

EN61000-3-2

5.63测试场地

BQC EMC 实验室

5.64测试设备

Harmonics 1000 PC

5.65测试原理

将电流输入到设备的AC电源的谐波分量来源于负载在单周期输入电压上呈现非线性。谐波电流是一种高频率的电流,当它流经电抗器设备(如导线、变压器、电机等)将产生额外的温升及绝缘的破坏;当它流经电容器设备(如电力电容器等),将造成电容器过载、跳闸、故障、烧毁,亦会产生谐振,将设备产生的谐波电流放大,再注入电网,更加大谐波电压的谐变。

标准所考虑的谐波频率范围只扩展到2KHz,(50Hz的第40 次谐波),所以不需要使用任何的RF测试技术。基本测量电路如下5.6.1,它的组成包括:一个AC源;一个电流传感器;一个波形分析仪;

图 5.6.1基本测量电路

AC 源需要失真非常小、电压稳定性高、低阻抗.谐波失真的要求是:三次谐波小于0.9%,五次谐波小于0.4%,七次谐波小于0.3%,九次谐波小于0.2%,其他各次谐波小于0.1%.在阻抗Zm 的压降应当低于0.15峰值.电流传感器的作用是将谐波电流In 耦合到测量仪器,既可以是电流分流器,也可以是电流互感器.波形分析仪被用来测量每一次谐波分量In,其中n=2~40.

5.66测试方法 步骤1、2、3同5.5操作步骤. 4.打开软件操作如附录三. 5.67测试结果 电源

5.7Conducted Immunity 测试

5.71测试目的

评估EUT 在共模射频(150kHz~80MHz)传导下的抗扰度.

5.72测试标准

EN61000-4-6

5.73测试场地

BQC EMC实验室

5.74测试设备

传导抗扰度测试器CDN M3 (CDN M2 )

5.75测试原理

由于实施辐射射频抗扰度测试的难度和费用高,所以为允许较低频率上进行传导抗扰度的测试带来了越来越大的压力.标准EN61000-4-6定义了传导抗扰度的测试方法.

第一,耦合方法.在EN61000-4-6定义的三种耦合方法,最好的方法是通过耦合/去耦(CDN)直接注入电压,这样插入损耗为零,因此只需要较小的功率.

第二,电缆射频注入测试要求远离EUT的电缆末端上的共模阻抗固定不变.所以,每一种类型的电缆都必须在其远端有一个共模去耦网络或阻抗稳固网络(ISN),以确保这一阻抗,并将任何辅助设备与电缆上的射频电流影响隔离开,并且,使用该网络将射频电压耦合到电缆上.

第三,传导抗扰度测试虽然不需要昂贵的电磁吸波屏蔽室设施,但当几根电缆连接到EUT上时,它能否反映EUT的真实情况还值得怀疑.所以,这种电压注入法不太适合按规定有很多电缆连接到其上的设备.

第四,对传导抗扰度测试的主要限制条件是频率.EUT尺寸远小于测试频率的波长时,射频能量的大部分被暴露在辐射场中的设备电缆所获得,因此传导测试可以反映真实情况.但随着频率的增大,以至于EUT尺寸接近半波长时,则电缆的主导作用减小,并且在较高频率上,场耦合路径与EUT尺寸的结构、内部电路及其电缆相互影响.所以标准EN61000-4-6规定上限频率在80~230MHz(相应设备尺寸约为0.6~2m).

根据电磁辐射环境,测试水平为1V、3V或10V.在设计的测试中,我们选择3V的测试水平。实际施加的信号需用1kHz正弦波进行80%深度的幅度调制.

传导抗扰度的测试环境布置示意图如下5.7.1:

T ─50Ω终端阻抗;

T2:衰减器

PA:功率放大器

图5.7.1传导抗扰度的测试环境布置示意简图

5.76测试方法

1.将传导抗扰度测试器预热半小时;

2.接通EUT的电源,将电源线接到CDN处的插口,(两相电选用CDN-M2 ,三相电选用CDN-M3 ),通过D-Sub接口输入PC讯号,从PC输入音频讯号(保证有图像和声音)。

3.打开软件,操作见附录四.

4.检查EUT的画质和音质有没有影响。

注: 射频扫描速率低于1.5×10-3十倍频程/秒或不超过1%的步进频率,驻留时间应使EUT产生响应.频率范围为150kHz~80MHz(可能到230MHz),通过耦合/去耦网络(CDN)施加到EUT的电缆端口.当CDN不适合或不可用时,可选的方法是使用电磁钳或电流注入探头(除了电源线除外).

5.77测试结果

5.8EMI测试

5.81测试目的

评估EUT电磁辐射干扰的限值是否符合国家和国际标准。

5.82测试标准

EN55022;FCC Part15 B;

5.83测试场地

常州实验室

5.84测试设备

EMI自动测试控制系统(电脑及其介面单元);

EMI测试接收机(或频谱分析仪);

各式天线及天线控制单元;

电源阻抗模拟网络(LISN)

5.85测试原理

在30MHz~1000MHz 频率范围内,用带有准峰值检波器的测量接收机进行测量.为了节省试验时间,可以用峰值测量替代准峰值测量,一旦发生争议,则以准峰值测量接收机的测量结果为准.

天线应为一对称偶极子天线.当频率等于或高于80MHz时,天线的长度应为谐振频率;当频率低于80MHz时,其长度应等于80MHz的谐振频率。

进行辐射测量应将天线放在距EUT边框一定远的距离处,EUT的边框系由一条反映EUT简单几何构型的假想直线确定。ITE系统间的所有电缆及所有连接的ITE都应包括在这一边框内。

应在地面高度1~4m的范围内调整天线的高度,以便在每一个测试频率点获得最大的指示值。在测量的过程中应改变天线相对于EUT的方位以寻找最大的场强读数。为了达到此目的,可以旋转EUT。如果这样做有困难,则可以使EUT 的位置不变,让天线围绕EUT进行测量。在测量的过程中,为了寻找最大的场强读数,应改变天线相对于EUT的水平和垂直极化方向。

在30~1000MHz频率范围应通过水平和垂直极化方向的场地衰减测量来检验试验场地的有效性。如果水平和垂直场地衰减测量值和理想场地衰减值之差不大于±4dB,则认为该场地是可接受的。

EUT的布置按图5.8.1布置,EUT应放置在辐射场强试验场地中非金属的桌面上,桌子的高度为0.8m,其下放有一块金属接地平板。

5.86测试方法

由被测接收机前面面板面向接收天线开始,调整接收天线到水平极化位置,天线高度在1m到4m内变化,直到测量仪器获得最大读书为止。

然后,将被测设备绕其中心水平旋转,直到测量仪器获得最大读数为止。

将接收天线转到垂直极化位置,重复上述测量步骤,但是天线的高度是从2m 到4m变化。

用上述测量步骤测试各频率点的场强最高值,并定义为该点的辐射骚扰值。

如果在某些频率接收天线所处位置环境信号强度较高,用下述方法之一来判断被测设备是否符合要求。

1.当高电平环境信号频率较窄时,骚扰值可以依据与其相邻的值

按内插的方法取值,插入值应该处于邻近环境噪声的骚扰值的

连续函数曲线上;

2.其他情况可以参考GB4824-2001附录C的方法。

10m

0.8m

图5.8.1 EMI EUT测试布置图

5.87测试限值

1.辐射发射限值:

附件一:

EFT&Surge&Dip Test Procedure Step1:Power on the PC and the test equipment

Step2:Choose the

“Genecs”

Step3:Press “File”

and “Open”

Step4:Choose the test program which

you want like EFT or Surge or Dip

Step5:Press “打开”

Step6:Press “SETUP”

EMC测试的条件与方法

EMC测试的条件与方法 测试依赖3个方面因素:方法、技术、设备。方法由测量原理和测试设备的使用方法两者来确定,技术是为了得到正确的测试结果(较高的准确度)而采取的一切测试手段,设备则是体现上述两个因素为测试服务的一切技术装置。这些都必须标准化,以保证测试具有重现性和真实性。 EMC测试条件由测试方法决定。具体测试方法分为在实验室条件下进行的试验台法和在实际使用条件下进行的现场法。要模拟现场可能碰到的所有干扰现象是不可能的,特别是现场法具有无法克服的局限性。但通过标准化的测试可以较全面地获取被测设备EMC性能如何的信息。为此,国际上推荐首先采用试验台法,除非无法在实验室进行,一般不用现场法。 抗扰度测试主要方法是按照设备所处的电磁环境条件,结合用户对设备采取的措施,选择合适的严酷度等级,依照有关测试方法进行测试,最后根据产品标准提出的合格判决条件评定测试结果是否合格。这是抗扰度测试与其它测试主要差异之处。 电磁环境中的电磁骚扰源、电磁骚扰源对设备的耦合方式、设备对电磁骚扰的敏感度以及用户对工作现场的防护措施直接与严酷度等级相关。即使用环境决定了干扰的形式,安装防护条件决定了干扰的严酷度等级。GB/T13926.4具体规定了在电磁环境中与严酷度等级相对应的设备工作下的电气环境条件: 1级,具有良好保护的环境,如计算机房; 2级,受保护的环境,如工厂和电厂的控制室或终端室; 3级,典型的工业环境,如工业过程装置、电厂和露天高压变电所的继电器房等场所; 4级,严酷的工业环境,如电站、未采取特殊安装措施的工业过程设备、室外区域等。 IEC801-5中针对电涌的源为电力切换瞬变或间接雷击的闪电瞬变,对设备的安装条件与防护设施作如下分类(适用电涌): 0类:保护良好的、有一次和二次过压保护的电气环境,通常处于特殊的房间内,电涌电压不会超过25V; 1类:局部保护的、有一次过压保护的电气环境,电涌电压不超过500V; 2类:电源线与其它线路分离开,电缆隔离良好的电气环境,电涌电压不超过1kV; 3类:电源电缆与信号电缆并行敷设的电气环境,电涌电压不超过2kV; 4类:互连线象室外一样沿着电源电缆敷设,且电子线路和电气线路均使用电缆的电气环境,电涌电压不超过4kV; 5类:非人口稠密区内电子装置联接电讯电缆和架空电源线的电气环境。 对0类不做电涌测试。一般电源产品处于1类或2类电气环境,可选择严酷度等级为1级或2级。

EMC主要测试项目及测试方法

第一篇:传导发射(Conducted Emission) 传导发射(Conducted Emission)测试,通常也会被成为骚扰电压测试,只要有电源线的产品都会涉及到,包括许多直流供电产品,另外,信号/控制线在不少标准中也有传导发射的要求,通常用骚扰电压或骚扰电流的限值(两者有相互转换关系)来表示,灯具中的插入损耗测试(直接用dB 表示)也属于传导测试范畴。 1. 测试标准:有CISPR22(ITE),CISPR14-1(家电和工具),CISPR13(AV),CISPR15(灯具),CISPR11(ISM),其他产品及产品类标准都是引用以上标准的测试方法,以引用CISPR22 居多。 2. 测试方法: 1)仪器和设备:接收机、LISN(线路阻抗稳定网络,或叫AMN 人工电源网络)、模拟手、被动电压探头、电流探头(与电流探头配合使用的CDN,容性电压探头)、DIA(断续干扰分析仪,用于测试CISPR14-1 中的断续干扰)、测插入损耗的一整套设备等,当然,PC也不可少,DIA 需要遵循CISPR16-1-1 的要求,其他辅助设备需要遵循CISPR16-1-2 的要求。 2)测试布置:分台式与落地式,台式设备离LISN 80cm,离接地平板40cm(这里的接地平板可以是水平接地板,也可以是屏蔽室的垂直接地内墙),落地式设备离接地平板距离随不同标准有不同的偏差允许,CISPR14-1,15 里面是10cm +/- 25%,13 里面是up to 12mm,22 里面是up to 15cm, 11 里没有明确距离,只说了需要与接地板用绝缘材料隔开。辅助设备的布置也随测试标准的不同有出入,CISPR22 中辅助设备离主设备10cm,相互之间的互联线至少离接地平板40cm。手持II 类设备需要包模拟手。CISPR15 中自镇流荧光灯需要罩在一个辅助锥形金属罩里。 3)测试频段:大多是150kHz-30MHz,CISPR15 是例外(骚扰电压9kHz-30MHz,插入损耗150kHz-1,605kHz)。 4)测试限值:随不同标准,不同的产品分类(Group 1/2, Class A/B)而限值不同。 5)测试过程: a)交/直流电源端骚扰电压:这个最常见,将电源插头连到LISN 上,接收机RF输入连到LISN 的RF 输出(可能中间会插入RF 衰减器或脉冲限幅器),切换LISN 的L/N 开关来选择测试电源线的对地共模骚扰电压。 b)断续干扰:CISPR14-1 及一些引用CISPR14-1 的标准有要求。通常使用断续干扰分析仪,配合LISN 测量。标准也允许用示波器与接收机的组合来替代。示波器观察骚扰持续时间,接收机观察骚扰电平幅度。 c)负载端骚扰电压:CISPR14-1、CISPR15 和CISPR11 中有要求。使用被动电压探头,将需要测试的负载线绝缘剥开,直接用探头连接收机测量负载线导线端子对地的骚扰电压。补充一句,如果设备额定电流过大,没有合适的LISN 可用,也可以直接用电压探头来测量电源端的骚扰电压。d)通讯线骚扰电压/骚扰电流:CISPR22 中提及。针对不同类型的通讯线有不同的测试方法。Annex C 有详细描述,Annex F 有各种方法的优缺点分析。主要是依靠电流探头与CDN、150 欧姆接地电阻、容性电压探头的不同组合来测试不同类型的通讯线缆,需要保证的前提是测试线缆的对地阻抗是150欧姆。结果可以直接用骚扰电流dBuA 表示,也可以换算成骚扰电压dBuV 表示,换算阻抗是150 欧姆,也就是两者量值相差44dB 。 e)插入损耗:CISPR15 提到。使用RF正弦波发生器经过平衡/不平衡转换器、模拟灯、LISN,最后用接收机测量比较电压来得出插入损耗的数值。 3. 结果判定:这个简单,接收机检波器的测量值(QP/AV)分别与限值线比较,低于限制线PASS,高出FAIL。 4. 注意事项:传导测试因为是对地的共模骚扰测量,因此关键在测试布置上,布置没问题了用接收机测就行了,而布置上的差异会导致结果的出入。悬而未决的问题:接收机RF输入端脉冲限幅器的使用:有些测试机构使用,保护接收机;有些抵制,认为限幅器中包含非线性元件对脉冲进行限幅,导致互调失真及产生谐波形式的骚扰而影响测试结果。个人意见尽量不要使用,虽然

EMC测试标准

EMC检测主要标准 EN55011 《工科医(ISM)射频设备的干扰限值和测量方法》CISPR11、GB4824 EN55013《声音和电视广播接收机及有关设备的无线电干扰特性限值和测量方法》CISPR13、GB13837 EN55014-1《家用电器、电动工具及类似器具的无线电干扰限值和测量方法》CISPR14-1 GB4343 EN55015《电气照明和类似设备的无线电干扰特性限值和测量方法》CISPR15、GB17743 EN55022 《信息技术设备的无线电干扰限值和测量方法》 CISPR22、GB9254 EN61000-6-1《通用标准--家用、商业、轻工业环境的无线电设备的抗扰度限值和测量方法》 EN61000-6-2《通用标准--工业环境的无线电设备抗扰度限值和测量方法》 EN61000-6-3 《通用标准--家用、商业、轻工业环境的干扰限值和测量方法》 EN61000-6-4 《通用标准--工业环境的干扰限值和测量方法》 EN61547 《电气照明和类似设备的无线电抗扰度限值和测量方法》 EN55014-2《家用电器、电动工具及类似器具的无线电抗扰度限值和测量方法》 GB4343.2 EN55024 《信息技术设备的抗扰度限值和测量方法》 GB17618 EN61000-3-2 《低压电气及电子设备发出的谐波电流限值(单项输入电流≦16A)》EN61000-3-3 《输入电流≦16A的低压供电系统电压波动和闪烁》 EN50091-2 《UPS的EMC限制》 FCC Part 15 《射频设备的无线电干扰限值和测量方法》(美国) FCC Part 18 《工科医类产品的干扰限值和测量方法》(美国) EMC检测主要项目 空间辐射(Radiation) EN55011,13,22 FCC Part 15&18, VCCI 传导干扰(Conduction) EN55011,13,14-1,15,22, FCC Part 15&18, VCCI 喀呖声(Click) EN55014-1 功率辐射(Power Clamp) EN55013,14-1 磁场辐射(Magnetic Emission) EN55011,15

EMC测试及故障排除方法

EMC测试及故障排除方法 中心议题:单片机系统的EMC测试电磁兼容故障排除技术电磁兼容性新器件新材料的应用 所谓EMC就是:设备或系统在其电磁环境中能正常工作,且不对该环境中任何事物构成不能承受的电磁骚扰的能力。EMC测试包括两大方面内容:对其向外界发送的电磁骚扰强度进行测试,以便确认是否符合有关标准规定的限制值要求;对其在规定电磁骚扰强度的电磁环境条件下进行敏感度测试,以便确认是否符合有关标准规定的抗扰度要求。对于从事单片机应用系统设计的工程技术人员来说,掌握一定的EMC测试技术是十分必要的。1 单片机系统EMC 测试(1)测试环境为了保证测试结果的准确和可靠性,电磁兼容性测量对测试环境有较高的要求,测量场地有室外开阔场地、屏蔽室或电波暗室等。(2)测试设备电磁兼容测量设备分为两类:一类是电磁干扰测量设备,设备接上适当的传感器,就可以进行电磁干扰的测量;另一类是在电磁敏感度测量,设备模拟不同干扰源,通过适当的耦合/去耦网络、传感器或天线,施加于各类被测设备,用作敏感度或干扰度测量。(3)测量方法电磁兼容性测试依据标准的不同,有许多种测量方法,但归纳起来可分为4类;传导发射测试、辐射发射测试、传导敏感度(抗扰度)测试和辐射敏感度(抗扰度)测试。(4)测试诊断步骤图1给出了一个设备或系统的电磁干扰发射与故障分析步骤。按照这个步骤进行,可以提高测试诊断的效率。 5)测试准备①试验场地条件:EMC测试实验室为电波半暗室和屏蔽室。前者用于辐射发射和辐射敏感测试,后者用于传导发射和传导敏感度测试。②环境电平要求:传导和辐射的电磁环境电平最好远低于标准规定的极限值,一般使环境电平至少低于极限值6dB。③试验桌。 ④测量设备和被测设备的隔离。⑤敏感性判别准则:一般由被测方提供,并实话监视和判别,以测量和观察的方式确定性能降低的程度。⑥被测设备的放置:为保证实验的重复性,对被测设备的放置方式通常有具体的规定。(6)测试种类传导发射测试、辐射发送测试、传导抗扰度测试、辐射抗扰度测试。(7)常用测量仪电磁干扰(EMI)和电磁敏感度(EMS)测试,需要用到许多电子仪器,如频谱分析仪、电磁场干扰测量仪、信号源、功能放大器、示波器等。由于EMC测试频率很宽(20Hz~40GHz)、幅度很大(μV级至kW级)、模式很多(FM、AM等)、姿态很多(平放、斜放等),因此正确地使用电子仪器非常重要。测量电磁干扰的合适仪器是频谱分析仪。频谱分析仪是一种将电压幅度随频率变化的规律显示出来的仪器,它显示的波形称为频谱。频谱分析仪克服了示波器在测量电磁干扰中的缺点,能够精确测量各个频率上的干扰强度,用频谱分析仪可以直接显示出信号的各个频谱分量。 在解决电磁干扰问题时,最重要的一个问题是判断干扰的来源。只有准确将干扰源定位后,才能够提出解决干扰的措施。根据信号的频率来确定干扰源泉是最简单的方法,因为在信号的所有特征中,频率特征是最稳定的,并且电路设计人员往往对电路中各个部位的信号频率都十分清楚。因此,只要知道了干扰信号的频率,就能够推测出干扰是哪个部位产生的。对于电磁干扰信号,由于其幅度往往远小于正常工作信号,用频谱分析仪做这种测量是十分简单的。由于频谱分析仪的中频带宽较窄,因此能够将与干扰信号频率不同的信号滤除掉,精确地测量出干扰信号频率,从而判断产生干扰信号的电路。2 电磁兼容故障排除技术(1)传导型问题的解决①通过串联一个高阻抗来减少EMI电流。②通过并联一个低阻抗将EMI电流短路到地或引到其它回路导体。③通过电流隔离装置切断EMI电流。④通过其自身作用来抑制EMI电流。(2)电磁兼容的容性解决方案一种常见的现象是不把滤波电容的一侧看成直接与一个分离的阻抗相连,而看成与传输线相连。典型的情况是,当一条输入输出线的长度达到或超过1/4波长时,该传输线变“长”。实际可以用下式近似表示这种变化:l ≥ 55/f式中:l单元为m,f单位为MHz。这个公式考虑了平均传播速度,它是自由空间理论的0.75倍。a. 电介质材料及容差:电磁干扰滤波使用的大部分电容是无极性电容b. 差

EMC 测试作业指导书

TV EMC测试作业指导书 一.目的 为了使本厂(数码媒体厂)之产品LCD TV的EMC测试规范化和程序化,特制定本作业指导书。 二.范围 本作业指导书适用于数码媒体厂之QRE 部门。 三.EMC 测试类型 EMC测试包括ESD测试,EFT测试,Surge 测试,Harmonic 测试,Flicker 测试,Conducted Immunity 测试,Power Dip测试和EMI 测试,相应的测试标准和测试方法将在下面详细介绍。 四.名词定义: ESD:静电放电 EFT:电快速瞬变脉冲群 Harmonic :谐波 Flicker :闪烁发射 Surge :浪涌 Power Dip:电压跌落 Conducted Immunity : 传导免疫性 EUT:受试设备 五.测试规划 5.1 ESD测试 5.11测试目的 验证产品设计的成熟度,模拟在干燥地区易遭受静电放电的情况,保证产品在ESD下性能保持完好,功能正常,不被损害。 5.12 测试标准 按照EN61000-4-2 进行,测试电压为8KV(空气放电)和4KV(接触放电). 5.13 测试场地 BQC EMC实验室 5.14 测试设备 NoiseKen ESS-2002(静电测试器) 5.15 ESD原理 一个充电的导体接近另一个导体时,就有可能发生ESD。首先,两个导体之间会建立一个很强的电场,产生由电场引起的击穿。两个导体之间的电压超过它们之间空气和绝缘介质的击穿电压时,就会产生电弧。在0.7ns到10ns的时间里,电弧电流会达到几十安培,有时甚至会超过100安培。电弧将一直维持直到两个导体接触短路或者电流低到不能维持电弧为止。可能产生电弧的实例有人

EMC主要测试项目及测试方法详解

EMC主要测试项目及测试方法详解 第一篇:传导发射(Conducted Emission) 传导发射(Conducted Emission)测试,通常也会被成为骚扰电压测试,只要有电源线的产品都会涉及到,包括许多直流供电产品,另外,信号/控制线在不少标准中也有传导发射的要求,通常用骚扰电压或骚扰电流的限值(两者有相互转换关系)来表示,灯具中的插入损耗测试(直接用dB表示)也属于传导测试范畴。 1. 测试标准:有CISPR22(ITE),CISPR14-1(家电和工具),CISPR13(A V),CISPR15(灯具),CISPR11(ISM),其他产品及产品类标准都是引用以上标准的测试方法,以引用CISPR22居多。 2. 测试方法: 1) 仪器和设备:接收机、LISN(线路阻抗稳定网络,或叫AMN人工电源网络)、模拟手、被动电压探头、电流探头(与电流探头配合使用的CDN,容性电压探头)、DIA(断续干扰分析仪,用于测试CISPR14-1中的断续干扰)、测插入损耗的一整套设备等,当然,PC也不可少,DIA需要遵循CISPR16-1-1的要求,其他辅助设备需要遵循CISPR16-1-2的要求。 2) 测试布置:分台式与落地式,台式设备离LISN 80cm,离接地平板40cm(这里的接地平板可以是水平接地板,也可以是屏蔽室的垂直接地内墙),落地式设备离接地平板距离随不同标准有不同的偏差允许,CISPR14-1,15里面是10cm +/- 25%,13里面是up to 12mm,22里面是up to 15cm, 11里没有明确距离,只说了需要与接地板用绝缘材料隔开。辅助设备的布置也随测试标准的不同有出入,CISPR22中辅助设备离主设备10cm,相互之间的互联线至少离接地平板40cm。手持II类设备需要包模拟手。CISPR15中自镇流荧光灯需要罩在一个辅助锥形金属罩里。 3) 测试频段:大多是150kHz-30MHz,CISPR15是例外(骚扰电压9kHz-30MHz,插入损耗150kHz-1,605kHz)。 4) 测试限值:随不同标准,不同的产品分类(Group 1/2, Class A/B)而限值不同。xc [8UV {l 5) 测试过程: a) 交/直流电源端骚扰电压:这个最常见,将电源插头连到LISN上,接收机RF输入连到LISN的RF输出(可能中间会插入RF衰减器或脉冲限幅器),切换LISN的L/N开关来选择测试电源线的对地共模骚扰电压。 b) 断续干扰:CISPR14-1及一些引用CISPR14-1的标准有要求。通常使用断续干扰分析仪,配合LISN测量。标准也允许用示波器与接收机的组合来替代。示波器观察骚扰持续时间,接收机观察骚扰电平幅度。 c) 负载端骚扰电压:CISPR14-1、CISPR15和CISPR11中有要求。使用被动电压探头,将需要测试的负载线绝缘剥开,直接用探头连接收机测量负载线导线端子对地的骚扰电压。补充一句,如果设备额定电流过大,没有合适的LISN可用,也可以直接用电压探头来测量电源端的骚扰电压。 d) 通讯线骚扰电压/骚扰电流:CISPR22中提及。针对不同类型的通讯线有不同的测试方法。Annex C有详细描述,Annex F有各种方法的优缺点分析。主要是依靠电流探头与CDN、150欧姆接地电阻、容性电压探头的不同组合来测试不同类型的通讯线缆,需要保证的前提是测试线缆的对地阻抗是150欧姆。结果可以直接用骚扰电流dBuA表示,也可以换算成骚扰电压dBuV表示,换算阻抗是150欧姆,也就是两者量值相差44dB。 e) 插入损耗:CISPR15提到。使用RF正弦波发生器经过平衡/不平衡转换器、模拟灯、LISN,最后用接收机测量比较电压来得出插入损耗的数值。 3. 结果判定:这个简单,接收机检波器的测量值(QP/A V)分别与限值线比较,低于限制线PASS,高出FAIL。 4. 注意事项:传导测试因为是对地的共模骚扰测量,因此关键在测试布置上,布置没问题了用接收机测就行了,而布置上的差异会导致结果的出入。悬而未决的问题:接收机RF输入端脉冲限幅器的使用:有些测试机构使用,保护接收机;有些抵制,认为限幅器中包含非线性元件对脉冲进行限

如何看EMC测试分析报告

如何看EMC测试报告

————————————————————————————————作者:————————————————————————————————日期: 2

如何看EMC 測試報告 EMC 包括EMI 和EMS 兩部分. ? 电磁干扰 EMI (Electro-Magnetic Interference) 电子电器产品工作时对周边外界环境的电磁干扰发放. ? 电磁抗干扰 EMS (Electro-Magnetic Susceptibility) 电子电器产品在一定的电磁环境中工作时其本身对电磁干扰的敏感度. 而針對電動工具的測試條款有: ? EN 55014-1 家用器具、电动工具和类似器具的干扰发射测试要求 ? EN 55014-2 家用器具、电动工具和类似器具的抗干扰测试要求 ? EN 61000-3-2 谐波电流干扰限值 ? EN 61000-3-3 电压波动和闪烁限值 ? EN61000-6-3(对电池供电的电动工具) 住宅、商用和轻工业环境的干扰通用测试标准. 該標準在07年前為非強製要求, 故一些老model 的測試報告上無此項目. 但新project 在開發申請安規時, 應盡量符合. 具體情況可與第三方商量. 我們在EMC 控製的重點是EMI 中的EN55014-1, 即干扰发射测试. 針對電動工具, 該測試主要有兩個測試內容 : ? 传导连续性干扰测试 (Conducted Emission) ? 骚扰功率测试 (Disturbance Power) 1. 传导干扰是指通过传输线/导线传播的电磁干扰。频率低于30M 以下的电磁干扰主要是通 过传导的方式传播,测试频率为150K to 30MHz 被測工具額定功率 峰值要求 (QP) 平均值要求 (AV)

如何看EMC测试报告

如何看EMC測試報告 EMC 包括EMI 和EMS兩部分. ?电磁干扰EMI (Electro-Magnetic Interference) 电子电器产品工作时对周边外界环境的电磁干扰发放. ?电磁抗干扰EMS (Electro-Magnetic Susceptibility) 电子电器产品在一定的电磁环境中工作时其本身对电磁干扰的敏感度. 而針對電動工具的測試條款有: ?EN 55014-1 家用器具、电动工具和类似器具的干扰发射测试要求 ?EN 55014-2 家用器具、电动工具和类似器具的抗干扰测试要求 ?EN 61000-3-2 谐波电流干扰限值 ?EN 61000-3-3 电压波动和闪烁限值 ?EN61000-6-3(对电池供电的电动工具) 住宅、商用和轻工业环境的干扰通用测试标准. 該標準在07年前為非強製要求, 故一些老model的測試報告上無此項目. 但新project在開發申請安規時, 應盡量符合. 具體情況可與第三方商量. 我們在EMC控製的重點是EMI中的EN55014-1, 即干扰发射测试. 針對電動工具, 該測試主要有兩個測試內容: ?传导连续性干扰测试 (Conducted Emission) ?骚扰功率测试 (Disturbance Power) 1.传导干扰是指通过传输线/导线传播的电磁干扰。频率低于30M以下的电磁干扰主要是通

2. 骚扰功率测试 (Disturbance Power)一般认为频率大于30MHz 的干扰能量主要通过的辐射方式的传播, 而干扰的能量主要是通过靠近器具的电源线或其它端口传播,测试频率为30MHz to 300MHz. 在正常的安規申請中, 如新project 開始時, 如需拿到EMC 證書, 所有有關測試項目均需測試. 如EN55014-1, EN55014-2, EN61000-3-2, EN61000-3-3. 但在日常品質控製中, 我們可以只測試EN55014-1的兩個項目即傳導連續及騷擾功率, 因為電動工具的重點在干擾, 並且可以節省時間和測試費用. 以下是實際的測試報告, 以傳導連續性干擾測試數據為例 .

EMC主要测试项目及测试方法

第一篇:传导发射(Conducted Emission) 传导发射(Conducted Emission)测试,通常也会被成为骚扰电压测试,只要有电源线的产品都会涉及到,包括许多直流供电产品,另外,信号/控制线在不少标准中也有传导发射的要求,通常用骚扰电压或骚扰电流的限值(两者有相互转换关系)来表示,灯具中的插入损耗测试(直接用dB表示)也属于传导测试范畴。 1. 测试标准:有CISPR22(ITE),CISPR14-1(家电和工具),CISPR13(AV),CISPR15(灯具),CISPR11(ISM),其他产品及产品类标准都是引用以上标准的测试方法,以引用CISPR22居多。 2. 测试方法: 1) 仪器和设备:接收机、LISN(线路阻抗稳定网络,或叫AMN人工电源网络)、模拟手、被动电压探头、电流探头(与电流探头配合使用的CDN,容性电压探头)、DIA(断续干扰分析仪,用于测试CISPR14-1中的断续干扰)、测插入损耗的一整套设备等,当然,PC也不可少,DIA需要遵循CISPR16-1-1的要求,其他辅助设备需要遵循CISPR16-1-2的要求。 2) 测试布置:分台式与落地式,台式设备离LISN 80cm,离接地平板40cm(这里的接地平板可以是水平接地板,也可以是屏蔽室的垂直接地内墙),落地式设备离接地平板距离随不同标准有不同的偏差允许,CISPR14-1,15里面是10cm +/- 25%,13里面是up to 12mm,22里面是up to 15cm, 11里没有明确距离,只说了需要与接地板用绝缘材料隔开。辅助设备的布置也随测试标准的不同有出入,CISPR22中辅助设备离主设备10cm,相互之间的互联线至少离接地平板40cm。手持II类设备需要包模拟手。CISPR15中自镇流荧光灯需要罩在一个辅助锥形金属罩里。 3) 测试频段:大多是150kHz-30MHz,CISPR15是例外(骚扰电压9kHz-30MHz,插入损耗150kHz-1,605kHz)。 4) 测试限值:随不同标准,不同的产品分类(Group 1/2, Class A/B)而限值不同。 5) 测试过程: a) 交/直流电源端骚扰电压:这个最常见,将电源插头连到LISN上,接收机RF输入连到LISN 的RF输出(可能中间会插入RF衰减器或脉冲限幅器),切换LISN的L/N开关来选择测试电源线的对地共模骚扰电压。 b) 断续干扰:CISPR14-1及一些引用CISPR14-1的标准有要求。通常使用断续干扰分析仪,配合LISN测量。标准也允许用示波器与接收机的组合来替代。示波器观察骚扰持续时间,接收机观察骚扰电平幅度。 c) 负载端骚扰电压:CISPR14-1、CISPR15和CISPR11中有要求。使用被动电压探头,将需要测试的负载线绝缘剥开,直接用探头连接收机测量负载线导线端子对地的骚扰电压。补充一句,如果设备额定电流过大,没有合适的LISN可用,也可以直接用电压探头来测量电源端的骚扰电压。 d) 通讯线骚扰电压/骚扰电流:CISPR22中提及。针对不同类型的通讯线有不同的测试方法。Annex C有详细描述,Annex F有各种方法的优缺点分析。主要是依靠电流探头与CDN、150欧姆接地电阻、容性电压探头的不同组合来测试不同类型的通讯线缆,需要保证的前提是测试线缆的对地阻抗是150欧姆。结果可以直接用骚扰电流dBuA表示,也可以换算成骚扰电压dBuV表示,换算阻抗是150欧姆,也就是两者量值相差44dB。 e) 插入损耗:CISPR15提到。使用RF正弦波发生器经过平衡/不平衡转换器、模拟灯、LISN,最后用接收机测量比较电压来得出插入损耗的数值。 3. 结果判定:这个简单,接收机检波器的测量值(QP/AV)分别与限值线比较,低于限制线PASS,高出FAIL。 4. 注意事项:传导测试因为是对地的共模骚扰测量,因此关键在测试布置上,布置没问题

EMC测试规范

EMC试验测试规范 一、静电 1.1试验目的:测试电子产品抗静电能力 1.2试验设备:静电放电发生器 1.3试验环境:环境温度:15℃~35℃,相对湿度30%~60%,大气压力86KPA~106KPA(暂时以中试试验室环境为准) 1.4参考标准:GB17626.2-2006电磁兼容试验和测量技术静电放电抗 扰度试验 AQ6201-2006煤矿安全监控系统通用技术要求 1.5试验内容: 1.5.1如图1所示,将受试设备EUT通电后放置在试验桌上,准备进行试验。 图1 1.5.2 参数设置,如图2所示,选择放电模式,做接触放电试验,选用尖锥形的放电电极,用UP和DOWN按键把光标调整至“放电模式”行,用“SELECT”按键选择“接触放电”;

1.5.3选择极性,将光标调整至“极性切换”行,用“SELECT”按键选择“正压”或“负压”来选择试验极性。(在极性切换前需将“高压上电”选择“否”,否则无法极性切换) 1.5.4放电模式,将光标调至“四种模式”行,用“SELECT”按键选择“单次放电”、“设定放电”、“连续放电”或“自动放电”来选择放电模式。连续放电即20pps模式;自动放电就是按下“RUN/PAUSE”按键后无需扣枪即可自行放电。一般选用单次放电。 图2 1.5.2 参数设置,如图2所示,选择放电模式,做接触放电试验,选用尖锥形的放电电极,用UP和DOWN按键把光标调整至“放电模式”行,用“SELECT”按键选择“接触放电”; 1.5.3选择极性,将光标调整至“极性切换”行,用“SELECT”按键选择“正压”或“负压”来选择试验极性。(在极性切换前需将“高压上电”选择“否”,否则无法极性切换) 1.5.4放电模式,将光标调至“四种模式”行,用“SELECT”按键选择“单次放电”、“设定放电”、“连续放电”或“自动放电”来选择放电模式。连续放电即20pps模式;自动放电就是按下“RUN/PAUSE”按键后无需扣枪即可自行放电。一般选用单次放电。 1.5.5光标调至“高压上电”行,用“SELECT”按键选择参数为“是”。 1.5.6将光标移动到“电压设定”行,用“ADD”“REDUSE”安静设定电压值。(注:最高电压只能设到“20KV”。) 1.5.7按下“RUN/PAUSE”按键,屏幕右下方的“停止”变成“运行”,即可按下机枪放电。用右手握枪,将放电枪垂直于试品表面,并按下枪机进行放电。

EMC测试标准

精心整理ESD静电放电 1、参考文件 标准GB/T19951-2005 2、ESD模拟器 a)电压范围:-25Kv~+25Kv b)电容:330pF±10%,150pF±10%(两个放电端) c)电阻:2000Ω±10% 在每连续3次放电试验期间和之后,检验被试设备是否符合所有使用功能的要求。CI电源线瞬态现象 参考文件 标准ISO-7637-2、ISO-7637-3 一、电瞬态传导试验ISO-7637-2 1、试验条件 车载信息娱乐系统主机在沿电源线的电瞬态传导试验中应能正常工作,符合

ISO-7637-2标准,Ⅲ级。 1)试验温度和试验电压 试验周围环境温度应为23℃±5℃。 试验电压为表1所示 表1 2)抗扰性测试的试验脉冲发生器

电容和分布电感的影响。 3a和3b的试验脉冲形式分别见图4和图5.参数分别见表5和表6 图4 试验脉冲3a

表5 试验脉冲3a参数 图5 试验脉冲3b 加限幅二极管而受到抑制(箝位)。 抛负载可能产生的原因是:因电缆腐蚀、接触不良或发动机正在运转时,有意断开与电池的连接。 具有非集中抛负载抑制(脉冲5a)的交流发电机的脉冲形式和参数见图7和表8.具有集中抛负载抑制(脉冲5b)的交流发电机的脉冲形式和参数见图8和表9. 在应用抛负载时,对发电机的动力性能的基本考虑如下: a)在抛负载的情况下,交流发电机的内阻主要取决于发电机的转速和激励电流。 b)抛负载试验脉冲发生器的内阻R i应从下列关系式计算得出: 式中:

Unom——发电机的额定电压; Irated——交流发电机6000转/分时的规定电流(与ISO8854所给值相同); Nact——交流发电机的实际转速(单位:转/分)。 c)脉冲由下列因素确定:峰值电压U S,箝位电压U S*,内阻R i,脉冲宽度t d。在任何 情况下,U S的值越小,对应的R i和t d的值也越小;U S的值越大,对应的R i和td 的值越大。 止施加骚扰之后能自动恢复到正常操作状态。 D类:装置或系统在施加骚扰期间,不执行其预先设计的一项或多项功能,直到停止施加骚扰之后,并通过简单的“操作或使用”复位动作之后,才能自动恢复到正常操作状态。 E类:装置或系统在施加骚扰期间和之后,不执行其预先设计的一项或多项功能,且如果不修理或不替换装置或系统,则不能恢复其正常操作。 3.3试验脉冲严酷程度分级 二、传导抗扰度试验ISO-7637-3(雪铁龙、通用标准) 1、测试主要特征 该测试目的是检验设备对信号线束造成耦合瞬态的抗干扰性能。

三种EMC测试方法介绍

三种EMC主要测试项目测试方法介绍 第一篇:传导发射(Conducted Emission) 传导发射(Conducted Emission)测试,通常也会被成为骚扰电压测试,只要有电源线的产品都会涉及到,包括许多直流供电产品,另外,信号/控制线在不少标准中也有传导发射的要求,通常用骚扰电压或骚扰电流的限值(两者有相互转换关系)来表示,灯具中的插入损耗测试(直接用dB表示)也属于传导测试范畴。 1. 测试标准:有CISPR22(ITE),CISPR14-1(家电和工具),CISPR13(AV),CISPR15(灯具),CISPR11(ISM),其他产品及产品类标准都是引用以上标准的测试方法,以引用CISPR22居多。 2. 测试方法: 1) 仪器和设备:接收机、LISN(线路阻抗稳定网络,或叫AMN人工电源网络)、模拟手、被动电压探头、电流探头(与电流探头配合使用的CDN,容性电压探头)、DIA(断续干扰分析仪,用于测试CISPR14-1中的断续干扰)、测插入损耗的一整套设备等,当然,PC也不可少,DIA需要遵循CISPR16-1-1的要求,其他辅助设备需要遵循CISPR16-1-2的要求。 2) 测试布置:分台式与落地式,台式设备离LISN 80cm,离接地平板40cm(这里的接地平板可以是水平接地板,也可以是屏蔽室的垂直接地内墙),落地式设备离接地平板距离随不同标准有不同的偏差允许,CISPR14-1,15里面是10cm +/- 25%,13里面是up to 12mm,22里面是up to 15cm, 11里没有明确距离,只说了需要与接地板用绝缘材料隔开。辅助设备的布置也随测试标准的不同有出入,CISPR22中辅助设备离主设备10cm,相互之间的互联线至少离接地平板40cm。手持II类设备需要包模拟手。CISPR15中自镇流荧光灯需要罩在一个辅助锥形金属罩里。 3) 测试频段:大多是150kHz-30MHz,CISPR15是例外(骚扰电压9kHz-30MHz,插入损耗150kHz-1,605kHz)。

相关文档