文档库 最新最全的文档下载
当前位置:文档库 › 磁珠原理及其在开关电源中的应用

磁珠原理及其在开关电源中的应用

磁珠原理及其在开关电源中的应用
磁珠原理及其在开关电源中的应用

磁珠原理及其在开关电源中的应用

导读:由于电磁兼容的迫切要求,电磁干扰(EMI)抑制元件获得了广泛的应用。然而实际应用中的电磁兼容问题十分复杂,单单依靠理论知识是完全不够的,它更依赖于广大电子工程师的实际经验。为了更好地解决电子产品的电磁兼容性这一问题,还要考虑接地、电路与PCB板设计、电缆设计、屏蔽设计等问题。本文通过介绍磁珠的基本原理和特性来说明它在开关电源电磁兼容设计中的重要性与应用,以期为设计者在设计新产品时提供必要的参考。

磁珠及其工作原理

磁珠的主要原料为铁氧体,铁氧体是一种立方晶格结构的亚铁磁性材料,铁氧体材料为铁镁合金或铁镍合金,它的制造工艺和机械性能与陶瓷相似,颜色为灰黑色。电磁干扰滤波器中经常使用的一类磁芯就是铁氧体材料,许多厂商都提供专门用于电磁干扰抑制的铁氧体材料。这种材料的特点是高频损耗非常大,具有很高的导磁率,它可以使电感的线圈绕组之间在高频高阻的情况下产生的电容最小。新晨阳铁氧体材料通常应用于高频情况,因为在低频时它们主要呈现电感特性,使得损耗很小。在高频情况下,它们主要呈现电抗特性并且随频率改变。实际应用中,铁氧体材料是作为射频电路的高频衰减器使用的。实际上,铁氧体可以较好的等效于电阻以及电感的并联,低频下电阻被电感短路,高频下电感阻抗变得相当高,以至于电流全部通过电阻。铁氧体是一个消耗装置,高频能量在上面转化为热能,这是由它的电阻特性决定的。

对于抑制电磁干扰用的铁氧体,最重要的性能参数为磁导率和饱和磁通密度。磁导率可以表示为复数,实数部分构成电感,虚数部分代表损耗,随着频率的增加而增加。因此它的等效电路为由电感L和电阻R组成的串联电路,电感L和电阻R都是频率的函数。当导线穿过这种铁氧体磁芯时,所构成的电感阻抗在形式上是随着频率的升高而增加,但是在不同频率时其机理是完全不同的。在高频段,阻抗主要由电阻成分构成,随着频率的升高,新晨阳电容电感磁芯的磁导率降低,导致电感的电感量减小,感抗成分减小,但是,这时磁芯的损耗增加,电阻成分增加,导致总的阻抗增加,当高频信号通过铁氧体时,电磁干扰被吸收并转换成热能的形式消耗掉。在低频段,阻抗主要由电感的感抗构成,低频时R 很小,磁芯的磁导率较高,因此电感量较大,电感L起主要作用,电磁干扰被反射而受到抑制,并且这时磁芯的损耗较小,整个器件是一个低损耗、高品质因素Q特性的电感,这种电感容易造成谐振,因此在低频段时可能会出现使用铁氧体磁珠后干扰增强的现象。

磁珠种类很多,制造商会提供技术指标说明,特别是磁珠的阻抗与频率关系的曲线。有的磁珠上有多个孔洞,用导线穿过可增加元件阻抗(穿过磁珠次数的平方),不过在高频时所增加的抑制噪声能力可能不如预期的多,可以采用多串联几个磁珠的办法。

值得注意的是,高频噪声的能量是通过铁氧体磁矩与晶格的耦合而转变为热能散

发出去的,并非将噪声导入地或者阻挡回去,如旁路电容那样。因而,在电路中安装铁氧体磁珠时,不需要为它设置接地点。这是铁氧体磁珠的突出优点。

关键字:磁珠电感

磁珠纯化原理

磁珠法纯化D N A原理磁珠法核酸纯化技术采用了纳米级磁珠微珠,这种磁珠微珠的表面标记了一种官能团,能同核酸 发生吸附反应。硅磁(Magnetic Silica Particle)就是指磁珠微珠表面包裹一层硅材料,来吸附核酸,其纯化原理类型于玻璃奶的纯化方式 AMPure bead :NaCl,7% PEG8000 标准的AMPure xp是用来筛选掉100bp的DNA片段,通过改变PEG8000的含量可改变至(MAX 300bp,MIN 50bp),PEG8000的浓度越高越能筛选出片段小的DNA Streptavidin magnetic bead (链霉亲和素磁珠): Streptavidin(SA)链霉亲和素,magnetic磁性的,亲和素能与生物素之间存在强度最高的非共价作用(称作BAS系统)二者结合形成复合物的解离常数很小,呈不可逆反应性;而且酸、碱、 变性剂、蛋白溶解酶以及有机溶剂均不影响其结合。 玻璃奶: 是一种白色硅颗粒,能到50kb大小的DNA(双链,单链,线状,超螺旋),结合原理:在高盐状态下,玻璃奶周围的负电荷被打破,并允许DNA磷酸负电荷与玻璃奶特异性结合,在低盐时 (H20或1X TE)溶解分离 DNA<100bp时,高盐状态下结合率高;DNA>100bp时,低盐状态下结合率高;pH<时,结合 率高。 氧化硅羟基磁珠:此种微球具有核壳结构,即超顺磁性核心以及无机氧化硅外壳,硅烷醇集团(羟基)在chaotropic(盐酸胍、异硫酸氰胍等)存在条件下,能够与溶液中的核酸通过疏水作用、氢键作用和静电作用等发生特异性结合,而不与蛋白质和其它杂质结合 氧化硅羧基磁珠:该磁珠表面修饰有羧基官能团,能够在特殊试剂(如EDC)作用下将蛋白、寡聚核苷酸等生物配体共价偶联到磁珠表面,可应用在蛋白纯化,核酸纯化,亲和层析等领域。

开关电源入门必读:开关电源工作原理超详细解析

开关电源入门必读:开关电源工作原理超详细解析 第1页:前言:PC电源知多少 个人PC所采用的电源都是基于一种名为“开关模式”的技术,所以我们经常会将个人PC电源称之为——开关电源(Sw itching Mode P ow er Supplies,简称SMPS),它还有一个绰号——DC-DC转化器。本次文章我们将会为您解读开关电源的工作模式和原理、开关电源内部的元器件的介绍以及这些元器件的功能。 ●线性电源知多少 目前主要包括两种电源类型:线性电源(linear)和开关电源(sw itching)。线性电源的工作原理是首先将127 V或者220V市电通过变压器转为低压电,比如说12V,而且经过转换后的低压依然是AC交流电;然后再通过一系列的二极管进行矫正和整流,并将低压AC交流电转化为脉动电压(配图1和2中的“3”);下一步需要对脉动电压进行滤波,通过电容完成,然后将经过滤波后的低压交流电转换成DC直流电(配图1和2中的“4”);此时得到的低压直流电依然不够纯净,会有一定的波动(这种电压波动就是我们常说的纹波),所以还需要稳压二极管或者电压整流电路进行矫正。最后,我们就可以得到纯净的低压DC直流电输出了(配图1和2中的“5”) 配图1:标准的线性电源设计图

配图2:线性电源的波形 尽管说线性电源非常适合为低功耗设备供电,比如说无绳电话、PlayStation/W ii/Xbox等游戏主机等等,但是对于高功耗设备而言,线性电源将会力不从心。 对于线性电源而言,其内部电容以及变压器的大小和AC市电的频率成反比:也即说如果输入市电的频率越低时,线性电源就需要越大的电容和变压器,反之亦然。由于当前一直采用的是60Hz(有些国家是50Hz)频率的AC市电,这是一个相对较低的频率,所以其变压器以及电容的个头往往都相对比较大。此外,AC市电的浪涌越大,线性电源的变压器的个头就越大。 由此可见,对于个人PC领域而言,制造一台线性电源将会是一件疯狂的举动,因为它的体积将会非常大、重量也会非常的重。所以说个人PC用户并不适合用线性电源。 ●开关电源知多少 开关电源可以通过高频开关模式很好的解决这一问题。对于高频开关电源而言,AC输入电压可以在进入变压器之前升压(升压前一般是50-60KHz)。随着输入电压的升高,变压器以及电容等元器件的个头就不用像线性电源那么的大。这种高频开关电源正是我们的个人PC以及像VCR录像机这样的设备所需要的。需要说明的是,我们经常所说的“开关电源”其实是“高频开关电源”的缩写形式,和电源本身的关闭和开启式没有任何关系的。 事实上,终端用户的PC的电源采用的是一种更为优化的方案:闭回路系统(closed loop system)——负责控制开关管的电路,从电源的输出获得反馈信号,然后根据PC的功耗来增加或者降低某一周期内的电压的频率以便能够适应电源的变压器(这个方法称作PW M,Pulse W idth Modulation,脉冲宽度调制)。所以说,开关电源可以根据与之相连的耗电设备的功耗的大小来自我调整,从而可以让变压器以及其他的元器件带走更少量的能量,而且降低发热量。 反观线性电源,它的设计理念就是功率至上,即便负载电路并不需要很大电流。这样做的后果就是所有元件即便非必要的时候也工作在满负荷下,结果产生高很多的热量。 第2页:看图说话:图解开关电源 下图3和4描述的是开关电源的PW M反馈机制。图3描述的是没有PFC(P ow er Factor Correction,功率因素校正)电路的廉价电源,图4描述的是采用主动式PFC设计的中高端电源。 图3:没有PFC电路的电源 图4:有PFC电路的电源 通过图3和图4的对比我们可以看出两者的不同之处:一个具备主动式PFC电路而另一个不具备,前者没有110/220V转换器,而且也没有电压倍压电路。下文我们的重点将会是主动式PFC电源的讲解。

常见几种开关电源工作原理及电路图

一、开关式稳压电源的基本工作原理 开关式稳压电源接控制方式分为调宽式和调频式两种,在实际的应用中,调宽式使用得较多,在目前开发和使用的开关电源集成电路中,绝大多数也为脉宽调制型。因此下面就主要介绍调宽式开关稳压电源。 调宽式开关稳压电源的基本原理可参见下图。 对于单极性矩形脉冲来说,其直流平均电压Uo取决于矩形脉冲的宽度,脉冲越宽,其直流平均电压值就越高。直流平均电压U。可由公式计算, 即Uo=Um×T1/T 式中Um为矩形脉冲最大电压值;T为矩形脉冲周期;T1为矩形脉冲宽度。 从上式可以看出,当Um 与T 不变时,直流平均电压Uo 将与脉冲宽度T1 成正比。这样,只要我们设法使脉冲宽度随稳压电源输出电压的增高而变窄,就可以达到稳定电压的目的。 二、开关式稳压电源的原理电路 1、基本电路

图二开关电源基本电路框图 开关式稳压电源的基本电路框图如图二所示。 交流电压经整流电路及滤波电路整流滤波后,变成含有一定脉动成份的直流电压,该电压进人高频变换器被转换成所需电压值的方波,最后再将这个方波电压经整流滤波变为所需要的直流电压。 控制电路为一脉冲宽度调制器,它主要由取样器、比较器、振荡器、脉宽调制及基准电压等电路构成。这部分电路目前已集成化,制成了各种开关电源用集成电路。控制电路用来调整高频开关元件的开关时间比例,以达到稳定输出电压的目的。 2.单端反激式开关电源 单端反激式开关电源的典型电路如图三所示。电路中所谓的单端是指高频变换器的磁芯仅工作在磁滞回线的一侧。所谓的反激,是指当开关管VT1 导通时,高频变压器T初级绕组的感应电压为上正下负,整流二极管VD1处于截止状态,在初级绕组中储存能量。当开关管VT1截止时,变压器T初级绕组中存储的能量,通过次级绕组及VD1 整流和电容C滤波后向负载输出。

Pan T磁珠分选标准操作规程

1. 目的 为规范磁珠分选T淋巴细胞,获取高纯度和高质量的T淋巴细胞。 2. 范围 适用于T细胞分选生产的操作过程。 3. 职责 3.1 生产部负责操作和清场。 3.2 质量管理部QA负责监督。 4. 仪器、试剂和耗材 4.1 仪器:生物安全柜;移液枪;离心机;细胞计数仪;QuadroMACS Starting kit(LS) 4.2 试剂:Pan T Cell Isolation Kit(Miltenyi);PBS;RPMI1640;台盼蓝;AB血清; 4.3 耗材:15/50mL离心管;25mL移液管;10mL移液管; 5. 标准操作程序 5.1 打开生物安全柜,紫外灯照射灭菌30min,通风10min后待用。 5.2 缓冲液配制:PBS加0.5%人AB血清和2mM EDTA,用前去气泡;缓冲液放4度冰箱预冷。全程保持低温。 5.3安装:将支撑架和分离器用酒精消毒后,放入生物安全柜。将分离器平行贴到支撑架的垂直面上,移动分离器调整高度。取出LS柱,安装到分离器的磁力槽中。 5.4 用细胞计数仪计数,计算细胞数目。 5.5 离心1000rpm,8min收集细胞,完全去掉上清。 5.6 按照每107细胞加40ul buffer的量加缓冲液重悬细胞。 5.7 每107细胞加10ul Pan T Cell Biotin-Antibody Cocktail。 5.8 混匀,4℃冰箱孵育5min。 5.9 每107细胞加30ul 缓冲液。

5.10每107细胞加20ul Pan T Cell Microbead。 5.11 混匀,4℃冰箱孵育10min。 5.12 加400 ul 缓冲液,混匀(至少500ul上柱)。 5.13 用3ml缓冲液润洗柱子。 5.14 把细胞悬液加入到柱子中。收集流出的T细胞。 5.15 用3ml缓冲液洗涤柱子,收集流出的T细胞。与5.14的合并。 5.16 从分离器上取下柱子,安放到合适的收集管中。 5.17 加入5ml 缓冲液到柱子中,立即将活塞插入柱子,用力将液体压出,即为非T细胞。 5.18 取样,台盼蓝染色后在细胞计数仪上计数。 5.19 关闭生物安全柜,进行清场操作。 5.20 填写相关记录文件。 6. 相关文件 无 7. 相关记录 7.1《T细胞分选生产记录》 8. 附件清单 无

磁珠提取DNA原理 (2)

磁珠纯化DNA原理 1、DNA与磁珠作用原理 分选磁珠的作用原理就是基于一种固相载体可逆化固定(SPRI)的分离纯化 方法。磁珠体系中一般包含:磁珠、DNA、聚乙二醇(PEG)、以及盐离子等,在一定浓度的PEG与盐离子环境中,DNA可吸附到羧基修饰的高分子磁珠表面(即固相载体),该过程就是可逆的,在适当条件下,结合的DNA分子可以被洗脱回收。 纳米级别的磁珠表面性质不同,分离原理也不尽相同,但基本上固态的球状 材料组成并无太大差异,基础结构一般分为3层,最内层的核心就是聚苯乙烯、第二层包裹磁性物质——四氧化三铁(Fe3O4),最外层表面就是羧基(-COOH)修饰 的高分子材料所构成,其中羧基行使与核酸结合的工作。 在整个体系中,PEG就是影响DNA回收的决定性因素(其她因素还包括DNA 大小与浓度、盐离子浓度、孵育时间等等)。DNA在一定浓度的PEG存在条件下,NaCl或MgCl2促进条件下,使DNA发生脱水反应,分子构象会发生急剧变化,由线状被压缩形成卷曲球状,继而聚集沉淀,同时随PEG分子量、浓度以及盐浓度的不同,不同长度的DNA可以被选择性的沉淀出来。在磁珠体系中,特定分子量的PEG的功能主要就是与盐离子共同作用,改变不同长度DNA的分子构象,同时增加体系的粘稠程度,使磁珠存在其中处于悬浮状态,不易沉降,增加磁珠在空间位置的碰撞与排斥,从而增加核酸与磁珠的聚集效率与效果,除此之外,PEG与蛋白质具有相容性,也可去除样品中的蛋白质。 当处于PEG与盐离子环境中的DNA,因脱水作用而发生分子构象改变后,会暴露出磷酸骨架上大量的带负电荷的磷酸基团,与表面带负电荷的羧基磁珠结合,但如何解释负负电荷之间的作用,目前还不得而知。但普遍认为,这就是由于带正

磁珠的原理及作用

磁珠的原理 磁珠的主要原料为铁氧体。铁氧体是一种立方晶格结构的亚铁磁性材料。铁氧体材料为铁镁合金或铁镍合金,它的制造工艺和机械性能与陶瓷相似,颜色为灰黑色。电磁干扰滤波器中经常使用的一类磁芯就是铁氧体材料,许多厂商都提供专门用于电磁干扰抑制的铁氧体材料。这种材料的特点是高频损耗非常大,具有很高的导磁率,它可以是电感的线圈绕组之间在高频高阻的情况下产生的电容最小。对于抑制电磁干扰用的铁氧体,最重要的性能参数为磁导率μ和饱和磁通密度Bs。磁导率μ可以表示为复数,实数部分构成电感,虚数部分代表损耗,随着频率的增加而增加。因此,它的等效电路为由电感L和电阻R组成的串联电路,L和R都是频率的函数。当导线穿过这种铁氧体磁芯时,所构成的电感阻抗在形式上是随着频率的升高而增加,但是在不同频率时其机理是完全不同的。 在低频段,阻抗由电感的感抗构成,低频时R很小,磁芯的磁导率较高,因此电感量较大,L起主要作用,电磁干扰被反射而受到抑制,并且这时磁芯的损耗较小,整个器件是一个低损耗、高Q特性的电感,这种电感容易造成谐振因此在低频段,有时可能出现使用铁氧体磁珠后干扰增强的现象。 在高频段,阻抗由电阻成分构成,随着频率升高,磁芯的磁导率降低,导致电感的电感量减小,感抗成分减小但是,这时磁芯的损耗增加,电阻成分增加,导致总的阻抗增加,当高频信号通过铁氧体时,电磁干扰被吸收并转换成热能的形式耗散掉。 铁氧体抑制元件广泛应用于印制电路板、电源线和数据线上。如在印制板的电源线入口端加上铁氧体抑制元件,就可以滤除高频干扰。铁氧体磁环或磁珠专用于抑制信号线、电源线上的高频干扰和尖峰干扰,它也具有吸收静电放电脉冲干扰的能力。两个元件的数值大小与磁珠的长度成正比,而且磁珠的长度对抑制效果有明显影响,磁珠长度越长抑制效果越好。二、磁珠和电感的区别 电感是储能元件,而磁珠是能量转换(消耗)器件。电感多用于电源滤波回路,侧重于抑止传导性干扰;磁珠多用于信号回路,主要用于EMI方面。磁珠用来吸收超高频信号,象一些RF电路,PLL,振荡电路,含超高频存储器电路(DDR,SDRAM,RAMBUS等)都需要在电源输入部分加磁珠,而电感是一种储能元件,用在LC振荡电路、中低频的滤波电路等,其应用频率范围很少超过50MHz。 1.片式电感:在电子设备的PCB板电路中会大量使用感性元件和EMI滤波器元件。这些元件包括片式电感和片式磁珠,以下就这两种器件的特点进行描述并分析他们的普通应用场合以及特殊应用场合。表面贴装元件的好处在于小的封装尺寸和能够满足实际空间的要求。除了阻抗值,载流能力以及其他类似物理特性不同外,通孔接插件和表面贴装器件的其他性能特点基本相同。在需要使用片式电感的场合,要求电感实现以下两个基本功能:电路谐振和扼流电抗。谐振电路包括谐振发生电路,振荡电路,时钟电路,脉冲电路,波形发生电路等等。谐振电路还包括高Q带通滤波器电路。要使电路产生谐振,必须有电容和电感同时存在于电路中。在电感的两端存在寄生电容,这是由于器件两个电极之间的铁氧体本体相当于电容介质而产生的。在谐振电路中,电感必须具有高Q,窄的电感偏差,稳定的温度系数,才能达到谐振电路窄带,低的频率温度漂移的要求。高Q电路具有尖锐的谐振峰值。窄的电感偏置保证谐振频率偏差尽量小。稳定的温度系数保证谐振频率具有稳定的温度变化特性。标准的径向引出电感和轴向引出电感以及片式电感的差异仅仅在于封装不一样。电感结构包括介质材料(通常为氧化铝陶瓷材料)上绕制线圈,或者空心线圈以及铁磁性材料上绕制线圈。在功率应用场合,作为扼流圈使用时,电感的主要参数是直流电阻(DCR),额定电流,和低Q值。当作为滤波器使用时,希望宽的带宽特性,因此,并不需要电感的高Q特性。低的DCR可以保证最小的电压降,DCR定义为元件在没有交流信号下的直流电阻。

单片开关电源的发展及其应用

单片开关电源的发展及其应用 单片开关电源集成电路具有高集成度、高性价比、最简外围电路、最佳性能指标、能构成高效率无工频变压器的隔离式开关电源等优点。它于90 年代中、后期相继问世后,便显示出强大的生命力,目前它成为国际上开发中、小功率开关电源、精密开关电源及电源模块的优选集成电路。由它构成的开关电源,在成本上与同等功率的线性稳压电源相当,而电源效率显著提高,体积和重量则大为减小。这就为新型开关电源的推广与普及,创造了良好条件。 开关电源被誉为高效节能电源,它代表着稳压电源的发展方向,现已成为稳压电源的主流产品。近20 多年来,集成开关电源沿着下述两个方向不断发展。第一个方向是对开关电源的核心单元——控制电路实现集成化。1997 年国外首先研制成脉宽调制(PWM)控制器集成电路,美国摩托罗拉公司、硅通用公司(Silicon General)、尤尼特德公司(Unitrode)等相继推出一批PWM 芯片,典型产品有MC3520 、SG3524 、UC3842 。90 年代以来,国外又研制出开关频率达1MHz 的高速PWM 、PFM(脉冲频率调制)芯片,典型产品如UC1825 、UC1864 。第二个方向则是对中,小功率开关电源实现单片集成化。这大致分两个阶段:80 年代初意-法半导体有限公司(SGS-Thomson)率先推出L4960 系列单片开关式稳压器。该公司于90 年代又推出了L4970A 系列。其特点是将脉宽调制器、功率输出级、保护电路等集成在一个芯片中,使用时需配工频变压器与电网隔离,适于制作低压输出(5.1~40V)、大中功率(400W 以下)、大电流(1.5A~10A)、高效率(可超过90%)的开关电源。但从本质上讲,它仍属DC/DC 电源变换器。 1994 年,美国动力(Power)公司在世界上首先研制成功三端隔离式脉宽调制型单片开关电源,被人们誉为“顶级开关电源”。其第一代产品为TOPSwitch 系列,第二代产品则是1997 年问世的TOPSwitch-II 系列。该公司于1998 年又推出了高效、小功率、低价格的四端单片开关电源TinySwitch 系列。在这之后,Motorola 公司于1999 年又推出MC33370 系列五端单片开关电源,亦称高压功率开关调节器(HighVoltage Power Switching Regulator)。目前,单片开关电源已形成四大系列、近70 种型号的产品。 TOPSwitch-11 根据封装形式,TOPSwitch-II 可划分成三种类型:TOP221Y~227Y(TO-220 封装),TOP221P~224P(DIP-8 封装),TOP221G~224G(SMD-8 封装),产品分类详见表1。其中以TOP227Y 的输出功率为最大。 2.1 TOPSwitch-11 (1)TOPSWitch-II 内部包括振荡器、误差放大器、脉宽调制器、门电路、高压功率开关管(MOSFET)、偏置电路、过流保护电路、过热保护及上电复位电路、关断/自动重启动电路。它通过高频变压器使输出端与电网完全隔离,使用安全可靠。它属于漏极开路输出的电流控制型开关电源。由于采用CMOS 电路,使器件功耗显著降低。 (2)只有三个引出端:控制端C 、源极S 、漏极D,可同三端线性稳压器相媲美,能以最简方式构成无工频变压器的反激式开关电源。为完成多种控制、偏置及保护功能,C 、D 均属多功能引出端,实现了一脚多用。以控制端为例,它具有三项功能:①该端电压VC 为片内并联调整器和门驱动级提供偏压;②该端电流IC 能调节占空比;③该端还作为电源支路与自动重启动/补偿电容的连接点,通过外接旁路电容来决定自动重启动的频率,并对控制回路进行补偿。

美天旎公司磁珠分选产品

美天旎公司磁珠分选产 品 标准化管理处编码[BBX968T-XBB8968-NNJ668-MM9N]

美天旎公司MACS(磁珠分选)相关产品 一、MACS微珠(MicroBeads) MACS微珠是一种与高度特异性单克隆抗体相偶联的超顺磁化微粒,用于目的细胞或者去除细胞的磁性标记。微珠直径约有50nm,比细胞小200多倍,体积为细胞的百万分之一,光学显微镜下不可见。微珠由多聚糖和氧化铁组成,无毒性,对细胞无损伤,可以生物降解。MACS微珠与流式细胞仪兼容,不会影响细胞的光散射特性;磁性标记只占用2 0-30%的结合位点,不影响细胞的荧光抗体标记。此外,MACS微珠可以最大限度地避免细胞活化;无需解离磁珠,可以直接进行后续实验:如流式细胞仪分析或分选、细胞培养、分子生物学研究、回输给人或者动物。 MACS微珠主要有三种:直标微珠、间标微珠、多选微珠。其中间标微珠有抗免疫球蛋白微珠、抗生物素微珠或链霉亲和素微珠、抗荧光素微珠。多选微珠是专门为分选细胞亚群而研制的一种微珠。这种微珠通过特殊的方式与抗体偶联,在第一次阳性分选完成后,与细胞结合的多选微珠可以被解离试剂剪切下来,阳性分选的细胞可以进行再次阳性分选或者去除分选。 MACS技术分选的CD8阳性T细胞(箭头所示为磁性结合在细胞表面的微珠) 二、MACS分选柱(Separation Column) MACS分选柱是一类填充有不同规格铁珠的塑料容器,铁珠表面有亲水包被,因此不会损伤细胞。在磁场外MACS分选柱不带有磁性,但是当置于一个永久性磁场—MACS分选器中时,分选柱内的铁珠可以使分选器的磁场增强1000倍,足以滞留仅标记有极少量微珠的目的细胞;磁性标记细胞从分选柱中通过时可以受到均匀的磁力作用,从而提高分选纯度和回收率。手动操作在30分钟内可完成,自动分选仅需分钟,得到的细胞可立即用于后续实验。此外,大多数MACS分选柱都是无菌包装,一次性使用,可以满足细胞培养所需的无菌条件。 三、MACS分选器(MACS Separators) MACS分选器由永久性磁铁和支架构成。与分选柱一起组成高强度的梯度磁场。根据应用范围分为研究用和临床应用的MACS分选器,根据操作方式分为手动和自动分选器。

[工作]开关电源原理与维修开关电源原理图

[工作]开关电源原理与维修开关电源原理图开关电源原理与维修开关电源原理图 电源是各种电子设备必不可缺的组成部分,其性能优劣直接关系到电子设备的技术指标及能否安全可靠地工作。由于开关电源内部关键元器件工作在高频开关状态,功耗小,转化率高,且体积和重量只有线性电源的20%—30%,故目前它已成为稳压电源的主流产品。电子设备电气故障的检修,本着从易到难的原则,基本上都是先从电源入手,在确定其电源正常后,再进行其他部位的检修,且电源故障占电子设备电气故障的大多数。故了解开头电源基本工作原理,熟悉其维修技巧和常见故障,有利于缩短电子设备故障维修时间,提高个人设备维护技能。 二(开关电源的组成 开关电源大至由主电路、控制电路、检测电路、辅助电源四大部份组成,见图1。 1( 主电路 冲击电流限幅:限制接通电源瞬间输入侧的冲击电流。输入滤波器:其作用是过滤电网存在的杂波及阻碍本机产生的杂波反馈回电网。 整流与滤波:将电网交流电源直接整流为较平滑的直流电。逆变:将整流后的直流电变为高频交流电,这是高频开关电源的核心部分。 输出整流与滤波:根据负载需要,提供稳定可靠的直流电源。 2( 控制电路 一方面从输出端取样,与设定值进行比较,然后去控制逆变器,改变其脉宽或脉频,使输出稳定,另一方面,根据测试电路提供的数据,经保护电路鉴别,提供控制电路对电源进行各种保护措施。 3( 检测电路 提供保护电路中正在运行中各种参数和各种仪表数据。 4( 辅助电源

实现电源的软件(远程)启动,为保护电路和控制电路(PWM等芯片)工作供电。 开关电源原理图 三(开关电源的工作原理 开关电源就是采用功率半导体器件作为开关元件,通过周期性通断开关,控制开关元件的占空比来调整输出电压。开关元件以一定的时间间隔重复地接通和断开,在开关无件接通时输入电源Vi通过开关S和滤波电路向负载RL提供能量,当开关S断开时,电路中的储能装置(L1、C2、二极管D组成的电路)向负载RL释放在开关接通时所储存的能量,使负载得到连续而稳定的能量。 VO=TON/T*Vi VO 为负载两端的电压平均值 TON 为开关每次接通的时间 T 为开关通断的工作周期

磁珠的选择

磁珠的选择 磁珠主要用于EMI差模噪声抑制,他的直流阻抗很小,在高频下却有较高阻抗,一般说的600R是指100MHZ测试频率下的阻抗值。选择磁珠应考虑两方面:一是电路中噪声干扰的情况,二是需要通过的电流大小。要大概了解噪声的频率、强度,不同的磁珠的频率阻抗曲线是不同的,要选在噪声中心频率磁珠阻抗较高的那种。噪声干扰大的要选阻抗高一点的,但并不是阻抗越高越好,因为阻抗越高DCR也越高,对有用信号的衰减也越大。但一般也没有很明确的计算和选择的标准,主要看实际使用的效果,120R-600R之间都很常用。然后要看通过电流大小,如果用在电源线部分则要选额定电流较大的型号,用在信号线部分则一般额定电流要求不高。另外磁珠一般是阻抗越大额定电流越小。磁珠的选择要根据实际情况来进行。比如对于3。3V、300mA电源,要求3。3V不能低于3。0V,那么磁珠的直流电阻DCR就应该小于1R,这种情况一般选择0。5R,放置参数漂移。对噪声的抑止能力来说,如果要求对于100MHZ的、300mVpp的噪声,经过磁珠以后达到50mVpp的水平,假设负载为45欧姆,那么就应该选择225R@100Mhz,DCR<1R的磁珠楼上的,45欧的阻抗是怎么估计出来的?225R又是怎么算出来的?(45ohm/50mV)*250mV=225ohm首先你要知道你要滤除的噪声的频段,然后选一个在该频段选一个合适的阻抗(实际的可以通过仿真得出大概要多大,仿真模型可以向厂商要),第二步确定该电路通过的最大电流,电路流过的电流确定了也意味着你要选多大额定电流的磁珠,接下来是确定磁珠的DCR(直流阻抗),根据后一级电路电压供电的范围就能算出允许的磁珠的DCR的范围。封装的话自己看着办了。最后提醒一下啊,磁珠的阻抗在你加电压后和规格书上的有点差别要正确的选择磁珠,必须注意以下几点: 1、不需要的信号的频率范围为多少; 2、噪声源是谁; 3、需要多大的噪声衰减; 4、环境条件是什么(温度,直流电压,结构强度); 5、电路和负载阻抗是多少; 6、是否有空间在PCB板上放置磁珠;前三条通过观察厂家提供的阻抗频率曲线就可以判断。在阻抗曲线中三条曲线都非常重要,即电阻,感抗和总阻抗。总阻抗通过ZR22πfL()2+:=fL来描述。典型的阻抗曲线如下图所示:通过这一曲线,选择在希望衰减噪声的频率范围内具有最大阻抗而在低频和直流下信号衰减尽量小的磁珠型号。片式磁珠在过大的直流电压下,阻抗特性会受到影响,另外,如果工作温升过高,或者外部磁场过大,磁珠的阻抗都会受到不利的影响。使用片式磁珠和片式电感的原因:是使用片式磁珠还是片式电感主要还在于应用。在谐振电路中需要使用片式电感。而需要消除不需要的EMI噪声时,使用片式磁珠是最佳的选择。片式磁珠和片式电感的应用场合:片式电感:射频(RF)和无线通讯,信息技术设备,雷达检波器,汽车电子,蜂窝电话,寻呼机,音频设备,PDAs (个人数字助理),无线遥控系统以及低压供电模块等。片式磁珠:时钟发生电路,模拟电路和数字电路之间的滤波,I/O输入/输出内部连接器(比如串口,并口,键盘,鼠标,长途电信,本地局域网),射频(RF)电路和易受干扰的逻辑设备之间,供电电路中滤除高频传导干扰,计算机,打印机,录像机(VCRS),电视系统和手提电话中的EMI噪声抑止。 在产品数字电路EMC设计过程中,我们常常会使用到磁珠,那么磁珠滤波的原理以及如何使用呢?铁氧体材料是铁镁合金或铁镍合金,这种材料具有很高的导磁率,他可以是电感的线圈绕组之间在高频高阻的情况下产生的电容最小。铁氧体材料通常在高频情况下应用,因为在低频时他们主要程电感特性,使得线上的损耗很小。在高频情况下,他们主要呈电抗特性比并且随频率改变。实际应用中,铁氧体材料是作为射频电路的高频衰减器使用的。

开关电源工作原理详细解析

开关电源工作原理详细解析 个人PC所采用的电源都是基于一种名为―开关模式‖的技术,所以我们经常会将个人PC电源称之为——开关电源(Switching Mode Power Supplies,简称SMPS),它还有一个绰号——DC-DC转化器。本次文章我们将会为您解读开关电源的工作模式和原理、开关电源内部的元器件的介绍以及这些元器件的功能。 ●线性电源知多少 目前主要包括两种电源类型:线性电源(linear)和开关电源(switching)。线性电源的工作原理是首先将127 V或者220 V市电通过变压器转为低压电,比如说12V,而且经过转换后的低压依然是AC交流电;然后再通过一系列的二极管进行矫正和整流,并将低压AC 交流电转化为脉动电压(配图1和2中的―3‖);下一步需要对脉动电压进行滤波,通过电容完成,然后将经过滤波后的低压交流电转换成DC直流电(配图1和2中的―4‖);此时得到的低压直流电依然不够纯净,会有一定的波动(这种电压波动就是我们常说的纹波),所以还需要稳压二极管或者电压整流电路进行矫正。最后,我们就可以得到纯净的低压DC 直流电输出了(配图1和2中的―5‖) 配图1:标准的线性电源设计图

配图2:线性电源的波形 尽管说线性电源非常适合为低功耗设备供电,比如说无绳电话、PlayStation/Wii/Xbox等游戏主机等等,但是对于高功耗设备而言,线性电源将会力不从心。 对于线性电源而言,其内部电容以及变压器的大小和AC市电的频率成反比:也即说如果输入市电的频率越低时,线性电源就需要越大的电容和变压器,反之亦然。由于当前一直采用的是60Hz(有些国家是50Hz)频率的AC市电,这是一个相对较低的频率,所以其变压器以及电容的个头往往都相对比较大。此外,AC市电的浪涌越大,线性电源的变压器的个头就越大。 由此可见,对于个人PC领域而言,制造一台线性电源将会是一件疯狂的举动,因为它的体积将会非常大、重量也会非常的重。所以说个人PC用户并不适合用线性电源。 ●开关电源知多少 开关电源可以通过高频开关模式很好的解决这一问题。对于高频开关电源而言,AC输入电压可以在进入变压器之前升压(升压前一般是50-60 KHz)。随着输入电压的升高,变压器以及电容等元器件的个头就不用像线性电源那么的大。这种高频开关电源正是我们的个人PC以及像VCR录像机这样的设备所需要的。需要说明的是,我们经常所说的―开关电源‖其实是―高频开关电源‖的缩写形式,和电源本身的关闭和开启式没有任何关系的。

三极管开关电源的原理及其应用

三极管开关原理[2009年05月21日] 2009-05-21 22:09 图1 NPN 三极管共射极电路图2 共射极电路输出特性曲 图一所示是NPN三极管的共射极电路,图二所示是它的特性曲线图,图中它有3 种工作区域:截止区(Cutoff Region)、线性区(Active Region) 、饱和区(Saturation Region)。三极管是以B 极电流IB 作为输入,操控整个三极管的工作状态。若三极管是在截止区,IB 趋近于0 (V BE亦趋近于0),

C 极与E 极间约呈断路状态,I C = 0,V CE = V CC。若三极管是在线性区,B-E 接面为顺向偏压,B-C 接面为逆向偏压,IB 的值适中(V BE = 0.7 V),I C =h F E I B呈比例放大,Vce = Vcc -Rc I c = V cc - Rc h FE I B可被I B操控。若三极管在饱和区,I B很大,V BE= 0.8 V,V CE = 0.2 V,V BC = 0.6 V,B-C 与B-E 两接面均为正向偏压,C-E间等同于一个带有0.2 V 电位落差的通路,可得I c=( Vcc - 0.2 )/ Rc,Ic与I B无关了,因此时的I B大过线性放大区的I B值,Ic

磁珠的原理和作用

求助编辑百科名片 磁珠专用于抑制信号线、电源线上的高频噪声和尖峰干扰,还具有吸收静电脉冲的能力。磁珠是用来吸收超高频信号,象一些RF电路,PLL,振荡电路,含超高频存储器电路(DDRSDRAM,RAMBUS等)都需要在电源输入部分加磁珠,而电感是一种蓄能元件,用在LC振荡电路,中低频的滤波电路等,其应用频率范围很少超过50MHZ。磁珠有很高的电阻率和磁导率,等效于电阻和电感串联,但电阻值和电感值都随频率变化。 目录 磁珠 参数 原理 磁珠和电感的区别 片式电感 片式磁珠 大电流贴片积层磁珠 功用 选用 应用 注意事项 常用型 免疫磁珠的简称 简介 应用 磁珠 参数

磁珠和电感的区别 片式电感 片式磁珠 大电流贴片积层磁珠 功用 选用 应用 注意事项 常用型 免疫磁珠的简称 简介 应用 展开 编辑本段磁珠 磁珠的功能主要是消除存在于传输线结构(电路)中的RF噪声,RF能量是叠加在直流传输电平上的交流正弦波成分,直流成分是需要的有用信号,而射频RF能量却是无用的电磁干扰沿着线路传输和辐射(EMI)。要消除这些不需要的信号能量,使用片式磁珠扮演高频电阻的角色(衰减器),该器件允许直流信号通过,而滤除交流信号。通常高频信号为30MHz以上,然而,低频信号也会受到片式磁珠的影响。 磁珠有很高的电阻率和磁导率,他等效于电阻和电感并联,但电阻值和电感值都随频率变化。他比普通的电感有更好的高频滤波特性,在高频时呈现阻性,所以能在相当宽的频率范围内保持较高的阻抗,从而提高调频滤波效果。

磁珠 作为电源滤波,可以使用电感。磁珠的电路符号就是电感但是型号上可以看出使用的是磁珠在电路功能上,磁珠和电感是原理相同的,只是频率特性不同罢了。 磁珠由氧磁体组成,电感由磁心和线圈组成,磁珠把交流信号转化为热能,电感把交流存储起来,缓慢的释放出去。 磁珠 磁珠对高频信号才有较大阻碍作用,一般规格有100欧/100MHZ ,它在低频时电阻比电感小得多。 铁氧体磁珠 (Ferrite Bead) 是目前应用发展很快的一种抗干扰组件,廉价、易用,滤除高频噪声效果显着。 在电路中只要导线穿过它即可(我用的都是象普通电阻模样的,导线已穿过并胶合,也有表面贴装的形式,但很少见到卖的)。当导线中电流穿过时,铁氧体对低频电流几乎没有什么阻抗,而对较高频率的电流会产生较大衰减作用。高频电流在其中以热量形式散发,其等效电路为一个电感和一个电阻串联,两个组件的值都与磁珠的长度成比例。磁珠种类很多,制造商应提供技术指标说明,特别是磁珠的阻抗与频率关系的曲线。

开关电源各模块原理实图讲解

开关电源原理 一、 开关电源的电路组成: PWM

①防雷电路:当有雷击,产生高压经电网导入电源时,由MOV1、MOV2、MOV3:F1、F2、 F3、FDG1组成的电路进行保护。当加在压敏电阻两端的电压超过其工作电压时,其阻值降低,使高压能量消耗在压敏电阻上,若电流过大,F1、F2、F3会烧毁保护后级电路。 ②输入滤波电路:C1、L1、C2、C3组成的双π型滤波网络主要是对输入电源的电磁噪声及杂 波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。当电源开启瞬间,要对C5充电,由于瞬间电流大,加RT1(热敏电阻)就能有效的防止浪涌电流。因瞬时能量全消耗在RT1电阻上,一定时间后温度升高后RT1阻值减小(RT1是负温系数元件),这时它消耗的能量非常小,后级电路可正常工作。 ③整流滤波电路:交流电压经BRG1整流后,经C5滤波后得到较为纯净的直流电压。若C5 容量变小,输出的交流纹波将增大。

① 输入滤波电路:C1、L1、C2组成的双π型滤波网络主要是对输入电源的电磁噪声及杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。C3、C4为安规电容,L2、L3为差模电感。 ② R1、R2、R3、Z1、C6、Q1、Z2、R4、R5、Q2、RT1、C7组成抗浪涌电路。在起机的瞬间,由于C6的存在Q2不导通,电流经RT1构成回路。当C6上的电压充至Z1的稳压值时Q2导通。如果C8漏电或后级电路短路现象,在起机的瞬间电流在RT1上产生的压降增大,Q1导通使Q2没有栅极电压不导通,RT1将会在很短的时间烧毁,以保护后级电路。 三、 功率变换电路: 1、 MOS 管的工作原理:目前应用最广泛的绝缘栅场效应管是MOSFET (MOS 管),是利用半导 体表面的电声效应进行工作的。也称为表面场效应器件。由于它的栅极处于不导电状态,所以52、 常见的原理图: 3、工作原理: R4、C3、R5、R6、C4、D1、D2组成缓冲器,和开关MOS 管并接,使开关管电压应力减少,EMI 减少,不发生二次击穿。在开关管Q1关断时,变压器的原边线圈易产生尖峰电压和尖峰电流,这些元件组合一起,能很好地吸收尖峰电压和电流。从R3测得的电流峰值信号参与当前工作周波的占空比控制,因此是当前工作周波的电流限制。当R5上的电压达到1V 时,UC3842停止工作,开关管Q1立即关断 。

开关电源原理与应用讲义

开关电源的原理与应用 课件下载方法: 进入综合信息门户-教学资源-网络教学综合平台中,在课程编号中输入(0806034034)-出现(开关电源的原理与应用)点击进入后-左侧信息中点击(课程互动)-左侧信息中点击(教学材料)-显示(开关电源讲义--2011)-点击后显示(开关电源的原理与应用)-点击下载 序论 开关电源的技术领域-属于电力电子技术 电力电子技术-电力学、电子技术、控制理论三个学科的交叉 1.电力电子技术的概念及研究领域 电力电子技术(Power Electronics)是以电力电子器件(Power Electronic Device)为基础,利用电路和控制理论对电能进行交换和控制的技术,即应用于电力应用领域的电子技术。 电力电子技术也称为电力电子学或功率电子学。 电力电子技术由电力学、电子学、和控制理论三个学科交叉形成,是目前较为活跃的应用型学科。 电力电子技术通常分为器件的制造技术和电力电子电路的应用技术即变流技术两大部分。其中,器件制造技术包括各种电力电子器件的设计、制造、参数测试、模型分析等。而目前所用的电力电子器件基本都采用半导体材料制成,所以电力电子器件也称为电力半导体器件。电力电子器件的制造技术是电力电子技术的基础。 电能有交流(Alternating Current, AC)和直流(Direct Current, DC)两大类。 交流电能有电压大小、相位、频率和相数的差别,直流电能有大小和极性的差别。 在电能的实际应用中,常常需要在两种电能之间,或是对同一种电能的一个或多个参数(如电压、电流、频率等)进行变换,这就是电力变换(Power Conversion),也就

磁珠纯化DNA的原理

磁珠起源 磁珠目前广泛应用于NGS实验中,DNA、RNA的纯化,片段筛选……今天,我们就聊一聊磁珠。 首先说一下磁珠的起源: 磁珠的发明构想最初来自于挪威科技大学的化学家John Ugelstad,他在1976年以聚苯乙烯(Polystyrene)为主要材料,制造出均匀磁化的球体粒子。1979年Vogelstein等报道在高浓度碘化钠存在下玻璃粉末作为吸附剂用于从琼脂糖凝胶中提取DNA片段,而后基于硅胶和其他具有亲水性表面的载体的固相核酸纯化技术广泛发展起来(Vogelstein B,Gillespiet D. Proc https://www.wendangku.net/doc/7a11447497.html,A,1979,76(2):615~619)。基于磁性微粒的核酸纯化方法就是其中的一种 现代分子生物学和医学对高通量,高灵敏度,自动化操作的需求也是与日俱增,于是20世纪90年代,磁珠法DNA提取技术由此得到了大力发展。硅质膜磁珠是一类最早出现基于硅介质与核酸特异结合的原理而发展起来的的产品,它广泛应用于DNA、RNA的纯化。与离心柱法原理相同,离心柱法所采用的硅胶膜实际上就是玻璃纤维,而磁珠之所以能够结合核酸也是因为其表面包被了玻璃纤维。硅质膜二氧化硅磁珠具有超顺磁性内核和二氧化硅外壳,表面修饰大量的硅羟基。磁珠表面的硅羟基能够与溶液中的核酸通过氢键和静电作用发生特异性结合,在高盐条件下与核酸结合,而在低盐环境下被洗脱,这样就可以直接从复杂的生物体系中迅速分离核酸。 到现在纳米级别的磁珠发展已经各式各样了,表面性质各不相同,分离原理也不尽相同。 但基本上固态的球状材料组成并无太大差异,基础结构一般分为3层,最内层的核心是聚苯 乙烯、第二层包裹磁性物质——四氧化三铁(Fe3O4),最外层表面是官能基团修饰的高分 子材料所构成,其中官能基团行使与核酸结合的工作,提取、生物素捕获、片段筛选功能的 不同,表面官能基团不同。当然不仅磁珠应用在核酸制备上,在化学发光、细胞分选、蛋白 纯化等应用磁珠依然是大显身手,是因为不同的官能基团,或者偶联其它,如蛋白抗体等。 毋庸置疑,NGS上用的最多还是我们的老熟人——贝克曼的XP磁珠。这种羧化磁珠比 羟基磁珠产量更高,非特异性结合更少。XP磁珠采用SPRI(固相可逆固定化)技术:在较 高浓度的PEG和NaCl导致DNA分子水化层脱去,DNA胶体热力学稳定性破坏,构象也随之 改变,带负电荷的磷酸基团大量暴露在外面;带负电荷的磷酸基团通过Na+与羧基形成“电

开关电源工作原理解析

开关电源工作原理解析 个人PC所采用的电源都是基于一种名为研关模式旧勺技术,所以我们经常会将个 人PC电源称之为------ 开关电源(Switching Mode Power Supplies,简称SMPS),它还有一 个绰号一一DC-DC转化器。本次文章我们将会为您解读开关电源的工作模式和原理、开关电源内部的元器件的介绍以及这些元器件的功能。 ?线性电源知多少 目前主要包括两种电源类型:线性电源(linear)和开关电源(switching )。线性 电源的工作原理是首先将127 V或者220 V市电通过变压器转为低压电,比如说12V ,而且 经过转换后的低压依然是AC交流电;然后再通过一系列的二极管进行矫正和整流,并将低压AC交流电转化为脉动电压(配图1和2中的一3)11 ;下一步需要对脉动电压进行滤波,通过电容完成,然后将经过滤波后的低压交流电转换成DC直流电(配图1和2中的一4)11 ; 此时得到的低压直流电依然不够纯净,会有一定的波动(这种电压波动就是我们常说的纹波),所以还需要稳压二极管或者电压整流电路进行矫正。最后,我们就可以得到纯净的低 压DC直流电输出了(配图1和2中的一5)11

配图2:线性电源的波形 尽管说线性电源非常适合为低功耗设备供电,比如说无绳电话、 PlayStati on/Wii/Xbox 等游戏 主机等等,但是对于高功耗设备而言,线性电源将会力不从心。 对于线性电源而言,其内部电容以及变压器的大小和 AC 市电的频率成反比:也 即说如果输入市电的频率越低时, 线性电源就需要越大的电容和变压器, 反之亦然。由于当 前一直采用的是 60Hz (有些国家是50Hz )频率的AC 市电,这是一个相对较低的频率,所 以其变压器以及电容的个头往往都相对比较大。此外, AC 市电的浪涌越大,线性电源的变 压器的个头就越大。 由此可见,对于个人PC 领域而言,制造一台线性电源将会是一件疯狂的举动, 因 为它的体积将会非常大、重量也会非常的重。所以说个人 PC 用户并不适合用线性电源。 ?开关电源知多少 开关电源可以通过高频开关模式很好的解决这一问题。对于高频开关电源而言, AC 输入电压可以在进入变压器之前升压(升压前一般是 50-60 KHz )。随着输入电源的升 高,变压器以及电容等元器件的个头就不用像线性电源那么的大。 这种高频开关电源正是我 们的个人PC 以及像VCR 录像机这样的设备所需要的。需要说明的是,我们经常所说的 子 关电源I 其实是—高频开关电源I 的缩写形式,和电源本身的关闭和开启式没有任何关系的。

相关文档