文档库 最新最全的文档下载
当前位置:文档库 › 电路基本定律及定理的验证

电路基本定律及定理的验证

电路基本定律及定理的验证
电路基本定律及定理的验证

电路基本定律及定理的验证

一、实验目的

1、通过实验加深对参考方向,基尔霍夫定理、叠加定理、戴维南定理的理解;

2、初步掌握用Multisim软件建立电路、辅助分析电路的方法。

二、实验原理

1.基尔霍夫定理

基尔霍夫电流定理(KCL):任意时刻,流进和流入电路中节点的电流的代数和等于零,即∑I=0。

基尔霍夫电压定理(KVL):在任何一个闭合回路中,所有的电压降之和等于零,即∑V=0。

2.叠加定理

在线性电路中,任一支路的电流或电压等于电路中每一个独立源单独作用时,在该支路所产生的电流或电压的代数和。

3.戴维南定理

对外电路来说,任何复杂的线性有源一端口网络都可以用一个电压源和一个等效电阻的串联来等效。此电压源的电压等于一端口的开路电压Uoc,而电阻等于一端口的全部独立电压置0后的输入电阻R O。

实验中往往采用电压表测量开路电压Uoc,用电流表测量端口短路电流I SC,等效电阻R O等于开路电压Uoc除以短路电流I SC,即R O=Uoc/I SC。

三、实验内容

实验电路如图1-1所示。

图1-1

1.基尔霍夫定理和叠加定理的验证

1)实验步骤

a)按图1-1所示用Multisim软件创建电路;

b)启动程序,测得各电阻两端电压和各支路电流,验证KCL,KVL;

c)E1单独作用下,E2的数值置为0以及E2单独作用,E1的数值置为0两种情况下,测得各个电

阻两端电压和各支路电流值,验证叠加定理;

d)将R2改成1N4009的二极管,验证KCL,KVL,叠加定理是否成立。

2)实验数据

R2=100Ω

R2换为1N4009二极管,实验电路如图1-2所示。

图1-2

R2换为1N4009二极管

2.戴维南定理的验证

1)将图1-1中电阻R3断开,测量电路A,B端口的开路电压Uoc;6.701

2)将图1-1中电阻R3短路,测得AB端口短路电流Isc: 0.081A

3)计算等效电阻R O:R O=Uoc/ Isc

如图1-3连接电路(将等效电路与R3串联)。测量R3电阻两端电压及支路电流与原电路结果相比较,验证戴维南定理。

图1-3

四、注意事项

实验前,需要先定义电压、电流的参考方向,确定实际测量数据的正、负符号。

五、报告要求

1、画出所建电路图。

2、记录测量数据并对测量结果进行验证分析。

3、回答思考题。

六、思考题

1、电流表的内阻参数默认值为1nΩ,电压表的内阻为1MΩ,本实验中它们是否需要重新设置?如何考虑它们对电路测试结果的影响?

《电路》第五版-第4章答案

第四章 电路定理 4-1应用叠加定理求图示电路中电压ab u 。 2Ω 1Ω +- ab u a b 题4-1图 解:画出两个电源单独作用时的分电路如题解4-1图所示。 对(a)图应用结点电压法可得: 1 1 15sin 13211n t u ??++= ?+?? 解得: 13sin n u tV = ()1 1 1sin 21 n ab u u tV = ?=+ 题解4-1图 +- (a) () 1ab u + - (b) ()2ab u 对(b)图,应用电阻分流公式有 11 11351321 t t e i e A --=?=+++ 所以 ()21 15 t ab u i e V -=?= ()()121 sin 5 t ab ab ab u u u t e V -=+=+

4-2应用叠加定理求图示电路中电压u 。 题4-2图 - V 解:画出电源分别作用的分电路图 ①(a) (b) 题解4-2图 - V u 对(a)图应用结点电压法有 1 111136508240108210n u ??++=+ ?++?? 解得: ()1 182.667n u u V == 对(b)图,应用电阻串并联化简方法,可得: 104028161040310403821040si u V ??? ?+ ? +??=?=??? ++ ?+?? ()28 23 si u u V -= =- 所以,由叠加定理得原电路的u 为 ()()1280u u u V =+=

4-3应用叠加定理求图示电路中电压2u 。 3Ω 题4-3图 2u 解:根据叠加定理,作出电压源和电流源单独作用时的分电路,受控源均保留在分电路中。 (a) (b) 3 Ω 题解4-3图 () 123 Ω A (a) 图中 ()112 0.54 i A = = 所以根据KVL 有 ()()1 1 213221u i V =-?+=- (b) 图中 ()2 10i = ()2 2339u V =?= 故原电路电压 ()()1 2 2228u u u V =+= 4-4图示电路中,当电流源1s i 和电压源1s u 反向时(2s u 不变),电压ab u 是原来的0.5倍;当电流源1s i 和电压源1s u 反向时(1s u 不变),电压ab u 是原来的0.3倍。问:仅 1s i 反向时(1s u ,2s u 不变),电压ab u 应为原来的多少倍?

第章 电路的基本概念与基本定律()

第1章电路的基本概念与基本定律 一、填空题: 1. 下图所示电路中,元件消耗功率200W P=,U=20V,则电流I为 10 A。 2. 如果把一个24伏的电源正极作为零参考电位点,负极的电位是_-24___V。 3.下图电路中,U = 2 V,I = 1 A 3 A,P 2V = 2 W 3 W , P 1A = 2 W,P 3Ω = 4 W 3 W,其中电流源(填电流源或电压源)在发出功 率,电压源(填电流源或电压源)在吸收功率。 U 4. 下图所示中,电流源两端的电压U= -6 V,电压源是在发出功率 5.下图所示电路中,电流I= 5 A ,电阻R= 10 Ω。 B C 6.下图所示电路U=___-35 ________V。 7.下图所示电路,I=__2 __A,电流源发出功率为_ 78 ___ W,电压源吸收功率20 W。 8. 20. 下图所示电路中,根据KVL、KCL可得U=2 V,I 1= 1 A,I 2 = 4 A ;电流源的 功率为 6 W;是吸收还是发出功率发出。2V电压源的功率为 8 W,是吸收还是发出功率吸收。 9.下图所示的电路中,I 2= 3 A,U AB = 13 V。 10.电路某元件上U = -11 V,I = -2 A,且U 、I取非关联参考方向,则其吸收的功率是22 W。 11. 下图所示的电路中,I1= 3 A,I2= 3 A,U AB= 4 V。 12.下图所示的电路中,I= 1 A;电压源和电流源中,属于负载的是 电压源。 13. 下图所示的电路中,I=-3A;电压源和电流源中,属于电源的是电流源。

14.下图所示的电路,a 图中U AB 与I 之间的关系表达式为 155AB U I =+ ;b 图中U AB 与I 之间 的关系表达式为 510 AB U I =- 。 a 图 b 图 15. 下图所示的电路中,1、2、3分别表示三个元件,则U = 4V ;1、2、3这三个元件中,属于电源的是 2 ,其输出功率为 24W 。 16.下图所示的电路中,电流I= 6 A ,电流源功率大小为 24 W ,是在 发出 (“吸收”,“发出”)功率。 17. 下图所示的电路中,I= 2 A ,5Ω电阻消耗的功率为 20W W ,4A 电流源的发出功率为 40 W 。 18.下图所示的电路中,I= 1A A 。 19. 下图所示的电路中,流过4Ω电阻的电流为 0.6 A ,A 、B 两点间的电压为 5.4 V , 3Ω电阻的功率是 3 W 。 20. 下图所示电路,A 点的电位V A 等于 27 V 。 21.下图所示的电路中,(a )图中Uab 与I 的关系表达式为3AB U I =- ,(b) 图中Uab 与I 的关系 表达式为 103AB U I =+ ,(c) 图中Uab 与I 的关系表达式为 62 AB U I =+,(d )图中Uab 与I 的关系表达式为 62 AB U I =+ 。 (a ) (b) (c) (d ) 22. 下图中电路的各电源发出的功率为Us P = 0W , Is P = 8W 。 23. 额定值为220V 、40W 的灯泡,接在110V 的电源上,其功率为 10 W 。 二、选择题: 1. M Ω是电阻的单位,1M Ω=( B )Ω。 A.103 B.106 C. 109 D. 1012 2.下列单位不是电能单位的是( B )。 A.W S ? B.kW C.kW h ? D.J 3. 任一电路,在任意时刻,某一回路中的电压代数和为0,称之为( B )。 A.KCL B.KVL C.VCR D.KLV 4. 某电路中,B 点电位-6V ,A 点电位-2V ,则AB 间的电压U AB 为( C )。 A.-8V B.-4V C.4V D.8V 5. 下图电路中A 点的电位为( D )V 。

实验1 基尔霍夫电流定律的验证实验

实验一基尔霍夫电流定律的验证实验 一、实验目的 1、通过实验验证基尔霍夫电流定律,巩固所学的理论知识。 2、加深对参考方向概念的理解。 二、实验原理 1、基尔霍夫定律: 基尔霍夫电流定律为ΣI = 0 ,应用于节点。基尔霍夫定律是分析与计算电路的基本重要定律之一。 图1-1 两个电压源电路图图1-2 基尔霍夫电流定律 2、基尔霍夫电流定律(Kirchhoff's Current law)可简写为KCL: 基尔霍夫电流定律,在任一瞬时,流向某一节点的电流之和应该等于由该节点流出的电流之和。就是在任一瞬时,一个节点上电流代数和恒等于零。在图1-1所示电路中,对节点a图1-2可以写出 I1 + I2 = I3 或 I1 + I2 -I3 = 0 即 ΣI = 0 3、参考方向: 为研究问题方便,人们通常在电路中假定一个方向为参考,称为参考方向。 (1) 若流入节点的电流取正号,则流出节点的电流取负号。 (2) 任一回路中,凡电压的参考方向与回路绕行方向一致者,则此电压的前面取正号,电压的参考方向与回路绕行方向相反者,前面取负号。 (3) 任一回路中电流的参考方向与回路绕行方向一致者,前面取正号,相反者前面取负号。在实际测量电路中的电流或电压时,当电路中所测的电流或电压的实际方向与参考方向相同时取正值,其实际方向与参考方向相反时取负值。 三、实验内容及步骤 KCL定律实验即在EWB界面上绘制如图1-3所示的电路图,通过软件仿真的方法验证KCL定律的正确性。对于该电路图来讲,两个直流电源E1、E2共同作用于电路中,设定电流I1、I2为流入结点a的方向,电流I3为流出结点a的方向,根据前述参考方向的定义,在列写KCL方程时,I1、I2、I3前分别应取“+”、“+”、“-”号,则对结点a列KCL

第四章 电路定理

第四章 电路定理 4-1 试用叠加定理求题4-1图所示电路中各电阻支路的电流I 1、I 2、I 3和I 4。 4-2 试用叠加定理求题4-2图所示电路中的电压U 和电流I x 。 题 4-1 图 题 4-2 图 4-3 试用叠加定理求题4-3图所示电路中的电流I 。 4-4 试用叠加定理求题4-4图所示电路中的电压U x 和电流I x 。 题 4-3 图 题 4-4 图 4-5 在题4-5图中,(a) N 为仅由线性电阻 构成的网络。当u 1 =2 V , u 2 =3 V 时,i x =20 A; 而 当u 1 = -2 V , u 2 = 1 V 时,i x = 0。求u 1=u 2=5 V 时 的电流i x 。(b)若将N 换为含有独立源的网络, 当u 1 = u 2 = 0时,i x = -10 A ,且上述已知条件仍 然适用,再求当u 1 = u 2 = 5 V 时的电流i x 。 4-6 对于题4-6图所示电路, (1) 当u 1 = 90 V 时,求u s 和u x ; (2) 当u 1 = 30 V 时,求u s 和u x ; (3) 当u s = 30 V 时,求u 1和u x ; (4) 当u x = 20 V 时,求u s 和u 1; 4-7 已知题4-7图所示电路中的网络N 是 由线性电阻组成。当i s =1 A ,u s =2 V 时,i =5 A ; 当i s = -2 A ,u s = 4 V 时,u = 24 V 。试求当i s = 2 A ,u s = 6 V 时的电压u 。 4-8 对于题4-8图所示电路,已知U 0 =2.5 V ,试用戴维宁定理求解电阻R 。 题 4-5 图 题 4-6 图

第1章-电路基本概念与基本定律

第1章 电路的基本概念与基本定律 一、填空题: 1. 下图所示电路中,元件消耗功率200W P ,U=20V,则电流I 为 10 A 。 + U 2. 如果把一个24伏的电源正极作为零参考电位点,负极的电位是_-24___V 。 3.下图电路中,U = 2 V ,I = 1A 3 A ,P 2V = 2W 3 W , P 1A = 2 W ,P 3Ω = 4 W 3 W ,其中 电流源 (填电流源或电压源)在发出功率, 电压源 (填电流源或电压源)在吸收功率。 U 4. 下图所示中,电流源两端的电压U= -6 V ,电压源是在 发出功率 5.下图所示电路中,电流I = 5 A ,电阻R = 10 Ω。 B C

6.下图所示电路U=___-35 ________V。 7.下图所示电路,I=__2 __A,电流源发出功率为_ 78 ___ W,电压源吸收功率20 W。 8. 20.下图所示电路中,根据KVL、KCL可得U=2 V,I1=1 A,I2=4 A ;电流源的功率为6 W;是吸收还是发出功率发出。2V电压源的功率为 8 W,是吸收还是发出功率吸收。 V 4 9.下图所示的电路中,I2= 3 A,U AB= 13 V。 10.电路某元件上U = -11 V,I = -2 A,且U 、I取非关联参考方向,则其吸收的功率是22 W。 11. 下图所示的电路中,I1= 3 A,I2= 3 A,U AB= 4 V。

12.下图所示的电路中,I= 1 A ;电压源和电流源中,属于负载的是 电压源 。 8V 13. 下图所示的电路中,I= -3A ;电压源和电流源中,属于电源的是电流源 。 8V 14.下图所示的电路,a 图中U AB 与I 之间的关系表达式为 155AB U I =+ ;b 图中U AB 与I 之间的关系表达式为 510 AB U I =- 。 5Ω Ω I I A B B A 10V a 图 b 图 15. 下图所示的电路中,1、2、3分别表示三个元件,则U = 4V ;1、2、3这三个元件中,属于电源的是 2 ,其输出功率为 24W 。

最新电工技术第一章 电路的基本概念和基本定律习题解答

第一章 电路的基本概念和基本定律 本章是学习电工技术的理论基础,介绍了电路的基本概念和基本定律:主要包括电压、电流 的参考方向、电路元件、电路模型、基尔霍夫定律和欧姆定律、功率和电位的计算等。 主要内容: 1.电路的基本概念 (1)电路:电流流通的路径,是为了某种需要由电工设备或电路元件按一定方式组合而成 的系统。 (2)电路的组成:电源、中间环节、负载。 (3)电路的作用:①电能的传输与转换;②信号的传递与处理。 2.电路元件与电路模型 (1)电路元件:分为独立电源和受控电源两类。 ①无源元件:电阻、电感、电容元件。 ②有源元件:分为独立电源和受控电源两类。 (2)电路模型:由理想电路元件所组成反映实际电路主要特性的电路。它是对实际电路电 磁性质的科学抽象和概括。采用电路模型来分析电路,不仅使计算过程大为简化,而且能更清晰 地反映该电路的物理本质。 (3)电源模型的等效变换 ①电压源与电阻串联的电路在一定条件下可以转化为电流源与电阻并联的电路,两种电 源之间的等效变换条件为:0R I U S S =或0 R U I S S = ②当两种电源互相变换之后,除电源本身之外的其它外电路,其电压和电流均保持与变 换前完全相同,功率也保持不变。 3.电路的基本物理量、电流和电压的参考方向以及参考电位 (1)电路的基本物理量包括:电流、电压、电位以及电功率等。 (2)电流和电压的参考方向:为了进行电路分析和计算,引入参考方向的概念。电流和电 压的参考方向是人为任意规定的电流、电压的正方向。当按参考方向来分析电路时,得出的电流、 电压值可能为正,也可能为负。正值表示所设电流、电压的参考方向与实际方向一致,负值则表 示两者相反。当一个元件或一段电路上的电流、电压参考方向一致时,称它们为关联参考方向。

电路分析实验基尔霍夫定律的验证

《电路分析实验》目录 一、基尔霍夫定律的验证 (1) 二、叠加原理的验证 (2) 三、戴维南定理和诺顿定理的验证 (4) 四、RC一阶电路的响应测试 (7) 五、RLC串联揩振电路的研究 (10) 六、RC选频网络特性测试 (13) 实验一基尔霍夫定律的验证 一、实验目的 1. 验证基尔霍夫定律的正确性,加深对基尔霍夫定律的理解。 2. 学会用电流插头、插座测量各支路电流。 二、原理说明 基尔霍夫定律是电路的基本定律。测量某电路的各支路电流及每个元件两端的电压,应能分别满足基尔霍夫电流定律(KCL)和电压定律(KVL)。即对电路中的任一个节点而言,应有ΣI=0;对任何一个闭合回路而言,应有ΣU=0。 运用上述定律时必须注意各支路或闭合回路中电流的正方向,此方向可预先任意设定。 三、实验设备(同实验二) 四、实验内容 实验线路与实验五图5-1相同,用DG05挂箱的“基尔霍夫定律/叠加原理”线路。 1. 实验前先任意设定三条支路和三个闭合回路的电流正方向。图5-1中的I1、I2、I3的方向已设定。三个闭合回路的电流正方向可设为ADEFA、BADCB和FBCEF。 2. 分别将两路直流稳压源接入电路,令U1=6V,U2=12V。 3. 熟悉电流插头的结构,将电流插头的两端接至数字毫安表的“+、-”两端。 4. 将电流插头分别插入三条支路的三个电流插座中,读出并记录电流值。 五、实验注意事项 1. 同实验二的注意1,但需用到电流插座。

2.所有需要测量的电压值,均以电压表测量的读数为准。U1、U2也需测量,不应取电源本身的显示值。 3. 防止稳压电源两个输出端碰线短路。 4. 用指针式电压表或电流表测量电压或电流时,如果仪表指针反偏,则必须调换仪表极性,重新测量。此时指针正偏,可读得电压或电流值。若用数显电压表或电流表测量,则可直接读出电压或电流值。但应注意:所读得的电压或电流值的正确正、负号应根据设定的电流参考方向来判断。 六、预习思考题 1. 根据图5-1的电路参数,计算出待测的电流I1、I2、I3和各电阻上的电压值,记入表中,以便实验测量时,可正确地选定毫安表和电压表的量程。 2. 实验中,若用指针式万用表直流毫安档测各支路电流,在什么情况下可能出现指针反偏,应如何处理?在记录数据时应注意什么?若用直流数字毫安表进行测量时,则会有什么显示呢? 七、实验报告 1. 根据实验数据,选定节点A,验证KCL的正确性。 2. 根据实验数据,选定实验电路中的任一个闭合回路,验证KVL的正确性。 3. 将支路和闭合回路的电流方向重新设定,重复1、2两项验证。 4. 误差原因分析。 5. 心得体会及其他。 实验二叠加原理的验证 一、实验目的 验证线性电路叠加原理的正确性,加深对线性电路的叠加性和齐次性的认识和理解。 二、原理说明 叠加原理指出:在有多个独立源共同作用下的线性电路中,通过每一个元件的电流或其两端的电压,可以看成是由每一个独立源单独作用时在该元件上所产生的电流或电压的代数和。 线性电路的齐次性是指当激励信号(某独立源的值)增加或减小K 倍时,电路的响应(即在电路中各电阻元件上所建立的电流和电压值)也将增加或减小K倍。 四、实验内容 实验线路如图7-1所示,用DG05挂箱的“基尔夫定律/叠加原理”线路。图7-1

电路实验 验证基尔霍夫定律

实验一 基尔霍夫定律 一、实验目的 1.用实验数据验证基尔霍夫定律的正确性; 2.加深对基尔霍夫定律的理解; 3.熟练掌握仪器仪表的使用方法。 二、实验原理 基尔霍夫定律是电路的基本定律之一,它规定了电路中各支路电流之间和各支路电压之间必须服从的约束关系,即应能分别满足基尔霍夫电流定律和电压定律。 基尔霍夫电流定律(KCL ):在集总参数电路中,任何时刻,对任一节点,所有各支路电流的代数和恒等于零。即 ∑I=0 通常约定:流出节点的支路电流取正号,流入节点的支路电流取负号。 基尔霍夫电压定律(KVL ):在集中参数电路中,任何时刻,沿任一回路内所有支路或元件电压的代数和恒等于零。即 ∑U=0 通常约定:凡支路电压或元件电压的参考方向与回路绕行方向一致者取正号,反之取负号。 三、实验内容 实验线路如图1.1所示。 1. 实验前先任意设定三条支路的电 流参考方向,如图中的I 1、I 2、I 3所示。 2. 分别将两路直流稳压电源接入电 路,令u 1=6V ,u 2 =12V ,实验中调好后保 持不变。 3.用数字万用表测量R 1 ~R 5 电阻元 图 1.1基尔霍夫定律线路图注意图中E 和F 互换一下 件的参数取50~300Ω之间。 4.将直流毫安表分别串入三条支路中,记录电流值填入表中,注意方向。 5.用直流电压表分别测量两路电源及电阻元件上的电压值,记录电压值填入表中。 四、实验注意事项 1.防止在实验过程中,电源两端碰线造成短路。 2.用指针式电流表进行测量时,要识别电流插头所接电流表的“+、-”极性。倘若不换接极性,则电表指针可能反偏(电流为负值时),此时必须调换电流表极性,重新测量, R 4 R 5 u 1 u 2

电路的基本定律

第一章电路的基本定律 1、集总电路:在任何时刻从具有两个端钮的理想元件的某一个端钮流入的电流 将恒等于从另一个端钮流出的电流,并且元件两个端钮间的电压也是完全确定的,凡满足上述情况的电路元件称为集总参数元件,简称集总元件,由集总元件构成的电路称为集总电路。 特点:理想化,不考虑分布参数,如分布电容、电感等。 2、电流电压的参考方向:先选定某一方向作为电流或电压的方向,这个方向叫 参考方向。 3、有源、无源二端元件: 有源:压源、电流源、受控源。无源:电阻、电容、电感 4、基尔霍夫定律:集总电路的基本定律 电流定律KCL:在集总电路中,任何时刻对任一节点,所有支路的电流的代数和恒等于零。 电压定律KVL:在集总电路中,任何时刻,沿任一回路内所有支路或元件电压代数和恒等于零。 欧姆定律:VCR 第二章电阻电路 1、电阻的Y接与△接的等效互换 星形(Y形)电阻=三角形相邻电阻的乘积/三角形电阻之和 三角形(△形)电导=星形相邻电导的乘积/星形电导之和 2、电源的等效变换: 电压源、电阻的串联组合与电流源、电导的并联组合互换 =Us/R G=1/R i s 3、支路电流法:以支路电流为电路的变量,应用KCL和KVL,列出与支路电流 数相等的独立方程,从而解的支路电流。 四步骤: 3.1选定各支路电流的参考方向 3.2按照KCL,对(n-1)独立节点,列出节点方程 3.3选取独立回路,独立回路数应为L=b-(n-1)个并指定回路的绕行方向, 应用KVL列出方程。 3.4求解上述b个独立方程,求出b个支路电流 4、回路法:是以一组独立的回路电流作为变量列写电路方程,求解电路的方法。 四步骤: 4.1选定L个独立回路电流,回路电流的参考方向一般取顺时针方向,平面 电路中的网孔都是独立回路。 4.2列出L个回路电流方程。注意自阻总是正的,互阻的正负则由相关的两 个回路的电流通过公共电阻时两者的参考放否一直而定。 4.3联立求解回路电流方程。 4.4指定各支路电流的参考方向,支路电流则为有关回路电流的代数和。 5、节点电流法:以节点电压为电路的独立变量,应用KCL,列出与节点电压数 相等的独立方程,从而解得节点电压和支路电流。 5.1指定参考节点,其余节点与参考节点间的电压就是节点电压,节点电压均以 参考节点为“—”极性。 5.2列出节点电压方程。应注意自导总是正的,互导总是负的

第四章 电路定理

第四章 电路定理 电路定理是电路理论的重要组成部分,为我们求解电路问题提供了另一种分析方法,这些方法具有比较灵活,变换形式多样,目的性强的特点。因此相对来说比第三章中的方程式法较难掌握一些,但应用正确,将使一些看似复杂的问题的求解过程变得非常简单。应用定理分析电路问题必须做到理解其内容,注意使用的范围、条件,熟练掌握使用的方法和步骤。需要指出,在很多问题中定理和方程法往往又是结合使用的。 4-1 应用叠加定理求图示电路中电压ab u 。 解:首先画出两个电源单独作用式的分电路入题解4-1图(a )和(b )所示。 对(a )图应用结点电压法可得 1sin 5)121311( 1t u n = +++ 解得 15sin 3sin 53n t u t V == (1) 111113sin sin 2133n ab n u u u t t V =?==?=+ 对(b )图,应用电阻的分流公式有 1132111135t t e i e A --+=?=++ 所以 (2) 110.25t t ab u i e e V --=?== 故由叠加定理得 (1)(2)sin 0.2t ab ab ab u u u t e V -=+=+

4-2 应用叠加定理求图示电路中电压u 。 解:画出电源分别作用的分电路如题解(a )和(b )所示。 对(a )图应用结点电压法有 105028136)101401281( 1++=+++n u 解得 (1)113.65 0.10.0250.1n u u +== ++ 18.624882.6670.2253V === 对(b )图,应用电阻串并联化简方法,可求得 10402(8) 32161040331040183(8)2 1040si u V ??++=? =?=?+++ (2)16182323si u u V -==-?=- 所以,由叠加定理得原电路的u 为 (1)(2)2488 8033u u u V =+= -= 4-3 应用叠加定理求图示电路中电压2u 。

电路的基本概念和基本定律

电路的基本概念和基本定律 一、电路基本概述 1.电流流经的路径叫电路,它是为了某种需要由某些电工设备或元件按一定方式组合起来的,它的作用是A:实现电能的传输和转换;B:传递和处理信号(如扩音机、收音机、电视机)。一般电路由电源、负载和连接导线(中间环节)组成。 (1)电源是一种将其它形式的能量转换成电能或电信号的装置,如:发电机、电池和各种信号源。 (2)负载是将电能或电信号转换成其它形式的能量或信号的用电装置。如电灯、电动机、电炉等都是负载,是取用电能的设备,它们分别将电能转换为光能、机械能、热能。 (3)变压器和输电线是中间环节,是连接电源和负载的部分,它起传输和分配电能的作用。 2. 电路分为外电路和内电路。从电源一端经过负载再回到电源另一端的电路,称为外电路;电源内部的通路称为内电路。 3.电路有三种状态:通路、开路和短路。 (1)通路是连接负载的正常状态; (2)开路是R→∝或电路中某处的连接导线断线,电路中的电流I=0,电源的开路电压等于电源电动势,电源不输出电能。例如生产现场的电流互感器二次侧开路,开路电压很高,将对工作人员和设备造成很大威胁; (3)短路是相线与相线之间或相线与大地之间的非正常连接,短路时,外电路的电阻可视为零,电流有捷径可通,不再流过负载。因为在电流的回路中仅有很小的电源内阻,所以这时的电流很大,此电流称为短路电流。 短路也可发生在负载端或线路的任何处。 产生短路的原因往往是由于绝缘损坏或接线不慎,因此经常检查电气设备和线路的绝缘情况是一项很重要的安全措施。为了防止短路事故所引起的后果,通常在电路中接入熔断器或自动断路器,以便发生短路时,能迅速将故障电路自动切除。 4、电路中产生电流的条件:(1)电路中有电源供电;(2)电路必须是闭合回路; 5、电路的功能:(1)传递和分配电能。如电力系统,它是由发电机,升压变压器,输电线、降压变压器、供配电线路和各种高、低压电器组成。(2)传递和处理信号。如电视机,它接收到

实验一基尔霍夫定律的验证

实验一基尔霍夫定律的验证 一、实验目的 1、掌握万用表和实验装置上直流电工仪表和设备的使用方法。 2、验证基尔霍夫原理的正确性,从而加深对线性电路的基尔霍夫原理的认识和理解。 二、实验设备 三、原理说明 基尔霍夫电流定理(KCL):对于任何集总参数电路的任一结点,在任一时刻,流出该结点全部支路电流的代数和等于零。 (流出该结点的支路电流取正号,流入该结点的支路电流取负号。)基尔霍夫电压定律(KVL):对于任何集总参数电路的任一回路,在任一时刻,沿该回路全部支路电压的代数和等于零。 (电压参考方向与回路绕行方向相同的支路电压取正号,与绕行方向相反的支路电压取负号。) 由支路组成的回路可以视为闭合结点序列的特殊情况。沿电路任一闭合路径(回路或闭合结点序列)各段电压代数和等于零。 四、实验内容 实验电路如图2-1所示 1、熟悉使用仪器,注意仪器的量程范围。 2、按图2-1电路接线,E 为+12、E2为+6V电源。 1 3、用万用表直流电压档和毫安表(接电流插头)测量各支路电流及数据记入表格中。

图 2-1 4、验证 1)基尔霍夫电流方程 (取节点B或D点, 说明什么?) 2)基尔霍夫电压方程 (采用任一回路,说明什么?) 五、实验注意事项 1、测量各支路电流时,应注意仪表的极性, 及数据表格中“+、-”号的记录。 2、注意仪表量程的及时更换。 六、思考题和心得体会 1、实验中若E 1、E 2 分别单独作用,在实验中应如何操作?可否直接将不作 用的电源(E 1或E 2 )置零(短接)? 2、实验电路中,测量的正负值使用不当,试问基尔霍夫定律还成立吗? 3、心得体会及其他。

电路的基本概念与基本定律-邵阳学院

《电路》(一)教案 第1章电路的基本概念与基本定律 教研室:基础教研室教师姓名: §1-1 电路和电路模型 一、实际电路 1.实际电路:由电路器件(如晶体管)和电路部件(如电阻、电容、电感)相互连接而成的电流的通路,具有传输电能、处理信号、测量电能、存贮信息等功能。 2.组成(举例说明):①电源:提供电能的能源,它的作用是将其他形式的能量转换为电能,又称激励或者激励源(输入),由激励在电路中产生的电流、电压称为响应(输出); ②负载:用电装置,它将电源供给的电能转换为其他形式的能量; 1

③导线:连接电源与负载传输电能的金属导线。 3.功能:其一,是进行电能的传输、分配与转换。(电力系统) 其二,是实现信息的传递、控制与处理。(电子信息系统) 二、电路模型 1.电路模型:对于实际的电路,可以用足以反映其电磁性能的一些理想元件模型或其组合来表示,构成实际电路的模型。(通过实际电路和电路模型来举例) 2.理想电路元件(集总元件):具有确定的电磁性质的假想元件,是一种理想化的模型并具有精确的数学定义,是组成电路模型的最小单元。 5种基本理想电路元件及其符号: 电阻元件:表示消耗电能的元件; 电容元件:储存电场能量的元件; 电感元件:储存磁场能量的元件; 电压源和电流源:将其他形式的能量转变为电能的元件; 理想导线: 3.电路建模:用理想电路元件及其组合模拟实际器件。本书不做研究,热门话题。注意:1、不同的实际电路部件,只要具有相同的主要电磁性能,在一定条件下可用同一个模型表示;2、同一个实际电路部件在不同的应用条件下,它的模型也可以有不同的形式(以实际电感举例);3、将实际电路中各个部件用其模型符号表示,可得到电路原理图。 三、电路理论中的几个问题 1.电路理论研究对象:研究电路中发生的电磁现象,并用电流、电压、电荷、磁通等物理量来描述其中的过程。电路模型(电路)分析:基本的定律和定理,讨论各种计算分析方法。 2.理想电路元件简称电路元件。 3.“网络”和“电路”将不加区别地被应用。 4.随时间变化的量:小写。恒值:大写。 §1-2 电流和电压的参考方向 一、电流的参考方向

电路的基本念与基本定律

电工技术A 上网教案 课程编号:1950510;课程名称:电工技术A ; 学时:54;学分:3;考试类型:统考、笔试;课程分类:必修课; 课内总学时:59;实验总学时:10;讲课总学时:49; 基本面向:非电类专业二年级学生;教学方式:课堂讲授、实验; 教材:秦曾煌,《电工学》上册,高等教育出版社,1999; 参考书:姚海彬《电工技术》(电工学I ),高等教育出版社。 唐介,《电工学》,高等教育出版社。 叶挺秀《电工电子学》,高等教育出版社。 第1章 电路的基本概念与基本定律 本章基本要求: 1.了解电路模型及理想电路元件的意义; 2.理解电路变量(电压、电流及电动势)参考方向(及参考极性)的意义 ; 3.理解电路的基本定律(“Ω”、KCL 及KVL )并能正确地应用; 4.了解电源的不同工作状态(有载、开路 及短路)及其特征; 5.理解电气设备(或元件)额定值的意义; 6.能分析计算简单的直流电路及电路中各点的电位。 本章重点内容: 电路变量参考方向(及参考极性)及基本定律(“Ω”、KCL 及KVL )的正确应用。 本章学习时间:4学时 第1节 电路的的基本概念 1.电路的的组成及其模型 1)电路及其组成 (1)电路:电流的通路称为电路。连续电流的通路必须是闭合的。 (2)电路组成:电路由电源、负载及中间环节三部分组成。 (3)电路的作用∶实现电能的传输和转换(或信号的传递及转换)。 2)电路的模型——有理想元件组成的电路。 (1)电源元件:电压源(E ,O R ),电流源(S I ,O R ),受控电源。 (2)负载元件:电阻元件R ,电感元件L ,电容元件C 。 (3)中间环节:导线、开关等。电压表,电流表等等 2.电路的的基本概念 1)电流 (1) 电流强度定义:单位时间内通过某导线横界面的电荷的多少。大小及方向都不随时间而变化的电流称为直流电流(这里指的是恒稳直流电流);大小及方向随时间而变化的电流称为交流电流。 (2)电流的方向 ①实际方向:规定正电荷移动的方向(或者与负电荷移动方向相反的方向)。 ②参考方向:任意标定。一经标定就的依次为准,对电路进行分析和计算。若计算结果为正,则说明电流的实际方向与参考方向一致;若为负,则说明电流的实际方向与参考方向相反。只有标有参考方向才有正负之分,没有参考方向的正负是没有意义的。 (3)电路中电流的表示 ① ② ③ 2)电压

电路实验三实验报告_基尔霍夫定律地验证

电路实验三实验报告 实验题目:基尔霍夫定律的验证 实验内容: 1. 用面包板搭接一个电路,熟悉面包板的使用; 2. 验证基尔霍夫定律的正确性,加深对基尔霍夫定律普遍性的理解 ; 3. 进一步学会使用万用表。 实验环境: 面包板,数字万用表,色环电阻,学生实验箱(直流稳压电源) 。 实验原理: 使用面包板搭接一个含有两个以上网孔的电路, 测出各支路的电压和各节点的电流, 验 证它们是否满足基尔霍夫定律。 1. 基尔霍夫电流定律: 对电路中任意节点,流入、流出该节点的代数和为零。即 ∑I=0。 2. 基尔霍夫电压定律: 在电路中任一闭合回路,电压降的代数和为零。 即 ∑U=0。 实验记录及结果分析: 实验电路图: 1 i1 i3 R1 R2 ① i2 - U1 + - U3 + 3 i2 i 2 ABM Us_1 5V 1 + U2 R3 2 ABM Us_2 12V - 实验数据: R1 0.859K Ω U1 2.31V i1 -2.33mA R2 1.338K Ω U2 7.37V i2 1.45mA R3 1.032K Ω U3 7.53V i3 3.79mA 实验分析: 1. 对于结点 1:i1-i2+i3=- 2.33mA-1.45mA+ 3.79mA=0.01mA 说明在误差范围内,该结点符合 KCL 定律。 2. 对于回路 1:-U1+U2-Us1=-2.31V+7.37V-5V=0.06V

说明在误差范围内,该回路符合KVL定律。 3. 对于回路2:-U2-U3+Us2=-7.37V-7.53V+15V=0.1V 说明在误差范围内,该回路符合KVL定律。 实验总结: 经过这次实验,我学习到了如果利用面包板搭建电路,面包板上的孔如何实现串并联。 同时,这次实验也巩固了我对万用表的操作,使用万用表比上次更为熟练了。实验结果也验证了KCL与KVL的定律,为以后电路分析加深了印象。

实验一电路基本定律和定理的验证

实验一电路基本定理 一、实验目的 1、通过实验加深对参考方向,基尔霍夫定理、叠加定理、戴维南定理的理解; 2、初步掌握用Multisim软件建立电路、辅助分析电路的方法。 二、实验原理 1.基尔霍夫定理 基尔霍夫电流定理(KCL):任意时刻,流进和流入电路中节点的电流的代数和等于零,即∑I=0。 基尔霍夫电压定理(KVL):在任何一个闭合回路中,所有的电压降之和等于零,即∑V=0。 2.叠加定理 在线性电路中,任一支路的电流或电压等于电路中每一个独立源单独作用时,在该支路所产生的电流或电压的代数和。 3.戴维南定理 对外电路来说,任何复杂的线性有源一端口网络都可以用一个电压源和一个等效电阻的串联来等效。此电压源的电压等于一端口的开路电压Uoc,而电阻等于一端口的全部独立电压置0后的输入电阻R O。 实验中往往采用电压表测量开路电压Uoc,用电流表测量端口短路电流I SC,等效电阻R O等于开路电压Uoc除以短路电流I SC,即R O=Uoc/I SC。 三、实验内容 实验电路如图1-1所示。

图1-1 1.基尔霍夫定理和叠加定理的验证 1)实验步骤 a)按图1-1所示用Multisim软件创建电路; b)启动程序,测得各电阻两端电压和各支路电流,验证KCL,KVL; c)E1单独作用下,E2的数值置为0以及E2单独作用,E1的数值置为0两种情况下, 测得各个电阻两端电压和各支路电流值,验证叠加定理; d)将R2改成1N4009的二极管,验证KCL,KVL,叠加定理是否成立。 2)实验数据 R2=100Ω R2换为1N4009二极管,实验电路如图1-2所示。 图1-2

实验一基尔霍夫电流定律的multisim验证实验

精品文档 . 实验一基尔霍夫电流定律的验证实验 一、实验目的 1、通过实验验证基尔霍夫电流定律,巩固所学的理论知识。 2、加深对参考方向概念的理解。 二、实验原理 1、基尔霍夫定律: 基尔霍夫电流定律为ΣI = 0 ,应用于节点。基尔霍夫定律是分析与计算电路的基本重要定律之一。 图1-1 两个电压源电路图图1-2 基尔霍夫电流定律 2、基尔霍夫电流定律(Kirchhoff's Current law)可简写为KCL: 基尔霍夫电流定律,在任一瞬时,流向某一节点的电流之和应该等于由该节点流出的电流之和。就是在任一瞬时,一个节点上电流代数和恒等于零。在图1-1所示电路中,对节点a图1-2可以写出 I1 + I2 = I3 或 I1 + I2 -I3 = 0 即 ΣI = 0 3、参考方向: 为研究问题方便,人们通常在电路中假定一个方向为参考,称为参考方向。 (1) 若流入节点的电流取正号,则流出节点的电流取负号。 (2) 任一回路中,凡电压的参考方向与回路绕行方向一致者,则此电压的前面取正号,电压的参考方向与回路绕行方向相反者,前面取负号。 (3) 任一回路中电流的参考方向与回路绕行方向一致者,前面取正号,相反者前面取负号。 在实际测量电路中的电流或电压时,当电路中所测的电流或电压的实际方向与参考方向相同时取正值,其实际方向与参考方向相反时取负值。 三、实验内容及步骤

KCL定律实验即在multisim界面上绘制如图1-3所示的电路图,通过软件仿真的方法验证KCL定律的正确性。对于该电路图来讲,两个直流电源E1、E2共同作用于电路中, 设定电流I1、I2为流入结点a的方向,电流I3为流出结点a的方向,根据前述参考方向的定义,在列写KCL方程时,I1、I2、I3前分别应取“+”、“+”、“-”号,则对结点a 列KCL. 精品文档 . 方程可得: ΣI =I1 + I2-I3=0 (上式中的I1、I2、I3分别对应图上R1、R2、R3支路的电流) 故若用电流表测得的电流值符合上式,则KCL定律得证。 图1-3 基尔霍夫电流定律验证实验电路图 实验步骤如下: (1)打开multisim软件,选中主菜单View选项中的Show grid,使得绘图区域中出现均匀的网格线,并将绘图尺寸调节到最佳。 (2)在Place Sources元器件库中调出1个Ground(接地点)和2个Battery(直流电压源)器件,从Place Basic元器件库中调出5个Resistor(电阻)器件,最后从Place Indicators 元器件库中调出3个Ammeter(电流表)器件,按下图所示排列好。 (3)将各元器件的标号、参数值亦改变成与上图所示一致即可。 (4)将所有的元器件通过连线连接起来。注意:电压源、电流表的正负极性。 (5)检查电路有无错误。 (6)对该绘图文件进行保存,注意文件的扩展名(.ms10)要保留。 (7)对该保存过的绘图文件进行仿真。 (8)停止仿真,读取电流表的读数,将读数填到相应的表格中。 (9)实验完成后,将保存好的绘图文件另存到教师指定的位置,并结合实验数据完成实验报告的撰写。 四、注意事项

电路实验2基尔霍夫定律的验证

实验二基尔霍夫定律的验证 一、实验目的 1.通过实验验证基尔霍夫电流定律和电压定律 2.加深理解“节点电流代数和”及“回路电压代数和”的概念 3.加深对参考方向概念的理解 二、原理 基尔霍夫节点电流定律 ∑ I= 基尔霍夫回路电压定律 ∑ U= 参考方向: 当电路中的电流(或电压)的实际方向与参考方向相同时取正值,其实际方向与参考方向相反时取负值。 三、实验仪器和器材 1.0-30V可调直流稳压电源 2.+15直流稳压电源 3.200mA可调恒流源 4.电阻 5.交直流电压电流表 6.实验电路板 7.短接桥 8.导线 四、实验内容及步骤 1.验证基尔霍夫电流定律(KCL) 可假定流入该节点的电流为正(反之也可),并将电流表负极接在节点接口上,电流表正极接到支路接口上进行测量。测量结果如2-1所示。 表2-1 验证基尔霍夫电流定律

图2-1 2.验证基尔霍夫回路电压定律(KVL) 用短接桥将三个电流接口短接,测量时可选顺时针方向为绕行方向,并注意电压表的指针偏转方向及取值的正与负,测量结果如表2-2所示。 表2-2 验证基尔霍夫电压定律 图2-2

五、思考题 1.利用表2-1和表2-2中的测量结果验证基尔霍夫两个定律。 2-1测量结果显示流入同一节点的电流之和为零,2-2显示回路电压之和为零,由此可知基尔霍夫定律成立。 2.利用电路中所给数据,通过电路定律计算各支路电压和电流,并计算测量值与计算值之 间的误差,分析误差产生的原因。 原因:在读取电压表或电流表时指针位于两个刻度之间,造成读数时的误差;实验仪器的电阻值可能不完全相等于标出值;计算时产生无限不循环小数,使得保留小数时产生误差。 3.回答下列问题 (1)已知某支路电流约为3mA,现有一电流表分别有20mA、200mA和2A三挡量程,你将使用电流表的哪档量程进行测量?为什么? 20mA.因为3mA在200mA和2A的量程下偏转的角度太小,造成的误差大;而选择20mA 的量程可以使偏转角度增大,尽可能的占据表盘,测量的误差偏小。 (2)改变电流或电压的参考方向,对验证基尔霍夫定律有影响吗?为什么? 没有影响。基尔霍夫电压定律的根本原理是回路电压之和为零,基尔霍夫电流定律的根本原理是流入任一节点的电流代数和为零。而改变电流或电压的参考方向会使相应的数据都变为原来的相反数。因此,改变电压或电流方向,都不会影响电压之和为零和回路电流相等这一根本规律,所以对验证基尔霍夫定律没有影响。

电路基本定律及定理的验证

电路基本定律及定理的验证 一、实验目的 1、通过实验加深对参考方向,基尔霍夫定理、叠加定理、戴维南定理的理解; 2、初步掌握用Multisim软件建立电路、辅助分析电路的方法。 二、实验原理 1.基尔霍夫定理 基尔霍夫电流定理(KCL):任意时刻,流进和流入电路中节点的电流的代数和等于零,即∑I=0。 基尔霍夫电压定理(KVL):在任何一个闭合回路中,所有的电压降之和等于零,即∑V=0。 2.叠加定理 在线性电路中,任一支路的电流或电压等于电路中每一个独立源单独作用时,在该支路所产生的电流或电压的代数和。 3.戴维南定理 对外电路来说,任何复杂的线性有源一端口网络都可以用一个电压源和一个等效电阻的串联来等效。此电压源的电压等于一端口的开路电压Uoc,而电阻等于一端口的全部独立电压置0后的输入电阻R O。 实验中往往采用电压表测量开路电压Uoc,用电流表测量端口短路电流I SC,等效电阻R O等于开路电压Uoc除以短路电流I SC,即R O=Uoc/I SC。 三、实验内容 实验电路如图1-1所示。 图1-1 1.基尔霍夫定理和叠加定理的验证 1)实验步骤

a)按图1-1所示用Multisim软件创建电路; b)启动程序,测得各电阻两端电压和各支路电流,验证KCL,KVL; c)E1单独作用下,E2的数值置为0以及E2单独作用,E1的数值置为0两种情况下,测得各个电 阻两端电压和各支路电流值,验证叠加定理; d)将R2改成1N4009的二极管,验证KCL,KVL,叠加定理是否成立。 2)实验数据 R2=100Ω R2换为1N4009二极管,实验电路如图1-2所示。 图1-2 R2换为1N4009二极管

第四章-电路定理

第四章电路定理 电路定理是电路理论的重要组成部分,为我们求解电路问题提供了另一种分析方法,这些方法具有比较灵活,变换形式多样,目的性强的特点。因此相对来说比第三章中的方程式法较难掌握一些,但应用正确,将使一些看似复杂的问题的求解过程变得非常简单。应用定理分析电路问题必须做到理解其内容,注意使用的范围、条件,熟练掌握使用的方法和步骤。需要指出,在很多问题中定理和方程法往往又是结合使用的。 4-1应用叠加定理求图示电路中电压ab u。 解:首先画出两个电源单独作用式的分电路入题解4-1图(a)和(b)所示。 对(a)图应用结点电压法可得 1 sin 5 ) 1 2 1 3 1 1( 1 t u n = + + + 解得 1 5sin 3sin 5 3 n t u t V == (1)1 1 11 13sin sin 2133 n ab n u u u t t V =?==?= + 对(b)图,应用电阻的分流公式有 11 321 11 135 t t e i e A - - + =?= ++ 所以 (2) 1 10.2 5 t t ab u i e e V -- =?== 故由叠加定理得(1)(2)sin0.2t ab ab ab u u u t e V - =+=+

4-2 应用叠加定理求图示电路中电压u 。 解:画出电源分别作用的分电路如题解(a )和(b )所示。 对(a )图应用结点电压法有 105028136)101401281( 1++=+++n u 解得 (1)113.650.10.0250.1n u u +==++ 18.624882.6670.2253V === 对(b )图,应用电阻串并联化简方法,可求得 10402(8)32161040331040183(8)21040si u V ??++=?=?=?+++ (2)16182323si u u V -==-?=- 所以,由叠加定理得原电路的u 为 (1)(2)24888033u u u V =+=-= 4-3(4-4)应用叠加定理求图示电路中电压2u 。(注意:不用叠加更简单)

相关文档
相关文档 最新文档