文档库 最新最全的文档下载
当前位置:文档库 › 洛必达法则失效的种种情况及处理方法

洛必达法则失效的种种情况及处理方法

洛必达法则失效的种种情况及处理方法
洛必达法则失效的种种情况及处理方法

《高数解题的四种思维定势》

1.在题设条件中给出一个函数f(x)二阶和二阶以上可导,“不管三七二十一”,把f(x)在指定点展成泰勒公式再说。

2.在题设条件或欲证结论中有定积分表达式时,则“不管三七二十一”先用积分中值定理对该积分式处理一下再说。

3.在题设条件中函数f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=0或f(b)=0或f(a)=f(b)=0,则“不管三七二十一”先用拉格朗日中值定理处理一下再说。

4.对定限或变限积分,若被积函数或其主要部分为复合函数,则“不管三七二十一”先做变量替换使之成为简单形式f(u)再说。

《线性代数解题的八种思维定势》

1.题设条件与代数余子式Aij或A*有关,则立即联想到用行列式按行(列)展开定理以及AA*=A*A=|A|E 。2.若涉及到A、B是否可交换,即AB=BA,则立即联想到用逆矩阵的定义去分析。

3.若题设n阶方阵A满足f(A)=0,要证aA+bE可逆,则先分解出因子aA+bE再说。

4.若要证明一组向量a1,a2,…,as线性无关,先考虑用定义再说。

5.若已知AB=0,则将B的每列作为Ax=0的解来处理再说。

6.若由题设条件要求确定参数的取值,联想到是否有某行列式为零再说。

7.若已知A的特征向量ζ0,则先用定义Aζ0=λ0ζ0处理一下再说。

8.若要证明抽象n阶实对称矩阵A为正定矩阵,则用定义处理一下再说。

关于可积和原函数存在

如下三种情况可积,是充分条件

1。闭区间上的连续函数是可积的

2。只有有限个第一类间断点的函数是可积的,也就是分段连续函数是可积的

3。单调有界函数必定可积

不满足以上三条的也可能是可积的,上面的是充分条件

另外,关于原函数是否存在

在某个区间上有第一类的函数,则在这个区间上一定不存在原函数

在某个区间上有第二类间断点的函数,则在这个区间上有可能有原函数,也可能没有

最后,可积和是否有原函数,说的不是一个事情,这个要记住了

可积大概的理解,就是图形和x轴围成的面积是存在的,不是无穷大的

原函数,就是有这样一个函数,可以表达块面积

显然,面积存在的时候,是不一定有这样一个函数的

关于合同,相似,等价的关系

1、两个矩阵合同,并不需要他俩一定是对称矩阵!

2、俩个实对称矩阵合同的充要条件是它俩必然具有相同得正负惯性指数;

3、不是实对称的俩矩阵合同,根本无从讨论它俩的什么正负惯性指数——因为二次型的矩阵一定是实对称矩阵,也只有实对称矩阵对应的二次型才有所谓正负惯性指数这一概念!呵呵^_^

4、两个矩阵合同,一定推出它俩等价;两个矩阵相似,也一定推出它俩等价;两矩阵相似与两矩阵合同谁也不比谁更强!

5、如果两矩阵有相同的秩,且为同型矩阵,那么两矩阵等价

6、两个实对称矩阵相似,可推出两个矩阵合同,但合同不能推出相似

关于偏导,可微

1。f(x,y)偏导连续推出f(x,y)可微

2。可微推出f(x,y)连续

3。可微推出f(x,y)的偏导存在

一元函数情形:

连续不一定可导

可导一定连续

可导和可微是一回事

多元函数情形:

连续不一定可导(不一定有偏导数) 偏导数存在好象也不一定连续

偏导数存在不一定可微,如果偏导数存在且连续,那么可微 可微的话偏导数一定存在

判断曲线积分与路径无关的条件:

1。可以求得u(x,y) 使得du=P(x,y)dx+Q(x,y)dy (对于任意的(x,y)属于D) 2。若D 是单连通区域,且 偏Q/偏x =偏P/偏y

3。若区域是有一个奇点的复连通区域,如果偏Q/偏x =偏P/偏y ,且存在一条分段光滑的闭曲线,它包围奇点,且曲线积分为0,那么也是与路径无关的。 洛必达法则失效的种种情况及处理方法

今天我在看XX 书时,看到这样一道题

?

+∞

→x x x

x x

d sin 1lim

,说是不可以使用洛必达法则,我对照这本书上关于

使用洛必达法则的条件,觉得还不太清楚,好像应该是符合条件的,谢谢你抽空给我指点一下。

洛必达法则是计算极限的一种最重要的方法,我们在使用它时,一定要注意到该法则是极限存在的充分条件,

也就是说洛必达法则)()

(lim

)

()(lim

x g x f x g x f a

x a x ''=→→的三个条件:

(1)0

)(lim =→x f a

x (或∞),0

)(l i m =→x g a

x (或∞);

(2))(x f 和)(x g 在a x =点的某个去心邻域内可导;

(3)

A

x g x f a

x =''→)

()(lim

(或∞)。

其中第三个条件尤其重要。

其实,洛必达法则的条件中前两条是一望即知的,所以我们在解题过程中可以不用去细说,而第三个是通过计算过程的尝试验证来加以说明的,由于验证结束,结论也出来了,也就更加没有细说的必要了。所以在利用洛必达法则解题过程中,往往只用式子说话,不必用文字来啰嗦的。

而对于极限问题

?+∞

→x x x

x x

d sin 1

lim

来说,因为

x

x g x f x x sin lim )

()(lim

+∞

→+∞

→=''不存在(既不是某个常数,也不是无穷

大),而可知洛必达法则的第三个条件得不到验证。此时,我们只能说洛必达法则对本问题无效,绝对不能因

此而说本问题之极限不存在。

实际上,我们利用“将连续问题离散化”的方法来处理,可以断定这个极限是存在的。

【问题】求极限

?

+∞

→x x x

x x

d sin 1lim

【解】对于任何足够大的正数x ,总存在正整数n ,使ππ)1(+<≤n x n ,也就是说总存在正整数n ,使

r n x +=π,其中π<≤r 0。

这样+∞→x 就等价于∞→n ,所以

??+∞

→+∞

→+=r n n x x x

x r n x x x

ππ

d sin 1lim

d sin 1

lim

???

?

??+

+=??+∞

→r

n n n n x x x x r n ππ

ππd sin d sin 1

lim

ππππ2

2lim d sin d sin 1

lim

0=

++=??????++=∞→∞

→?

?r n R n t t x x n r n n r n ,

这里前面一项注意到了函数

x

sin 的周期为π,而后面一项作了令t n x +=π的换元处理。最后注意到积分值

R 的有界性(20<≤R )。

如果把上述洛必达法则失效的情况称为第一种情况,则洛必达法则还有第二种失效的情况:第三个条件永远也

无法验证。

【问题2】求极限(1)

x

x x 3

3

1lim

+∞

→;(2)

x

x

x x x --+∞

→+-e

e e e lim

【分析与解】(1)这是∞∞

型待定型,本题显然满足洛必达法则的前面两个条件,至于第三个条件,尝试验证到第两次后可以得到

x

x x x

x

x x x x 3

3

3

2

3

2

3

3

1lim

)

1(lim

1lim

+=+=+∞

→∞→∞

→,

可知洛必达法则失效,处理的方法是

1

11lim

1lim

1lim

3

3

3

3

3

3

3

=+

=+=+∞

→∞

→∞

→x

x

x x

x x x x 。

(2)的情况与(1)的情况完全类似,尝试用了两次“洛必达法则”后可以得到 x

x

x x x x

x

x x x x

x x x

x --+∞

→--+∞

→--+∞

→+-=-+=+-e

e e e lim

e

e e e lim

e

e e e lim

可知洛必达法则失效,处理的方法是分子分母同乘x

-e ,得到

1

e

1e 1lim

e

e e e lim

22=-+=+---+∞

→--+∞

→x

x x x

x x x

x 。

【问题3】求极限

100

10

2

e lim

x

x

x -→。

【分析与解】这是00

型待定型,本题显然满足洛必达法则的前面两个条件,至于第三个条件,经过尝试,可知洛必达法则的第三个条件

102

10

?

100

10

200e

lim

e lim

2

2

x

x

x

x x

x -

→-→=

完全不可能得到验证,因为分子分母分别求导后愈来愈复杂,这也说明了洛必达法则对本题无效。正确有效的

方法是作换元,令

2

1

x t =

,这样就有

e

lim

e lim

50100

10

2

==+∞

→-→t

t x

x t

x

还有一种极限问题,原则上虽然也适合使用洛必达法则,但不具有实际可操作性,例在本博客“2008考研数学辅导系列之24(4月14日博文《泰勒公式的应用》)”一文中的

【例1】 求极限)

3(211ln

3)

76(sin 6lim

2

2

2

x x x

x x x x e

x

x +--+---→问题,当时曾经分析说:本题如果不用泰勒公式,直接用洛必

达法则,也能计算,但必须要用六次洛必达法则,而且导数越求越复杂,而用了泰勒公式就会方

便得多了.

中值定理一向是经济类数学考试的重点(当然理工类也常会考到),咪咪结合老陈的书和一些自己的想法做了以下这个总结,希望能对各位研友有所帮助。 1、 所证式仅与ξ相关 ①观察法与凑方法

1 ()[0,1](0)(1)(0)02() (,)()1 ()()2()0(1) ()() [()]()f x f f f f a b f x f x xf x f x f x xf x xf x xf x '==='ζ''ζ∈ζ=

'''''ζ--='''''''= 例设在上二阶可导,试证至少存在一点使得分析:把要证的式子中的换成,整理得由这个式可知要构造的函数中必含有,从找突破口因为()(1) ()()[()()]0()()[()]0 ()(1)()()

f x f x f x xf x f x f x f x xf x F x x f x f x '+'''''''''''--+=?--='=--,那么把式变一下:

这时要构造的函数就看出来了 ②原函数法

?-?-?===?=?+=

?='ζζζ=ζ'∈ζ?==?dx

x g dx

x g dx

x g e

x f x F C C e

x f Ce

x f C dx x g x f x g x f x f x g f f g f b a b a x g b f a f b a b a x f )()()()()( )( )(ln )()(ln )()

()(

)

()()(),( ],[)()()( ),(],[)( 2 很明显了

,于是要构造的函数就现在设换成把有关的放另一边,同样有关的放一边,与现在把与方法

造的函数,于是换一种是凑都不容易找出要构分析:这时不论观察还使得求证:上连续在,又内可导,上连续,在在设例两边积分

00

③一阶线性齐次方程解法的变形法

0 ()()()[,](,)()0()() (,)()()()()0

[()()]pdx pdx

f pf p x u x e F x f e f x a b c a b f c f f a a b f b a f f a f b a

f f a '+=??

==?'∈=ξ-'ξ∈ξ=-ξ-'ξ-=-'?ξ-对于所证式为型,(其中为常数或的函数)

可引进函数,则可构造新函数例:设在有连续的导数,又存在,使得求证:存在,使得分析:把所证式整理一下可得:1

1[()()]00 () C =0()[()()]

()() ()0()() x

x

dx

b a b a b a f f a f pf b a

u x e e F x e f x f a f b f a f c f b f a b a

---'-

ξ-=+=-?==--'=

=?=---

,这样就变成了型

引进函数=(令),于是就可以设注:此题在证明时会用到这个结论

2、所证式中出现两端点 ①凑拉格朗日

a

b a af b bf f f F x xf x F f f a

b a af b bf b a b a b a x f --=

ζ'ζ+ζ=ζ'=ζ'ζ+ζ=--∈ζ)

()()()()( ),()( )

()()

()(),( ),(],[)( 3 下

用拉格朗日定理验证一可以试一下,不妨设

证的式子的特点,那么

分析:很容易就找到要

使得

证明至少存在一点

内可导上连续,在在设例

②柯西定理

数就很容易证明了

用柯西定理设好两个函没有悬念了

于是这个式子一下变得分子分母同除一下

是交叉的,变换一下,

发现容易看出来了

这题就没上面那道那么的式子

分析:先整理一下要证,使得

至少存在一点

可导,证明在在,设例 )()

( )()( )

()()

()()

()()

()(

),(],[)( 4 1

2

1

2

2

12

12

1

212

1

2

1

1

1

1

012121221212121x x x x x x x x

x x x x

x x x x e

e

e x

f e

x f e

x f e

x f e c f c f e

e

x f e

x f e c f c f x f x f e

e

e

e

c x x x x x f x x -

--'-=--'-=-<<+

③k 值法

,用罗尔定理证明即可

记得回带,验证可知那么进入第二步,设

还是一样的

称式,也是说互换

很容易看出这是一个对整理得设

量的这个式子

的形式了,现在就看常以此题为例已经是规范两边常量的式子分写在等号第一步是要把含变量与值法

方法叫做在老陈的书里讲了一个呢?

很好上面那题该怎么办对柯西定理掌握的不是

分析:对于数四,如果仍是上题

k x F x F k x f e

x F x x k x f e k x f e

k e

e

x f e x f e

k x

x x x x x x )

()(])([)( ]

)([])([ )

()( 212121122

1

2

1

21

=-=-=-=-----

④泰勒公式法

老陈常说的一句话,管它是什么,先泰勒展开再说。当定理感觉都起不上作用时,泰勒法往往是可行的,而且对于有些题目,泰勒法反而会更简单。 3、所证试同时出现ξ和η ①两次中值定理

)]

()([)( )( )]()([ )

()()( )

()(])([)]()([ )]()([)]()([),( )()( ),(],[)( 5 η'+η=--=

=ζ'=----=

η'+η--=η'='η=η'+η=η'+ηηζ=η'+η∈ηζ==η

ζ

ζ

η

ηηζηζ

-ηf f e a

b e

e

e

G e x G e a

b e

e

a

b e

e

f f e a b a f e b f e F x f e x F f e f f e e

f f e f f e

b f a f b a b a x f a

b

x

a

b

a

b

a

b x

得到

则再用拉格朗日定理就令这个更容易看出来了,的关系就行了

与只要找到

再整理一下

利用拉格朗日定理可得

,设很容易看出

子下手试一下

那么可以先从左边的式一下子看不出来什么,分开,那么就有

与分析:首先把使得,试证存在内可导,上连续,在在例1

101

②柯西定理(与之前所举例类似)

有时遇到ξ和η同时出现的时候还需要多方考虑,可能会用到柯西定理与拉氏定理的结合使用,在老陈书的习题里就出现过类似的题。

洛必达法则完全证明

洛必达法则完全证明 定理1 00lim ()lim ()0x x x x f x g x →→==,0'()lim '() x x f x g x →存在或为∞,则00()'()lim =lim ()'()x x x x f x f x g x g x →→ 证明见经典教材。 定理2 lim ()lim ()0x x f x g x →∞→∞==,0'()lim '() x x f x g x →存在或为∞,则00()'()lim =lim ()'()x x x x f x f x g x g x →→ 证明:101lim ()lim ()0t x x t f x f t = →∞→==,1 01lim ()lim ()0t x x t g x g t =→∞→==,由定理1 11 200021111()'()()'()()'()lim =lim lim lim lim 1111()'()()'()()'()t x x t x t t t x f f f f x f x t t t t g x g x g g g t t t t ==→∞→→→→∞-===-。 定理300lim ()lim ()x x x x f x g x →→==∞,0'()lim '() x x f x g x →存在或为∞,则00()'()lim =lim ()'()x x x x f x f x g x g x →→ 证明:001 ()()lim =lim 1 ()() x x x x f x g x g x f x →→,由定理1 0000221'()()()'()()()lim =lim =lim lim(())1'()()()'()()() x x x x x x x x g x f x f x g x g x g x f x g x g x f x f x f x →→→→-=- 1) 设0()lim () x x f x g x →存在且不为0,则 0002()()'()lim lim()lim () ()'()x x x x x x f x f x g x g x g x f x →→→=,00()'()lim lim ()'()x x x x f x f x g x g x →→= 2) 设0 ()lim ()x x f x g x →存在且为0,设0k ≠,则 0()lim()0() x x f x k g x →+≠ 有00()()+()lim()=lim ()() x x x x f x f x kg x k g x g x →→+

洛必达法则失效的种种情况及处理方法

洛必达法则失效的种种情况及处理方法 今天我在看XX 书时,看到这样一道题?+∞→x x x x x 0d sin 1lim ,说是不可以使用洛必达法则,我对照这本书上关于使用洛必达法则的条件,觉得还不太清楚,好像应该是符合条件的,谢谢你抽空给我指点一下。 洛必达法则是计算极限的一种最重要的方法,我们在使用它时,一定要注意到该法则是极限存在的充分条件,也就是说洛必达法则 )()(lim )()(lim x g x f x g x f a x a x ''=→→的三个条件: (1)0)(lim =→x f a x (或∞),0)(lim =→x g a x (或∞); (2))(x f 和)(x g 在a x =点的某个去心邻域内可导; (3)A x g x f a x =''→)()(lim (或∞)。 其中第三个条件尤其重要。 其实,洛必达法则的条件中前两条是一望即知的,所以我们在解题过程中可以不用去细说,而第三个是通过计算过程的尝试验证来加以说明的,由于验证结束,结论也出来了,也就更加没有细说的必要了。所以在利用洛必达法则解题过程中,往往只用式子说话,不必用文字来啰嗦的。 而对于极限问题?+∞→x x x x x 0d sin 1lim 来说,因为x x g x f x x sin lim )()(lim +∞→+∞→=''不存在(既不是某个常数,也不是无穷 大),而可知洛必达法则的第三个条件得不到验证。此时,我们只能说洛必达法则对本问题无效,绝对不能因此而说本问题之极限不存在。 实际上,我们利用“将连续问题离散化”的方法来处理,可以断定这个极限是存在的。 【问题】求极限?+∞→x x x x x 0d sin 1lim 。 【解】对于任何足够大的正数x ,总存在正整数n ,使ππ)1(+<≤n x n ,也就是说总存在正整数n ,使r n x +=π,其中π<≤r 0。 这样+∞→x 就等价于∞→n ,所以 ??+∞→+∞→+=r n n x x x x r n x x x ππ00d sin 1lim d sin 1lim ??????++=??+∞→r n n n n x x x x r n ππππd sin d sin 1lim 0 ππππ22lim d sin d sin 1lim 00=++=??????++=∞→∞→??r n R n t t x x n r n n r n , 这里前面一项注意到了函数x sin 的周期为π,而后面一项作了令t n x +=π的换元处理。最后注意到积分值R 的有界性(20<≤R )。 如果把上述洛必达法则失效的情况称为第一种情况,则洛必达法则还有第二种失效的情况:第三个条件永远也无法验证。

论洛必达法则

小论 洛必达法则 姓名: 班级: 学号:

一、引言 洛必达法则是数学分析中用于求未定式或极限的一种较普遍的有效方法,灵活地运用洛必达法则也是我们自身数学解题能力的体现,具有重要的应用价值。而洛必达法则在计算未定式极限中洛必达法则扮演着十分重要的角色。这是因为对于未定式极限来讲其极限是否存在,等于多少是不能用极限的四则运算法则。而通过对分子分母分别求导再求极限的洛必达法则能够很有效的计算出未定式的极限。洛必达法则,是在一定条件下通过分子分母分别求导再求极限来确定未定式值的方法。求函数极限是高等数学中的一项重要内容,是研究微积分学的工具。在众多求极限方法中,洛必达法则因其使用简单方便又可解决绝大部分极限问题而备受青眯,但如果使用不当也容易产生误区,得出错误结果。 二、概念 1.0 型 洛必达法则1:若函数f (x)与g(x)满足下列条件: (1)在a 的某去心邻域()a U O 可导,且g '(x)≠0; (2)lim x a → f (x)=0与lim x a →g (x)=0; (3)()() ''lim x a f x l g x →=, 则()() lim x a f x g x →=()()''lim x a f x l g x →= 洛必达法则2:若函数f (x)与g(x)满足下列条件: (1)?A>0,在(),A -∞-与(),A +∞可导,且g '(x)≠0; (2)lim x a → f (x)=0与lim x a →g (x)=0; (3)()() ''lim x a f x l g x →= 则()() lim x a f x g x →=()()''lim x a f x l g x →=

使用洛必达法则求极限的几点注意_图文(精)

硬闲洛密达法则求极限的儿点涅枣 口杨黎霞 (江南大学江苏?无锡214122 摘要如果当圹+口或r+*时,两个函数删与,M都趋于零或都趋于无穷大。那么极限l/m葡可能存在,也可能不存在。洛 ‘::, 必达法则是计算此类未定式极限行之有效的方法.然而。对于本科一年级的初学者来讲,若盲目使用此法则.会导致错误。本文就使用该法则解题过程中的几点注意作了分析与探讨。 关键词洛必达法则 极限未定式等价无穷小代换 变量代换 中图分类号:0172 文献标识码:A 在高等数学里.极限是大一新生一开始就要接触而且非常重要的内容。其中有一类未定式的极限不能用“商的极限等于极限的商”这一法则.而要用洛必达法则。洛必达法则内容很简单.使用起来也方便有效。但在具体使用过程中。一旦疏忽了以下几点.解题就可能出错。 首先,只有分子、分母都趋于零或都趋于无穷大时,才能直接使用洛必达法则。 其次,每次使用洛必达法则前都要检验是否满足次法则条件。只要满足此法则条件.就可连续使用此法则.直到求出结果或为无穷大。

例如:t/mx"。:坛,n.垡!;!j:以,n墨王翌::!.≥芝三:…:lira墨}==D(n仨z+ ,-.-e’r_? e’ Jr--JO e‘r_?e。 此题用了n次法则。 再者,使用洛必达法则求极限是应及时化简,主要指代数、三角恒等变形,约去公因子。具有极限不为零的因子分离出来,等价无穷小代换,变量代换等。下面通过例子说明。 土- 例:鲤【(J慨。7I叫】‘=塑【(J+÷eL÷】=纫型±笋=姆 号等力 此题先用了变量代换。当变量x趋于。时.t趋于0.这一点要注意。 例:矗。卑=f溉!堡:型Jim r.zim掣=f讹丝车堑 =lim S,ec气-I=li,n.]+co.sx-一2 本题用了多种方法:提出极限存在但不为零的因子。等价无穷小代换。洛必达法则,三角恒等变形约分等。 (J呵+{,一、/瓦芦 fJ目:lim———生—r_—一若直接使用洛必达法则,其分子

洛必达公式

洛必达公式+泰勒公式+柯西中值定理+罗尔定理 洛必达法则洛必达法则(L'Hospital法则),是在一定条件下通过分子分母分别求导再求极限来确定未定式值的方法。 设 (1)当x→a时,函数f(x)及F(x)都趋于零; (2)在点a的去心邻域内,f'(x)及F'(x)都存在且F'(x)≠0; (3)当x→a时lim f'(x)/F'(x)存在(或为无穷大),那么 x→a时 lim f(x)/F(x)=lim f'(x)/F'(x)。 再设 (1)当x→∞时,函数f(x)及F(x)都趋于零; (2)当|x|>N时f'(x)及F'(x)都存在,且F'(x)≠0; (3)当x→∞时lim f'(x)/F'(x)存在(或为无穷大),那么 x→∞时 lim f(x)/F(x)=lim f'(x)/F'(x)。 利用洛必达法则求未定式的极限是微分学中的重点之一,在解题中应注意: ①在着手求极限以前,首先要检查是否满足0/0或∞/∞型未定式,否则滥用洛必达法则会出错。当不存在时(不包括∞情形),就不能用洛必达法则,这时称洛必达法则不适用,应从另外途径求极限。比如利用泰勒公式求解。 ②若条件符合,洛必达法则可连续多次使用,直到求出极限为止。 ③洛必达法则是求未定式极限的有效工具,但是如果仅用洛必达法则,往往计算会十分繁琐,因此一定要与其他方法相结合,比如及时将非零极限的乘积因子分离出来以简化计算、乘积因子用等价量替换等等. 泰勒公式(Taylor's formula) 泰勒中值定理:若函数f(x)在开区间(a,b)有直到n+1阶的导数,则当函数在此区间内时,可以展开为一个关于(x-x.)多项式和一个余项的和: f(x)=f(x.)+f'(x.)(x-x.)+f''(x.)/2!*(x-x.)^2,+f'''(x.)/3!*(x-x.)^3+……+f(n)(x.)/n!*(x-x.)^n+ Rn 其中Rn=f(n+1)(ξ)/(n+1)!*(x-x.)^(n+1),这里ξ在x和x.之间,该余项称为拉格朗日型的余项。 (注:f(n)(x.)是f(x.)的n阶导数,不是f(n)与x.的相乘。) 证明我们知道f(x)=f(x.)+f'(x.)(x-x.)+α(根据拉格朗日中值定理导出的有限增量定理有limΔx→0 f(x.+Δx)-f(x.)=f'(x.)Δx),其中误差α是在limΔx→0 即limx→x.的前提下才趋向于0,所以在近似计算中往往不够精确;于是我们需要一个能够足够精确的且能估计出误差的多项式:P(x)=A0+A1(x-x.)+A2(x-x.)^2+……+An(x-x.)^n 来近似地表示函数f(x)且要写出其误差f(x)-P(x)的具体表达式。设函数P(x)满足P(x.)=f(x.),P'(x.)=f'(x.),P''(x.)=f''(x.),……,P(n)(x.)=f(n)(x.),于是可以依次求出A0、A1、A2、……、An。显然,P(x.)=A0,所以A0=f(x.);P'(x.)=A1,A1=f'(x.);P''(x.)=2!A2,A2=f''(x.)/2!……P(n)(x.)=n!An,An=f(n)(x.)/n!。至此,多项的各项系数都已求出,得:P(x)=f(x.)+f'(x.)(x-x.)+f''(x.)/2!?(x-x.)^2+……+f(n)(x.)/n!?(x-x.)^n. 接下来就要求误差的具体表达式了。设Rn(x)=f(x)-P(x),于是有Rn(x.)=f(x.)-P(x.)=0。所以可以得出Rn(x.)=Rn'(x.)=Rn''(x.)=……=Rn(n)(x.)=0。根据柯西中值定理可得Rn(x)/(x-x.)^(n+1)=(Rn(x)-Rn(x.))/((x-x.)^(n+1)-0)=Rn'(ξ1)/(n+1)(ξ1-x.)^n(注:(x.-x.)^(n+1)=0),这里ξ1在x和x.之间;继续使用柯西中值定理得(Rn'(ξ1)-Rn'(x.))/((n+1)(ξ1-x.)^n-0)=Rn''(ξ2)/n(n+1)(ξ2-x.)^(n-1)这里ξ2在ξ1与x.之间;连续使用n+1次后得出Rn(x)/(x-x.)^(n+1)=Rn(n+1)(ξ)/(n+1)!,这里ξ在x.和x之间。但Rn(n+1)(x)=f(n+1)(x)-P(n+1)(x),由于P(n)(x)=n!An,n!An是一个常数,故P(n+1)(x)=0,于是得Rn(n+1)(x)=f(n+1)(x)。综上可得,余项

浅析洛必达法则求函数极限

本科学年论文论文题目:用洛必达法则求极限的方法 学生姓名:卫瑞娟 学号: 1004970232 专业:数学与应用数学 班级:数学1002班 指导教师:严惠云 完成日期: 2013 年 3月 8 日

用洛必达法则求未定式极限的方法 内容摘要 极限运算是微积分学的基础,在众多求极限方法中,洛必达法则是一种简单而又方便的求极限方法。但在具体使用过程中,一旦疏忽,解题就很可能出错。本文就针对利用此法则求极限的过程及解题过程中常见问题,对洛必达法则求函数极限的条件及范围、应用、何时失效做了整体分析与探讨,并举例说明。除此之外,还介绍了除洛必达法则之外其他求函数极限的方法以及同洛必达法则的比较,最后对洛必达法则进行小结。 关键词:洛必达法则函数极限无穷小量

目录 一、洛必达法则求极限的条件及适用范围 (1) (一)洛必达法则定理 (1) (二)洛必达法则使用条件 (2) 二、洛必达法则的应用 (2) (一)洛必达法则应用于基本不定型 (2) (二)洛必达法则应用于其他不定型 (3) 三、洛必达法则对于实值函数失效问题 (5) (一)使用洛必达法则后极限不存在 (5) (二)使用洛必达法则后函数出现循环 (6) (三)使用洛必达法则后函数越来越复杂 (6) (四)使用洛必达法则中求导出现零点 (6) 四、洛必达法则与其他求极限方法比较 (6) (一)洛必达法则与无穷小量替换求极限法 (7) (二)洛必达法则与利用极限运算和已知极限求极限 (8) (三)洛必达法则与夹逼定理求极限 (9) 五、洛必达法则求极限小结 (10) (一)洛必达法则条件不可逆 (10) (二)使用洛必达法则时及时化简 (11) (三)使用洛必达法则前不定型转化 (11) 参考文献 (13)

(完整版)洛必达法则巧解高考压轴题

洛必达法则巧解高考压轴题 洛必达法则: 法则1 若函数f(x) 和g(x)满足下列条件: (1) ()lim 0x a f x →= 及()lim 0x a g x →=; (2)在点a 的去心邻域内,f(x) 与g(x) 可导且g '(x)≠0; (3)()() lim x a f x l g x →'=', 那么 ()()lim x a f x g x →=()()lim x a f x l g x →'='。 00 型 法则2 若函数f(x) 和g(x)满足下列条件: (1) ()lim x a f x →=∞及()lim x a g x →=∞; (2)在点a 的去心邻域内,f(x) 与g(x) 可导且g '(x)≠0; (3)()() lim x a f x l g x →'=', 那么 ()()lim x a f x g x →=()()lim x a f x l g x →'='。 ∞∞ 型 注意: ○1将上面公式中的x→a,x→∞换成x→+∞,x→-∞,x a +→,x a -→洛必达法则 也成立。 ○ 2若条件符合,洛必达法则可连续多次使用,直到求出极限为止。 典例剖析 例题1。 求极限 (1)x x x 1ln lim 0 +→ (∞∞型) (2)lim x ?p 2 sin x -1cos x (00型) (3) 20 cos ln lim x x x → (00 型) (4)x x x ln lim +∞→ (∞∞型) 变式练习: 求极限(1)x x x )1ln(lim 0+→ (2)a x a x a x --→sin sin lim (3)x e e x x x sin lim 0-→- (4)22 )2(sin ln lim x x x -→ππ 例题2。 已知函数R m x e x m x f x ∈+-=,)1()(2

洛必达法则5种常见错误(1)

洛必达法则使用中的 5 种常见错误 求极限是微积分中的一项非常基础和重要的工作。 在建立了极限的四则运算法则,反函数求导法则,以及复合函数极限运算法则和求导证明之后,对于 普通的求极限问题,都可以通过上述法则来解决,但是对于形如: 0 , ∞ 0 ∞ , ∞ ? ∞,0 ? ∞, ∞0 ,1∞ ,00 (其中后面 3 种可以通过 A = e ln A 进行转换) 的 7 种未定型,上述法则往往显得力不从心,而有时只能是望尘莫及。 17 世纪末期的法国数学家洛必达给出了一种十分有效的解决方案, 我们称之为洛必达法则 (L,Hospital Rule )。虽然这个法则实际上是瑞士数学家约翰第一.伯努力在通信中告诉洛必达的。 在使用洛必达法则解题过程中,可能会遇到的一些常见误区和盲点。本文的目的不是为了追求解题技 巧,而是为了培养一种好的解题习惯。以减少在用洛必达法则解题过程中可能出现的失误。 首先,复述洛必达法则的其中一种情形: 1 1 1 ′ ′ 错误: lim xe x = lim x ? (e x ) = lim 1? e x ? (? ) = ?∞ x →0+ 1 x →0+ 1 e x 1 e x ? ( x →0+ x 2 1 )′ 正确: lim xe x = lim = lim x = +∞ x →0+ x →0+ 1 x →0+ ( 1 )′ x x 例:错解 lim x 3 ? 3x + 2 = l im 3x 2 ? 3 = l im 6 x = lim 6 = 1 x →1 2x 3 ? x 2 ? 4x + 3 x 3 ? 3x + 2 x →1 6x 2 ? 2x ? 4 3x 2 ? 3 x →1 12x ? 2 6x 3 x →1 12 2 正确解: lim x →1 2x 3 ? x 2 ? 4x + 3 = l im x →1 6x 2 ? 2x ? 4 = lim = x →1 12x ? 2 5 lim = e x ? c os x = l im e x + s in x = l im e x + c os x = 2 = 1 x →0 x sin x x →0 sin x + x cos x x →0 cos x + cos x ? x sin x 2 正确解: lim = e x ? c os x = l im e x + sin x = ∞ x →0 x sin x x →0 sin x + x cos x 更好的解法: lim = x →0 e x ? cos x x sin x = l im x →0 e x ? cos x x 2 = l im x →0 e x + s in x = ∞ 2x 经验:先考虑无穷小代换(与“0”结合),后考虑洛必达法则 █ 失误一 不预处理 Hospital Rule :1 lim f (x ) = lim g (x ) = 0 x →a x →a 2 在某U (a ,δ) 内, f ′(x ), g ′(x ) 存在,且 g ′(x ) ≠ 0 0 3 lim f ′(x ) 存在(或者 ∞ ) x →a g ′(x ) 则lim f (x ) f ′(x ) x →a g (x ) x →a g ′(x ) = l im █ 失误二 急躁蛮干 1

考研数学讲解之洛必达法则失效的情况及处理方法

洛必达法则失效的情况及处理方法 【本章定位】 此部分内容不需要特别掌握,关键是要用这部分的讲解来让读者记住使用泰勒展开式的重要性! 。 洛必达法则是计算极限的一种最重要的方法,我们在使用它时,一定要注意到该法则是极限存在的充分条件,也就是说洛必达法则 )()(lim )()(lim x g x f x g x f a x a x ''=→→的三个条件: (1)0)(lim =→x f a x (或∞),0)(lim =→x g a x (或∞); (2))(x f 和)(x g 在a x =点的某个去心邻域内可导; (3)A x g x f a x =''→)()(lim (或∞)。 其中第三个条件尤其重要。 其实,洛必达法则的条件中前两条是一望即知的,所以我们在解题过程中可以不用去细说,而第三个是通过计算过程的尝试验证来加以说明的,由于验证结束,结论也出来了,也就更加没有细说的必要了。所以在利用洛必达法则解题过程中,往往只用式子说话,不必用文字来啰嗦的。 而对于极限问题?+∞→x x x x x 0d sin 1lim 来说,因为x x g x f x x sin lim )()(lim +∞→+∞→=''不存在(既不是某个常数,也不是无穷 大),而可知洛必达法则的第三个条件得不到验证。此时,我们只能说洛必达法则对本问题无效,绝对不能因此而说本问题之极限不存在。 实际上,我们利用“将连续问题离散化”的方法来处理,可以断定这个极限是存在的。 【问题1】求极限?+∞→x x x x x 0d sin 1lim 。 【解】对于任何足够大的正数x ,总存在正整数n ,使ππ)1(+<≤n x n ,也就是说总存在正整数n ,使r n x +=π,其中π<≤r 0。 这样+∞→x 就等价于∞→n ,所以

洛必达法则在高考解答题中的应用

导数结合洛必达法则巧解高考压轴题 一.洛必达法则: 法则1.若函数)(x f 和)(x g 满足下列条件:(1) ()lim 0x a f x →= 及()lim 0x a g x →=; (2)在点a 的去心邻域内,)(x f 与)(x g 可导且0)('≠x g ; (3)()()lim x a f x l g x →'=',那么 ()()lim x a f x g x →=()() lim x a f x l g x →'='. 法则2.若函数)(x f 和)(x g 满足下列条件:(1) ()lim x a f x →=∞及()lim x a g x →=∞; (2)在点a 的去心邻域内,)(x f 与)(x g 可导且0)('≠x g ; (3)()()lim x a f x l g x →'=',那么 ()()lim x a f x g x →=()() lim x a f x l g x →'='. 利用洛必达法则求未定式的极限是微分学中的重点之一,在解题中应注意: ○ 1将上面公式中的a x →,∞→x 换成+∞→x ,-∞→x ,+→a x ,-→a x 洛必达法则也成立. ○2洛必达法则可处理00,∞ ∞,0?∞,∞1,0∞,00,∞-∞型. ○3在着手求极限以前,首先要检查是否满足00,∞∞ ,0?∞,∞1,0∞,00,∞-∞型定式,否则滥用洛必达法则会出错.当不满足三个前提条件时,就不能用洛必达法则,这时称洛必达法则不适用,应从另外途径求极限. ○ 4若条件符合,洛必达法则可连续多次使用,直到求出极限为止. 二.高考例题讲解 1. 函数2()1x f x e x ax =---. (Ⅰ)若0a =,求()f x 的单调区间; (Ⅱ)若当0x ≥时()0f x ≥,求实数a 的取值范围. 2. 已知函数x b x x a x f ++=1ln )(,曲线()y f x =在点))1(,1(f 处的切线方程为230x y +-=. (Ⅰ)求a 、b 的值; (Ⅱ)如果当0x >,且1x ≠时,ln ()1x k f x x x >+-,求k 的取值范围.

2021年洛必达法则 泰勒公式

*欧阳光明*创编
2021.03.07
第三章 微分中值定理与导数的应用
欧阳光明(2021.03.07)
第二讲 洛必达法则 泰勒公式
目的 1.使学生掌握用洛必达法则求各种类型未定式极限的方法; 2.理解泰勒中值定理的内涵;
3. 了解
等函数的麦克劳林公式;
4.学会泰勒中值定理的一些简单应用.
重点 1.运用洛必达法则求各种类型未定式极限的方法;
2.使学生理解泰勒中值定理的内涵.
难点 使学生深刻理解泰勒中值定理的精髓.
一、洛必达法则
在第一章第七节中我们曾经讨论过无穷小的比较问题,并且已
经知道两个无穷小之比的极限可能存在,也可能不存在,既使它存
在也不能用商的极限运算法则去求解.而由无穷大与无穷小的关系
知,无穷大之比的极限问题也是如此.在数学上,通常把无穷小之
比的极限和无穷大之比的极限称为未定式,并分别简记为 和 . 由于在讨论上述未定式的极限时,不能应用商的极限运算法
则,这或多或少地都会给未定式极限的讨论带来一定的困难.今天
*欧阳光明*创编
2021.03.07

*欧阳光明*创编
2021.03.07
在这里我们应用导数的理论推出一种既简便又重要的未定式极限的
计算方法,并着重讨论当 时, 型未定式极限的计算,关于这
种情形有以下定理.
定理 1 设
(1) 当 时,函数 及 都趋于零;
(2)在点 的某去心邻域内, 及 都存在,且

(3) 则
存在(或为无穷大),

也就是说,当
存在时,
也存在,且等于
;当
为无穷大时,
也是无穷大.这种在一定条件下,通
过分子分母分别求导,再求极限来确定未定式极限的方法称为洛必
达(L’Hospital)法则.
下面我们给出定理 1 的严格证明:
分析 由于上述定理的结论是把函数的问题转化为其导数的问
题,显然应考虑微分中值定理.再由分子和分母是两个不同的函
数,因此应考虑应用柯西中值定理.
证 因为求极限
与 及 的取值无关,所以可以假定
.于是由条件(1)和(2)知, 及 在点 的某一邻
域内是连续的.设 是这邻域内一点,则在以 及 为端点的区间
*欧阳光明*创编
2021.03.07

洛必达法则word版

第十七讲 Ⅰ 授课题目: §3.2 洛必塔法则 Ⅱ 教学目的与要求: 1.掌握用罗必塔法则求极限; 2.明了使用罗必塔法则的条件; 3.了解将罗必塔法则与极限运算性质结合使用常能简化运算。 Ⅲ 教学重点与难点: 重点:各种类型的未定式转化为 00或∞ ∞ 型的未定式 难点:罗必塔法则与极限运算性质的结合使用 Ⅳ 讲授内容: §3.2 洛必塔法则 如果当a x →(或∞→x )时,两个函数)(x f 与)(x F 都趋于零或都趋于无穷大,那末极限)() (lim ) (x F x f x a x ∞→→可能存在、也可能不存在.通常把这种极限叫做未定式,并 分别简记为 00或∞∞.在第一章第六节中讨论过的极限x x x sin lim 0→就是未定式0 0的一个 例子.对于这类极限,即使它存在也不能用“商的极限等于极限的商”这—法则. 下面我们将根据柯西中值定理来推出求这类极限的一种简便且重要的方法. 我们着重讨论a x →时的未定式 的情形,关于这情形有以下定理: 定理1 设 (1)当a x →时,函数)(x f 及)(x F 都趋于零; (2)在点a 的某去心邻域内,)(x f '及)(x F '都存在且0)(≠'x F ; (3)) () (lim x F x f a x ''→存在(或为无穷大), 那么 ) () (lim )()(lim x F x f x F x f a x a x ''=→→. 这就是说,当)()(lim x F x f a x ''→存在时,)()(lim x F x f a x →也存在且等于)()(lim x F x f a x ''→;当) () (lim x F x f a x ''→为 无穷大时,

洛必达法则不能使用情况及处理

洛必达法则失效的种种情况及处理方法 我看到这样一道题?+∞→x x x x x 0d sin 1 lim ,说是不可以使用洛必达法则,我对照这本书上关于使用洛必达法则 的条件,觉得还不太清楚,好像应该是符合条件的,谢谢你抽空给我指点一下。 洛必达法则是计算极限的一种最重要的方法,我们在使用它时,一定要注意到该法则是极限存在的充分条件,也就是说洛必达法则 )() (lim )() (lim x g x f x g x f a x a x ''=→→的三个条件: (1)0)(lim =→x f a x (或∞),0)(l i m =→x g a x (或∞); (2))(x f 和)(x g 在a x =点的某个去心邻域内可导; (3)A x g x f a x =''→)() (lim (或∞)。 其中第三个条件尤其重要。 其实,洛必达法则的条件中前两条是一望即知的,所以我们在解题过程中可以不用去细说,而第三个是通过计算过程的尝试验证来加以说明的,由于验证结束,结论也出来了,也就更加没有细说的必要了。所以在利用洛必达法则解题过程中,往往只用式子说话,不必用文字来啰嗦的。 而对于极限问题?+∞→x x x x x 0d sin 1 lim 来说,因为x x g x f x x sin lim )()(lim +∞→+∞→=''不存在(既不是某个常数,也不是无穷大),而可知洛必达法则的第三个条件得不到验证。此时,我们只能说洛必达法则对本问题无效,绝对不能因此而说本问题之极限不存在。 实际上,我们利用“将连续问题离散化”的方法来处理,可以断定这个极限是存在的。 【问题】求极限?+∞→x x x x x 0d sin 1 lim 。 【解】对于任何足够大的正数x ,总存在正整数n ,使ππ)1(+<≤n x n ,也就是说总存在正整数n ,使r n x +=π,其中π<≤r 0。 这样+∞→x 就等价于∞→n ,所以 ??+∞→+∞→+=r n n x x x x r n x x x ππ00d sin 1lim d sin 1lim ??????++=? ?+∞→r n n n n x x x x r n ππππd sin d sin 1lim 0 ππππ22lim d sin d sin 1lim 00=++=??????++=∞→∞→??r n R n t t x x n r n n r n , 这里前面一项注意到了函数x sin 的周期为π,而后面一项作了令t n x +=π的换元处理。最后注意到积分值R 的有界性(20<≤R )。 如果把上述洛必达法则失效的情况称为第一种情况,则洛必达法则还有第二种失效的情况:第三个条件永远也无法验证。

洛必达法则

利用导数求解函数问题是近年高考的一个热点,也是学生学习的一个难点,在高三数学复习备考中应引起关注。实施变式教学是探讨该类问题的一种有效方法。教学过程以数学问题为导引创设问题情境激发学生进行学习、探讨,领会不同背境下问题的本质;通过对函数典型问题的探讨求解,使学生形成基本的数学技能,在此基础上实施变式教学,有目的、有意识地引导学生从“变”的现象中发现“不变”的本质,从“不变”的本质中探究“变”的规律;对新背景的综合问题更应引导学生敢于面对,能够运用已经掌握的数学思想和方法进行分析问题、解决问题,获得“未曾有过”的新认识、新境界,进一步增强求解数学综合题的信心,体会学习数学的乐趣。 在新课程标准的指引下,数学教学方法也在不断改进、创新,而“变式教学”是被广泛运用且公认有效的教学手段。以往人们通常把变式教学划分为概念性变式和过程性变式两类;现在,人们已经把变式教学划分为概念和原理的变式教学、数学技能的变式教学、数学思想方法的变式教学三种类型。对中学教学来说,变式教学最重要的是可以让教师有目的、有意识地引导学生从“变”的现象中发现“不变”的本质,从“不变” 的本质中探究“变”的规律,帮助学生使所学的知识点融会贯通,从而让学生在无穷的变化中领略数学的魅力,体会学习数学的乐趣。从高考试题的研究中发现,利用导数求解函数问题是一个热点,值得我们在教学中关注到这一动向,并积极研究、探讨,尤其是函数解决不等式问题的求解学生比较陌生。本文以问题为导引,从回归教材学习中领会概念本质,在求解函数问题的探讨过程中实施教学,促使学生适时地归纳、总结,提炼方法规律,真正感悟解题实质,不断完善数学认知结构。 洛必达法则就是在型和型时,有。

洛必达法则求极限教学

洛必达法则求极限教学 摘要:本文结合教学实际对洛必达法则及其在求未定式极限方面的应用进行了分析,同时还分析了学生易错的洛必达法则求函数极限失效的情况。 关键词:洛必达法则;未定式;极限 求极限是微积分中的一项非常基础和重要的工作。教学中发现对于普通的求极限问题,学生解决起来问题不大,但是对于形如:■,■,∞-∞,0·∞,∞0,1∞,00的7种未定式,学生虽然能联系到洛必达法则,但是经常出错。 一、洛必达法则及应用 (一)洛必达法则 若函数f(x)与函数g(x)满足下列条件: 1. (或∞),(或∞); 2.f(x)与g(x)在x=a点的某个去心邻域内可导; 3. (或∞)。则 洛必达法则所述极限结果对下述六类极限过程均适用: 。 (二)洛必达法则的应用 1. 基本类型:未定式直接应用法则求极限 解:这是■型未定式。直接运用洛必达法则有 解:这个极限是■型未定式,于是 2. 未定式的其他類型:0·∞、∞-∞、00、∞0、1∞型极限的

求解 除了■型或■这两种未定式外,还可以通过转化,来解其他未定式。 解:这是∞-∞型,设法化为■型: 解:这是1∞未定式 解:这是∞0未定式,经变形得, 故 例6 求 解:这是0·∞型未定式,可变形为,成了■ 型未定式,于是 解:这是00型未定式,由对数恒等式知,xx=exInx,运用例8可得 二、洛必达法则对于实值函数的失效问题 洛必达法则可谓是在求不定式极限中作用最为显赫的一种方法,当然,它也有失效的时候。“失效”的原因则是因为题目本身不满足可以使用洛必达法则的几个条件。所以,在要使用洛必达法则时,要检验该题目是否符合洛必达法则条件,洛必达法则失效的基本原因有以下几种。 (一)使用洛必达法则后,极限不存在(非∞),也就是不符合洛必达法则的条件(3) 例8 计算 解:,而不存在,

洛必达法则解决问题

洛必达法则简介: 法则1 若函数f(x) 和g(x)满足下列条件:(1) ()lim 0x a f x →= 及()lim 0x a g x →=; (2)在点a 的去心邻域内,f(x) 与g(x) 可导且g '(x)≠0; (3)()() lim x a f x l g x →'=', 那么 () ()lim x a f x g x →=()() lim x a f x l g x →'='。 法则2 若函数f(x) 和g(x)满足下列条件:(1)()lim 0x f x →∞= 及()lim 0x g x →∞=; (2)0A ?f ,f(x) 和g(x)在(),A -∞与(),A +∞上可导,且g '(x)≠0; (3)()()lim x f x l g x →∞'=', 那么 ()()lim x f x g x →∞=()() lim x f x l g x →∞'='。 法则3 若函数f(x) 和g(x)满足下列条件:(1) ()lim x a f x →=∞及()lim x a g x →=∞; (2)在点a 的去心邻域内,f(x) 与g(x) 可导且g '(x)≠0; (3)()()lim x a f x l g x →'=', 那么 ()()lim x a f x g x →=()() lim x a f x l g x →'='。 利用洛必达法则求未定式的极限是微分学中的重点之一,在解题中应注意: ○ 1将上面公式中的x→a,x→∞换成x→+∞,x→-∞,x a +→,x a -→洛必达法则也成立。 ○2洛必达法则可处理00,∞∞ ,0?∞,1∞,0∞,00,∞-∞型。 ○3在着手求极限以前,首先要检查是否满足00,∞∞ ,0?∞,1∞,0∞,00,∞-∞型定式,否则滥用洛必达法则会出错。当不满足三个前提条件时,就不能用洛必达法则,这时称洛必达法则不适用,应从另外途径求极限。 ○ 4若条件符合,洛必达法则可连续多次使用,直到求出极限为止。 二.高考题处理 1.(2010年全国新课标理)设函数2 ()1x f x e x ax =---。 (1) 若0a =,求()f x 的单调区间; (2) 若当0x ≥时()0f x ≥,求a 的取值范围 原解:(1)0a =时,()1x f x e x =--,'()1x f x e =-.

洛必达法则

1 洛必达法则 一.洛必达法则 法则1 若函数f(x) 和g(x)满足下列条件:(1) ()lim 0x a f x →= 及()lim 0x a g x →=; (2)在点a 的去心邻域内,f(x) 与g(x) 可导且g '(x)≠0; (3)()() lim x a f x l g x →'=', 那么 () ()lim x a f x g x →=()() lim x a f x l g x →'='。 法则2 若函数f(x) 和g(x)满足下列条件:(1)()lim 0x f x →∞= 及()lim 0x g x →∞=; (2)0A ?,f(x) 和g(x)在(),A -∞与(),A +∞上可导,且g '(x)≠0; (3)()() lim x f x l g x →∞'=', 那么 () ()lim x f x g x →∞=()() lim x f x l g x →∞'='。 法则3 若函数f(x) 和g(x)满足下列条件:(1) ()lim x a f x →=∞及()lim x a g x →=∞; (2)在点a 的去心邻域内,f(x) 与g(x) 可导且g '(x)≠0; (3)()() lim x a f x l g x →'=', 那么 ()()lim x a f x g x →=()() lim x a f x l g x →'='。 利用洛必达法则求未定式的极限是微分学中的重点之一,在解题中应注意: ○ 1将上面公式中的x→a,x→∞换成x→+∞,x→-∞,x a +→,x a -→洛必达法则也 成立。 ○ 2洛必达法则可处理00,∞∞ ,0?∞,1∞,0∞,00,∞-∞型。 ○3在着手求极限以前,首先要检查是否满足00,∞∞,0?∞,1∞,0∞,00,∞-∞型定式,否则滥用洛必达法则会出错。当不满足三个前提条件时,就不能用洛必达法则,这时称洛必达法则不适用,应从另外途径求极限。 ○ 4若条件符合,洛必达法则可连续多次使用,直到求出极限为止。 二.高考题处理 1.设函数2()1x f x e x ax =---。

洛必达法则的一些应用

1 引言 18世纪数学本身的发展,以及这个世纪后期数学研究活动的扩和数学教育的改革都为19世纪数学的发展准备了条件.微积分学的深人发展,才有了后面的洛比达法则,而且在英国和欧洲大陆是循着不同的路线进行的.在欧洲大陆,新分析正在莱布尼茨的继承者们的推动下蓬勃发展起来.伯努利家族的数学家们首先继承并推广莱布尼茨的学说. 雅各布·伯努利运用莱布尼茨引用的符号,并称之为积分,莱布尼茨采用他的建议,并列使用微分学与积分学两个术语.雅各布·伯努利的弟弟约. 翰·伯努利在莱布尼茨的协助之下发展和完善了微积分学. 他借助于常量和变量,用解析表达式来定义函数,这比在此之前对函数的几何解释有明显的进步. 他在求“0/0”型不定式的值时,发现了现称为洛必达法则的方法,即用以寻找满足一定条件的两函数之商的极限. 约翰·伯努利的学生、法国数学家洛必达的《无限小分析》(1696)一书是微积分学方面最早的教科书,在十八世纪时为一模著作,他在书中规了这一种算法即洛必达法则,之后洛必达法则的也得到了广泛应用,这对传播微分学起到很大的作用. 从极限概念的产生到现在已经经历了两千五百多年的发展,漫漫的历史长河,人类在寻求真理和科学的过程中不断探索和总结,对于数学的探索给了人类科学发展以强大的动力.我们应当对任何知识都认真的学习、研究及做出总结.不仅踏寻前人的路迹,同时也要从中开创新的空间. 极限是数学分析的基石,是微积分学的基础.不定式极限是一种常见和重要的极限类型,其求法多种多样,变化无穷.本文先介绍了洛必达法则的定义,然后对洛必达法则使用条件及其常见误区进行了详细分析,阐述了该法则适用于解决函数极限的类型并举例说明其应用,总结了洛必达法则的各种形式及使用围,并介绍了洛必达法则的基本应用,以及在使用洛必达法则解题时应注意的问题.文章还将法则的适用围推广至求数列极限,然后分析法则的使用过程中容易出现的错误;最后通过具体实例说明了可以将法则和其他求极限方法结合起来使用,使我们对法则有了更深入的理解,进而提高了应用洛必达法则解决问题的能力. 2 洛必达法则及使用条件 在计算一个分式函数的极限时,常常会遇到分子分母同时趋向于零或无穷大的情况,由于这时无法使用“商的极限等于极限的商”的法则,运算将遇到很大的困难,事实上,这时极限可能存在,也可能不存在,当极限存在时,极限的值也会有各种各样的可能,如当a x →(或∞→x )时,两个函数)(x f 与)(x g 都趋于零或都趋于无穷大,那么极限

洛必达法则失效的种种情况及处理方法

《高数解题的四种思维定势》 1.在题设条件中给出一个函数f(x)二阶和二阶以上可导,“不管三七二十一”,把f(x)在指定点展成泰勒公式再说。 2.在题设条件或欲证结论中有定积分表达式时,则“不管三七二十一”先用积分中值定理对该积分式处理一下再说。 3.在题设条件中函数f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=0或f(b)=0或f(a)=f(b)=0,则“不管三七二十一”先用拉格朗日中值定理处理一下再说。 4.对定限或变限积分,若被积函数或其主要部分为复合函数,则“不管三七二十一”先做变量替换使之成为简单形式f(u)再说。 《线性代数解题的八种思维定势》 1.题设条件与代数余子式Aij或A*有关,则立即联想到用行列式按行(列)展开定理以及AA*=A*A=|A|E 。2.若涉及到A、B是否可交换,即AB=BA,则立即联想到用逆矩阵的定义去分析。 3.若题设n阶方阵A满足f(A)=0,要证aA+bE可逆,则先分解出因子aA+bE再说。 4.若要证明一组向量a1,a2,…,as线性无关,先考虑用定义再说。 5.若已知AB=0,则将B的每列作为Ax=0的解来处理再说。 6.若由题设条件要求确定参数的取值,联想到是否有某行列式为零再说。 7.若已知A的特征向量ζ0,则先用定义Aζ0=λ0ζ0处理一下再说。 8.若要证明抽象n阶实对称矩阵A为正定矩阵,则用定义处理一下再说。 关于可积和原函数存在 如下三种情况可积,是充分条件 1。闭区间上的连续函数是可积的 2。只有有限个第一类间断点的函数是可积的,也就是分段连续函数是可积的 3。单调有界函数必定可积 不满足以上三条的也可能是可积的,上面的是充分条件 另外,关于原函数是否存在 在某个区间上有第一类的函数,则在这个区间上一定不存在原函数 在某个区间上有第二类间断点的函数,则在这个区间上有可能有原函数,也可能没有 最后,可积和是否有原函数,说的不是一个事情,这个要记住了 可积大概的理解,就是图形和x轴围成的面积是存在的,不是无穷大的 原函数,就是有这样一个函数,可以表达块面积 显然,面积存在的时候,是不一定有这样一个函数的 关于合同,相似,等价的关系 1、两个矩阵合同,并不需要他俩一定是对称矩阵! 2、俩个实对称矩阵合同的充要条件是它俩必然具有相同得正负惯性指数; 3、不是实对称的俩矩阵合同,根本无从讨论它俩的什么正负惯性指数——因为二次型的矩阵一定是实对称矩阵,也只有实对称矩阵对应的二次型才有所谓正负惯性指数这一概念!呵呵^_^ 4、两个矩阵合同,一定推出它俩等价;两个矩阵相似,也一定推出它俩等价;两矩阵相似与两矩阵合同谁也不比谁更强! 5、如果两矩阵有相同的秩,且为同型矩阵,那么两矩阵等价 6、两个实对称矩阵相似,可推出两个矩阵合同,但合同不能推出相似 关于偏导,可微 1。f(x,y)偏导连续推出f(x,y)可微 2。可微推出f(x,y)连续 3。可微推出f(x,y)的偏导存在 一元函数情形: 连续不一定可导

相关文档
相关文档 最新文档