文档库 最新最全的文档下载
当前位置:文档库 › 构造平行四边形巧解几何问题

构造平行四边形巧解几何问题

构造平行四边形巧解几何问题
构造平行四边形巧解几何问题

构造平行四边形巧解几何问题

株洲市五中谢超

【摘要】

平行四边形是研究平面直线形图形的重要基本图形,它为证明和计算几何问题提供了极大的方便.根据本人实际的教学和竞赛培训经验,通过证线段互相平分、直线平行、角相等、三线共点、线段的和差倍分以及相关几何计算中的应用,渗透了平行四边形的构造方法,体现了平行四边形在几何中的重要地位.

【关键词】

平行四边形构造技巧证线段互相平分证直线平行证角相等证三线共点证线段的和差倍分在几何计算中的妙用

平行四边形是一类特殊的四边形,它的特殊性体现在边、角和对角线上.矩形、菱形又是特殊的平行四边形,它们除拥有平行四边形的性质外,各自还有独特的性质.正方形是最特殊的四边形,它集中了矩形、菱形等特殊四边形的所有性质.平行四边形是研究平面直线形图形的重要基本图形,它为证明几何问题提供了极大的方便,比如证角相等、线段相等、直线平行或垂直等都可以转化为证平行四边形,而构造平行四边形是该类问题中常用的技巧.

一、证线段互相平分

例1 如图所示.在ABCD中,AE⊥BC,CF⊥AD,DN=BM.求证:EF与MN互相平分.

【分析】由于平行四边形的对角线互相平分,所以只要证明ENFM是平行四边形即可,由已知,提供的等量要素很多,可从全等三角形下手.

证明∵□ABCD ∴AD BC,AB CD,∠B=∠D.又∵AE⊥BC,CF⊥AD,

∴矩形AECF,∴AE=CF.∴Rt△ABE≌Rt△CDF(HL,或AAS),∴BE=DF.又由已知BM=DN,∴△BEM≌△DFN(SAS),∴ME=NF.∵AF=CE,AM=CN,∠MAF=∠NCE,∴△MAF≌△NCE(SAS),∴ MF=NF.∴四边形ENFM是平行四边形.从而对角线EF与MN互相平分.

二、证直线平行

例2在△ABC中,AE、BD、CF为中线,FM∥BD,DM∥AB。

求证:MC∥AE

证明:连结AM 、FD 。

∵FM ∥BD ,DM ∥AB ,∴四边形FBDM 为平行四边形 ∴BF ∥DM ∵AF =BF ∴AF DM ∴四边形AFDM 为平行四边形

∴AM FD

又∵F 、D 、E 分别为AB 、AC 、BC 边中点 ∴FD

EC

∴AM EC ,

∴四边形AECM 为平行四边形 ∴MC ∥AE 。

三、证角相等

例3 如图,在四边形ABCD 中,AD=BC ,E 、F 分别是CD 、AB 的中点,直线EF 分别交BC 、AD 延长线于S 、T ,求证:∠ATF=∠BSF.

【分析】由于∠ATF 和∠BSF 不在同一个三角形内,又不可能在两个全等的三角形内,所以需要把两个角转移,由此想到会通过某些点做平行线,再结合平行四边形性质和全等三角形性质以达到目的. 证明 过点F 做GH

CD ,且FG=FH ,连接DG 、CH 、AG 、BH.则四边形DGHC 和四

边形AGBH 是平行四边形.∴AG=BH ,DG=CH ,DG//SF//CH. ∴∠ADG=∠ATF ,∠BCH=∠BSF.又∵AD=BC ,∴△ADG ≌△BCH (SSS ),∴∠ADG=∠BCH ,∴∠ATF=∠BSF.

四、证三线共点

例4 求证:四边形两组对边中点连线与两对角线中点连线这三线共点.

A

C

E

D S T F B H

B

H

M

D A N

L F E O

B

E

C

M

A

F

D

【分析】 如图,即证EF 、MN 和HL 三线共点,易猜想这三线两两互相平分,结合平行四边形对角线性质,可想到构造平行四边形.

证明 如图,设N 、H 、M 、L 、F 、E 分别为AB 、BC 、CD 、DA 、AC 、BD 的中点,只需证明EF 、LH 和ML 三线共点.

连接LE ,EH ,HF ,LF ,NE ,EM ,MF ,FN.则LE 、HF 分别为△ABD 和△ABC 的

中位线,所以LE 21AB ,HF 2

1

AB ,所以LE HF ,故四边形EHFL 是平行四边

形,设EF ,LH 相交于O ,则O 平分EF.同理可证:四边形NFME 是平行四边形,所以MN 平分EF ,即MN 经过点O.故EF ,LH ,MN 三线共点.

五、证线段的和差倍分 例5 如图4,在△ABC 的边AB 上截取AE =BF ,过E 作ED ∥BC 交AC 于D ,过F 作FG ∥BC 交AC 于G 。 求证:ED FG BC +=

证明:过G 作GH ∥AB 交BC 于H ,则四边形FBHG 为平行四边形

∴=======+=+=FG BH FB GH AE BF AE GH AB GH ED BC

A HGC ADE C AED GHC ED HC

ED FG HC BH BC ,∵,∴∵,∴∠∠,∠∠∴△≌△∴∴////

例6如图5,分别以△ABC 的边AB 、BC 为边向外作正方形ABDE 和BCFG ,BM 为AC 边上的中线。 求证:DG =2BM

证明:延长BM 到N ,使MN =BM ,连结AN 、CN 。 则四边形ANCB 为平行四边形 ∴AN =BC

又∵BG =BC ,∴AN =BG 又∠DBG =180°-∠ABC ∠BAN =180°-∠ABC

A

E

D

G F B

C

H

N

C F

G

D

B

A

M

E

∴∠DBG =∠BAN ∵DB =BA ∴△DBG ≌△BAN ∴DG =BN ,而BN =2BM ∴DG =2BM

六、在几何计算中的妙用

例4 如图,在等腰△ABC 中,延长边AB 到点D ,延长边CA 到点E ,连结DE ,恰有AD=BC=CE=DE ,求∠BAC 的度数.

【分析】 题设条件给出的是线段的等量关系,要求的却是角的度数,相等的线段可得到全等三角形、特殊三角形,为此需通过构造平行四边形改变它们的位置.

证明 过点C 做CF//AD ,过点D 做DF//BC ,CF 与DF 相交于F ,连结EF.则四边形DBFC 是平行四边形,所以DF=BC ,FC=DB.

△ADE 中,AD=ED ,其底角∠EAD 必为锐角,则∠BAC 必为钝角,必为△ABC 的顶角,所以AB=AC ,又∵EC=AD ,∴AE=DB ,∴AE=FC. ∵AD//FC ,∴∠EAD=∠ECF ,∴△ADE ≌△CEF (SAS ),∴EF=DE ,从而DE=DF=EF ,故△EDF 是等边三角形.

设∠BAC=a ,则∠ADF=∠ABC=2

1800a

-,∠DAE=a -0180,∠ADE=1800-2∠

DAE=0

001802)180(2180-=--a a .因为∠ADF+∠ADE=∠EDF=060,所以:

21800a

-+0060)1802(=-a ,解之得0100=a ,即∠BAC=0100.

例5 四边形ABCD 中,已知AB=6,BC=35-,CD=6,∠ABC=0135,∠BCD=0120,求AD 的长.

D

E

A B F A

D

G

C B F

E

【分析】 所给的条件与要求的AD 无法直接建立关系,因此需要将AD 转移到某个特殊三角形内,注意到∠ABC 和∠BCD 的补角的度数分别是045和060,不难做出辅助线了.

解 过点A 作AF ⊥CB 于F ,过点D 作DE ⊥BC 于E ,则AF//DE ,再过点F 作FG//AD 交DE 于G ,那么四边形AFGD 为平行四边形. ∵∠ABC=0135,∠BCD=0120 ∴∠FBA=045,∠ECD=060 在Rt △ABF 中, AF=BF=

2

2

AB=3 在Rt △CED 中,

CE=21

CD=3

DE=33362222=-=-CE CD

∴EG=DE-DG=DE-AF=32,EF=FB+BC+CE=8 在Rt △FEG 中,

FG=19222=+EG FE 故AD=192

主要参考文献:

培优竞赛新方法

黄东坡著 初中数学竞赛热点专题

湖南师范大学出版社 初中数学奥林匹克实用教程

湖南师范大学出版社 初中数学奥林匹克竞赛解题方法大全 山西教育出版社 全国奥林匹克初中竞赛教材

奥林匹克出版社

构造中位线巧解圆锥曲线题

构造中位线 巧解圆锥曲线题 徐志平 (浙江金华一中 321000) 在求一些与圆锥曲线有关的题目时,通常需要先构造出三角形或梯形的中位线,然后借助中位线的性质定理来求解,现举例加以分析说明。 1.求点的坐标 例1. 椭圆13 122 2=+y x 的一个焦点为1F ,点P 在椭圆上。如果线段1PF 的 中点M 在y 轴上,那么点M 的纵坐标是 ( ) A. 43± B. 2 2± C. 23± D. 43± M 的坐标,只需先求点P 的坐标即可。 连接PF 2,由于M 是PF 1的中点,O 是F 1F 2的中点, 所以MO 是21F PF ?的中位线,又轴x MO ⊥,则有 轴x PF PF MO ⊥22,//,3312=-=P x 2 3±=,43±=∴M y ,故选(D )。 例2.定长为3的线段AB 的两端点在抛物线y 2 =x 上移动,记线段AB 的中点 为M ,求点M 到y 轴的最短距离,并求此时点M 的坐标。 分析:利用抛物线的定义,结合梯形的中位线性质 定理可以解决问题。 解:抛物线的焦点)0,41(F ,准线 方程:41 -=x ,上分别作点A 、B 、M 的射影A 1、B 1、M 1,则由MM 1 是梯形AA 1B 1B )(21 )(21111BF AF BB AA MM +=+= ,在ABF ?可以取等号) 通径∴>≥+AB AB BF AF (,2 211=≥AB MM ∴M 到y 轴的最短距离= 。 4 5 4123=-即45=M x 。 ∴显然这时弦AB 过焦点),(04 1F 。设A (x 1,y 1),B (x 2,y 2),则有12 1x y = ① 22 2x y = ②,①-②得M y x x y y x x y y y y 21))((2121212121=--?-=-+

构造平行四边形证题的技巧

构造平行四边形证题的技巧 吴健 在证明某些几何问题时,若能根据图形的特征,添加恰当的辅助线构造出平行四边形,并利用其性质可使问题化难为易,化繁为简,下面举例说明。 一. 构造平行四边形证两线段平行 例1. 已知如图,平行四边形ABCD 的对角线AC 和BD 交于O ,E 、F 分别为OB 、OD 的中点,过O 任作一直线分别交AB 、CD 于G 、H 。 求证:GF//EH 。 证明:连结GE 、FH 四边形ABCD 是平行四边形 COH AOG DCO BAO ,OC OA ∠=∠∠=∠=∴又 OH OG COH AOG =∴???∴ 又OF OE = ∴四边形EHFG 是平行四边形 EH //GF ∴ 二. 构造平行四边形证两线段相等 例2. 如图,ABC ?中,D 在AB 上,E 在AC 的延长线上,BD=CE 连结DE ,交BC 于F ,∠BAC 外角的平分线交BC 的延长线于G ,且AG//DE 。 求证:BF=CF 分析:过点C 作CM//AB 交DE 于点M ,可以证明BD=CM ,然后再利用平行四边形的性质得到BF=CF 证明:过点C 作CM//AB 交BE 于点M ,连接BM 、CD ,则∠CME=∠ADE CM BD BD CE CM E CM E 2E ,1ADE 2 1DE //AG // ===∠=∠∴∠=∠∠=∠∴∠=∠ 且 ∴四边形BMCD 为平行四边形 故 BF=CF

三. 构造平行四边形证线段的不等关系 例3. 如图,AD 是ABC ?的边BC 上的中线,求证:)AC AB (2 1 AD +< 分析:欲证)AC AB (2 1 AD +< ,即要证AC AB AD 2+<,设法将2AD 、AB 、AC 归结到一个三角形中,利用三角形任意两边之和大于第三边来证明。注意到AD 为ABC ?的中线,故可考虑延长AD 到E ,使DE=AD ,则四边形ABEC 为平行四边形。从而问题得证。 证明:延长AD 到E ,使DE=AD ,连结BE 、EC DC BD ,DE AD == ∴四边形ABEC 是平行四边形 AC BE =∴ 在ABE ?中,AE

平行四边形的证明题

平行四边形的证明题 一.解答题(共30小题) 1.如图,已知四边形ABCD为平行四边形,AE⊥BD于E,CF⊥BD于F. (1)求证:BE=DF; (2)若M、N分别为边AD、BC上的点,且DM=BN,试判断四边形MENF的形状(不必说明理由). — 2.如图所示,?AECF的对角线相交于点O,DB经过点O,分别与AE,CF交于B,D. 求证:四边形ABCD是平行四边形. $ 3.如图,在四边形ABCD中,AB=CD,BF=DE,AE⊥BD,CF⊥BD,垂足分别为E,F. (1)求证:△ABE≌△CDF; (2)若AC与BD交于点O,求证:AO=CO. #

4.已知:如图,在△ABC中,∠BAC=90°,DE、DF是△ABC的中位线,连接EF、AD.求证:EF=AD. ~ 5.如图,已知D是△ABC的边AB上一点,CE∥AB,DE交AC于点O,且OA=OC,猜想线段CD与线段AE的大小关系和位置关系,并加以证明. : 6.如图,已知,?ABCD中,AE=CF,M、N分别是DE、BF的中点. 求证:四边形MFNE是平行四边形. ! 7.如图,平行四边形ABCD,E、F两点在对角线BD上,且BE=DF,连接AE,EC,CF,FA. 求证:四边形AECF是平行四边形.

8.在?ABCD中,分别以AD、BC为边向内作等边△ADE和等边△BCF,连接BE、DF.求证:四边形BEDF是平行四边形. ! 9.如图所示,DB∥AC,且DB=AC,E是AC的中点,求证:BC=DE. 10.已知:如图,在梯形ABCD中,AD∥BC,AD=24cm,BC=30cm,点P自点A向D以1cm/s的速度运动,到D点即停止.点Q自点C向B以2cm/s的速度运动,到B点即停止,直线PQ截梯形为两个四边形.问当P,Q同时出发,几秒后其中一个四边形为平行四边形? ; 11.如图:已知D、E、F分别是△ABC各边的中点,

巧构几何图形 证明代数问题

巧构几何图形证明代数问题 ——兼谈构造法 习题已知a,b,c,d为正数,a^2+b^2=c^2+d^2,ac=bd,求证a=d,b=c. 分析注意到条件a^2+b^2=c^2+d^2,如果把a,b;c,d分别看成两个直角三角形的直角边,那么a^2+b^2,c^2+d^2分别表示这两个直角三角形的斜边的平方。故可构造如下图形1。 ac=bd,即 BC*AD=AB*CD ∴BC/AB=CD/AD 又∠B=∠D=90 ?? ∴Rt⊿ABC 相似于Rt⊿ADC 但为公共斜边,故 Rt⊿ABC?Rt⊿ADC ∴AB=AD,BC=CD,即b=c,a=d. 评注把正数与线段的长联系起来,给代数等式附以几何意义,从而利用图形的特点巧妙地解决了上述习题。其证法十分简捷,独具风格,耐人寻味!其高明之处就在于选择了恰当的图形!这种思考方法的关键是把数和形结合起来以互相利用!对代数等式可以这样做,对不等式也可以。 应用 【例1】已知a,b是两个不相等的正实数,求证(a+b)/2 >ab

[证明] 以a+b为边长作正方形,然后过a,b的连接点作正方形各边的垂线(如图2),于是大正方形的面积为(a+b)^2,四个矩形的面积都是ab,这样得 (a+b)^2>4ab ab>0 ∴a+b>2ab 即(a+b)/2>ab 【例2】已知0<θ<∏/2,求证1AB ∴sinθ+cosθ>1(三角形两边之和大于第三边) 又⊿ABC的面积=(1/2)BC*AC≤(1/2)AB*CO=(1/4)AB^2(三角形面积不大于一边与这边上中线积的一半) ∴2BC*AC≤AB^2 又BC^2+AC^2≤AB^2 ∴(BC+AC)^2≤2AB^2,BC+AC≤2AB,即sinθ+cosθ≤2

【精品】2021年八年级数学解题技巧训练7构造中位线解题的五种常用方法含答案与试题解析

2021年八年级数学解题技巧训练7构造中位线解题的五种常用 方法含答案与试题解析 一、经典试题 1.如图,已知BD,CE分别为∠ABC,∠ACB的平分线,AM⊥CE于M,AN⊥BD于N.求 证:MN=1 2(AB+AC﹣BC). 二、技巧分类 技巧1 连接两点构造三角形的中位线 2.如图,点B为AC上一点,分别以AB,BC为边在AC同侧作等边△ABD和等边△BCE,点P,M,N分别为AC,AD,CE的中点. (1)求证:PM=PN; (2)求∠MPN的度数. 技巧2 已知角平分线及垂直构造中位线 3.(2019秋?诸城市期末)如图,在△ABC中,点M为BC的中点,AD为△ABC的外角平分线,且AD⊥BD,若AB=6,AC=9,则MD的长为() A.3B.9 2C.5D. 15 2 4.(2018春?吉州区期末)如图,在△ABC中,已知AB=6,AC=10,AD平分∠BAC,BD ⊥AD于点D,E为BC中点.求DE的长.

技巧3 倍长法构造中位线 5.如图,△ABC中,∠ABC=90°,BA=BC,△BEF为等腰直角三角形,∠BEF=90°, M为AF的中点,求证:ME=1 2CF. 技巧4 已知两边中点,取第三边中点构造三角形的中位线 6.如图,在△ABC中,∠C=90°,CA=CB,E,F分别为CA,CB上一点,CE=CF,M,N分别为AF,BE的中点,求证:AE=√2MN. 7.如图,在△ABC中,AB=AC,AD⊥BC于点D,点P是AD的中点,延长BP交AC于 点N,求证:AN=1 3AC.

2021年构造中位线解题的五种常用方法 参考答案与试题解析 一.试题(共7小题) 1.如图,已知BD,CE分别为∠ABC,∠ACB的平分线,AM⊥CE于M,AN⊥BD于N.求 证:MN=1 2(AB+AC﹣BC). 【专题】证明题. 【解答】证明:延长AN、AM分别交BC于点F、G.如图所示:∵BN为∠ABC的角平分线, ∴∠CBN=∠ABN, ∵BN⊥AG, ∴∠ABN+∠BAN=90°,∠G+∠CBN=90°, ∴∠BAN=∠AGB, ∴AB=BG, ∴AN=GN, 同理AC=CF,AM=MF, ∴MN为△AFG的中位线,GF=BG+CF﹣BC, ∴MN=1 2(AB+AC﹣BC). 2.如图,点B为AC上一点,分别以AB,BC为边在AC同侧作等边△ABD和等边△BCE,点P,M,N分别为AC,AD,CE的中点. (1)求证:PM=PN;

平行四边形的判定练习题汇编

(一)平行四边形的判定 一、教学目的: 1.在探索平行四边形的判别条件中,理解并掌握用边、对角线来判定平行四边形的方法. 2.会综合运用平行四边形的判定方法和性质来解决问题. 3.培养用类比、逆向联想及运动的思维方法来研究问题. 二、重点、难点 1.重点:平行四边形的判定方法及应用. 2.难点:平行四边形的判定定理与性质定理的灵活应用. 平行四边形的判定方法 平行四边形判定方法1(与边相关) 两组对边分别相等的四边形是平行四边形。 平行四边形判定方法2 (与边相关) 两组对边分别平行的四边形是平行四边形 平行四边形判定方法3 (与边相关) 一组对边平行且相等的四边形是平行四边形 平行四边形判定方法4 (与角相关) 两组对角分别相等的四边形是平行四边形 平行四边形判定方法5 (与对角线相关) 对角线互相平分的四边形是平行四边形。三、练习题 1.如图,在四边形ABCD中,AC、BD相交于点O, (1)若AD=8cm,AB=4cm,那么当BC=___ _cm,CD=___ _cm时,四边形ABCD 为平行四边形; (2)若AC=10cm,BD=8cm,那么当AO=__ _cm,DO=__ _cm时,四边形ABCD为平行四边形. (3).(选择)下列条件中能判断四边形是平行四边形的是(). (A)对角线互相垂直(B)对角线相等 (C)对角线互相垂直且相等(D)对角线互相平分 2.判断题: (1)相邻的两个角都互补的四边形是平行四边形; ( ) (2)两组对角分别相等的四边形是平行四边形; ( ) (3)一组对边平行,另一组对边相等的四边形是平行四边形; ( ) (4)一组对边平行且相等的四边形是平行四边形; ( ) (5)对角线相等的四边形是平行四边形; ( ) (6)对角线互相平分的四边形是平行四边形. ( ) 3.(选择)在下列给出的条件中,能判定四边形ABCD为平行四边形的是(). (A)AB∥CD,AD=BC (B)∠A=∠B,∠C=∠D (C)AB=CD,AD=BC (D)AB=AD,CB=CD

构造几何图形解决代数问题

构造几何图形解决代数问题 摘要 数与行是数学中的两个最古老,也是最基本的研究对象,它们在一定条件下可以相互转化。数形结合是数学解题中常用的思想方法,数形结合的思想可以使某些抽象的数学问题直观化、生动化,能够变抽象思维为形象思维,有助于把握数学问题的本质;另外,由于使用了数形结合的方法,很多问题便迎刃而解,且解法简捷。因此,数形结合的思想方法是数学教学内容的主线之一。数形结合的应用大致可分为两种情形:第一种情形是“以数解形”,而第二种情形是“以形助数”。本课题调查研究中主要研究“以形助数”的情形。 关键词 数形结合 解题 以形助数 教学 1.“以形助数”的思想应用 1.1解决集合问题:在集合运算中常常借助于数轴、Venn 图处理集合的交、并、补等运算,从而使问题得以简化,使运算快捷明了。 例:已知集合A=[0,4],B=[-2,3],求A B 。 分析:对于这两个有限集合,我们可以将它们在数轴上表示出来,就可以很清楚地知道结果。如下图,由图我们不难得出A B=[0,3] 例:(2009湖南卷文)某班共30人,其中15人喜欢篮球运动,10人喜欢乒乓球运动,8人对这两项运动都不喜爱,则喜爱篮球运动但不喜爱乒乓球运动的人数为 分析:如下图,设所求人数为x ,则只喜爱乒乓球运动的人数为10(15)5,155308x x x x --=-+-=-?=故。 B=[-2,3] A=[0,4]

评价:通过上面两个典型例题的学习,我们基本了解了构造几何图形在代数问题中的简单应用,将抽象的集合问题形象地用图形表现出来,形象生动便于思考,找出问题中条件间的相互关系进而方便快捷地解答。 1.2解决函数问题:借助于图象研究函数的性质是一种常用的方法。函数图像的几何特征与数量特征紧密结合,体现了数形结合的特征与方法。 例:(2009山东理)若函数 ()(01)x f x a x a a a a =-->≠且有两个零点,则实数的取值范围是 分析:设函数(0,1)x y a a a =>≠且和函数y x a =+,则函数 ()(01)x f x a x a a a =-->≠且有两个零点,就是函数(0,1)x y a a a =>≠且与函数y x a =+有两个交点,由图象可知当01a <<时两函数只有一个交点,不符合,当1a >时,因为函数(1)x y a a =>的图象过点(0,1),而直线y x a =+所过的点一定在点(0,1)的上方,所以一定有两个交点,所以一定有两个交点,所以实数a 的取值范围是1a >

平行四边形证明题

平行四边形证明题 第一篇:特殊平行四边形:证明题 特殊四边形之证明题 1、如图8,在abcd中,e,f分别为边ab,cd的中点,连接de,bf,bd.? (1)求证:△ade≌△cbf. (2)若ad?bd,则四边形bfde是什么特殊四边形?请证明你的结论. fc aeb 2、如图,四边形abcd中,ab∥cd,ac平分?bad,ce∥ad交ab 于e. (1)求证:四边形aecd是菱形; (2)若点e是ab的中点,试判断△abc的形状,并说明理由. 3.如图,△abc中,ac的垂直平分线mn交ab于点d,交ac于点o,ce∥ab交mn于e,连结ae、cd. (1)求证:ad=ce; (2)填空:四边形adce的形状是. a dmn

4.如图,在△abc中,ab=ac,d是bc的中点,连结ad,在ad的延长线上取一点e,连结be, (1)求证: (2)当ae与ad满足什么数量关系时,四边形abec是菱形?并说明理由 5.如图,在△abc和△dcb中,ab=dc,ac=db,ac与db交于点m. (1)求证:△abc≌△dcb; (2)过点c作cn∥bd,过点b作bn∥ac,cn与bn交于点n,试判断线段bn与cn的数量关系,并证明你的结论. 6、如图,矩形abcd中,o是ac与bd的交点,过o点的直线ef 与ab,cd的延长线分别交于e,f. (1)求证:△boe≌△dof; (2)当ef与ac满足什么关系时,以a,e,c,f为顶点的四边形是菱形?证明你的结论. f a b e

7. 600,它的两底分别是16cm、30cm。求它的腰长。 (两种添线方法) c 8.如图(七),在梯形abcd中,ad∥bc,ab?ad?dc,ac?ab,将cb延长至点f,使bf?cd. (1)求?abc的度数; (2)求证:△caf为等腰三角形. c b图七f 第二篇:平行四边形证明题 由条件可知,这是通过三角形的中位线定理来判断fg平行da,同理he平行da,ge平行cb,fh平行cb!~ 我这一化解,楼主应该明白了吧!~ 希望楼主采纳,谢谢~!不懂再问!!! 此题关键就是对于三角形的中位线定理熟不!~!~· 已知:f,g是△cda的中点,所以fg是△cda的中位线,所以fg 平行da 同理he是△bad的中位线,所以he平行da,所以fg平行he

构造中位线巧解题复习过程

三角形的中位线定理,是一个非常有价值的定理。它是一个遇到中点,必须联想到的重要定理之一。但是,在解题时,往往只知道一个中点,而另一个中点就需要同学们,根据题目的特点,自己去寻找。本文就向同学们介绍三种在不同条件下寻找中点的方法,供同学们学习时参考。 一、知识回顾 1、三角形中位线定理: 三角形的中位线平行于第三边,并且等于它的一半。 2、梯形中位线定理 梯形的中位线平行于两底,并且等于两底和的一半 3、应用时注意的几个细节: ①定理的使用前提:三角形或梯形。 ②定理使用时,满足的具体条件: 两条边的中点,且连接这两点,成一条线段。 ③定理的结论: 位置上:与第三边是平行的;与底是平行的(梯形) 大小上:等于第三边的一半;等于两底和的一半(梯形)。 在应用时,要灵活选择结论。 4、梯形的中位线: 中位线的2倍乘高再除以二就等于梯形的面积,用符号表示是L. L=(a+b)÷2 已知中位线长度和高,就能求出梯形的面积. S梯=2Lh÷2=Lh 中位线在关于梯形的各种题型中都是一条得天独厚的辅助线。 二、什么情况下该用中位线 1、直接找线段的中点,应用中位线定理 例1、小峰身高1.70m,眼睛距头顶8cm,直立在水平地面上照镜子.如果他想从竖直挂在墙上的平面镜里看到自己的脚,这面镜子的底边离地面的高度不应超过 cm 2、利用等腰三角形的三线合一找中点,应用中位线定理 例2、如图3所示,在三角形ABC中,AD是三角形ABC∠BAC的角平分线,BD⊥AD,点D是垂足,点E是边BC 的中点,如果AB=6,AC=14,则DE的长为。 3、利用平行四边形对角线的交点找中点,应用中位线定理

平行四边形经典证明题例题讲解

1 / 1 经纬教育 平行四边形证明题 经典例题(附带详细答案) 1.如图,E F 、是平行四边形 ABCD 对角线AC 上两点,BE DF ∥, 求证:AF CE =. 【答案】证明:平行四边形ABCD 中,AD BC ∥,AD BC =, ACB CAD ∴∠=∠. 又BE DF ∥, BEC DFA ∴∠=∠, BEC DFA ∴△≌△, ∴CE AF = 2.如图6,四边形ABCD 中,AB ∥CD ,∠B=∠D , , 求四边形ABCD 的周长. 【答案】20、 解法一: ∵ ∴ 又∵ ∴ ∴∥即得是平行四边形 ∴ ∴四边形的周长 解法二: 3 ,6==AB BC AB CD ∥?=∠+∠180C B B D ∠=∠?=∠+∠180D C AD BC ABCD 36AB CD BC AD ====,ABCD 183262=?+?=D C A B E F A D C B

连接 ∵ ∴ 又∵ ∴≌ ∴ ∴四边形的周长解法三: 连接 ∵ ∴ 又∵ ∴ ∴∥即是平行四边形 ∴ ∴四边形的周长 3.(在四边形ABCD中,∠D=60°,∠B比∠A大20°,∠C是∠A的2倍,求∠A,∠B,∠C 的大小. 【关键词】多边形的内角和 【答案】设x A= ∠(度),则20 + = ∠x B,x C2 = ∠. 根据四边形内角和定理得,360 60 2 ) 20 (= + + + +x x x. 解得,70 = x. ∴? = ∠70 A,? = ∠90 B,? = ∠140 C. 4.(如图,E F ,是四边形ABCD的对角线AC上两点,AF CE DF BE DF BE == ,,∥. AC AB CD ∥ DCA BAC∠ = ∠ B D A C CA ∠=∠= , ABC △CDA △ 36 AB CD BC AD ==== , ABCD18 3 2 6 2= ? + ? = BD AB CD ∥ CDB ABD∠ = ∠ ABC CDA ∠=∠ ADB CBD∠ = ∠ AD BC ABCD 36 AB CD BC AD ==== , ABCD18 3 2 6 2= ? + ? = A D C B A D C B 1 / 1

构造几何图形巧解向量问题

运用向量几何运算巧解几个高考题 向量是高中数学中重要的数学概念和数学工具之一,它用代数的方法来研究几何问题,是数形结合的一个典范,体现了解析几何的本质。代数几何化、几何代数化等多角度思维是平面向量命题的特点,这就说明了平面几何和平面向量交汇点的将是高考试题命制的焦点和热点。 例1. 已知向量e a ≠,1=e ,对任意R t ∈,恒有e a e t a -≥-,则( ) (A) e a ⊥ (B) )(e a a -⊥ (C) )(e a e -⊥ (D) )()(e a e a -⊥+ 参考答案:R t ∈ ,恒有e a e t a -≥-,等价于22e a e t a -≥-恒成立,即 22)()(e a e t a -≥-恒成立,展开整理得0)12(22≥-?+?-e a t e a t ?R t ∈恒成立,则 0)12(4)2(2≤-?-?-=?e a e a ,整理得0)1(2≤-?e a ,1=?∴e a ,)(e a e -⊥∴,所以选(C)。 妙解:如下图作a OA =,e OB =,e t OC =, 则 e a -= e t a -=,又因为?R t ∈,恒有e a e t a -≥- ≤,则必有 OC AB ⊥,即)(e a e -⊥。 例2.设向量a ,b ,c 满足0 =++c b a ,c b a ⊥-)(,b a ⊥,若1=a ,则222c b a ++的值是 。 参考答案: )(,)(b a c c b a +-=⊥-,)()(b a b a --⊥-∴, 0)()(=+?-∴b a b a ,022=-∴b a ,1==∴b a ,又),(b a c +-=0=?b a 22)(2222=?++=+-=∴b a b a b a c ,4222=++∴c b a 。 妙解:如下图作a BD AB ==,b BC =,c CA =, b a ⊥,BC AB ⊥∴,又 CD BC BD b a =-=- ,又c b a ⊥-)(, C A

构造中位线巧解题

构造中位线巧解题 TYYGROUP system office room 【TYYUA16H-TYY-TYYYUA8Q8-

三角形的中位线定理,是一个非常有价值的定理。它是一个遇到中点,必须联想到的重要定理之一。但是,在解题时,往往只知道一个中点,而另一个中点就需要同学们,根据题目的特点,自己去寻找。本文就向同学们介绍三种在不同条件下寻找中点的方法,供同学们学习时参考。 一、知识回顾 1、三角形中位线定理: 的平行于第三边,并且等于它的一半。 2、梯形中位线定理 梯形的中位线平行于两底,并且等于两底和的一半 3、应用时注意的几个细节: ①定理的使用前提:三角形或梯形。 ②定理使用时,满足的具体条件: 两条边的中点,且连接这两点,成一条线段。 ③定理的结论: 位置上:与第三边是平行的;与底是平行的(梯形) 大小上:等于第三边的一半;等于两底和的一半(梯形)。 在应用时,要灵活选择结论。 4、梯形的中位线: 中位线的2倍乘高再除以二就等于梯形的面积,用符号表示是L. L=(a+b)÷2 已知中位线长度和高,就能求出梯形的面积. S梯=2Lh÷2=Lh 中位线在关于梯形的各种题型中都是一条得天独厚的辅助线。 二、什么情况下该用中位线 1、直接找线段的中点,应用中位线定理 例1、小峰身高,眼睛距头顶8cm,直立在水平地面上照镜子.如果他想从竖直挂在墙上的平面镜里看到自己的脚,这面镜子的底边离地面的高度不应超过 cm 2、利用等腰三角形的三线合一找中点,应用中位线定理 例2、如图3所示,在三角形ABC中,AD是三角形ABC∠BAC的角平分线,BD⊥AD,点D是垂足,点E是边BC 的中点,如果AB=6,AC=14,则DE的长为。 3、利用平行四边形对角线的交点找中点,应用中位线定 理 例3、如图5所示,AB∥CD,BC∥AD ,DE⊥BE ,DF=EF,甲从B出发,沿着 BA、AD、DF的方向运动,乙B出发,沿着BC、CE、EF的方向运动,如果两人的速 度是相同的,且同时从B出发,则谁先到达?

平行四边形证明练习题汇编

平行四边形证明练习题 一.解答题 1.如图所示,已知在平行四边形ABCD中,BE=DF.求证:∠DAE=∠BCF. 2.在?ABCD中,E,F分别是BC、AD上的点,且BE=DF.求证:AE=CF. 3.如图,四边形ABCD是平行四边形,E、F分别是BC.AD上的点,∠1=∠2 求证:△ABE≌△CDF. 4.如图,已知:平行四边形ABCD中,E是CD边的中点,连接BE并延长与AD的延长线相交于F点.求证:BC=DF. 5.如图,在?ABCD中,AC交BD于点O,点E、点F分别是OA、OC的中点,请判断线段BE、DF的关系,并证明你的结论. 6.已知:如图,?ABCD中,E、F是对角线AC上的点,且AE=CF.求证:△ABE≌△CDF.

7.如图,已知在?ABCD中,过AC中点的直线交CD,AB于点E,F.求证:DE=BF. 8.如图,在等腰梯形ABCD中,AD∥BC,AB=CD=AE.四边形AECD是平行四边形吗?为什么? 9.如图,E、F是平行四边形ABCD的对角线AC上的两点,AE=CF.求证:DE=BF. 10.如图,四边形ABCD中,AD=BC,AE⊥BD,CF⊥BD,垂足为E、F,AE=CF,求证:四边形ABCD是平行四边形. 11.如图,在△ABC中,AD是中线,点E是AD的中点,过A点作BC的平行线交CE的延长线于点F,连接BF.求证:四边形AFBD是平行四边形. 12.如图,在等腰梯形ABCD中,AD∥BC,AB=DC,DE∥AB,AD+DC=BC. 求证:(1)DE=DC; (2)△DEC是等边三角形. 13.已知:如图,E、F是平行四边形ABCD的对角线AC上的两点,AE=CF. 求证:(1)△ADF≌△CBE;

用三角形中位线定理解题

用三角形中位线定理解题 三角形中位线定理是平面几何中十分重要的定理,它说明中位线的位置与第三边平行,长度是第三边的一半,应用它可解许多几何命题,如: 1.证明线段的倍分关系 例1 如图1,AD是△ABC的中线,E为AD的中点,BE交AC于F. 证明:取CF的中点H,连接DH,则DH为△CBF的中位线,EF为△ADH的中位线,故DH=1 2 BF, EF=1 2 DH. 2.证明两线平行 例2 如图2,自△ABC的顶点A向∠B和∠C的平分线作垂线,D、E为垂足.求证DE∥ BC. 证明延长AD、AE交BC与CB的延长线于M、N. 由∠1=∠2,BD⊥AM,可得AD=DM;同理可得AE=EN.故DE为△ANM的中位线. ∴DE∥MN,即DE∥BC 3.证线段相等 例3 如图3,D、E分别是△ABC的边AB、AC上的点,且BD=CE,M、N分别为BE、CD 的中点,直线MN分别交AB、AC于P、Q.求证AP=AQ

证明取BC中点F,连接MF与NF. ∵BM=ME,BF=FC. 同理可得NF∥BD,且 又BD=CE,∴MF=NF,故∠3=∠4, 又∠1=∠4,∠2=∠3, ∴∠1=∠2,故AP=AQ. 4.证两角相等 例4 如图4,在△ABC中,M、N分别在AB、AC上,且BM=CN,D、E分别为MN与BC的中点,AP∥DE交BC于P. 求证:∠BAP=∠CAP. 证明连接BN并取中点Q,连接DQ与EQ,则DQ∥BM,且DQ=1 2 BM,EQ∥CN,且EQ= 1 2 CN, 又BM=CN. ∴DQ=EQ,故∠1=∠2, 又∵∠1=∠BAP,∠2=∠CAP, ∴∠BAP=∠CAP. 5.证比例式 例5 如图5,AD为△ABC的中线,过点C的任一直线与AD、AB分别相交于E与F,求

八年级平行四边形专题练习(含答案)

中考专题复习平行四边形 知识考点:理解并掌握平行四边形的判定和性质 精典例题: 【例1】已知如图:在四边形ABCD中,AB=CD,AD=BC,点E、F分别在BC和AD边上,AF=CE,EF和对角线BD相交于点O,求证:点O是BD的中点。 分析:构造全等三角形或利用平行四边形的性质来证明BO=DO 略证:连结BF、DE 在四边形ABCD中,AB=CD,AD=BC ∴四边形ABCD是平行四边形 ∴AD∥BC,AD=BC 又∵AF=CE ∴FD∥BE,FD=BE ∴四边形BEDF是平行四边形 ∴BO=DO,即点O是BD的中点。 【例2】已知如图:在四边形ABCD中,E、F、G、H分别是AB、BC、CD、DA边上的中点,求证:四边形EFGH是平行四边形。 分析:欲证四边形EFGH是平行四边形,根据条件需从边上着手分析,由E、F、G、H分别是各边上的中点,可联想到三角形的中位线定理,连结AC后,EF和GH的关系就明确了,此题也便得证。(证明略) 变式1:顺次连结矩形四边中点所得的四边形是菱形。 变式2:顺次连结菱形四边中点所得的四边形是矩形。 变式3:顺次连结正方形四边中点所得的四边形是正方形。 变式4:顺次连结等腰梯形四边中点所得的四边形是菱形。例1图 O F E D C B A 例2图

变式5:若AC =BD ,AC ⊥BD ,则四边形EFGH 是正方形。 变式6:在四边形ABCD 中,若AB =CD ,E 、F 、G 、H 分别为AD 、BC 、BD 、AC 的中点,求证:EFGH 是菱形。 娈式6图 娈式7图 变式7:如图:在四边形ABCD 中,E 为边AB 上的一点,△ADE 和△BCE 都是等边三角形,P 、Q 、M 、N 分别是AB 、BC 、CD 、DA 边上的中点,求证:四边形PQMN 是菱形。 探索与创新: 【问题】已知如图,在△ABC 中,∠C =900 ,点M 在BC 上,且BM =AC ,点N 在AC 上,且AN =MC ,AM 和BN 相交于P ,求∠BPM 的度数。 分析:条件给出的是线段的等量关系,求的却是角的度数,为此,我们由条件中的直角及相等的线段,可联想到构造等腰直角三角形,从而应该平移AN 。 略证:过M 作ME ∥AN ,且ME =AN ,连结NE 、BE ,则四边形AMEN 是平行四边形,得NE =AM ,ME ∥AN ,AC ⊥BC ∴ME ⊥BC 在△BEM 和△AMC 中, ME =CM ,∠EMB =∠MCA =900 ,BM =AC ∴△BEM ≌△AMC ∴BE =AM =NE ,∠1=∠2,∠3=∠4,∠1+∠3=900 ∴∠2+∠4=900 ,且BE =NE ∴△BEN 是等腰直角三角形 ∴∠BNE =450 ∵AM ∥NE 探索与创新图 E N A

关于平行四边形的证明题例析

关于平行四边形的证明题例析 平行四边形是一种极重要的几何图形.这不仅是因为它是研究更特殊的平行四边形——矩形、菱形、正方形的基础,还因为由它的定义知它可以分解为一些全等的三角形,并且包含着有关平行线的许多性质,因此,它在几何图形的证明与研究上有着广泛的应用.例1如图所示.在ABCD中,AE⊥BC,CF⊥AD,DN=BM.求证:EF与MN互相平分. 分析只要证明ENFM是平行四边形即可,由已知,提供的等量要素很多,可从全等三角形下手. 证明因为ABCD是平行四边形,所以 AD BC,AB CD,∠B=∠D. 又AE⊥BC,CF⊥AD,所以AECF是矩形,从而 AE=CF. 所以 Rt△ABE≌Rt△CDF(HL,或AAS),BE=DF.又由已知BM=DN,所以 △BEM≌△DFN(SAS), ME=NF.① 又因为AF=CE,AM=CN,∠MAF=∠NCE,所以 △MAF≌△NCE(SAS), 所以MF=NF.② 由①,②,四边形ENFM是平行四边形,从而对角线EF与MN互相平分. 例2如图所示.Rt△ABC中,∠BAC=90°,AD⊥BC于D,BG平分∠ABC,EF∥BC且交AC于F.求证:AE=CF. 分析AE与CF分处于不同的位置,必须通过添加辅助线使两者发生联系.若作GH⊥BC于H,由于BG是∠ABC的平分线,故AG=GH,易知△ABG≌△HBG.又连接EH,可证△ABE≌△HBE,从而AE=HE.这样,将AE“转移”到EH位置.设法证明EHCF为平行四边形,问题即可获解. 证明作GH⊥BC于H,连接EH.因为BG是∠ABH的平分线,GA⊥BA,所以GA=GH,从而 △ABG≌△HBG(AAS), 所以AB=HB.① 在△ABE及△HBE中, ∠ABE=∠CBE,BE=BE,

典中点平行四边形专训5 构造中位线解题的五种常用方法

典中点平行四边形专训5 构造中位线解题的五种常用方法 ?名师点金? 三角形的中位线具有两方面的性质: 一是位置上的平行关系,二是数量上的倍分关系.因此,当题目中给出三角形两边的中点时,可以直接 连出中位线;当题目中给出一边的中点时,往往需要找另一边的中点,作出三角形的中位线。 典例剖析:如图,在△ABC 中,BD,CE 分别平分∠ABC,∠ACB,AM ⊥CE 于点M,AN ⊥BD 于点N. 求证:MN=21(AB+AC-BC) 解题秘方:图中不存在中点,但结论与三角形中位线定理很类似,因此应设法寻找中点,再构造三角形的中位线.要证明MN=2 1(AB+AC-BC),可找以MN 为中位线的三角形,故延长AM 交BC 于点F,延长AN 交BC 于点G,易证明2MN=FG,而FG=BC+FC-BC.又易证明BG=AB,FC=AC,故问题得解。 方法1:连接两点构造三角形的中位线 1.如图,点B 为AC 上一点,分别以AB,BC 为边在AC 同侧作等边△ABD 和等边△BCE,点P,M,N 分别为AC,AD,CE 的中点。 (1)求证PM=PN ; (2)求∠MPN 的度数。 方法2:已知角平分线及垂直构造中位线 2.如图,在△ABC 中,点M 为BC 的中点,AD 为△ABC 的外角平分线,且AD ⊥BD.若AB=12,AC=18,求DM 的长。

3.如图,在△ABC 中,已知AB=6,AC=10,AD 平分∠BAC,BD ⊥AD 于点D,点E 为BC 的中点,求DE 的长。 方法3:倍长法构造三角形的中位线 4.如图,在△ABC 中,∠ABC=90°,BA=BC ,△BEF 为等腰直角三角形,∠BEF=90°,M 为AF 的中点, 求证ME=21CF 方法4:已知两边中点,取第三边中点构造三角形的中位线 5. 如图,在△ABC 中,∠C=90°,CA=CB,E,F 分别为CA,CB 上一点,CE=CF,M,N 分别为AF 、BE 的中点, 求证AE=2MN 方法5:已知一边中点推理得出另一边中点再取第三边中点构造三角形的中位线 6.如图,在△ABC 中,AB=AC,AD ⊥BC 于点D,点P 是AD 的中点,连接BP 并延长交AC 于点N ,求证AN=3 1AC

构造法之构造几何图形

构造法之构造几何图形 构造法就是根据题设条件或结论所具有的特征和性质,构造满足条件或结论的数学对象,并借助该对象来解决数学问题的思想方法。构造法是一种富有创造性的数学思想方法。运用构造法解决问题,关键在于构造什么和怎么构造。充分地挖掘题设与结论的内在联系,把问题与某个熟知的概念、公式、定理、图形联系起来,进行构造,往往能促使问题转化,使问题中原来蕴涵不清的关系和性质清晰地展现出来,从而恰当地构造数学模型,进而谋求解决题目的途径。下面摘一些典型例题,分成几个专题,方便大家学习。 例1:已知,则x 的取值范围是() A 1≤x≤5 B x≤1 C1<x <5 D x≥5 分析:根据绝对值的几何意义可知:表示数轴上到1与 5的距离之和等于4的所有点所表示的数。如图3,只要表示数 的点落在1和5之间(包括1和5),那么它到1与5的距离之和都等于4,所以1≤ x≤5,故选A 。 例2.求)40()4(4122≤≤-+++x x x 的最小值. 分析:本题单纯用代数方法处理,简直无从下手,注意式中的特征,构造直角三角形,转化为在直线上求一点,使它到两定点的距离之和最小. 解:如图3,作AB=4,AC ⊥AB ,BD ⊥AB ,且AC=1,BD=2,P 为AB 上一点,设AP=x ,则2 2 )4(4,1x PD x PC -+=+=,问题转化为找出P 点的位置,使PC+PD 最小.如图4,作C 关于AB 的对称点C ′,连结C ′D 交AB 于P ,由⊿PAC ′ ∽⊿PBD ,得214=-x x ,求得3 4 =x ,所以22)4(41x x -+++的最小值是5. 例3: 已知x,y,z ∈(0,1),求证: x(1-y)+y(1-z)+z(1-x)<1 证:构造边长为1的正△ABC ,D ,E ,F 为边上三点, D D 图3 A B C B P 图4 A C ′ C

初二数学平行四边形压轴:几何证明题

1 / 1 初二数学平行四边形压轴:几何证明题 1.在四边形ABCD 中,E 、F 、G 、H 分别是AB 、BC 、CD 、DA 的中点,顺次连接EF 、FG 、GH 、HE . (1)请判断四边形EFGH 的形状,并给予证明; (2)试探究当满足什么条件时,使四边形EFGH 是菱形,并说明理由。 2.如图,在直角三角形ABC 中,∠ACB=90°,AC=BC=10,将△ABC 绕点B 沿顺时针方向旋转90°得到△A 1BC 1. (1)线段A 1C 1的长度是 ,∠CBA 1的度数是 . (2)连接CC 1,求证:四边形CBA 1C 1是平行四边形. 3. 如图,矩形ABCD 中,点P 是线段AD 上一动点,O 为BD 的中点, PO 的延长线交BC 于Q. (1)求证:OP=OQ ; (2)若AD=8厘米,AB=6厘米,P 从点A 出发,以1厘米/秒的速度向D 运动(不与D 重合).设点P 运动时间为t 秒,请用t 表示PD 的长;并求t 为何值时,四边形PBQD 是菱形. 4.已知:如图,在□ABCD 中,AE 是BC 边上的高,将△ABE 沿BC 方向平移,使点E 与点C 重合,得△GFC. ⑴求证:BE =DG ; ⑵若∠B =60?,当AB 与BC 满足什么数量关系时,四边形ABFG 是菱形?证明你的结论. 5. 如图,在四边形ABCD 中,AD ∥BC ,E 为CD 的中点,连结AE 、BE ,BE ⊥AE ,延长AE 交BC 的延长线于点F . 求证:(1)FC =AD ; (2)AB =BC +AD . 6.如图,在△ABC 中,AB=AC ,D 是BC 的中点,连结AD ,在AD 的延长线上取一点E ,连结BE ,CE. (1)求证:△ABE ≌△ACE (2)当AE 与AD 满足什么数量关系时,四边形ABEC 是菱形?并说明理由. B F C G D H B A 1 C 1A C A D G C B F E A Q C D P B O A B E D A D E F C B

几何图形解题时中点的运用

有关中点的联想 一 常见的联想路径 1 中线倍长 2作直角三角形斜边的中线 3 构造中位线 4 构造中心对称全等三角形 二 熟悉下列基本图形 三 探究训练 1 如图 四边形ABCD 中 AB=CD=4,M,N 分别为BC AD 的中点∠BAC=900∠ACD=300 ,求MN 的长 2 如图,∠B =∠C =90°,M 是BC 的中点,DM 平分∠ADC , 求证:AM 平分∠DAB . M B

3已知AD 为△ABC 的角平分线, AC >AB 在AC 上截取CE=AB,M,N 分别为BC,AE 的中点,求证: M N ∥AD 4如图 以△ABC 的AB AC 边为斜边向外作Rt △ABD 和Rt △ACE 且使∠ABD=∠ACE,M 是BC 的中点,求证: DM=ME B C A D E N M M B C A D E

5 如图 在四边形ABCD 中,AB=CD, ∠B ≠∠C,N,M 分别是AD,BC 的中点,BA,CD 的延长线分别交直线MN 于点E.F 求证:∠BEM=∠CFM 6 P 是线段AB 上的一点,在AB 的同侧作△APC 和△BPD ,使PC=PA,PD=PB,∠APC=∠BPD ,连结CD ,点E,F,G,H 分别是AC,AB,BD,CD 的中点,顺次连接E,F,G,H. (1)猜想四边形EFGH 的形状,直接回答,不必说明理由; (2)当点P 在线段AB 的上方时,如图2,在△APB 的外部作△APC 和△BPD ,其他条件不变,(1)中的结论还成立吗?说明理由; (3)如图3中,若∠APC=∠BPD=90°,其他条件不变,先补全图3,再判断四边形EFGH 的形状,并说明理由. P B

找中点构造三角形中位线解题(教师)

找中点构造三角形中位线解题 三角形的中位线定理,是一个非常有价值的定理。它是一个在三角形中遇到中点,必须联想到的重要定理之一。但是,在解题时,往往只知道一个中点,而另一个中点就需要同学们,根据题目的特点,自己去寻找。现介绍几种在不同条件下寻找中点的方法,供同学们学习时参考。 一、三角形中位线定理: 三角形的中位线平行于第三边,并且等于它的一半。 二、应用时注意的几个细节: ①定理的使用前提:三角形。 ②定理使用时,满足的具体条件:两条边的中点,且连接这两点,成一条线段。 ③定理的结论: 位置上:与第三边是平行的,利用此定理可证明线段平行,从而可证明两角相等; 大小上:等于第三边的一半。利用此定理可证明两条线段之间的倍分关系; 三、应用举例 1、如果已知三角形两边中点,就直接连接构成三角形的中位线 例1、如图,在四边形ABCD 中,AB=CD ,E 、F 、G 分别是AD 、BC 、BD 的中点,H 是EF 的中点,试说明线段GH 与线段EF 的位置关系; 简析:在△ABC 中,E 、G 分别是AD 、BD 的中点,可连接EG ,则 有AB EG 2 1 =;在△BCD 中,G 、F 分别是BD 、BC 的中点,可 连接GF ,则有CD FG 2 1 =, 而AB=CD ,所以EG FG =,即△ EFG 是等腰三角形,又H 是底边EF 的中点,由等腰三角形的三线合一定理可知GH ⊥EF. 2、如果已知三角形一边中点,则可以取另一边的中点连接起来构成三角形的中位线 例2、如图1所示,在三角形ABC 中,∠B=2∠C ,AD 是三角形的高,点M 是边BC 的中点,求证:DM= 2 1 AB 。 分析:看到结论的表达形式,我们就想到,三角形的中位线 定理,有这样的特点,因此,我们就可以构造AB 上的中位线,再证明这条中位线与DM 是相等的。 H G F E D C B A

相关文档
相关文档 最新文档