文档库 最新最全的文档下载
当前位置:文档库 › 多传感器数据融合技术

多传感器数据融合技术

多传感器数据融合技术
多传感器数据融合技术

多传感器数据融合技术

摘要:介绍多传感器数据融合技术的历史与研究现状,给出多传感器数据融合实现方法,最后给出应用和多传感器数据融合的不足与研究展望。

1 引言

多传感器数据融合是信息领域一个前景广阔的研究方向,世界各国都有学者和技术人员在开展数据融合技术的研究,我国对数据融合方面的研究也日益重视,国家自然科学基金和“863”计划已将其列入重点支持项目,因此,对多传感器数据融合进行学术与工程应用的研究具有重要意义[1]。

多传感器数据融合技术是对多种信息的获取、表示及其内在联系进行综合处理和优化的技术。多传感器数据融合技术从多信息的视角进行处理及综合,得到各种信息的内在联系和规律,从而剔除无用的和错误的信息,保留正确的和有用的成分,最终实现信息的优化,它也为智能信息处理技术的研究提供了新的观念。数据融合作为一门跨学科的综合信息处理理论,涉及系统论、信息论、控制论、人工智能和计算机通信等众多的领域和学科[2]。

本文介绍数据融合技术发展历史与研究现状,描述数据融合技术的几种典型实现方法,给出数据融合技术的主要应,最后对数据融合技术研究中存在的问题和发展前景进行了论述。

2 多传感器数据融合技术概述

2.1 数据融合的定义

数据融合也称为信息融合,它的定义有很多。Mango lini将数据融合定义为:一套利用具有不同性质的各种源数据的方法、工具、方式,目的是提高所需信息的质量,此定义着重于融合的方法。Hall 和Llinas的定义是“数据融合技术是将来自多传感器和相关数据库的有关信息进行综合,以得到精度上的改善和更加具体的推断,而这些也可以通过单个传感器来得到”。这种定义虽然提到了数据信息的质量,但是仍注重于方法。美国国防部定义为“数据融合是一个多级、多方面的过程,这个过程处理自动识别、连结、相关、估计以综合多源数据和信息.。”这一定义简单地说就是“处理自动识别、连结、相关、估计

以综合来自单个或多源数据和信息的多级、多方面过程”。

L Wald在1998年采用了一个更加普遍的定义:“数据融合是一个形式上的框架,在此框架下表达了融合的方式和工具,通过这些方式和工具将来自不同的源数据进行联合,其目的在于获取质量更好的信息,而质量的改善取决于应用。”美国国防部三军实验室理事联席会( JDL )的定义:数据融合是指对来自单个或多个传感器(或信源)的信息或数据进行自动检测、关联、相关、估计和组合等多层次、多方面的处理,以获取对目标参数、特征、事件、行为等更加精确的描述和身份估计.。它主要强调数据融合的3个核心方面:①数据融合是在几个层次上完成对多源信息的处理过程,其中每一层次都表示不同级别的信息抽象;

②数据融合包括检测、关联、相关、估计及信息组合;③数据融合的结果是指较低层次上的状态和身份估计,以及较高层次上的整个态势估计。

2.2 数据融合发展历史与现状

“数据融合”出现于20世纪70年代,源于军事领域C2I(command, control, communication and intelligence)系统的需要,当时称为多源相关、多传感器混合数据融合,并于80年代建立其技术。美国是数据融合技术起步最早的国家,1983年,美国国防高级研究计划局(DARPA)推出的战略计算机计划中,将多传感器数据融合列为重大研究课题。1984年,美国国防部(DOD)成立了数据融合专家组(DFS—Data Fusion Subana1) ,负责指导、组织并协调有关这一国防关键技术的系统研究,1988年又将其列入国防部22项关键技术之一[3]。同时其它西方发达国家和国际组织(如英、日、德、法及欧共体等)也积极开展了数据融合技术研究工作。1986年开始,每年IEEE主办的“机器人与自动化”(Robotics and Au2tomation)学术会议上都有专门关于数据融合的专题。各种学术刊物也纷纷开辟专栏和出版专集,交流和探讨数据融合的有关问题。1987年欧洲共同体开始为期 5 年SKIDS ( Signal and Knowledge Integration with Decisional Control for Multi—sensory System)计划,主要目标是研究多传感器数据融合的通用结构及实时信息融合技术等。1998年成立了国际信息融合学会( ISIF) ,每年举行一次信息融合国际学术会议。促进了信息融合技术的交流与发展,相继取得了一些有重要影响的研究成果。

和国外相比,我国在数据融合领域的研究起步较晚。1991年海湾战争结束以后,数据融合技术引起国内有关单位和专家的高度重视。一些高校和科研院所相继对数据融合的理论、系统框架和融合算法开展

了大量研究,但基本上处于理论研究的层次上,在工程化、实用化方面尚未取得有成效的突破,有许多关键技术问题尚待解决,在工程应用领,需要开发出有重要应用价值的实用系统。近年来数据融合技术已形成研究热点,国家自然科学基金和国家863计划已将其列入重点支持项目。

2.3 多传感器系统的特点与控制结构

把各种信息或数据转换成对环境的有价值的解释,需要大量的复杂的智能处理,以及适用于解释组合信息含义的知识库。

多传感器系统的特点如下:

信息冗余性(Redundancy)

融余信息可减少系统的不确定性,提高系统识别环境的精确性,还能在传感器出错或失效时,提高系统的可靠性。主要体现在系统的较低层面上。

信息互补性(Complementarity)

互补信息使多传感器系统能感知由单个传感器系统所感知不到的环境特征。主要体现在系统的较高层面上。

实时性(Timeliness)

分层结构和并行处理机制,可保证系统的实时性。

低代价性(Lower Cost)

指相对于由单个传感器获得同样信息而言,它能以相对较低的成本获得更加完备的信息。

在许多实际应用中,传感器配置在不同的环境中,根据信息融合处理方式的不同,可以将信息融合分为集中式、分布式、混合式和反馈式四种。

集中式

集中式是指各传感获取的信息未经任何处理,直接传送到信息融合中心,进行组合和推理,完成最终融合处理。这种结构适用于同构平台的多传感器信息融合,其优点是信息处理损失较小,缺点是对通信网络带宽要求较高。

分布式

分布式是指在各传感器处完成一定量的计算和处理任务之后,将压缩后的传感器数据传送到融合中心,在融合中心将接收到的多维信息进行组合和推理,最终完成融合。这种结构适合于远距离配置的多传感器系统,不需要过大的通信带宽,但有一定的信息损失。

混合式

混合式是兼有集中式和分布式的特点,既有经处理后的传感器数据送到融合中心,也有未经处理的传感器数据送到融合中心。混合式能够根据不同情况灵活设计多传感器的信息融合处理系统。但是这种结构系统性能的稳定性较差。

反馈式

当系统的实时性要求高,融合精度要求也高时,融合计算速度将成为关键因素。当计算速度难以满足实时性和高精度两者要求时,利用信息的相对稳定性和原始积累对融合信息反馈再处理将是一种非常有效途径。其原理是当融合系统对外部环境经过一段时间感知后,已获得环境大部分信息特征,这些环境特征对新接受到的原始数据融合有很好指导与启发作用。利用已掌握的环境特征启发原始数据融合在减小计算量同时,又能保持较高融合精度。

上述四种方式均有各自的特点,在实际融合系统规划与设计过程中,融合拓扑结构的选择没有统一标准,需要根据实际系统的具体情况,综合考虑计算量、通讯带宽、融合期望精度、传感器能力和成本等因素合理地选择[4]。

3 数据融合的实现方法

数据融合主要分为两类:第一类是局部或自备式,它收集来自单个平台上多个传感器的数据。第二类是全局式或区域融合,它优化组合来自空间和时间上不相同的多个平台、多个传感器的数据。

按照数据抽象的3个层次,融合可分为3类:象素级融合、特征级融合和决策级融合。

3.1 多传感器数据融合原理

多传感器数据融合技术的基本原理就像人脑综合处理信息一样,充分利用多个传感器资源,通过对多传感器及其观测信息的合理支配和使用,把多传感器在空间或时间上冗余或互补信息依据某种准则来进行组合,以获得被测对象的一致性解释或描述。具体地说,多传感器数据融合原理如下:

(1)N个不同类型的传感器(有源或无源的)收集观测目标的数据;

(2)对传感器的输出数据(离散的或连续的时间函数数据、输出矢量、成像数据或一个直接的属性说明)进行特征提取的变换,提取代表观测数据的特征矢量Y i ;

(3)对特征矢量Y i进行模式识别处理(如,聚类算法、自适应神经网络或其他能将特征矢量Y i变换成目标属性判决的统计模式识别法等)完成各传感器关于目标的说明;

(4)将各传感器关于目标的说明数据按同一目标进行分组,即关联;

(5)利用融合算法将每一目标各传感器数据进行合成,得到该目标的一致性解释与描述。

3.2 多传感器数据融合方法

利用多个传感器所获取的关于对象和

环境全面、完整的信息主要体现在融合算法上。因此,多传感器系统的核心问题是选择合适的融合算法。对于多传感器系统来说,信息具有多样性和复杂性,因此,对信息融合方法的基本要求是具有鲁棒性和并行处理能力,此外还有方法的运算速度和精度;与前续预处理系统和后续信息识别系统的接口性能;与不同技术和方法的协调能力;对信息样本的要求等。一般情况下,基于非线性的数学方法,如果它具有容错性、自适应性、联想记忆和并行处理能力,则都可以用来作为融合方法。

多传感器数据融合虽然未形成完整的理论体系和有效的融合算法,但在不少应用领域根据各自的具体应用背景,已经提出了许多成熟并且有效的融合方法。多传感器数据融合的常用方法基本上可概括为随机和人工智能两大,随机类方法有加权平均法、卡尔曼滤波法、多贝叶斯估计法、Dempster2Shafer(D2S)证据推理、产生式规则等;而人工智能类则有模糊逻辑理论、神经网络、粗集理论、专家系统等。可以预见,神经网络和人工智能等新概念、新技术在多传感器数据融合中将起到越来越重要的作用[5]。

3.2.1 随机类方法

●加权平均法

信号级融合方法最简单、最直观方法是加权平均法,该方法将一组传感器提供的冗余信息进行加权平均,结果作为融合值,该方法是一种直接对数据源进行操作的方法。

●卡尔曼滤波法

卡尔曼滤波主要用于融合低层次实时动态多传感器冗余数据。该方法用测量模型的统计特性递推,决定统计意义下的最优融合和数据估计。如果系统具有线性动力学模型,且系统与传感器的误差符合高斯白噪声模型,则卡尔曼滤波将为融合数据提供唯一统计意义下的最优估计。卡尔曼滤波的递推特性使系统处理不需要大量的数据存储和计算。但是采用单一的卡尔曼滤波器对多传感器组合系统进行数据统计时,存在很多严重的问题,例如:(1)在组合信息大量冗余的情况下,计算量将以滤波器维数的三次方剧增,实时性不能满足;(2)传感器子系统的增加使故障随之增加,在某一系统出现故障而没有来得及被检测出时,故障会污染整个系统,使可靠性降低。

●多贝叶斯估计法

贝叶斯估计为数据融合提供了一种手段,是融合静态环境中多传感器高层信息的常用方法。它使传感器信息依据概率原则进行组合,测量不确定性以条件概率表示,当传感器组的观测坐标一致时,可以直接对传感器的数据进行融合,但大多数

情况下,传感器测量数据要以间接方式采用贝叶斯估计进行数据融合。

多贝叶斯估计将每一个传感器作为一个贝叶斯估计,将各个单独物体的关联概率分布合成一个联合的后验的概率分布函数,通过使用联合分布函数的似然函数为最小,提供多传感器信息的最终融合值,融合信息与环境的一个先验模型提供整个环境的一个特征描述。

●D2S证据推理方法

D2S证据推理是贝叶斯推理的扩充,其3个基本要点是:基本概率赋值函数、信任函数和似然函数。D2S方法的推理结构是自上而下的,分三级。第1级为目标合成,其作用是把来自独立传感器的观测结果合成为一个总的输出结果(ID);第2级为推断,其作用是获得传感器的观测结果并进行推断,将传感器观测结果扩展成目标报告。这种推理的基础是:一定的传感器报告以某种可信度在逻辑上会产生可信的某些目标报告;第3级为更新,各种传感器一般都存在随机误差,所以在时间上充分独立地来自同一传感器的一组连续报告比任何单一报告可靠。因此,在推理和多传感器合成之前,要先组合(更新) 传感器的观测数据。

●产生式规则

产生式规则采用符号表示目标特征和相应传感器信息之间的联系,与每一个规则相联系的置信因子表示它的不确定性程度。当在同一个逻辑推理过程中,2个或多个规则形成一个联合规则时,可以产生融合。应用产生式规则进行融合的主要问题是每个规则的置信因子的定义与系统中其他规则的置信因子相关,如果系统中引入新的传感器,需要加入相应的附加规则。

3.2.2 人工智能类方法

●模糊逻辑推理

模糊逻辑是多值逻辑,通过指定一个0到1之间的实数表示真实度,相当于隐含算子的前提,允许将多个传感器信息融合过程中的不确定性直接表示在推理过程中。如果采用某种系统化的方法对融合过程中的不确定性进行推理建模,则可以产生一致性模糊推理。与概率统计方法相比,逻辑推理存在许多优点,它在一定程度上克服了概率论所面临的问题。它对信息的表示和处理更加接近人类的思维方式,它一般比较适合于在高层次上的应用(如决策),但是,逻辑推理本身还不够成熟和系统化。此外,由于逻辑推理对信息的描述存在很大的主观因素,所以,信息的表示和处理缺乏客观性。

模糊集合理论对于数据融合的实际价值在于它外延到模糊逻辑,模糊逻辑是一种多值逻辑,隶属度可视为一个数据真值

的不精确表示。在MSF过程中,存在的不确定性可以直接用模糊逻辑表示,然后,使用多值逻辑推理,根据模糊集合理论的各种演算对各种命题进行合并,进而实现数据融合。

人工神经网络法

神经网络具有很强的容错性以及自学习、自组织及自适应能力,能够模拟复杂的非线性映射。神经网络的这些特性和强大的非线性处理能力,恰好满足了多传感器数据融合技术处理的要求。在多传感器系统中,各信息源所提供的环境信息都具有一定程度的不确定性,对这些不确定信息的融合过程实际上是一个不确定性推理过程。神经网络根据当前系统所接受的样本相似性确定分类标准,这种确定方法主要表现在网络的权值分布上,同时可以采用神经网络特定的学习算法来获取知识,得到不确定性推理机制。利用神经网络的信号处理能力和自动推理功能,即实现了多传感器数据融合。

常用的数据融合方法及特性如表1所示。通常使用的方法依具体的应用而定,并且由于各种方法之间的互补性,实际上,常将2种或2种以上的方法组合进行多传感器数据融合。

表1 常用的数据融合方法比较

融合方法运行环境信息类型信息表示不确定性融合技术适用范围加权平均动态冗余原始读数值加权平均低层数据融合卡尔曼滤波动态冗余概率分布高斯噪声系统模型滤波低层数据融合贝叶斯估计静态冗余概率分布高斯噪声贝叶斯估计高层数据融合统计决策理论静态冗余概率分布高斯噪声极值决策高层数据融合证据推理静态冗余互补命题逻辑推理高层数据融合模糊推理静态冗余互补命题隶属度逻辑推理高层数据融合神经元网络动/静态冗余互补神经元输入学习误差神经元网络低/高层

生产式规则动/静态冗余互补命题置信因子逻辑推理高层数据融合

4 多传感器数据融合的应用

数据融合技术最初是因军事需要发展起来的,不断发展地同时,在军用领域的应用也越来越广泛。另外,数据融合技术在民用领域也得到了广泛的应用,或者说很多领域所需求技术的特点与数据融合的相符合。数据融合的主要特点就是它是一门处理多方面、多特征数据的技术,其目

的是通过综合分析多源数据,已达到某种技术要求。这也是数据融合技术能够得到众多支持和大量应用的原因[6]。

在军用领域,数据融合已经应用到监视、对空防御、电子对抗、指挥系统等;在民用领域,数据融合已经应用到智能机器人、遥感、医疗等。这些是目前数据融合应用的较为成熟的领域,另外还有很多其它新的应用在不断地呈现出来。

4.1军事应用

数据融合技术起源于军事领域,数据融合在军事上应用最早、范围最广,涉及战术或战略上的检测、指挥、控制、通信和情报任务的各个方面。主要的应用是进行目标的探测、跟踪和识别,包括C3I系统、自动识别武器、自主式运载制导、遥感、战场监视和自动威胁识别系统等。如对舰艇、飞机、导弹等的检测、定位、跟踪和识别及海洋监视、空对空防御系统、地对空防御系统等。海洋监视系统包括对潜艇、鱼雷、水下导弹等目标的检测、跟踪和识别,传感器有雷达、声纳、远红外、综合孔径雷达等。空对空、地对空防御系统主要用来检测、跟踪、识别敌方飞机、导弹和防空武器,传感器包括雷达、ESM(电子支援措施)接收机、远红外敌我识别传感器、光电成像传感器等。迄今为止,美、英、法、意、日、俄等国家已研制出了上百种军事数据融合系统,比较典型的有:TCAC(战术指挥控制),BETA (战场利用和目标截获系统),AIDD(炮兵情报数据融合)等。在近几年发生的几次局部战争中,数据融合显示了强大的威力,特别是在海湾战争和科索沃战争中,多国部队的融合系统发挥了重要作用。

在空战中,数据融合技术也得到了一定程度应用。机载传感器作为空战态势环境了解的重要手段,主要应用于目标搜索、跟踪和武器制导,近年来得到了迅猛的发展。美国的F-15E、F-16C/D、F/A-18E/F、F-22和俄罗斯的Su-27、Su-35、MIG-29M、MIG-31 和瑞典的JAS-39都已不同程度地应用了机载多传感器综合技术[7]。

4.2 复杂工业过程控制

复杂工业过程控制是数据融合应用的一个重要领域。目前,数据融合技术已在核反应堆和石油平台监视等系统中得到应用。融合的目的是识别引起系统状态超出正常运行范围的故障条件,并据此触发若干报警器。通过时间序列分析、频率分析、小波分析,从各传感器获取的信号模式中提取出特征数据,同时将所提取的特征数据输入神经网络模式识别器,神经网络模式识别器进行特征级数据融合,以识别出系统的特征数据,并输入到模糊专家系统

进行决策级融合。专家系统推理时,从知识库和数据库中取出领域知识规则和参数,与特征数据进行匹配,最后决策出被测系统的运行状态、设备工作状况和故障等[8]。

4.3 机器人

多传感器数据融合技术的另一个典型应用领域为机器人。目前主要应用在移动机器人和遥操作机器人上,因为这些机器人工作在动态、不确定与非结构化的环境中(如勇气0号和机遇0号火星车),这些高度不确定的环境要求机器人具有高度的自治能力和对环境的感知能力,而多传感器数据融合技术正是提高机器人系统感知能力的有效方法。

实践证明,采用单个传感器的机器人不具有完整、可靠地感知外部环境的能力。智能机器人应采用多个传感器,并利用这些传感器的冗余和互补的特性来获得机器人外部环境动态变化的、比较完整的信息,并对外部环境变化作出实时的响应。目前机器人学界提出向非结构化环境进军,其核心的关键之一就是多传感器系统和数据融合[9]。

4.4 遥感

多传感器融合在遥感领域中的应用,主要是通过高空间分辨力全色图像和低光谱分辨力图像的融合,得到高空间分辨力和高光谱分辨力的图像,融合多波段和多时段的遥感图像来提高分类的准确性。

多源遥感图像数据融合通过将同一地区不同的遥感图像数据所包含的信息优势或互补性采用一定的算法有机地结合起来,可以最大限度地利用各种数据源,以提供更丰富更准确的信息,已经越来越多地受到国内外研究者的关注[10]。

4.5 交通管理系统

数据融合技术可应用于地面车辆定位、车辆跟踪、车辆导航以及空中交通管制系统等[11]。

5 综述

尽管信息融合技术取得了飞速发展,但它仍然是一门新发展的学科,很多理论还不健全,随着传感器技术、数据处理技术、计算机技术、网络通讯技术、人工智能技术、并行计算软件和硬件技术等相关技术的发展,它将不断完善。

5.1 数据融合存在的问题

(1)尚未建立统一的融合理论和有效广义融合模型及算法。目前,绝大多数的融合研究皆是针对特定的应用领域的特定

问题开展的(混合结构,分布式)。即根据问题的种类,各自建立直观的融合准则,形成“最佳”融合方案,未形成完整的理论框架和融合模型,使得融合系统的设计具有一定的盲目性;

(2)对数据融合的具体方法的研究尚处于初步阶段;

(3)还没有很好解决融合系统中的容错性或鲁棒性问题;

(4)关联的二义性:关联的二义性是数据融合的主要障碍,传感器测量的不精确性和干扰等都是引起关联二义性的因素。如何降低关联二义性是数据融合研究以待解决的问题;

(5)数据融合方法与融合系统实施存在的问题:目前大多数数据融合是经一种简单的方法合成信息,并未充分有效地利用多传感器所提供的冗余信息,融合方法研究也还处于初步阶段。而且目前很多研究工作亦是基础研究、仿真性工作。因此数据融合系统的设计实施还存在许多实际的问题:传感器动态测量误差模型的建立、传感器系统优化、复杂动态环境下系统实时性、大型知识库的建立与管理、与其它领域的很多新技术的“嫁接与融合”,如人工智能技术、计算神经网络计算、遗传算法、进化计算、虚拟现实技术性等。

5.2 数据融合发展趋势

(1)建立统一的融合理论、数据融合的体系结构和广义融合模型;

(2)解决数据配准、数据预处理、数据库构建、数据库管理、人机接口、通用软件包开发问题,利用成熟的辅助技术,建立面向具体应用需求的数据融合系统;

(3)将人工智能技术,如神经网络、遗传算法、模糊理论、专家理论等引入到数据融合领域,利用集成的计算智能方法(如模糊逻辑+神经网络,遗传算法+模糊+神经网络等)提高多传感融合的性能;

(4)解决不确定性因素的表达和推理演算,例如:引入灰数的概念;

(5)利用有关的先验数据提高数据融合的性能,研究更加先进复杂的融合算法(未知和动态环境中,采用并行计算机结构多传感器集成与融合方法的研究等);

(6)在多平台/单平台、异类/同类多传感器的应用背景下建立计算复杂程度低,同时又能满足任务要求的数据处理模型和算法;

(7)构建数据融合测试评估平台和多传感器管理体系;

(8)将已有的融合方法工程化与商品化,开发能够提供多种复杂融合算法的处理硬件,以便在数据获取的同时就实时地完成融合。

信息融合系统是一个具有强烈不确定性的复杂大系统,处理方法受到现有理论、技术、设备的限制。因此,在对信息融合系统的研究过程中存在着一些固有的问题,为了解决这些问题,试图给出系统实现和设计的几个基本原则。但值得注意的是目前并不存在一套完善的原则。同时在系统设计过程中,前期和基础的系统分析(包括体系分析、算法选择、需求分析等等)是不可少的。随着研究者的不断努力,不久的将来,数据融合的基础理论、兼有鲁棒性和准确性的融合算法将不断地得到完善,实现技术将不断地得到更新,实际应用将不断地被扩展。多传感器数据融合技术必将不断地走向成熟。

参考文献

[1] 黄漫国. 多传感器数据融合研究进展[J].传感器与微系统,2010

[2] 李娟. 多传感器数据融合技术综述[J].云南大学学报,2008

[3] 高翔. 数据融合技术综述[J]. 计算机测量与控制,2002

[4] 祝宏. 多传感器信息融合研究综述[J].计算机与数字工程,2007

[5] 严怀成. 多传感器数据融合技术及其应用[J].传感器技术,2005

[6] 刘敏. 多传感器数据融合算法研究与应用[D].南京:南京航空航天大学硕士学位论文,2010

[7] 田省民. 机载多传感器数据融合技术在空战中的应用[J].航空电子技术,2010 [8] 刘彦明. 基于多信息融合的复杂工业过程广义知识模型研究[D].哈尔滨:哈尔滨理工大学硕士学位论文,2009

[9] 余翀. 基于多传感器数据融合的机器人里程计设计与实现[J].传感技术学报,2012

[10] 曹广真. 多源遥感数据融合方法与应用研究[D].上海:复旦大学博士学位论文,2006

[11] Murphy R R. Sensor and information fusion for improved vision2based vehicle guidance [J]. IEEE Expert, 2003, 13(6): 49- 56

基于图像处理的多传感器融合的物体识别方法与相关技术

本技术公开了一种基于图像处理的多传感器融合的物体识别方法,包括以下步骤:S1:获取三通道RGB彩色图像及一通道多线激光测距图像;S2:将RGB彩色图像的摄像机光学坐标投射成激光点云坐标,激光点云坐标投射成360°环形全景坐标;S3:利用深度学习的图像识别技术,针对事先训练过的目标进行目标检测框选定,得到目标检测边界框分布图像及物体类别分布图像。本技术方法简单,实时性高,基于多传感器实现六通道图像的映射融合,在传统的RGBD四通道图像的基础上,增加了二通道来源于目标检测的物体类别分布图像、目标检测边界框分布图像,为实现快速准确的目标物体定位提供了精准的图像处理基础。 技术要求 1.一种基于图像处理的多传感器融合的物体识别方法,包括以下步骤: S1:获取三通道RGB彩色图像及一通道多线激光测距图像; S2:将RGB彩色图像的摄像机光学坐标投射成激光点云坐标,激光点云坐标投射成360° 环形全景坐标; S3:利用深度学习的图像识别技术,针对事先训练过的目标进行目标检测框选定,得到 目标检测边界框分布图像及物体类别分布图像。 2.根据权利要求1所述的基于图像处理的多传感器融合的物体识别方法,其特征在于,在步骤S1中,所述三通道RGB彩色图像通过摄像机原始图像获取,所述一通道多线激光测 距图像通过获取激光点云信息后生成独立图层得到。

3.根据权利要求1所述的基于图像处理的多传感器融合的物体识别方法,其特征在于,在步骤S2中,将摄像机坐标投射成激光点云坐标的具体步骤包括: S201:创建3D临时贴图,贴图坐标为激光坐标,贴图大小为单个摄像头贴图转换为激光点云坐标后的宽度和高度; S202:计算贴图下个像素的激光坐标; S203:判断下个像素是否为贴图的结尾像素,若不是则重复步骤S202,若是则进行下一步骤; S204:将八个摄像机贴图合并,拼接生成激光坐标下的360度全景图。 4.根据权利要求3所述的基于图像处理的多传感器融合的物体识别方法,其特征在于,步骤S202的具体计算过程包括: 首先将激光坐标转换成摄像机镜头坐标,再将镜头坐标转换成摄像机像素坐标,最后将对应摄像机像素读取到贴图。 5.根据权利要求1所述的基于图像处理的多传感器融合的物体识别方法,其特征在于,在步骤S2中,将激光点云坐标投射成环形全景坐标的具体步骤包括: S211:创建一个激光点阵图层,大小为1920*1080,左右边缘角度为0—360°,上下角度为-15°—15°,左右边缘角度、上下角度均匀铺展拉伸; S212:读取一列激光点阵存储区数据; S213:计算打印图像的像素角度; S214:计算像素位置,将对应数据赋值到打印的图层; S215:判断当前读取的激光点阵存储区数据是否为数据的结尾,若不是则重复步骤S212—S214,若是则生成图像结束。 6.根据权利要求1所述的基于图像处理的多传感器融合的物体识别方法,其特征在于,在步骤S3中,事先训练过的目标包括目标人员、工作服、安全帽。

多传感器信息融合方法综述

万方数据

万方数据

万方数据

万方数据

万方数据

多传感器信息融合方法综述 作者:吴秋轩, 曹广益 作者单位:上海交通大学电子信息与电气工程学院,上海,200030 刊名: 机器人 英文刊名:ROBOT 年,卷(期):2003,25(z1) 被引用次数:2次 参考文献(5条) 1.周锐;申功勋;房建成基于信息融合的目标图像跟踪 1998(12) 2.张尧庭;桂劲松人工智能中的概率统计方法 1998 3.何友;王国宏;彭应宁多传感器信息融合 2000 4.罗志增;叶明Bayes方法的多感觉信息融合算法及其应用[期刊论文]-传感技术学报 2001(03) 5.张文修;吴伟业;梁吉业粗糙集理论与方法 2001 本文读者也读过(8条) 1.臧大进.严宏凤.王跃才.ZANG Da-jin.YAN Hong-feng.WANG Yue-cai多传感器信息融合技术综述[期刊论文]-工矿自动化2005(6) 2.多传感器信息融合及应用[期刊论文]-电子与信息学报2001,23(2) 3.赵小川.罗庆生.韩宝玲.ZHAO Xiao-chuan.LUO Qing-sheng.HAN Bao-ling机器人多传感器信息融合研究综述[期刊论文]-传感器与微系统2008,27(8) 4.范新南.苏丽媛.郭建甲.FAN Xin-nan.SU Li-yuan.GUO Jian-jia多传感器信息融合综述[期刊论文]-河海大学常州分校学报2005,19(1) 5.咸宝金.陈松涛智能移动机器人多传感器信息融合及应用研究[期刊论文]-宇航计测技术2010,30(2) 6.韩增奇.于俊杰.李宁霞.王朝阳信息融合技术综述[期刊论文]-情报杂志2010,29(z1) 7.肖斌多传感器信息融合及其在工业中的应用[学位论文]2008 8.丁伟.孙华.曾建辉.DING Wei.SUN Hua.ZENG Jian-hui基于多传感器信息融合的移动机器人导航综述[期刊论文]-传感器与微系统2006,25(7) 引证文献(2条) 1.武伟.郭三学基于多传感信息融合的轮胎气压监测系统[期刊论文]-轮胎工业 2006(5) 2.魏东.杨洋.李大寨.宗光华基于多传感器融合的机器人微深度环切[期刊论文]-传感器技术 2005(11) 本文链接:https://www.wendangku.net/doc/7a6470580.html,/Periodical_jqr2003z1037.aspx

多传感器融合实验报告

非线性卡尔曼滤波与多传感器融合 电信少41 刘星辰 2120406102 (1) 根据题目中给出的量测方程,进行坐标变换,得 ) )(sin(arctan ))()((sin )())(cos(arctan ))()((cos )(,,22,,,,22,,k i k i k k r i k i k i k i k k i k i k k r i k i k i k i k x x y y y y x x r k y x x y y y y x x r k x θθννθννθ+--?+-+-=?=+--?+-+-=?= 以此坐标画图,结果如下: (2) 将非线性问题线性化,新的量测方程为 k r k i k i k v X H Z ,,,+= 其中, ????? ??? ? ??? -+---+----+---+--=0)()() (0 )()()(0)()()(0)()()(2 22 22 22 2,i k i k i k i k i k i k i k i k i k i k i k i k i k y y x x x x y y x x y y y y x x y y y y x x x x H []T k k k k k y y x x X = 扩展卡尔曼滤波算法一个循环如下:

[]1 1 )1()1()1()|1()1|1() 1()'1()|1()1()'1()|1()1()1()1()()'()|()()|1()|1(?)1()1()|1(?)1|1(?--+++-+=+++++=++++++=++=++-++++=++k W k S k W k k P k k P k S k H k k P k W k H k k P k H k R k S k Q k F k k P k F k k P k k z k z k W k k x k k x 将量测方程代入,由于题目中未给出滤波器初值,因此参考作业二中的初值,得到的两个雷达估计的目标状态如下图: 距离均方根误差为 [] ∑=-+-= M i k k k k position y y x x M k RMSE 1 22)?()?( 1 )( 将估计位置、量测位置分别代入上式,得到两个雷达量测和估计的距离均方差,如下图:

多传感器数据融合技术的理论及应用

多传感器数据融合技术的理论及应用 张宁110101256 摘要:多传感器数据融合技术是一门新兴前沿技术。近年来,多传感器数据融合技术已经受到广泛关注,它的理论和方法已经被应用到许多研究领域。本文主要论述了多传感器数据融合的基本概念、工作原理、数据融合特点与结构、数据融合方法及其应用领域,并总结了当前数据融合研究中存在的主要问题及其发展趋势。 关键词:多传感器;数据融合;融合方法 1引言 多传感器数据融合是一个新兴的研究领域,是针对一个系统使用多种传感器这一特定问题而展开的一种关于数据处理的研究。多传感器数据融合技术是近几年来发展起来的一门实践性较强的应用技术,是多学科交叉的新技术,涉及到信号处理、概率统计、信息论、模式识别、人工智能、模糊数学等理论。近年来,多传感器数据融合技术无论在军事还是民事领域的应用都极为广泛。多传感器数据融合技术已成为军事、工业和高技术开发等多方面关心的问题。这一技术广泛应用于复杂工业过程控制、机器人、自动目标识别、交通管制、惯性导航、海洋监视和管理、农业、医疗诊断、模式识别等领域。实践证明:与单传感器系统相比,运用多传感器数据融合技术在解决探测、跟踪和目标识别等问题方面,能够增强系统生存能力,提高整个系统的可靠性和鲁棒性,增强数据的可信度,并提高精度,扩展整个系统的时间、空间覆盖率,增加系统的实时性和信息利用率等。 2基本概念及融合原理 2.1多传感器数据融合概念 数据融合又称作信息融合或多传感器数据融合,对数据融合还很难给出一个统一、全面的定义。随着数据融合和计算机应用技术的发展,根据国内外研究成果,多传感器数据融合比较确切的定义可概括为:充分利用不同时间与空间的多传感器数据资源,采用计算机技术对时间序列获得的多传感器观测数据,在一定准则下进行分析、综合、支配和使用,获得对被测对象的一致性解释与描述,进而实现相应的决策和估计,使系统获得比它的各组成部分更充分的信息。

多传感器数据融合作业

汽车防盗系统中的多传感器数据融合 一、引言 汽车日益成为人们生活中不可缺少的部分,然而,令汽车用户担忧的是车辆被盗现象呈逐年上升趋势。现在市场上汽车的防盗系统很多,它们都是多传感器的数据融合技术的应用。 二、汽车防盗系统的组成 汽车防盗系统主要由信号采集系统、报警系统、控制系统、通讯系统等组成。本系统的工作原理主要:传感器负责采集信号,一般每一种信号都有两个或两个以上不同种类的传感器负责采集,以保证当一个传感器损坏后不会影响系统的工作。当其中任何一个传感器检测到信号不正常时,传感器就会把信息告知中央处理系统,当中央处理器判定为有用的告警信号后就会立刻启动报警系统。 当中央处理器发出启动报警系统的命令后,视频系统负责记录偷车人的声音和相貌以给公安机关破案提供线索和证据,声光告警系统则会发出刺耳的鸣叫和亮光以惊吓偷车人使其放弃偷车。在防盗系统中通讯系统起着重要的作用,视频系统采集到的声音图像等信息传送给监控中心和车主,以使监控中心能及时的采取措施,如切断汽车油路等。现在的汽车防盗系统一般采用模块化设计,其系统的逻辑框图如图1-1所示。 图1-1

三、汽车防盗系统的传感器说明 3.1微波多普勒传感器 利用多普勒效应制成的传感器可以用来探测人体或物体的移动.该传感器在人或物体靠近时接收器接收的频率发生变化,当频率变化至设定值时,可以判断为有人或物体进入防盗系统的预警范围。 3.2振动传感器 该传感器的功能是将车辆所受外界作用的机械能转换为电信号。其作用是感受车身或车窗是否受到外界机械碰撞;汽车是否被非法升起,监测轮胎与轮毂之间的压力状态;监测驾驶座是否受压,能够对车体特殊频段的振动进行监测。如图是YD69正反转测量霍尔双通道传感器。 3.3倾角传感器 倾角传感器监测车体相对于初始位置是否出现倾角变化,如果这种角度的变是以特定频率出现或达到设定的阈值就可以判断为汽车整体被搬运.如图是一个电压型单轴倾角传感器。

多传感器数据融合

多传感器数据融合 多传感器数据融合1引言数据融合一词最早出现在20世纪70年代末期。几十年来,随着传感器技术的迅速发展,尤其在军事指挥系统中对提高综合作战能力的迫切要求,使其得到了长足的发展。其早期主要是应用在军事上,而随着工业系统的复杂化和智能化,近年来该技术推广到了民用领域,如医疗诊断、空中交通管制、工业自动控制及机械故障诊断等。数据融合是针对一个系统中使用多个传感器这一问题而展开的一种信息处理的新的研究方向,所以数据融合也称为传感器融合。数据融合一直没有一个统一的定义,一般认为:利用计算机技术,对按时间顺序获得的若干传感器的观测信息,在一定的准则下加以自动分析、综合,从而完成所需要的决策和估计任务而进行的信息处理过程称为数据融合。2

数据融合技术的分类多传感器数据融合涉及到多方面的理论和技术如信号处理、估计理论、不确定性理论、模式识别最优化技术、神经网络和人工智能等。很多学者从不同角度出发提出了多种数据融合技术方案。从技术原理角度,可分为假设检验型数据融合、滤波跟踪型数据融合、聚类分析型数据融合、模式识别型数据融合、人工智能型数据融合等;按判决方式分有硬判决型和软判决型数据融合;按传感器的类型分有同类传感器数据融合和异类传感器数据融合按对数据的处理方式,可分为象素级融合、特征级融合和决策级融合;从方法来分有Bayes推理法、表决法、D-S 推理法、神经网络融合法等。从解决信息融合问题的指导思想或哲学观点加以划分,可分为嵌入约束观点、证据组合观点和人工神经网络观点三大类。3常用的数据融合方法数据融合方法种类繁多,图1归纳了常用的一些信息融合方法。估计方法

多传感器数据融合技术

多传感器数据融合技术

姓名:李承尚 学号: 081308309 专业:电子信息工程

多传感器数据融合是一门新兴技术,在军事和非军事领域中都到了广泛应用、多传感器数据融合技术汲取了人工智能、模式识别、统计估计等多门学科的相关技术,计算机技术的快速发展以及数据融合技术的成熟为数据融合的广泛应用提供了基础。 多传感器数据融合是一个新兴的研究领域,是针对一个系统使用多种传感器这一特定问题而展开的一种关于数据处理的研究。多传感器数据融合技术是近几年来发展起来的一门实践性较强的应用技术,是多学科交叉的新技术,涉及到信号处理、概率统计、信息论、模式识别、人工智能、模糊数学等理论。多传感器融合技术已成为军事、工业和高技术开发等多方面关心的问题。这一技术广泛应用于C3I(command,control,communication and intelligence)系统、复杂工业过程控制、机器人、自动目标识别、交通管制、惯性导航、海洋监视和管理、农业、遥感、医疗诊断、图像处理、模式识别等领域。实践证明:与单传感器系统相比,运用多传感器数据融合技术在解决探测、跟踪和目标识别等问题方面,能够增强系统生存能力,提高整个系统的可靠性和鲁棒性,增强数据的可信度,并提高精度,扩展整个系统的时间、空间覆盖率,增加系统的实时性和信息利用率等。美国研究机构就在国防部的资助下,开展了声纳信号解释系统的研究。目前,在工业控制、机器人、空中交通管制、海洋监视和管理等领域也朝着多传感器融合方向发展。多传感器融合技术成为军事、工业和高技术开发等多方面关心的问题。 1 基本概念及融合原理

1.1 多传感器数据融合概念 数据融合又称作信息融合或多传感器数据融合,对数据融合还很难给出一个统一、全面的定义。随着数据融合和计算机应用技术的发展,根据国内外研究成果,多传感器数据融合比较确切的定义可概括为:充分利用不同时间与空间的多传感器数据资源,采用计算机技术对按时间序列获得的多传感器观测数据,在一定准则下进行分析、综合、支配和使用,获得对被测对象的一致性解释与描述,进而实现相应的决策和估计,使系统获得比它的各组成部分更充分的信息。 1.2 多传感器数据融合原理 多传感器数据融合技术的基本原理就像人脑综合处理信息一样,充分利用多个传感器资源,通过对多传感器及其观测信息的合理支配和使用,把多传感器在空间或时间上冗余或互补信息依据某种准则来进行组合,以获得被测对象的一致性解释或描述。具体地说,多传感器数据融合原理如下:(1)N个不同类型的传感器(有源或无源的)收集观测目标的数据; (2)对传感器的输出数据(离散的或连续的时间函数数据、输出矢量、成像数据或一个直接的属性说明)进行特征提取的变换,提取代表观测数据的特征矢量Yi; (3)对特征矢量Yi进行模式识别处理(如,聚类算法、自适应神经网络或其他能将特征矢量Yi变换成目标属性判决的统计模式识别法等)完成各传感器关于目标的说明; (4)将各传感器关于目标的说明数据按同一目标进行分组,即关联;

多信息融合作业

制造系统多信息融合及应用 A:简答题 1、简述多信息融合的目的是什么?信息融合的典型问题与方法有哪些? 答:多信息融合是指用多信息源对事物的不同侧面、不同阶段、不同深度进行融合决策,以获得完整全面的预测,避免单一信息源的片面偏差。它的主要目的是有效组织与利用能够获得的多种信息资源,提供比只采用其中部分信息资源获得更准确、更可靠、更协调、更经济与更稳定的决策结果。 典型问题有:(1)问题:传感感知的多数据源和多信息源具有不同的感知机理和不同数据类型(即异类);多源数据和信息之间常常不能保持同步;感知的时空范围中目标、时间或者更复杂的态势可能存在变化等,方法:传感感知事件的时空协同、动态协同,面向目标、事件或者复杂态势的合适的控制等。(2)输入的数据类型可能存在差异,方法:引入来自外部参数系统的定位信息等,研究有针对性的解决方法等。(3)不同事件(特征)集中的“目标”数目不一致;输入数据含糊、不一致、冲突或不可靠;输入数据相关的噪声/误差,方法:产生一组可能表示现实世界的模型假设。利用方法选择与获取数据最接近的假设等。(4)决策对象可能比较复杂,具有多目标或者多时间、多层次和多侧面处理需求,复杂的动态(如态势和威胁)的表达和处理模式,方法:利用多层次的概念,包括对象的多层次、处理的多层次、元模型的多层次、多侧面处理等;针对不同层次研究具体的适用理论方法和处理结构;多远信息的协同分析;建立专门的融合评价平台等。 2、如何理解信息融合的层次?对于特定系统对象,试比较数据层融合与特征层融合在有效性方面的区别? 答:信息融合的层次有两个层次的含义:一层含义是直接针对融合单元的输入输出关系的表述,这些关系中最常见的有数据-数据对、特征-特征对和决策-决策对,于是形成了数据层融合、特征层融合和决策层融合;另一层含义是针对和整个融合决策任务来说的,依据融合任务的主体情况,任务主导的输入-输出需求,确定数据、特征、决策三层的划分。 区别:进行数据层融合的数据集可以来自不同的传感器和(或者)不同的信息源,数据层融合结果一般是数据,可以通过算法提供相应的特征;特征层融合的输入特征可能来自不同数据层融合的结果、也可能来自其他直接提供特征的信息源或者渠道,特征层输出可以直接形成相应的决策。 3、数据关联有哪些类型,如何将异源、异构数据进行关联? 答:数据关联分为静态数据关联和动态数据关联,静态数据关联存在三种典型情况:具有同样维数的多传感器的数据关联、具有不同维数的多传感器的数据关联和具有多个站点的多传感器的数据关联。 对象代理模型可以作为数据集成的一种通用的数据模型,它也是能够很好地解决各个异

浅析多传感器数据融合技术存在的问题和发展展望

龙源期刊网 https://www.wendangku.net/doc/7a6470580.html, 浅析多传感器数据融合技术存在的问题和发展展望 作者:宋晓君孙洪伟 来源:《活力》2011年第07期 多传感器数据融合技术的基本原理像人脑综合处理信息一样充分利用多个传感器资源。通过对这些传感器及其观测信息的合理支配和使用,把多个传感器在时间和空间上的冗余或互补信息依据某种准则进行组合,以获取被观测对象的一致性解释或描述。数据融合的基本目标是通过数据优化组合导出更多有效信息。它的最终目标是利用多个传感器共同或联合操作的优势,来提高多个传感器系统的有效性。 一、数据融合技术存在的问题 数据融合技术国内外虽经多年研究取得了不少成果,也已经成功地应用于多种领域,但目前仍未形成一套完整的理论体系和有效的融合算法。绝大部分都是针对特定的问题特定的领域来研究,也就是说数据融合的研究都是根据问题的种类特定的对象特定的层次建立自己的融合模型和推理规则,有的在此基础上形成所谓的最佳方案。但多传感器数据融合系统的设计带有一定的盲目性,有必要建立一套完整的方法论体系来指导数据融合系统的设计。具体的不足之处有: 1.未形成基本的理论框架和广义融合算法。目前,绝大多数的融合研究都是针对特定的应用领域的特定问题开展的(混合结构,分布式)。即根据问题的种类,各自建立直观的融合准则,形成“最佳”融合方案,未形成完整的理论框架和融合模型,使得融合系统的设计具有一定的盲目性。统一的数据融合理论必然是以传感器信号和数据处理理论、C3I系统情报处理理论和指挥决策理论等在工程实践基础上的、研究上一层次融合机理的再创造过程。难点在于在大量随机与不确定问题中的融合准则确定,这些不确定性反应在测量不精确、不完整、不可靠、模糊,甚至信息冲突中。 2.关联的二义性。关联的二义性是数据融合的主要障碍。在进行融合处理前,必须对来自多传感器的观测结果进行关联,保证所融合的信息是来自同一观测目标或事件。以保证融合信息的一致性。传感器测量的不精确性和干扰都是引起关联二义性的因素。如何降低关联二义性是数据融合研究领域亟待解决的问题。 3.融合系统的容错性或稳健性没有得到很好的解决。

多传感器数据融合算法.

一、背景介绍: 多传感器数据融合是一种信号处理、辨识方法,可以与神经网络、小波变换、kalman 滤波技术结合进一步得到研究需要的更纯净的有用信号。 多传感器数据融合涉及到多方面的理论和技术,如信号处理、估计理论、不确定性理论、最优化理论、模式识别、神经网络和人工智能等。多传感器数据融合比较确切的定义可概括为:充分利用不同时间与空间的多传感器数据资源,采用计算机技术对按时间序列获得的多传感器观测数据,在一定准则下进行分析、综合、支配和使用,获得对被测对象的一致性解释与描述,进而实现相应的决策和估计,使系统获得比它的各组成部分更充分的信息。 多传感器信息融合技术通过对多个传感器获得的信息进行协调、组合、互补来克服单个传感器的不确定和局限性,并提高系统的有效性能,进而得出比单一传感器测量值更为精确的结果。数据融合就是将来自多个传感器或多源的信息在一定准则下加以自动分析、综合以完成所需的决策和估计任务而进行的信息处理过程。当系统中单个传感器不能提供足够的准确度和可靠性时就采用多传感器数据融合。数据融合技术扩展了时空覆盖范围,改善了系统的可靠性,对目标或事件的确认增加了可信度,减少了信息的模糊性,这是任何单个传感器做不到的。 实践证明:与单传感器系统相比,运用多传感器数据融合技术在解决探测、跟踪和目标识别等问题方面,能够增强系统生存能力,提高整个系统的可靠性和鲁棒性,增强数据的可信度,并提高精度,扩展整个系统的时间、空间覆盖率,增加系统的实时性和信息利用率等。信号级融合方法最简单、最直观方法是加权平均法,该方法将一组传感器提供的冗余信息进行加权平均,结果作为融合值,该方法是一种直接对数据源进行操作的方法。卡尔曼滤波主要用于融合低层次实时动态多传感器冗余数据。该方法用测量模型的统计特性递推,决定统计意义下的最优融合和数据估计。 多传感器数据融合虽然未形成完整的理论体系和有效的融合算法,但在不少应用领域根据各自的具体应用背景,已经提出了许多成熟并且有效的融合方法。多传感器数据融合的常用方法基本上可概括为随机和人工智能两大类,随机类方法有加权平均法、卡尔曼滤波法、多贝叶斯估计法、产生式规则等;而人工智能类则有模糊逻辑理论、神经网络、粗集理论、专家系统等。可以预见,神经网络和人工智能等新概念、新技术在多传感器数据融合中将起到越来越重要的作用。 数据融合存在的问题 (1)尚未建立统一的融合理论和有效广义融合模型及算法; (2)对数据融合的具体方法的研究尚处于初步阶段; (3)还没有很好解决融合系统中的容错性或鲁棒性问题; (4)关联的二义性是数据融合中的主要障碍; (5)数据融合系统的设计还存在许多实际问题。 二、算法介绍: 2.1多传感器数据自适应加权融合估计算法: 设有n 个传感器对某一对象进行测量,如图1 所示,对于不同的传感器都有各自不同的加权因子,我们的思想是在总均方误差最小这一最优条件下,根据各个传感器所得到的测量值以自适应的方式寻找各个传感器所对应的最优加权因子,使融合后的X值达到最优。

2018机器人传感器习题题库 - 附答案

1.多传感器数据融合的结构形式有串联型融合,并联型融合,混联型融合。 2. 3 4自校准层中用到的算法包括自适应加权算法、和(贝叶斯估算法,分布图与分批估计算法)。 5传感器一般由敏感元件,转换元件,测量电路,辅助电路等组成。 6机器人由机械部分、传感部分、控制部分三大部分组成。 7.智能传感器是由传感器和微处理器相结合而构成。 8.根据信息融合处理方式的不同,可以将多传感器信息融合系统结构分为集中、分散、混合、反馈型等。 9.常用的多传感器信息融合方法可以分为以下四大类。 10.根据处理对象的层次不同,可以将信息融合分类为数据层融合、特征层融合、决策层融合。 12.11.序号跳了, 13.11、12并没有题目。 14.机器人的机械结构系统由机械构件和传动机构组成。 15.机器人的运动方式主要有、、、及。 16.机器人传感器分为内部传感器和外部传感器两种。 17.多传感器信息融合过程主要包括A/D、数据预处理、特征值提取、和融合计算等环节。 18.智能传感器的硬件结构模块要由以下六个部分组成一个或多个敏感器件、微处理器或为控制器、非易失性可擦写存储器、双向数据通信的接口、模拟量输入输出接口、高效的电源模块。 19.传感器的标定可分为动态标定和静态标定。 20.传感器按构成原理分类为结构型和物性型。 21.压电传感器是根据压电效应制造而成的。 22.机器人的机械结构系统中的机械构件由机身、手臂和末端执行器三大件组成。 23.机器人驱动系统的驱动方式主要有液压、气压和电气。 24.机器人内部传感器主要包括位置、速度、加速度、倾斜角、力觉传感器等五种基本种类。 25.智能传感器是由传感器和微处理器相结合而构成的。第7题重复 26.多传感器信息融合的常用方法可以分为估计、分类、推理、人工智能四大类。 26.传感器按能量关系分类为能量转换和能量控制型;按基本效应分类分为物理、化学、生物型。第19题合并 27传感器进行动态特性标定时常用的标准激励源有周期函数和瞬变函数两种。 28机器人的机械结构系统由机械构件和传动系统组成。第13题重复 29机器人外部传感器主要包括视觉传感器、触觉、接近度、激光等基本种类。 30.智能传感器的实现方式主要有非集成化的模块方式、集成化实现和混合实现三种形式。 31.多传感器信息融合的系统结构分为集中、分散、混合、反馈型四大类。第8题重复 32.机器人电器驱动系统中,马达是其执行元件。

多传感器数据融合技术

多传感器数据融合技术 摘要:介绍多传感器数据融合技术的历史与研究现状,给出多传感器数据融合实现方法,最后给出应用和多传感器数据融合的不足与研究展望。 1 引言 多传感器数据融合是信息领域一个前景广阔的研究方向,世界各国都有学者和技术人员在开展数据融合技术的研究,我国对数据融合方面的研究也日益重视,国家自然科学基金和“863”计划已将其列入重点支持项目,因此,对多传感器数据融合进行学术与工程应用的研究具有重要意义[1]。 多传感器数据融合技术是对多种信息的获取、表示及其内在联系进行综合处理和优化的技术。多传感器数据融合技术从多信息的视角进行处理及综合,得到各种信息的内在联系和规律,从而剔除无用的和错误的信息,保留正确的和有用的成分,最终实现信息的优化,它也为智能信息处理技术的研究提供了新的观念。数据融合作为一门跨学科的综合信息处理理论,涉及系统论、信息论、控制论、人工智能和计算机通信等众多的领域和学科[2]。 本文介绍数据融合技术发展历史与研究现状,描述数据融合技术的几种典型实现方法,给出数据融合技术的主要应,最后对数据融合技术研究中存在的问题和发展前景进行了论述。 2 多传感器数据融合技术概述 2.1 数据融合的定义 数据融合也称为信息融合,它的定义有很多。Mango lini将数据融合定义为:一套利用具有不同性质的各种源数据的方法、工具、方式,目的是提高所需信息的质量,此定义着重于融合的方法。Hall 和Llinas的定义是“数据融合技术是将来自多传感器和相关数据库的有关信息进行综合,以得到精度上的改善和更加具体的推断,而这些也可以通过单个传感器来得到”。这种定义虽然提到了数据信息的质量,但是仍注重于方法。美国国防部定义为“数据融合是一个多级、多方面的过程,这个过程处理自动识别、连结、相关、估计以综合多源数据和信息.。”这一定义简单地说就是“处理自动识别、连结、相关、估计

传感器作业-扫地机器人设计

第一章绪论 课题研究背景 近年来,随着计算机技术与人工智能科学的飞速发展,服务机器人技术逐渐成为现代机器人研究领域的热点。一方面随着信息高速发展和生活、工作节奏的加快,人们需要从繁杂的家庭劳动中解脱出来;另一方面人口的老龄化和社会福利制度的完善也为某些服务机器人提供了广泛的市场应用前景。区别于工业机器人,服务机器人的一个主要特征就是服务机器人是一种适用于具体的方式、环境及任务过程的机器人系统,其活动空间大,具有在非结构环境下的移动性,因此扫地机器人是一种能够自动执行房间清扫的家用服务机器人,集中了机械学、电子技术、传感器技术、计算机技术、控制技术、机器人技术、人工智能技术等多学科。开始于20世纪80年代的研究,现在已经有多重样机和产品,并且促进了家庭服务机器人行业的发展,也促进了移动机器人技术、图像、语音识别、传感器等技术的发展。许多发达国家都将其视为机器人研究的新领域给予重视。有关资料也预测扫地机器人是未来几年需求量最大的服务机器人,特别是日用扫地电器不论在市场上或者是在产品创新上,绝对是所有小家电产品中最活跃的,未来仍有很大的成长空间,因此此课题研究有很大的意义。 国内外研究现状 扫地机器人的特点 扫地机器人具有如下的特点: (1)扫地机器人自带电源,小巧轻便、操作简单、自主性强、具有很强的实用性。 (2)扫地机器人的工作环境主要为普通家庭环境,也可以用于机场候机大厅、展

览馆、图书馆等公共场所。环境的共同特征为有限的封闭空间、平整的地板以及走动的人员,因此可以归结为复杂多变、结构化的动态环境。所以环境适应性是对此类机器人的基本要求。 (3)扫地机器人的任务是清扫地面,工作的对象是地面的灰尘、纸屑以及其他一些小尺寸物体,而大尺寸物体不作为扫地机器人的处理对象。考虑到安全因素,扫地机器人必须对人及家庭物品等不构成任何危害,同时扫地机器人还必须具备自我保护的能力。 随着近年来计算机技术、人工智能技术、传感技术以及移动机器人技术的迅速发展,扫地机器人控制系统的研究和开发己具备了坚实的基础和良好的发展前景。扫地机器人的控制与工作环境往往是不确定的或多变的,因此必须兼顾安全可靠性、抗干扰性以及扫地度。用传感器探测环境,分析信号,以及通过适当的建模方法来理解环境,具有特别重要的意义。近年来对智能机器人的研究表明,目前发展较快并且对扫地机器人发展影响较大的关键技术是:路径规划技术、传感技术、吸尘清扫技术、电源技术等。 ①路径规划技术 扫地机器人的路径规划就是根据机器人所感知到的工作环境信息,按照某种优化指标,在起始点和目标点规划出一条与环境障碍无碰撞的路径,并实现所需清扫区域完全路径覆盖。按机器人工作环境不同可分为静态结构化环境、动态己知环境和动态不确定环境,按机器人获取环境信息的方式不同可以分为基于模型的路径规划和基于传感器的路径规划。根据机器人对环境信息知道的程度不同,可以分为两种类型:全局路径规划和局部路径规划。常用的环境建模的主要方法有:可视图法、自由空间法、栅格法、势场法等。与其它移动机器人相比较,扫地机器人作业环境和作业任务相对简单,机器人要实现自主路径规划、控制和作业并不困难。 ②传感技术 扫地机器人在工作时需要实时地检测自身状态信息和收集外界环境息,以控

传感器作业-扫地机器人设计

第一章绪论 1.1 课题研究背景 近年来,随着计算机技术与人工智能科学的飞速发展,服务机器人技术逐渐成为现代机器人研究领域的热点。一方面随着信息高速发展和生活、工作节奏的加快,人们需要从繁杂的家庭劳动中解脱出来;另一方面人口的老龄化和社会福利制度的完善也为某些服务机器人提供了广泛的市场应用前景。区别于工业机器人,服务机器人的一个主要特征就是服务机器人是一种适用于具体的方式、环境及任务过程的机器人系统,其活动空间大,具有在非结构环境下的移动性,因此扫地机器人是一种能够自动执行房间清扫的家用服务机器人,集中了机械学、电子技术、传感器技术、计算机技术、控制技术、机器人技术、人工智能技术等多学科。开始于20世纪80年代的研究,现在已经有多重样机和产品,并且促进了家庭服务机器人行业的发展,也促进了移动机器人技术、图像、语音识别、传感器等技术的发展。许多发达国家都将其视为机器人研究的新领域给予重视。有关资料也预测扫地机器人是未来几年需求量最大的服务机器人,特别是日用扫地电器不论在市场上或者是在产品创新上,绝对是所有小家电产品中最活跃的,未来仍有很大的成长空间,因此此课题研究有很大的意义。 1.2 国内外研究现状 1.2.1 扫地机器人的特点 扫地机器人具有如下的特点: (1)扫地机器人自带电源,小巧轻便、操作简单、自主性强、具有很强的实用性。 (2)扫地机器人的工作环境主要为普通家庭环境,也可以用于机场候机大厅、展览馆、图书馆等公共场所。环境的共同特征为有限的封闭空间、平整的地板以及走动的人员,因此可以归结为复杂多变、结构化的动态环境。所以环境适应性是对此类机器人的基本要求。 (3)扫地机器人的任务是清扫地面,工作的对象是地面的灰尘、纸屑以及其他一些小尺寸物体,而大尺寸物体不作为扫地机器人的处理对象。考虑到安全因素,扫地机器人必须对人及家庭物品等不构成任何危害,同时扫地机器人还必须具备自我保护的能力。 随着近年来计算机技术、人工智能技术、传感技术以及移动机器人技术的迅速发展,扫地机器人控制系统的研究和开发己具备了坚实的基础和良好的发展前景。扫地机器人的控制与工作环境往往是不确定的或多变的,因此必须兼顾安全可靠性、抗干扰性以及扫地度。用传感器探测环境,分析信号,以及通过适当的建模方法来理解环境,具有特别重要的意义。近年来对智能机器人的研究表明,目前发展较快并且对扫地机器人发展影响较大的关键技术是:路径规划技术、传

多传感器数据融合

多传感器数据融合技术及应用

目录 第一章概论 0 1.1数据融合的目的和应用 0 1.2数据融合的理论基础 (2) 1.2.1数据融合的基本原理 (2) 1.2.2数据融合的级别 (3) 第二章状态估计理论 (7) 2.1估计问题的构成 (7) 2.2状态估计问题 (8) 2.3离散线性系统的最优估计——Kalman 滤波技 术 (9) 第三章多传感器信息融合系统中的状态估计 (14) 3.1引言 (14) 3.2集中式多传感器信息融合系统中的状态估计 14 3.2.1单传感器的状态估计 (14) 3.2.2集中式多传感器状态估计 (16) 3.3分布式多传感器信息融合系统中的状态估计 18 第四章多传感器概率数据关联算法 (22) 4.1概率数据关联滤波器 (22) 4.1.1预备知识 (22) 4.1.2概率数据关联滤波器的基本思想 (23) 4.1.3关联概率()i k 的计算 (25)

4.1.4协方差P(k|k)的计算 (28) 4.2多传感器概率数据关联算法 (30) 4.2.1多传感器概率数据关联滤波器 (30) 第五章分布式多传感器信息融合中的 (34) 5.1引言 (34) 5.2模糊因数集与隶属度函数 (34) 5.2.1模糊因素集 (34) 5.2.2隶属度函数的选择 (36) 5.3模糊因素的确定与模糊集A的动态分配 (37) 5.3.1模糊因素与权向量初值的确定 (37) 的动态分配 (38) 5.3.2模糊因素权集A % 5.4模糊航迹关联算法 (40) 5.4.1模糊航迹关联算法 (40) 5.5多局部节点情况下的模糊关联算法 (41) 第六章多传感器多模型概率数据关联算法 (43) 6.1多模型算法(Multiple-Model Approach) (43) 6.2相互作用多模型—概率数据关联算法 (46) 第七章多传感器信息融合系统中的身份估计 (56) 7.1基于Bayes统计理论的身份识别 (56) 7.2基于D-S证据理论的身份识别 (56) 7.2.1基本理论 (57) 7.2.2证据理论的组合规则 (58)

无线传感器网络作业

无线传感器作业 :传感器网络节点使用的限制因素有哪些? 1.电源能量有限传感器节点体积微小通常只携带能量十分有限的电池。 2.通信能力有限 3.计算和存储能力有限,传感器节点是一种微型嵌入式设备,要求他价格低功耗小,这些 限制必然导致其携带的处理器能力比较弱,存储器容量比较小。 :网络传感器有哪些特点? 1.自组织性 2.数据为中心 3.应用相关性 4.动态性 5.网络规模 6.可靠性 :按照节点功能和结构层次划分,将传感器网络的结构有哪几种?各有什么特点? 答: 1.平面网络结构拓扑结构简单,易维护具有较好的健壮性事实上就是一种,a d h o c 网络结构的形成。由于没有中心管理节点,故采用自组织协同算法组成网络,其组网算法比较复杂。 2.分级网络结构:网络拓扑结构扩展性好,便于集中管理,可以降低系统的建设成本,提 高网络覆盖率和可靠性。 3.混合网络结构:同级网络结构相比较,支持功能更强大,但所需要的硬件成本更高。 4.m e s h网络结构:由无线节点构成网络,按mes h拓扑结构部署,网内有个节点至少 可以和一个其他节点通信支持多跳路由,功耗限制和移动性取决于节点类型及应用的特点,存在多种网络接入方式。 :传感器半径r,被监测区域面积为A,要求达到概率为p的覆盖率,确定传感器数目。 :WSN数据链路层中的媒体访问控制和误差控制的基本思想是什么? 媒体访问控制:①对于感知区域内密集布置节点的多跳无线通信,需要建立数据通信链路以获得基本的网络基础设施。②为了使无线传感器节点公平有效的共享通信资源,需要对共享媒体的访问进行管理。 误差控制:一般基于ARQ的误差控制,主要采用重新传送发费和管理发费。具有低复杂的编码与解码方式的简单误差控制码可能是无线传感器网络中误差控制的最佳解决方案。 :传输层中的Event-to-sink传输和Sink-to-Sensors传说的基本思想是什么? Event-to-sink 由于无线传感网络中存在大量的数据流,Sink节点需要获得一定精度,Event-to-sink的可靠度是必要的,包括了事件特征到Sink’节点的可靠通信,而不是针对区域内各节点生成的单个传感报告/数据包进行基于数据包的可靠传递。 Sink-to-Sensors

基于多传感器信息融合的智能机器人

基于多传感器信息融合的智能机器人 院-系:信息工程与自动化学院 专业:模式识别与智能系统 年级: 2011 级 学生姓名:朱丹 学号: 2011204082 任课教师:黄国勇 2011年11月

摘要 机器人多传感器信息融合是当今科学研究的热点问题。传感器是连接机器人智能处理过程与外界环境的重要纽带,一般智能机器人都配有数个不同种类的传感器。本文主要分析了多传感器系统在机器人当中的重要性和多传感器信息融合的基本原理,并探讨了多传感器信息融合技术在智能机器人中的应用。 关键词:智能机器人、多传感器、信息融合 引言 多传感器、信息融合技术与传统机器人的结合构成了智能机器人。要使机器人拥有智能,对环境变化做出反应,首先必须使机器人具有感知环境的能力。用传感器采集环境信息加以综合处理,控制机器人进行智能作业,更是机器人智能化的重要体现。在以往机器人智能领域的研究中,人们把更多的注意力集中到研究和开发机器人的各种外部传感器上。尽管在现有的智能机器人和自主式系统中,大多数使用了多个不同类型的传感器,但并没有把这些传感器作为—个整体加以分析,更像是—个多传感器的拼合系统。虽然在各自传感器信息处理与分析方面开展了大量富有成效的工作,但由于忽视了多传感器系统的综合分析,对提高智能系统的性能带来了不利影响,效率低下而且速度缓慢。 因此,多传感器信息融合技术较之单一传感器有非常大的数据准确度的优势,已经成为现在机器人研究领域的关键技术。 一、多传感器信息融合的基本原理 多传感器信息融合是人类和其他生物系统中普遍存在的一种基本功能。人类本能地具有将人体的各种功能器官(眼、耳、鼻、四肢)所探测的信息(景物声音、气味和触觉)与先验知识进行综合的能力,以便对周围的环境和正在发生的事件做出估计。这一处理过程是复杂的,也是自适应的,它将各种信息(图像、声音、气味、物理形状、描述)转化成对环境的有价值的解释,这需要大量不同的智能处理,以及适用于解释组合信息含义的知识库。 多传感器信息融合实际上是对人脑综合处理复杂问题的一种功能模拟。在多传感器系统中,各种传感器提供的信息可能具有不同的特征:时变的或者非时变的;实时的或者非实时的;快变的或者缓变的;模糊的或者确定的;精确的或者不完整的;可靠的或者非可靠的;相互支持的或互补的;相互矛盾的或冲突的。 多传感器信息融合的基本原理就像人脑综合处理信息的过程一样,它充分地利用多个传感器资源,通过对各种传感器及其观测信息的合理支配与使用,将各种传感器在空间和时间上的互补与冗余信息依据某种优化准则组合起来,产生对观测环境的一致性解释和描述。信息融合的目标是基于各传感器分离观测信息,通过对信息的优化组合导出更多的有效信息。它的最终目的是利用多个传感器共同或联合操作的优势,来提高整个传感器系统的有效性。

西北工业大学 信息融合期末作业-

多传感器信息融合技术综述 以及关于航空发动机故障检测的一些问题 姓名:何世明学号:2010302183 班级:09031101 内容摘要:多传感器信息融合技术是一门新兴学科,它的理论和方法已被应用到许多研究领域。本文主要对多传感器信息融合的模型与结构、信息融合的主要技术和方法、信息融合理论体系以及信息融合技术的应用等内容进行了概要介绍和展开了综述。故障诊断技术是实现航空发动机视情维护、降低使用维护成本、保证飞行安全的重要手段,成为航空动力技术领域的研究热点。本文就信息融合技术开在航空发动机故障融合诊断研究中,传感器故障融合诊断的一些问题予以处理。 关键词:航空发动机,故障诊断,多传感器;传感器故障诊断,信息融合;综述 随着传感器技术、数据处理技术、计算机技术、网络通讯技术、人工智能技术和并行计算的软硬件技术等相关技术的发展,多传感器信息融合技术已受到了广泛关注。我国从20世纪90年代也开始了多传感器信息融合技术的研究和开发工作,并在工程上开展了多传感器识别、定位等同类信息融合的应用系统的开发,现在多传感器信息融合技术越来越受到人们的普遍关注。 1 多传感器信息融合的主要技术和方法 信息融合作为对多传感器信息的综合处理过程,具有本质的复杂性。传统的估计理论和识别算法为信息融合技术奠定了不可或缺的理论基础。但同时我们也看到,近年来出现的一些新的基于统计推断、人工智能以及信息论的新方法,正成为推动信息融合技术向前发展的重要力量。 (1)信号处理与估计理论方法:信号处理与估计理论方法包括用于图像增强与处理的小波变换技术、加权平均、最小二乘、Kalman滤波等线性估计技术,以及扩展Kalman滤波(EKF),Gauss滤波等非线性估计技术等。 (2)统计推断法:统计推断法包括经典推理,Bayes推理,证据推理(D-S),随机集(Random Set)理论以及支持向量机(SVM)理论等。 (3)信息论方法:信息论方法有一个共同的特点,即目标实体的相似性反映了观测参数的相似性,因而不需要建立变量随机方面的模型。运用优化信息度量的手段融合多源数据,从而获得问题的有效解决。 (4)决策论方法:决策论方法往往应用于高级的决策融合。可以借助决策论方法融合可见光、红外以及毫米波雷达数据用于报警分析。 (5)人工智能方法:人工智能方法包括模糊逻辑、神经网络、遗传算法、基于规则的推理以及专家系统、逻辑模板法、品质因数法等,在信息融合领域的应用也取得了一定的成果。 (6)几何方法:几何方法通过充分探讨环境以及传感器模型的几何属性来达到多传感器信息融合的目的。 2 多传感器信息融合技术的应用 “信息融合”一词出现的初期,未引起人们的重视,只局限于军事应用方面的研究,C3I系统率先采用多传感器信息融合技术来采集和处理战场信息并获得成功。80年代中期,信息融合技术在军事领域中取得了相当大的进展,在各类

相关文档