文档库 最新最全的文档下载
当前位置:文档库 › 元培学院大学物理第九章作业

元培学院大学物理第九章作业

元培学院大学物理第九章作业
元培学院大学物理第九章作业

元培学院大学物理第九章作业

1.题号:40111001

分值:10分

电量都是q 的三个点电荷,分别放在正三角形的三个顶点.正三角形的边长是a 。试问:

(1)在这三角形的中心放一个什么样的电荷,就可以使这四个电荷都达到平衡?(2)这种平衡与三角形的边长有无关系?

2.题号:40143005

分值:10分

如下图所示,正电荷q 均匀地分布在半径为R 的圆环上,试计算在环的轴线上任一点P 处的电场强度。

3.题号:40143007

分值:10分

带电细线弯成半径为R 的半圆形,电荷线密度为0sin λλθ=,式中0λ为一常数,θ 为半径R 与x 轴所成的夹角,

如图所示。试求环心O 处的电场强度。

4.题号:40143008

分值:10分 电量Q(Q >0)均匀分布在长为L 的细棒上,在细棒的延长线上距细棒中心O 距离为a 的P 点处放一带电量为q(q >0)的点电荷,如图所示。求:

(1) P 点的电场强度值;(8 分)

(2) 带电细棒对该点电荷的静电力。(2分)

5.题号:40142019

分值:10分

如下图所示为一沿X 轴放置的长度为l 的均匀带电细棒,其电荷线密度为00),(λλλa x -=为一常数。求坐标原点O 处的电场强度。

6.题号:40143020

分值:10分

如图所示,一沿x 轴放置的长度为l 的均匀带电细棒,其电荷线密度为λ(常数),取无穷远处为电势零点,求坐标原点O 处的电场强度和电势。

7.题号:40241001

分值:10分

1.(本小题5分)用高斯定理求均匀带正电的无限大平面簿板的场强(设电荷的面密度为σ);

2.(本小题5分)两个无限大的平行平面都均匀带电,电荷的面密度分别为1σ和

2σ,试求空间各处场强。

8.题号:40242002

分值:10分

如图所示,真空中内半径为1R 的金属球外罩一半径为2R 的金属球壳,球和球壳所带电

荷量分别为Q ±。求:

(1) 该系统内外的空间场强分布;

(2)球心处的电势;

(3)r E -曲线。

9.题号:40242003

分值:10分

两个均匀带电的同心球面,半径分别为1R 和2R ,带电量分别为1q 和2q 。求(1)场强的分布;(2)当12q q q =-=时,场强的分布。

10.题号:40242004

分值:10分

一边长为a 的立方体置于直角坐标系中,如图所示。现空间

中有一非均匀电场12()E E kx i E j =++,1E 、2E 为常量,

求:电场对立方体各表面的电场强度通量。

11.题号:40242007

分值:10分

一个“无限长”半径为R 的空心圆柱面,均匀带电,沿轴线方向单位长度上的所带电荷为λ,分别求圆柱面内、外的电场强度E 的大小。

12.题号:40341001

分值:10分

如图所示为一沿X 轴放置的长度为l 的均匀带电细棒,其电荷线密度为00),(λλλa x -=为一常数,取无穷远处为电势零点,求坐标原

点O 处的电势。

(基本电荷191.6010C e -=?,12208.8510C /(N m)ε-=?? )

大学物理7章作业分析

第七章机械波 一. 选择题 1. 机械波的表示式为(SI),则 (A) 其振幅为3m (B) 其波速为10m/s (C) 其周期为1/3s (D) 波沿x轴正向传播 2. 一平面简谐波沿x轴正向传播,时波形图如图示, 此时处质点的相位为 (A) 0 (B) π (C) π/2 (D) - π/2 3. 频率为100Hz、波速为300m/s的简谐波,在传播方向上有两点同一时刻振动相位差为π/3,则这两点相距 (A) 2m (B) 21.9m (C) 0.5m (D) 28.6m 4. 一平面简谐波在介质中传播,某瞬时介质中某质元正处于平衡位置,此时它的能量为 (A) 动能最大,势能为零 (B) 动能为零,势能最大 (C) 动能为零,势能为零 (D) 动能最大,势能最大 5. 一平面简谐波在弹性介质中传播,下述各结论哪个是正确的? (A) 介质质元的振动动能增大时,其弹性势能减小,总机械能守恒 (B) 介质质元的振动动能和弹性势能做周期性变化,但二者的相位不相同 (C) 介质质元的振动动能和弹性势的相位在任一时刻都相同,但二者的数值不相等 (D) 介质质元在其平衡位置处弹性势能最大 6. 两相干波源S1、S2发出的两列波长为λ的同相位波列在P点相遇,S1到P点的距离是r1,S2到P点的距离是r2,则P点干涉极大的条件是 (A) (B) (C) (D)

7. 两相干波源S 1和S2相距λ/4(λ为波长),S1的相位比S2的相位超前,在S1、S2连线上,S1外侧各点(例如P点)两波干涉叠加的结果是 (A) 干涉极大 (B) 干涉极小 (C) 有些点干涉极大,有些点干涉极小 (D)无法确定 8. 在波长为λ的驻波中,任意两个相邻波节之间的距离为 (A) λ (B) 3λ/4 (C) λ/2 (D) λ/4 二. 填空题 9. 一声波在空气中的波长是0.25m,传播速度时340m/s,当它进入另一种介质时,波长变成了0.37m,则它在该介质中的传播速度为__________________. 10. 平面简谐波沿x轴正向传播,波动方程为,则处质点的振动方程为_________________,处质点与处质点振动的相位差为_______. 11. 简谐波沿x轴正向传播,传播速度为5m/s ,原点O振动方程为 (SI),则处质点的振动方程为_____________________. 12. 一平面简谐波周期为2s,波速为10m/s,A、B是同一传播方向上的两点,间距为5m,则A、B两点的相位差为_______________. 13. S1、S2是两个相干波源,已知S1初相位为,若使S1S2连线中垂线上各点均干涉相消,S 2的初相位为_______________. 14. 如图,波源S1、S2发出的波在P点相遇,若P点的合振 幅总是极大值,则波源S1的相位比S2的相位领先 _____________________. 三. 计算题

大学物理作业(二)答案

班级___ ___学号____ ____姓名____ _____成绩______________ 一、选择题 1. m 与M 水平桌面间都是光滑接触,为维持m 与M 相对静止,则推动M 的水平力F 为:( B ) (A)(m +M )g ctg θ (B)(m +M )g tg θ (C)mg tg θ (D)Mg tg θ 2. 一质量为m 的质点,自半径为R 的光滑半球形碗口由静止下滑,质点在碗内某处的速率为v ,则质点对该处的压力数值为:( B ) (A)R mv 2 (B)R mv 232 (C)R mv 22 (D)R mv 252 3. 如图,作匀速圆周运动的物体,从A 运动到B 的过程中,物体所受合外力的冲量:( C ) (A) 大小为零 (B ) 大小不等于零,方向与v A 相同 (C) 大小不等于零,方向与v B 相同 (D) 大小不等于零,方向与物体在B 点所受合力相同 二、填空题 1. 已知m A =2kg ,m B =1kg ,m A 、m B 与桌面间的摩擦系数μ=0.5,(1)今用水平力F =10N 推m B ,则m A 与m B 的摩擦力f =_______0______,m A 的加速度a A =_____0_______. (2)今用水平力F =20N 推m B ,则m A 与m B 的摩擦力f =____5N____,m A 的加速度a A =_____1.7____. (g =10m/s 2) 2. 设有三个质量完全相同的物体,在某时刻t 它们的速度分别为v 1、v 2、v 3,并且v 1=v 2=v 3 ,v 1与v 2方向相反,v 3与v 1相垂直,设它们的质量全为m ,试问该时刻三物体组成的系统的总动量为_______m v 3________. 3.两质量分别为m 1、m 2的物体用一倔强系数为K 的轻弹簧相连放在光滑水平桌面上(如图),当两物体相距为x 时,系统由静止释放,已知弹簧的自然长度为x 0,当两物体相距为x 0时,m 1的速度大小为 2 2 121 Km x m m m + . 4. 一弹簧变形量为x 时,其恢复力为F =2ax -3bx 2,现让该弹簧由x =0变形到x =L ,其弹力的功为: 2 3 aL bL - . 5. 如图,质量为m 的小球,拴于不可伸长的轻绳上,在光滑水平桌面上作匀速圆周运动,其半径为R ,角速度为ω,绳的另一端通过光 滑的竖直管用手拉住,如把绳向下拉R /2时角速度ω’为 F m A m B m M F θ A O B R v A v B x m 1 m 2 F m R

大学物理(第五版)上册课后习题答案马文蔚

习题1 1-1 质点作曲线运动,在时刻t 质点的位矢为r ,速度为v ,t 至()t t +?时间内的位移为r ?,路程为s ?,位矢大小的变化量为r ?(或称r ?),平均速度为v ,平均速率为v 。 (1)根据上述情况,则必有( ) (A )r s r ?=?=? (B )r s r ?≠?≠?,当0t ?→时有dr ds dr =≠ (C )r r s ?≠?≠?,当0t ?→时有dr dr ds =≠ (D )r s r ?=?≠?,当0t ?→时有dr dr ds == (2)根据上述情况,则必有( ) (A ),v v v v == (B ),v v v v ≠≠ (C ),v v v v =≠ (D ),v v v v ≠= 1-2 一运动质点在某瞬间位于位矢(,)r x y 的端点处,对其速度的大小有四种意见,即 (1) dr dt ;(2)dr dt ;(3)ds dt ;(4下列判断正确的是: (A )只有(1)(2)正确 (B )只有(2)正确 (C )只有(2)(3)正确 (D )只有(3)(4)正确 1-3 质点作曲线运动,r 表示位置矢量,v 表示速度,a 表示加速度,s 表示路程,t a 表示切向加速度。对下列表达式,即 (1)dv dt a =;(2)dr dt v =;(3)ds dt v =;(4)t dv dt a =。 下述判断正确的是( ) (A )只有(1)、(4)是对的 (B )只有(2)、(4)是对的 (C )只有(2)是对的 (D )只有(3)是对的 1-4 一个质点在做圆周运动时,则有( ) (A )切向加速度一定改变,法向加速度也改变 (B )切向加速度可能不变,法向加速度一定改变 (C )切向加速度可能不变,法向加速度不变

大学物理第8章稳恒磁场课后习题及答案

第8章 稳恒磁场 习题及答案 6. 如图所示,AB 、CD 为长直导线,C B 为圆心在O 点的一段圆弧形导线,其半径为R 。若通以电流I ,求O 点的磁感应强度。 解:O 点磁场由AB 、C B 、CD 三部分电流产生,应用磁场叠加原理。 AB 在O 点产生的磁感应强度为 01 B C B 在O 点产生的磁感应强度大小为 R I B 402 R I R I 123400 ,方向垂直纸面向里 CD 在O 点产生的磁感应强度大小为 )cos (cos 4210 03 r I B )180cos 150(cos 60cos 400 R I )2 31(20 R I ,方向垂直纸面向里 故 )6 231(203210 R I B B B B ,方向垂直纸面向里 7. 如图所示,两根导线沿半径方向引向铁环上的A ,B 两点,并在很远处与电源相连。已知圆环的粗细均匀,求环中心O 的磁感应强度。 解:圆心O 点磁场由直电流 A 和 B 及两段圆弧上电流1I 与2I 所产生,但 A 和 B 在O 点 产生的磁场为零。且 21221R R I I 电阻电阻 1I 产生的磁感应强度大小为 )( 241 01R I B ,方向垂直纸面向外 2I 产生的磁感应强度大小为 R I B 4202 ,方向垂直纸面向里 所以, 1) 2(21 21 I I B B 环中心O 的磁感应强度为 0210 B B B 8. 如图所示,一无限长载流平板宽度为a ,沿长度方向通过均匀电流I ,求与平板共面且距平板一边为b 的任意点P 的磁感应强度。 解:将载流平板看成许多无限长的载流直导线,应用叠加原理求解。 以P 点为坐标原点,垂直载流平板向左为x 轴正方向建立坐标系。在载流平板上取dx a I dI ,dI 在P 点产生的磁感应强度大小为 x dI dB 20 dx ax I 20 ,方向垂直纸面向里 P 点的磁感应强度大小为

大学物理习题与作业答案

理想气体状态方程 5-1一容器内储有氧气,其压强为1.01?105Pa ,温度为270 C ,求:(1)气体分子的数密度;(2)氧气的质量密度;(3)氧分子的质量;(4)分子间的平均距离(设分子均匀等距分布)。 解:(1)nkT p =,32523 5 /m 1044.2) 27273(1038.11001.1?=+???==-kT p n (2)R M m T pV mol =Θ,335mol kg/m 30.1)27273(31.810321001.1=+????== =∴-RT pM V m ρ (3)n m O 2 =ρΘ, kg 1033.510 44.230 .12625 2 -?=?= = ∴n m O ρ (4)m 1045.310 44.21193253 -?=?==n d 5-2在容积为V 的容器中的气体,其压强为p 1,称得重量为G 1。然后放掉一部分气体,气体的压强降至p 2,再称得重量为G 2。问在压强p 3下,气体的质量密度多大? 解:设容器的质量为m ,即放气前容器中气体质量为m g G m -=1 1,放气后容器中气体质量为m g G m -= 2 2。 由理想气体状态方程有

RT M m g G RT M m V p mol 1mol 11-==, RT M m g G RT M m V p mol 2 mol 22-== 上面两式相减得 V p p G G g M RT )()(1212mol -=-,)(1 21 2mol p p G G gV RT M --= 当压强为3p 时,1 21 2 33mol 3p p G G gV p RT p M V m --?=== ρ 压强、温度的微观意义 5-3将2.0?10-2kg 的氢气装在4.0?10-3m 2的容器中,压强为3.9?105Pa ,则氢分子的平均平动动能为多少? 解:RT M m pV mol = Θ,mR pV M T mol =∴ 5-4体积33m 10-=V ,压强Pa 105=p 的气体分子平均平动动能的总和为多少? 解:kT N t 23=∑ε,其中N 为总分子数。kT V N nkT p = =Θ,kT pV N = 5-5温度为0℃和100℃时理想气体分子的平均平动动能各为多少?欲使分子的平均 平动动能等于1eV ,气体的温度需多高?(1eV=1.6?10-19J )

大学物理4章作业

第四章气体动理论 答案在最后 一. 选择题 1.一个容器内储有1mol氢气和1mol氧气,处于平衡态.若两种气体各自对器壁产生的压强为p1和p2,则两者关系是 (A) p1p2 (B) p1p2 (C) p1p2 (D) 不确定 2. 关于温度的意义,下列说法中错误的是 (A) 气体的温度是分子平均平动动能的量度 (B) 气体的温度是大量气体分子热运动的集体表现,具统计意义 (C) 温度反映了物质内部分子运动的剧烈程度 (D) 从微观上看,气体的温度表示每个气体分子的冷热程度 3. 温度、压强相同的氦气和氧气,它们分子的平均动能和平均平动动能有如下关系 (A) 平均动能和平均平动动能都相等 (B) 平均动能相等,而平均平动动能不相等 (C) 平均平动动能相等,而平均动能不相等 (D) 平均动能和平均平动动能都不相等 4. 容器内装有N1个单原子理想气体分子和N2个刚性双原子理想气体分子,当该系统处在温度为T的平衡态时,其内能为 (A) (B) (C)

(D) 二.填空题 5. 1mol氦气,分子热运动的总动能为,则氦气的温度T=___________. 6. 1mol氦气和1mol氧气,温度升高1K,则两种气体内能的增加值分别为________________和____________. 7. 的物理意义是_________________________________________. 8. 由能量按自由度均分定理,设气体分子为刚性分子,分子自由度为i,则温度为T时,一个分子的平均动能为______________;一摩尔氧气分子的转动动能总和为____________. 三.计算题 300,求:(1)气体的分子数密 9. 一容器内储有氢气,其压强为Pa ,温度为K 01 10 .15 度;(2)气体的质量密度。 第四章气体动理论参考答案 一. 选择题 1. (C) 2. (D) 3. (C) 4. (A) 二.填空题 5.( 400K ) 6.( 12.5J ;20.8J ) 7.( 温度为T时,自由度为5的气体分子的平均动能 ) 8. ( ,RT )

大学物理上学习指导作业参考答案

第一章 质点运动学 课 后 作 业 1、一质点沿x 轴运动,其加速度a 与位置坐标x 的关系为] a =2+6 x 2 (SI) 如果质点在原点处的速度为零,试求其在任意位置处的速度. 解:设质点在x 处的速度为v , 62d d d d d d 2x t x x t a +=?== v v 2分 () x x x d 62d 0 20 ??+=v v v 2分 () 2 21 3 x x +=v 1分 2、一质点沿x 轴运动,其加速度为a = 4t (SI),已知t = 0时,质点位于x 0=10 m 处,初速度v 0 = 0.试求其位置和时间的关系式. 解: =a d v /d t 4=t , d v 4=t d t ? ?=v v 0 d 4d t t t v 2=t 2 3分 v d =x /d t 2=t 2 t t x t x x d 2d 0 2 ??= x 2= t 3 /3+x 0 (SI) 2分 3、一质点沿半径为R 的圆周运动.质点所经过的弧长与时间的关系为 22 1 ct bt S += 其中b 、c 是大于零的常量,求从0=t 开始到切向加速度与法向 加速度大小相等时所经历的时间. 解: ct b t S +==d /d v 1分 c t a t == d /d v 1分 ()R ct b a n /2 += 1分 根据题意: a t = a n 1分 即 ()R ct b c /2 += 解得 c b c R t -= 1分

4、如图所示,质点P 在水平面内沿一半径为R =2 m 的圆轨道转动.转动的角速度ω与时间t 的函数关系为2kt =ω (k 为常量).已知s t 2=时,质点P 的速度值为32 m/s .试求1=t s 时,质点P 的速度与加速度的大小. 解:根据已知条件确定常量k () 222/rad 4//s Rt t k ===v ω 1分 24t =ω, 24Rt R ==ωv s t 1=时, v = 4Rt 2 = 8 m/s 1分 2s /168/m Rt dt d a t ===v 1分 22s /32/m R a n ==v 1分 ()8.352 /122=+=n t a a a m/s 2 1分 5、一敞顶电梯以恒定速率v =10 m/s 上升.当电梯离地面h =10 m 时,一小孩竖直向上抛出一球.球相对于电梯初速率200=v m/s .试问: (1) 从地面算起,球能达到的最大高度为多大? (2) 抛出后经过多长时间再回到电梯上? 解:(1) 球相对地面的初速度 =+='v v v 030 m/s 1分 抛出后上升高度 9.4522 ='=g h v m/s 1分 离地面高度 H = (45.9+10) m =55.9 m 1分 (2) 球回到电梯上时电梯上升高度=球上升高度 202 1 )(gt t t -+=v v v 1分 08.420==g t v s 1分 6、在离水面高h 米的岸上,有人用绳子拉船靠岸,船在离岸S 处,如图所示.当人以0υ(m ·1-s )的速率收绳时,试求船运动的速度和加速度的大小.

大学物理8章作业

第八章波动光学 (一) 光的干涉 答案在最后 一. 选择题 1. 波长为λ的单色平行光垂直照射在薄膜上,经上下两表面 反射的两束光发生干涉,如图所示,若薄膜的厚度为e,且 ,则两束反射光的光程差为 (A) (B) (C) (D) 2. 如图示,波长为λ的单色光,垂直入射到双缝,若P点是 在中央明纹上方第二次出现的明纹,则光程差为 (A) 0 (B) λ (C) 3λ/2 (D) 2 λ 3. 在双缝干涉实验中,屏幕上的P点处是明条纹,若将缝 盖住,并在连线的垂直平分面处放一高折射率介质反射面 M,如图示,则此时 (A) P点处仍为明条纹 (B) P点处为暗条纹 (C) 不能确定P点处是明条纹还是暗条纹 (D) 无干涉条纹 4. 双缝干涉中,若使屏上干涉条纹间距变大,可以采取 (A) 使屏更靠近双缝 (B) 使两缝间距变小 (C) 把两个缝的宽度稍稍调窄 (D) 用波长更短的单色光入射 5. 波长为λ的单色光垂直入射到折射率为n的透明薄膜上,薄膜放在空气中,要使反射光干涉加强,薄膜厚度至少为

(A) λ /2 (B) λ /2n (C) λ /4 (D) λ /4n 6. 两块平玻璃构成空气劈形膜,左边为棱边,用单色平行光垂直入射,若上面的平玻璃慢慢向上平移,则干涉条纹 (A) 向棱边方向平移,条纹间距变小 (B) 向棱边方向平移,条纹间距变大 (C) 向棱边方向平移,条纹间距不变 (D) 向远离棱边方向平移,条纹间距不变 (E) 向远离棱边方向平移,条纹间距变小 7. 在图示三种透明材料构成的牛顿环装置中,用单色光垂直 照射,再反射光中看到干涉条纹,则在接触点处形成的圆斑为 (A) 全明 (B) 全暗 (C) 右半边明,左半边暗 (D) 右半边暗,左半边明 8. 在迈克耳逊干涉仪的一条光路中放入折射率为n的透明薄膜后,观察到条纹移动6条,则薄膜的厚度是 (A) 3λ (B) 3λ /n (C) 3λ /(n-1) (D) 6λ /n 二. 填空题 9. 有两种获得相干光的基本方法,它们是__________________和___________________. 10. 两同相位相干点光源、,发出波长为λ的光,A是它们连线中垂线上的一点,在 与A间插入厚度为e折射率为n的薄玻璃片,两光源发出的光到达A点时光程差为______________,相位差为____________________. 11. 杨氏双缝干涉实验中,双缝间距为d,屏距双缝的间距为D(D >>d),测得中央明条纹与第三级明条纹间距为x,则入射光的波长为_____________________. 12. 一双缝干涉装置,在空气中观察时干涉条纹间距为1mm,若将整个装置放入水中,干涉条纹的间距变为_________________mm.(设水的折射率为4/3) 13. 波长为λ的单色光垂直照射到两块平玻璃片构成的劈尖上,测得相邻明条纹间距为l,

大学物理(上册)参考答案

第一章作业题 P21 1.1; 1.2; 1.4; 1.9 质点沿x 轴运动,其加速度和位置的关系为 a =2+62 x ,a 的单位为2 s m -?,x 的单 位为 m. 质点在x =0处,速度为101 s m -?,试求质点在任何坐标处的速度值. 解: ∵ x v v t x x v t v a d d d d d d d d === 分离变量: x x adx d )62(d 2 +==υυ 两边积分得 c x x v ++=32 2221 由题知,0=x 时,100 =v ,∴50=c ∴ 1 3s m 252-?++=x x v 1.10已知一质点作直线运动,其加速度为 a =4+3t 2 s m -?,开始运动时,x =5 m , v =0, 求该质点在t =10s 时的速度和位置. 解:∵ t t v a 34d d +== 分离变量,得 t t v d )34(d += 积分,得 1 223 4c t t v ++= 由题知,0=t ,00 =v ,∴01=c 故 2234t t v + = 又因为 2 234d d t t t x v +== 分离变量, t t t x d )23 4(d 2+= 积分得 2 3221 2c t t x ++= 由题知 0=t ,50 =x ,∴52=c 故 52123 2++ =t t x 所以s 10=t 时 m 70551021 102s m 1901023 10432101210=+?+?=?=?+ ?=-x v 1.11 一质点沿半径为1 m 的圆周运动,运动方程为 θ=2+33 t ,θ式中以弧度计,t 以秒

大学物理学上册习题参考答案

第一章 质点运动学 1.4一个正在沿直线行驶的汽船,关闭发动机后,由于阻力得到一个与速度反向、大小与船速平方成正比例的加速度,即d v /d t = -kv 2,k 为常数. (1)试证在关闭发动机后,船在t 时刻的速度大小为011kt v v =+; (2)试证在时间t 内,船行驶的距离为 01 ln(1)x v kt k = +. [证明](1)分离变量得2d d v k t v =-, 积分 020d d v t v v k t v =-??, 可得 0 11kt v v =+. (2)公式可化为0 01v v v kt = +, 由于v = d x/d t ,所以 00001 d d d(1) 1(1)v x t v kt v kt k v kt = =+++ 积分 000 01 d d(1) (1)x t x v kt k v kt =++?? . 因此 01 ln(1)x v kt k = +. 证毕. 1.5 一质点沿半径为0.10m 的圆周运动,其角位置(以弧度表示)可用公式表示:θ = 2 + 4t 3.求: (1)t = 2s 时,它的法向加速度和切向加速度; (2)当切向加速度恰为总加速度大小的一半时,θ为何值? (3)在哪一时刻,切向加速度和法向加速度恰有相等的值? [解答](1)角速度为 ω = d θ/d t = 12t 2 = 48(rad·s -1), 法向加速度为 a n = rω2 = 230.4(m·s -2); 角加速度为 β = d ω/d t = 24t = 48(rad·s -2), 切向加速度为

a t = rβ = 4.8(m·s -2). (2)总加速度为a = (a t 2 + a n 2)1/2, 当a t = a /2时,有4a t 2 = a t 2 + a n 2,即 n a a = 由此得 2r r ω= 即 22 (12)24t = 解得 3 6t =. 所以 3242(13)t θ=+==3.154(rad). (3)当a t = a n 时,可得rβ = rω2, 即 24t = (12t 2)2, 解得 t = (1/6)1/3 = 0.55(s). 1.6 一飞机在铅直面内飞行,某时刻飞机的速度为v = 300m·s -1,方向与水平线夹角为30°而斜向下,此后飞机的加速度为a = s -2,方向与水平前进方向夹角为30°而斜向上,问多长时间后,飞机又回到原来的高度?在此期间飞机在水平方向飞行的距离为多少? [解答]建立水平和垂直坐标系,飞机的初速度的大小为 v 0x = v 0cos θ, v 0y = v 0sin θ. 加速度的大小为 a x = a cos α, a y = a sin α. 运动方程为 2 01 2x x x v t a t =+, 2 01 2y y y v t a t =-+. 即 201 c o s c o s 2x v t a t θ α=?+?, 2 01 sin sin 2y v t a t θα=-?+?. 令y = 0,解得飞机回到原来高度时的时间为 t = 0(舍去) ; 02sin sin v t a θ α= =.

最新大学物理第8章试卷答案

第8章电磁感应作业题答案 一、选择题 1. 圆铜盘水平放置在均匀磁场中,B 的方向垂直盘面向上,当铜盘绕通过中心垂直于盘面的轴沿图示方向转动时, (A) 铜盘上有感应电流产生,沿着铜盘转动的相反方向流动。 (B) 铜盘上有感应电流产生,沿着铜盘转动的方向流动。 (C) 铜盘上有感应电流产生,铜盘中心处电势最高。 (D) 铜盘上有感应电流产生,铜盘边缘处电势最高。 答案(D) 2.在尺寸相同的铁环和铜环所包围的面积中穿过相同变化率的磁通量,则两环中A.感应电动势相同,感应电流相同; B.感应电动势不同,感应电流不同; C.感应电动势相同,感应电流不同; D.感应电动势不同,感应电流相同。 答案(C) 3.两根无限长的平行直导线有相等的电流,2. 但电流的流向相反如右图,而电流的变化 率均大于零,有一矩形线圈与两导 线共面,则 A.线圈中无感应电流; B.线圈中感应电流为逆时针方向; C.线圈中感应电流为顺时针方向; D.线圈中感应电流不确定。 答案: B (解:两直导线在矩形线圈处产生的磁场方向均垂直向里,且随时间增强,由楞次定律可知线圈中感应电流为逆时针方向。) 4.如图所示,在长直载流导线下方有导体细棒,棒与直导线垂直且共面。(a)、(b)、(c)处有三个光滑细金属框。今使以速度向右滑动。设(a)、(b)、(c)、(d)四种情况下在细棒中的感应电动势分别为?a、?b、?c、?d,则

A.?a =?b =?c ?d C.?a =?b =?c =?d D.?a >?b

大学物理作业答案(下)

65. 如图所示,几种载流导线在平面内分布,电流均为I ,求:它们在O 点的磁感应强度。 1 R I B 80μ= 方向 垂直纸面向外 2 R I R I B πμμ2200- = 方向 垂直纸面向里 3 R I R I B 4200μπμ+ = 方向 垂直纸面向外 66. 一半径为R 的均匀带电无限长直圆筒,电荷面密度为σ,该筒以角速度ω绕其轴线匀速旋转。试求圆筒内部的磁感应强度。 解:如图所示,圆筒旋转时相当于圆筒上具有同向的面电流密度i , σωσωR R i =ππ=)2/(2 作矩形有向闭合环路如图中所示.从电流分布的对称性分析可知,在ab 上各点B 的 大小和方向均相同,而且B 的方向平行于ab ,在bc 和fa 上各点B 的方向与线元垂直, 在de , cd fe ,上各点0=B .应用安培环路定理 ∑??=I l B 0d μ 可得 ab i ab B 0μ= σωμμR i B 00== 圆筒内部为均匀磁场,磁感强度的大小为σωμR B 0=,方向平行于轴线朝右.

67.在半径为R 的长直金属圆柱体内部挖去一个半径为r 的长直圆柱体,两柱体轴线平行,其间距为a (如图)。今在此导体内通以电流I ,电流在截面上均匀分布,求:空心部分轴线上O ' 点的磁感应强度的大小。 解:) (22r R I J -= π 1012 1 r J B ?= μ 2022 1 r k J B ?-=μ j Ja O O k J r r J B B 021******** 21)(2 1 μμμ=?=-?= += r R Ia ) (22 2 0-= πμ 68.一无限长圆柱形铜导体,半径为R ,通以均匀分布的I 今取一矩形平面S (长为L ,宽为2R ),位置如图,求:通过该矩形平面的磁通量。

大学物理作业题答案

二章 2-2 质量为16 kg 的质点在xOy 平面内运动,受一恒力作用,力的分量为f x =6 N ,f y =-7 N.当t =0时,x =y =0,v x =-2 m·s - 1,v y =0.求当t =2 s 时质点的位矢和速度. 解: 2s m 8 3166-?===m f a x x (1) 于是质点在s 2时的速度 (2) 2-6 一颗子弹由枪口射出时速率为v 0 m·s - 1,当子弹在枪筒内被加速时,它所受的合力为F =(a -bt )N(a ,b 为常数),其中t 以s 为单位: (1)假设子弹运行到枪口处合力刚好为零,试计算子弹走完枪筒全长所需时间;(2)求子弹所受的冲量;(3)求子弹的质量. 解: (1)由题意,子弹到枪口时,有 0)(=-=bt a F ,得b a t = (2)子弹所受的冲量 将b a t = 代入,得 (3)由动量定理可求得子弹的质量 2-8 如题2-8图所示,一物体质量为2 kg ,以初速度v 0=3 m·s - 1从斜面A 点处下滑,它与斜面的摩擦力为8 N ,到达B 点后压缩弹簧20 cm 后停止,然后又被弹回.求弹簧的劲度系数和物体最后能回到的高度. 题2-8图 解: 取木块压缩弹簧至最短处的位置为重力势能零点,弹簧原 长处为弹性势能零点。则由功能原理,有 式中m 52.08.4=+=s ,m 2.0=x ,再代入有关数据,解得 再次运用功能原理,求木块弹回的高度h ' 代入有关数据,得 m 4.1='s , 则木块弹回高度 五章 5-7 试说明下列各量的物理意义. (1) 12 kT ; (2)32kT ; (3)2i kT ; (4)2mol M i M RT ; (5) 2i RT ; (6) 32 RT . 解:(1)在平衡态下,分子热运动能量平均地分配在分子每一个自由度上的能量均为k 2 1 T . (2)在平衡态下,分子平均平动动能均为 kT 2 3.

大学物理活页作业答案

1.质点运动学单元练习(一)答案 1.B 2.D 3.D 4.B 5.3.0m ;5.0m (提示:首先分析质点的运动规律,在t <2.0s 时质点沿x 轴正方向运动;在t =2.0s 时质点的速率为零;,在t >2.0s 时质点沿x 轴反方向运动;由位移和路程的定义可以求得答案。) 6.135m (提示:质点作变加速运动,可由加速度对时间t 的两次积分求得质点运动方程。) 7.解:(1))()2(22 SI j t i t r -+= )(21m j i r += )(242m j i r -= )(3212m j i r r r -=-=? )/(32s m j i t r v -=??= (2))(22SI j t i dt r d v -== )(2SI j dt v d a -== )/(422s m j i v -= )/(222--=s m j a 8.解: t A tdt A adt v t o t o ωω-=ωω-== ?? sin cos 2 t A tdt A A vdt A x t o t o ω=ωω-=+=??cos sin

9.解:(1)设太阳光线对地转动的角速度为ω s rad /1027.73600 *62 /5-?=π= ω s m t h dt ds v /1094.1cos 32 -?=ωω== (2)当旗杆与投影等长时,4/π=ωt h s t 0.31008.144=?=ω π = 10.解: ky y v v t y y v t dv a -==== d d d d d d d -k =y v d v / d y ??+=- =-C v ky v v y ky 2 22 121, d d 已知y =y o ,v =v o 则2020 2 121ky v C --= )(22 22y y k v v o o -+= ωt h s

《大学物理(上册)》课后习题答案

第1章 质点运动学 P21 1.8 一质点在xOy 平面上运动,运动方程为:x =3t +5, y = 2 1t 2 +3t -4. 式中t 以 s 计,x ,y 以m 计。⑴以时间t 为变量,写出质点位置矢量的表示式;⑵求出t =1 s 时刻和t =2s 时刻的位置矢量,计算这1秒内质点的位移;⑶ 计算t =0 s 时刻到t =4s 时刻内的平均速度;⑷求出质点速度矢量表示式,计算t =4 s 时质点的速度;(5)计算t =0s 到t =4s 内质点的平均加速度;(6)求出质点加速度矢量的表示式,计算t =4s 时质点的加速度(请把位置矢量、位移、平均速度、瞬时速度、平均加速度、瞬时加速度都表示成直角坐标系中的矢量式)。 解:(1)j t t i t r )432 1()53(2-+++=m ⑵ 1=t s,2=t s 时,j i r 5.081-= m ;2114r i j =+m ∴ 213 4.5r r r i j ?=-=+m ⑶0t =s 时,054r i j =-;4t =s 时,41716r i j =+ ∴ 140122035m s 404 r r r i j i j t --?+= ===+??-v ⑷ 1d 3(3)m s d r i t j t -==++?v ,则:437i j =+v 1s m -? (5) 0t =s 时,033i j =+v ;4t =s 时,437i j =+v 24041 m s 44 j a j t --?= ===??v v v (6) 2d 1 m s d a j t -==?v 这说明该点只有y 方向的加速度,且为恒量。 1.9 质点沿x 轴运动,其加速度和位置的关系为2 26a x =+,a 的单位为m/s 2, x 的单位为m 。质点在x =0处,速度为10m/s,试求质点在任何坐标处的速度值。 解:由d d d d d d d d x a t x t x ===v v v v 得:2 d d (26)d a x x x ==+v v 两边积分 210 d (26)d x x x =+? ?v v v 得:2322 250x x =++v ∴ 1m s -=?v 1.11 一质点沿半径为1 m 的圆周运动,运动方程为θ=2+33t ,式中θ以弧度计,t 以秒计,求:⑴ t =2 s 时,质点的切向和法向加速度;⑵当加速度 的方向和半径成45°角时,其角位移是多少? 解: t t t t 18d d ,9d d 2==== ωβθω ⑴ s 2=t 时,2 s m 362181-?=??==βτR a 2 222s m 1296)29(1-?=??==ωR a n ⑵ 当加速度方向与半径成ο45角时,有:tan 451n a a τ?== 即:βωR R =2 ,亦即t t 18)9(2 2=,解得:9 23= t 则角位移为:32 2323 2.67rad 9 t θ=+=+? = 1.13 一质点在半径为0.4m 的圆形轨道上自静止开始作匀角加速度转动,其角加速度为α=0.2 rad/s 2,求t =2s 时边缘上各点的速度、法向加速度、切向加速度和合加速度。 解:s 2=t 时,4.022.0=?== t αω 1s rad -? 则0.40.40.16R ω==?=v 1s m -? 064.0)4.0(4.022=?==ωR a n 2 s m -? 0.4 0.20.0a R τα==?=2s m -? 22222 s m 102.0)08.0()064.0(-?=+=+= τa a a n 与切向夹角arctan()0.06443n a a τ?==≈?

大学物理7-8章作业解

7-3.在体积为2.0×10-3m 3 的容器中,有内能为 6.75×102J 的刚性双原子分子理想气体。求: (1)气体的压强;(2)设分子总数为 5.4×1022 个,则分子的平均平动动能及气体的温度。 [解] (1)理想气体的内能 kT i N E 2 ? = (1) 理想气体的压强 kT V N nkT p == (2) 由(1)、(2)两式可得 53 2 1035.110 251075.6252?=????==-V E p Pa (2)由 kT i N E 2 ?= 则 362104.51038.151075.625222232=??????==-kN E T K 又 2123105.73621038.12 3 23--?=???==kT w J 7-4.容器内储有氧气,其压强为 p = 1.01×10 5 Pa ,温度为 t = 27℃。试求: (1)单位体积内的分子数; (2)分子的平均平动动能。 解:(1)由nkT p = 525-323 1.0110 2.4410m 1.3810300 p n kT -?===??? (2)J 1021.63001038.12 32321 23--?=???==kT w 7-5.容器内某理想气体的温度T =273K ,压强p =1.00 ×10-3atm ,密度为31.25g m ρ-=?,求:(1)气体的摩尔质量;(2)气体分子运动的方均根速率;(3)气体分子的平均平动动能和转动动能;(4)单位体积内气体分子的总平动动能;(5)0.3mol 该气体的内能。 [解] (1)由 RT pV ν= 所以 49310 25.110013.11000.13333 5 32 =?????===--ρp m kT v m (2) 气体的摩尔质量 p kT N m N M ρ0 0mol == mol kg 028.010 013.11000.12731038.11025.110 02.65 323323 =?????????=--- 所以该气体是2N 或CO (3)气体分子的平均平动动能 J 1065.52731038.12 32 32123--?=???==kT ε 气体分子的转动动能 J 1077.32731038.12 221232--?=??==kT ε

大学物理_作业与答案

《大学物理》课后作业题 专业班级: 姓名: 学号: 作业要求:题目可打印,答案要求手写,该课程考试时交作业。 第一章 质点力学 1、质点的运动函数为: 5 4;22 +==t y t x , 式中的量均采用SI 单位制。求:(1)质点运动的轨道方程;(2)s 11=t 和s 22=t 时,质点的位置、速度和加速度。 1、用消元法 t=x/2 轨迹方程为 y=x 2+5 2、运动的合成 x 方向上的速度为x'=2, y 方向上的速度为y'=8t+5 将t 带入分别求出x 和y 方向上的速度 然后合成 x 方向上的加速度为x''=0 y 方向上的加速度为y''=8 所以加速度为8 2、如图所示,把质量为m 的小球悬挂在以恒加速度水平运动的小车上,悬线与竖直方向的夹角为θ,求小车的加速度和绳的张力。 绳子的拉力F ,将其水平和竖直正交分解为 Fsinα 和 Fcosα 竖直:Fcosα=mg 水平:Fsinα=ma a=gtanα 方向水平向右 3、一质量为0.10kg 的质点由静止开始运动,运动函数为j i 23 5 3 += t r (SI 单位)

求在t=0到t=2s 时间内,作用在该质点上的合力所做的功。 质点的速度就是 V =dr / dt =5* t^2 i +0 j 即质点是做直线运动,在 t =0时速度为V0=0;在 t =2秒时,速度为 V1=5*2^2=20 m/s 由动能定理得所求合力做的功是 W 合=(m*V1^2 / 2)-(m*V0^2 / 2)=m*V1^2 / 2=0.1*20^2 / 2=20 焦耳 第二章 刚体力学 1、在图示系统中,滑轮可视为半径为R 、质量为m 0 的匀质圆盘。设绳与滑轮之间无滑动,水平面光滑,并且m 1=50kg ,m 2=200kg ,m 0=15kg ,R=0.10m ,求物体的加速度及绳中的张力。 解 将体系隔离为1m ,0m , 2m 三个部分,对1 m 和2m 分别列牛顿方程,有 a m T g m 222=- a m T 1 1= 因滑轮与绳子间无滑动,则有运动学条件 R a β= 联立求解由以上四式,可得 由此得物体的加速度和绳中的张力为 m 2 T 1

大学物理5章作业

第五章热力学基础 答案在最后 一.选择题 1.下列说法正确的是 (A) 热传递可以使系统内能发生变化,而做功不能 (B)做功与热传递都可以使系统内能发生变化 (C) 做功与热传递微观本质是一样的 (D) 做功与热传递均与具体过程无关 2. 一系统从外界吸收一定热量,则 (A) 系统的内能一定增加 (B) 系统的内能一定减少 (C) 系统的内能一定保持不变 (D) 系统的内能可能增加,也可能减少或保持不变 3. 用公式(式中为定体摩尔热容,视为常量,为气体摩尔数)计算理想气体内能增量时,此式 (A) 只适用于准静态的等体过程 (B) 只适用于一切等体过程 (C) 只适用于一切准静态过程 (D) 适用于一切始末态为平衡态的过程 4.一定量氧气经历等压膨胀过程,其对外做的功与从外界吸收的热量之比为 (A) (B) (C) (D) 5. 一定量理想气体从同一状态出发体积由V1膨胀至V2,经历的过程分别是:等压过程,

等温过程,绝热过程,其中吸热最多的过程是 (A) 等压过程 (B) 等温过程 (C) 绝热过程 (D) 几个过程吸热一样多 6. 两个卡诺热机共同使用同一低温热源,但高温热源的温度不同,在V p 图上,它们的循环曲线所包围的面积相等,则 (A) 两热机的效率一定相等 (B) 两热机从高温热源吸收的热量一定相等 (C) 两热机向低温热源放出的热量一定相等 (D) 两热机吸收的热量与放出的热量(绝对值)的差值一定相等 7. 在温度为427℃和27℃的高温热源和低温热源之间工作的热机,理论上的最大效率为 (A) % (B) % (C) % (D) % 8. 由热力学第二定律可知 (1)对任何热力学过程,功可以完全变为热,而热不能完全变为功 (2)一切热机的效率不可能为100% (3)热不能从低温物体向高温物体传递 (4)气体能自由膨胀,但不能自动收缩 以上说法正确的是 (A) (1)(2) (B) (2)(3)(4) (C) (2)(4) (D) 全正确 二. 填空题

相关文档
相关文档 最新文档