文档库 最新最全的文档下载
当前位置:文档库 › 数值分析第二章小结

数值分析第二章小结

数值分析第二章小结
数值分析第二章小结

第2章线性方程组的解法

--------学习小结

一、本章学习体会

通过本章知识的学习我首先了解到求解线性方程组的方法可分为两类:直接法和迭代法。计算机虽然运行速度很快,但面对运算量超级多的问题,计算机还是需要很长的时间进行运算,所以,确定快捷精确的求解线性方程组的方法是非常必要的。

本章分为四个小节,其中前两节Gauss消去法和直接三角分解法因为由之前《线性代数》学习的一定功底,学习起来还较为简单,加之王老师可是的讲解与习题测试,对这一部分有了较好的掌握。第三节矩阵的条件数与病态方程组,我

Ax 的系数矩阵A与左端向量b的元素往往是通首先了解到的是线性方程组b

过观测或计算而得到,因而会带有误差。即使原始数据是精确的,但存放到计算机后由于受字长的限制也会变为近似值。所以当A和b有微小变化时,即使求解过程精确进行,所得的解相对于原方程组也可能会产生很大的相对误差。对于本节的学习掌握的不是很好,虽然在课后习题中对课堂知识有了一定的巩固,但整体感觉没有很好的掌握它。第四节的迭代法,初次接触迭代法,了解到迭代法就是构造一个无线的向量序列,使他的极限是方程组的解向量。迭代法应考虑收敛性与精度控制的问题。三种迭代方法的基本思想我已经掌握了,但是在matlab 的编程中还存在很大的问题。

在本节的学习中我认为我最大的问题还是程序的编写。通过这段时间的练习,虽然掌握了一些编写方法和技巧。相比于第一章是对其的应用熟练了不少,但在程序编写上还存在很多问题。希望在以后的学习中能尽快熟练掌握它,充分发挥它强大的作用。

二、本章知识梳理

2.1、Gauss 消去法(次重点)

Gauss 消去法基本思想:由消元和回代两个过程组成。

2.1.1顺序Gauss 消去法(对方程组的增广矩阵做第二种初等行变换)

定理 顺序Gauss 消去法的前n-1个主元素)

(k kk a (k=1,2,```,n-1)均不为零的充分必要条件是方程组的系数矩阵A 的前 n-1个顺序主子式

)1,,2,1(0)1()1(1

)

1(1)1(11-=≠=n k a a a a D kk

k k

K ΛΛM M

Λ

消元过程:对于 k=1,2,···,n-1 执行 (1)如果

,0)(=a

k kk

则算法失效,停止计算,否则转入(2)

。 (2)对于i=k+1,k+2,···n,计算

a

a k kk

k ik

k i m )()

(,=

n k j i m a a a

k kj ik k ij k ij

,,1,,)

()()

1(Λ+=-=+

n k i m b b b

k k ik k i k i ,,1,)

()()

1(Λ+=-=+

回代过程:

a b x n nn n n n )

()

(/=

(1,,2,1/)()

(1

)()

(?--=-

=∑+=n n k a x a

b x k kk j n

k j k kj

k k k 2.1.2 列主元素Gauss 消去法(把)

(n k k i a k kj ,,1,)

(?+=中绝对值最大的元素交换到第k 行的主对角线位置)(重点)

定理 设方程组的系数矩阵A 非奇异,则用列主元素Gauss 消去法求解方程组时,各个列主元素a (k=1,2,```,n-1)均不为零。

消元过程:对于 k=1,2,···,n-1 执行 (1)选行号k i ,使

)()(max k i n

i k k k i k

k

a a ≤≤=。

(2)交换A 与b 两行所含的数值。 (3)对于i=k+1,k+2,···n,计算

a

a k kk

k ik

k i m )()

(,=

n k j i m a a a

k kj ik k ij k ij

,,1,,)

()()

1(Λ+=-=+

n k i m b b b

k k ik k i k i

,,1,)

()()

1(Λ+=-=+

回代过程:

a b x n nn n n n )

()(/=

(1,,2,1/)()

(1

)()

(?--=-

=∑+=n n k a x a

b x k kk j n

k j k kj

k k k 2.2、直接三角分解法

2.2.1Doolittle 分解法与Crout 分解法

矩阵的三角分解 A=L U L-下三角阵,U-上三角阵 Doolitte 分解:L-单位下三角阵,U-上三角阵 Crout 分解:L-下三角阵,U-单位上三角阵

定理 矩阵A 有唯一的Doolitte 分解的充分必要条件是A 的前n-1个顺序主子式不为0。 推论 矩阵A 有唯一的Crout 分解的充分必要条件是A 的前n-1个顺序主子式不为0。 A 的Doolitte 分解的计算公式 对于k=1,2,…,n 计算

n k k j u l a u k t tj kt kj kj ,,1,,1

1

Λ+=-=∑-=

n k i u u l a l kk k t tk it ik ik ,,1/)(1

1

Λ+=-=∑-=,

2.2.2 选主元的Doolitte 分解法

定理 若A 非奇,则存在置换阵Q 使QA 能作Doolitte 分解,即 QA=LU 。其中 L 是下三角,U 是上三角矩阵。

解方程组的选主元Doolitte 分解法步骤为

(1)作分解:QA=LU ;(2)求Qb ;(3)解方程 Ly=Qb,Ux=y 。 2.2.3 解三对角线性方程组的追赶法(了解) 2.2.4对称正定矩阵的Cholesky 分解

平方根法(矩阵A 的Cholesky 分解):对于正定矩阵A ,若存在下三角阵,使得T

LL A =

即:???

???????

?????

???????????

?????

??=?????????

???nn n n ni nn n n n nn n n n n l l l l l l l l l l l l l l l l l l l l a a a a a a a a a M ΛO ΛΛΛΛ

O ΛΛΛΛ

ΛΛ

Λ

ΛΛΛ3332322231211132

1

3332312221

11

21

22221

11211

∑-=-=11

2k j kj

kk kk l a l )(n k k i l l l a l kk k j kj ij ik ik ,,2,1/)(11

Λ++=-=∑-=

2.3矩阵的条件数与病态方程组

2.3.1 矩阵的条件数与线性方程组的的性态 矩阵条件数的定义

对于非奇异矩阵A 称量

1-A A 为矩阵A 的条件数,记作1)(-=A A A cond

常用的条件数为∞-∞∞

=1)(A A A cond ;2122)(-=A A A cond

矩阵A 的条件数性质

(1)对于任何非奇异矩阵A ,)()(,1)(1

-=>=A

cond A cond A cond ;

(2)设A 可逆,k ≠0是常数,则有)()(A cond kA cond =cond(kA)=cond(A);

(3)设A 是非奇异的实对称矩阵,则n

A cond λλ1

2

)(=

,其中λ1,λn 分别是矩阵

A 的最大和最小的特征值;一般对任何可逆矩阵有n

A cond λλ1

2

)(≥

(4)设A 是正交矩阵,则1)(2=A cond ;

(5)若U 是正交矩阵,则222

)()()(AU cond UA cond A cond ==;

(6))()()(B cond A cond AB cond ≤。 2.3.2 线性方程组性态的定义

设线性方程组b Ax =的系数矩阵A 非奇异,若其条件数相对很大,则称此线

性方程组是病态的;若条件数相对较小,则称此线性方程组是良态线性方程组。

2.3.3病态线性方程组的求解

(1)先对方程组的形态进行判断;

(2)然后求解。方法有高精度算术运算、平衡方法、残差校正法。

2.4迭代法(重点)

凡是迭代法都存在收敛性与精度控制的问题。 2.4.1 迭代法的一般形式与收敛性 1.一般形式:

Λ,2,1,0,)()1(=+=+k d GX X k k

2.向量序列收敛(极限) (1)定义 按坐标收敛

*

)

(*)(lim lim i k i

k k k x x X X =?=∞

→∞

(2)向量序列收敛的充要条件 按范数收敛

*

)

(*)(*)(lim 0lim lim i k i

k k k k k x x X X X X =?=-?=∞

→∞

→∞

3.矩阵序列的收敛(极限) ,n m k C A ?∈ ],[)

(k ij

k a A =

,,,2,1,,,2,1,lim )

(n j m i a a ij k ij

k ΛΛ===∞

(1)定义 按坐标收敛

,,,2,1,,2,1,lim lim )

(n j m i a a A A ij k ij

k k k ΛΛ===?=∞

→∞

→;

(2)矩阵序列收敛的充要条件 按范数收敛 0lim lim =-?=∞

→∞

→A A A A k k k k

4.迭代收敛的条件

(1)谱半径:设n*n 矩阵G 的特征值是,21n λλλ?,

,称i n

i G λρ≤≤=1max )(为矩阵G 的谱半径。

(2)迭代收敛的充要条件:o G

k

k =∞

→lim

1

)(lim 1

)(

→A O A G k k ρρ

(3)迭代的充分条件:

1

(4)迭代终止的条

εε<-<---)

()

1()()1()(k k k k k X

X X X X 或

)27.2(1)1()()

(-*

--<-k k k X X G

G X X

(5)迭代收敛的速度 )(ln )(B B R ρ-=

2.4.2 Jacobi 迭代法迭代矩阵形式

)(1U L D G J +-=-

基本思想:从线性方程组的第i 个方程解出X i (i=1,2,```,n),将AX=b 转化为同解方程组X=GX+d,从而构造迭代公式。 Jacobi 迭代收敛的条件: 充要条件:1)(

1

b.A 为主对角线按行(或列)严格对角占优阵。 引理 严格对角占优阵可逆。

定理 如果方程组(2.2)的系数矩阵A 为主对角线按行(或按列)严格占优阵,则用Jacobi 迭代法求解必收敛。

2.4.3 Gauss-Seidel 迭代(异步迭代法)迭代矩阵形式U D L G G 1)(-+-=

重要条件: 1)(

充分条件:a.

1

b.系数矩阵A 为主对角线按行(或列)严格对角占优阵;

c.系数矩阵A 对称正定. 2.4.4 逐次超松弛迭代法(SOR

迭代)迭代矩阵形式为:

])1

1[()1

(

1U D L D G S +-

+-=-ω

ω

)(1111

)()1()

1(∑∑-=+=++--=i j n

i j k j ij k j ij i ii k i

x a x a b a x ?????+-=+-=++-=+=++∑∑)1()()1(111)()1()1(~)1()(1~k i k i k i

i j n

i j k j ij k j ij i ii k i

x x x x a x a b a x ωω 0>ω为实数,称为松弛因子。

充要条件:1)(

1

b.系数矩阵A 为主对角线按行(或列)严格对角占优阵,且10≤<ω

c.系数矩阵A 为正定矩阵,20<<ω

三、本章思考题

收敛速度与松弛因子的选择有关,如何选择松弛因子?有没有最优的松弛因子b ω? 答:通过学习我们知道SOR 方法中的松弛因子的取值直接影响到算法的收敛性和收敛速度。松弛因子选取得当,可以加快收敛的速度,甚至可以使发散的迭代变成收敛。

1.为保证迭代过程的收敛,必须要求20<<ω而对于超松弛法取21<<ω

2.存在最优的松弛因子b ω

3.可以选取将松弛因子的区间(1,2)进行二等分松弛因子选中间值,选出较优的一个再进行二等分,逐次进行就能选取出最优的松弛因子b ω。

四、本章预测题

为解方程组

???

??=-+=+-=-+15

5232510

52321

321321x x x x x x x x x

试写出一个必收敛的迭代公式,并说明收敛的理由。 解:把原方程改写为:

???

??=-+=-+=+-10

5215523

25321

321321x x x x x x x x x

由于此时的系数矩阵是主对角元素按行严格占优阵,固按此形式使用Jacobi 迭代法必收敛,迭代公式为

?????-+=++-=+-=+++2

4.02.032.04.06.02.04.0)(2)(1)1(3

)

(3)(1)1(2

)

(3)(2)1(1k k k k k k k k k x x x x x x x x x

数值分析第二章小结

第二章小结 对于n 元线性方程组b A =x (*),其中A 为非奇异矩阵,当0det ≠A 时,方程组有唯一的解向量。求解线性方程组的方法可分为两类:直接法(如克莱姆法则,高斯消去法等)和迭代法(Jacobi 迭代法和GS 迭代法等)。 一 、直接法 1、Gauss 消去法:(1) 顺序Gauss 消去法:将矩阵化为上三角矩阵 (2) 列主元素Gauss 消去法:将增广矩阵],[)()(k k b A 中绝对值最大的元素交换到底k 行的主对角线上。 比较:顺序Gauss 消去法的计算结果数值稳定性没有列主元素Gauss 消去法的好。 2、直接三角分解法: (1)定义 Doolittle 分解法和Crout 分解法:如果方程组b A =x 的系数矩阵A 可以分解为A=LU,其中L 是下三角矩阵U 是上三角矩阵,这样方程组b A =x 就化为两个容易求解的三角方程组:y U b Ly ==x ,。 定理3 Doolittle 分解法的充要条件是矩阵A 的前n-1阶顺序主子式0≠K D (k 取1,2,3,4...,n-1) 推论 矩阵A 有唯一Crout 分解的充要条件是A 的前n-1阶顺序主子式0≠K D (k 取1,2,3,4...,n-1) Doolittle 分解计算公式为: 对于k=1,2,3...,n ),...,1,(1 1n k k j u l a u k t tj kt kj kj +=-=∑-=

);,...,2,1(/)(1 1n k n k k i u u l a l kk k t tk it kj ik <++=-=∑-= 则求解下三角方程组y U b Ly ==x 和上三角方程组的计算方程式: ???? ?????--=-===-==∑∑+=-=1 ,,2,1,/)(u /),,3,2(11111 n n i u x u y x y x n i y l b y b y ii n i t t it i i nn n n t i t it i i Crout 分解计算公式为: 对于k=1,2,3...,n ),...,1,(1 1n k k j u l a l k t tk it ik ik +=-=∑-= );,...,2,1(/)(1 1n k n k k j l u l a u kk k t tj kt kj kj <++=-=∑-= 则求解下三角方程组y b y U L ==x ~ ~和上三角方程组的计算方程式: ?????????--=-===-==∑∑+=-=1 ,,2,1,),,3,2()(/1111111 n n i x u y x y x n i l y l b y l b y n i t t it i i n n ii t i t it i i (2)选主元的Doolittle 分解法 优点:对A 的要求低,只要矩阵A 可逆即可,即只要矩阵A 非奇异便可通过对A 做适当变换就可以了. 二、迭代法 1、思想:通过构造一个无限的向量序列,使它的极限是方程组b A =x 的解向量,通过求迭代矩阵,再通过迭代公式使解向量逐步逼近精确解。所以迭代法的缺点也很明显,凡是迭代法都存在收敛性与

数值分析(计算方法)总结

第一章绪论 误差来源:模型误差、观测误差、截断误差(方法误差)、舍入误差 是的绝对误差,是的误差,为的绝对误差限(或误差限) 为的相对误差,当较小时,令 相对误差绝对值得上限称为相对误差限记为:即: 绝对误差有量纲,而相对误差无量纲 若近似值的绝对误差限为某一位上的半个单位,且该位直到的第一位非零数字共有n位,则称近似值有n位有效数字,或说精确到该位。 例:设x==…那么,则有效数字为1位,即个位上的3,或说精确到个位。 科学计数法:记有n位有效数字,精确到。 由有效数字求相对误差限:设近似值有n位有效数字,则其相对误差限为 由相对误差限求有效数字:设近似值的相对误差限为为则它有n位有效数字 令 1.x+y近似值为和的误差(限)等于误差(限)的 和 2.x-y近似值为 3.xy近似值为 4. 1.避免两相近数相减 2.避免用绝对值很小的数作除数 3.避免大数吃小数 4.尽量减少计算工作量 第二章非线性方程求根 1.逐步搜索法 设f (a) <0, f (b)> 0,有根区间为(a, b),从x0=a出发,按某个预定步长(例如h=(b-a)/N)

一步一步向右跨,每跨一步进行一次根的搜索,即判别f(x k)=f(a+kh)的符号,若f(x k)>0(而 f(x k-1)<0),则有根区间缩小为[x k-1,x k] (若f(x k)=0,x k即为所求根), 然后从x k-1出发,把搜索步长再缩小,重复上面步骤,直到满足精度:|x k-x k-1|0.将[a0,b0]对分,中点x0= ((a0+b0)/2),计算 f(x0)。 3.比例法 一般地,设[a k,b k]为有根区间,过(a k, f(a k))、(b k, f(b k))作直线,与x轴交于一点x k,则: 1.试位法每次迭代比二分法多算一次乘法,而且不保证收敛。 2.比例法不是通过使求根区间缩小到0来求根,而是在一定条件下直接构造出一个点列(递推公式),使该点列收敛到方程的根。——这正是迭代法的基本思想。 事先估计: 事后估计 局部收敛性判定定理: 局部收敛性定理对迭代函数的要求较弱,但对初始点要求较高,即初始点必须选在精确解的附近 Steffensen迭代格式: Newton法: Newton下山法:是下山因子 弦割法: 抛物线法:令 其中:

数值分析第五章学习小结

第五章学习小结 姓名:张亚杰班级:机械1505班学号:S2******* 一、本章学习体会 本章的内容与实际关联很大,可以解决很多工程实际问题。1、主要有两方面内容:插值与逼近。插值即是由已知数据通过某种多项式求出在特定区间的函数值。逼近即是用简单函数近似代替复杂函数,如何在给定的精度下,求出计算量最小最佳的多项式,是函数逼近要解决的问题。2、插值中样条插值比较难,需要花一定的时间。逼近主要是必须使选择的多项式计算出的误差最小。3、我个人觉得本章的难点是样条插值与最佳平方逼近。 二、知识构图: 因为本章内容较多,故本次知识架构图分为三部分:插值、正交多项式和逼近。 1、插值:

2、正交多项式和逼近的知识总结采取以下方式: 一、正交多项式 1、正交多项式的概念与性质 若在区间上非负的函数满足 (1)对一切整数存在; (2)对区间上非负连续函数,若 则在上,那么,就称为区间上的权函数。 常见的权函数有 2、两个函数的内积 定义:给定[](),(),,()f x g x C a b x ρ∈是上的权函数,称 为函数()f x 与()g x 在[a,b]上的内积。 内积的性质: (1)对称性:()(),,f g g f =; (2)数乘性:(),(,)(,)kf g f kg k f g ==; (3)可加性:()()()1212,,,f f g f g f g +=+; (4)非负性:若在[a,b]上()0f x ≠,则。 (,)a b ()x ρ0,()b n a n x x dx ρ≥?(,)a b ()f x ()0b n a x x dx ρ=? (,)a b ()0f x ≡()x ρ(,)a b 2 ()1,()11 ()11(),0(),x x x a x b x x x x x e x x e x ρρρρρ--≡≤≤= -<<=-≤≤=≤<∞=-∞<<+∞ (,)a b (,)()()()b a f g x f x g x dx ρ=?(,)0f f >

数值分析第二章小结

第2章线性方程组的解法 --------学习小结 一、本章学习体会 通过本章知识的学习我首先了解到求解线性方程组的方法可分为两类:直接法和迭代法。计算机虽然运行速度很快,但面对运算量超级多的问题,计算机还是需要很长的时间进行运算,所以,确定快捷精确的求解线性方程组的方法是非常必要的。 本章分为四个小节,其中前两节Gauss消去法和直接三角分解法因为由之前《线性代数》学习的一定功底,学习起来还较为简单,加之王老师可是的讲解与习题测试,对这一部分有了较好的掌握。第三节矩阵的条件数与病态方程组,我 Ax 的系数矩阵A与左端向量b的元素往往是通首先了解到的是线性方程组b 过观测或计算而得到,因而会带有误差。即使原始数据是精确的,但存放到计算机后由于受字长的限制也会变为近似值。所以当A和b有微小变化时,即使求解过程精确进行,所得的解相对于原方程组也可能会产生很大的相对误差。对于本节的学习掌握的不是很好,虽然在课后习题中对课堂知识有了一定的巩固,但整体感觉没有很好的掌握它。第四节的迭代法,初次接触迭代法,了解到迭代法就是构造一个无线的向量序列,使他的极限是方程组的解向量。迭代法应考虑收敛性与精度控制的问题。三种迭代方法的基本思想我已经掌握了,但是在matlab 的编程中还存在很大的问题。 在本节的学习中我认为我最大的问题还是程序的编写。通过这段时间的练习,虽然掌握了一些编写方法和技巧。相比于第一章是对其的应用熟练了不少,但在程序编写上还存在很多问题。希望在以后的学习中能尽快熟练掌握它,充分发挥它强大的作用。 二、本章知识梳理 2.1、Gauss消去法(次重点) Gauss消去法基本思想:由消元和回代两个过程组成。 a(k=1,2,```,n-1)均不为零的充分必要条件定理顺序Gauss消去法的前n-1个主元素)(k kk 是方程组的系数矩阵A的前n-1个顺序主子式

第五章习题解答_数值分析

第五章习题解答 1、给出数据点:0134 19156 i i x y =?? =? (1)用012,,x x x 构造二次Lagrange 插值多项式2()L x ,并计算15.x =的近似值215(.)L 。 (2)用123,,x x x 构造二次Newton 插值多项式2()N x ,并计算15.x =的近似值215(.)N 。 (3)用事后误差估计方法估计215(.)L 、215(.)N 的误差。 解: (1)利用012013,,x x x ===,0121915,,y y y ===作Lagrange 插值函数 2 20 2 1303011915 01031013303152933 ()()()()()() ()()()()()()()() i i i x x x x x x L x l x y x x =------== ?+?+?-------++= ∑ 代入可得2151175(.).L =。 (2)利用 134,,x x x ===,9156,,y y y ===构造如下差商表: 229314134196()()()()()N x x x x x x =+-+---=-+- 代入可得215135(.).N =。 (3)用事后误差估计的方法可得误差为 ()()()02222 03-x 150 x x x -=117513506563-04.()()()(..).x f L R L x N x x x --≈= -≈- ()()()3222203-154 x x -=1175135-1.0938-04 .()()()(..)x x f N R x L x N x x x --≈=-≈- 2、设Lagrange 插值基函数是 0012()(,,,,)n j i j i j j i x x l x i n x x =≠-==-∏ 试证明:①对x ?,有 1()n i i l x ==∑ ②00110001211()()(,,,)()()n k i i i n n k l x k n x x x k n =?=?==??-=+? ∑ 其中01,,,n x x x 为互异的插值节点。 证明: ①由Lagrange 插值多项式的误差表达式10 1()()()()()!n n i i f R x x x n ξ+==-+∏知,对于函数1()f x =进行

数值分析-第一章-学习小结

数值分析 第1章绪论 --------学习小结 一、本章学习体会 通过本章的学习,让我初窥数学的又一个新领域。数值分析这门课,与我之前所学联系紧密,区别却也很大。在本章中,我学到的是对数据误差计算,对误差的分析,以及关于向量和矩阵的范数的相关内容。 误差的计算方法很多,对于不同的数据需要使用不同的方法,或直接计算,或用泰勒公式。而对于二元函数的误差计算亦有其独自的方法。无论是什么方法,其目的都是为了能够通过误差的计算,发现有效数字、计算方法等对误差的影响。 而对误差的分析,则是通过对大量数据进行分析,从而选择出相对适合的算法,尽可能减少误差。如果能够找到一个好的算法,不仅能够减少计算误差,同时也可以减少计算次数,提高计算效率。 对于向量和矩阵的范数,我是第一次接触,而且其概念略微抽象。因此学起来较为吃力,仅仅知道它是向量与矩阵“大小”的度量。故对这部分内容的困惑也相对较多。 本章的困惑主要有两方面。一方面是如何能够寻找一个可靠而高效的算法。虽然知道算法选择的原则,但对于很多未接触的问题,真正寻找一个好的算法还是很困难。另一方面困惑来源于范数,不明白范数的意义和用途究竟算什么。希望通过以后的学习能够渐渐解开自己的疑惑。 二、本章知识梳理

2.1 数值分析的研究对象 方法的构造 研究对象 求解过程的理论分析 数值分析是计算数学的一个重要分支,研究各种数学问题的数值解法,包括方法的构造和求解过程的理论分析。它致力于研究如何用数值计算的方法求解各种基本数学问题以及在求解过程中出现的收敛性,数值稳定性和误差估计等内容。 2.2误差知识与算法知识 2.2.1误差来源 误差按来源分为模型误差、观测误差、截断误差、舍入误差与传播误差五种。其中模型误差与观测误差属于建模过程中产生的误差,而截断误差、舍入误差与传播误差属于研究数值方法过程中产生的误差。 2.2.2绝对误差、相对误差与有效数字 1.(1)绝对误差e指的是精确值与近似值的差值。 绝对误差:

(完整版)数值分析第7章答案

第七章非线性方程求根 一、重点内容提要 (一)问题简介 求单变量函数方程 ()0f x = (7.1) 的根是指求*x (实数或复数),使得(*)0f x =.称*x 为方程(7.1)的根,也称*x 为 函数()f x 的零点.若()f x 可以分解为 ()(*)()m f x x x g x =- 其中m 为正整数,()g x 满足()0g x ≠,则*x 是方程(7.1)的根.当m=1时,称*x 为单根;当m>1时,称*x 为m 重根.若()g x 充分光滑,*x 是方程(7.1)的m 重根,则有 (1)() (*)'(*)...(*)0,(*)0m m f x f x f x f x -====≠ 若()f x 在[a,b]上连续且()()0f a f b <,则方程(7.1)在(a,b)内至少有一个实根,称[a,b]为方程(7.1)的有根区间.有根区间可通过函数作图法或逐次搜索法求得. (二)方程求根的几种常用方法 1.二分法 设()f x 在[a,b]上连续,()()0f a f b <,则()0f x =在(a,b)内有根*x .再设()0f x =在 (a,b)内仅有一个根.令00,a a b b ==,计算0001 ()2x a b =+和0()f x .若0()0f x =则*x x =,结束计算;若00()()0f a f x >,则令10,1a x b b ==,得新的有根区间11[,]a b ;若 00()()0 f a f x <,则令 10,10 a a b x ==,得新的有根区间 11[,]a b .0011[,][,]a b a b ?,11001()2b a b a -=-.再令1111 ()2x a b =+计算1()f x ,同上法得 出新的有根区间22[,] a b ,如此反复进行,可得一有根区间套 1100...[,][,]...[,] n n n n a b a b a b --????

数值分析学习心得体会.doc

数值分析学习感想 一个学期的数值分析,在老师的带领下,让我对这门课程有了深刻的理解和感悟。这门 课程是一个十分重视算法和原理的学科,同时它能够将人的思维引入数学思考的模式,在处 理问题的时候,可以合理适当的提出方案和假设。他的内容贴近实际,像数值分析,数值微 分,求解线性方程组的解等,使数学理论更加有实际意义。 数值分析在给我们的知识上,有很大一部分都对我有很大的帮助,让我的生活和学习有 了更加方便以及科学的方法。像第一章就讲的误差,在现实生活中,也许没有太过于注意误 差,所以对误差的看法有些轻视,但在学习了这一章之后,在老师的讲解下,了解到这些误 差看似小,实则影响很大,更如后面所讲的余项,那些差别总是让人很容易就出错,也许在 别的地方没有什么,但是在数学领域,一个小的误差,就很容易有不好的后果,而学习了数 值分析的内容,很容易就可以将误差锁定在一个很小的范围内,在这一范围内再逼近,得出 的近似值要准确的多,而在最开始的计算中,误差越小,对后面的影响越小,这无疑是好的。 数值分析不只在知识上传授了我很多,在思想上也对我有很大的影响,他给了我很多数 学思想,很多思考的角度,在看待问题的方面上,多方位的去思考,并从别的例子上举一反三。像其中所讲的插值法,在先学习了拉格朗日插值法后,对其理解透彻,了解了其中 的原理和思想,再学习之后的牛顿插值以及三次样条插值等等,都很容易的融会贯通,很容 易的就理解了其中所想,他们的中心思想并没有多大的变化,但是使用的方式却是不同的, 这不仅可以学习到其中心内容,还可以去学习他们的思考方式,每个不同的思考方式带来的 都是不同的算法。而在看待问题上,不同的思考方式总是可以快速的全方位的去看透彻问题, 从而知道如何去解决。 在不断的学习中,知识在不断的获取,能力在不断的提升,同时在老师的不懈讲解下, 我逐渐的发现数值分析所涵盖的知识面特别的广泛,而我所需要学习的地方也更加的多,自 己的不足也在不断的体现,我知道这只是我刚刚接触到了数学的那一角,在以后我还会接触 到更多,而这求知的欲望也在不停的驱赶我,学习的越多,对今后的生活才会有更大的帮助。 计算132 2013014923 张霖篇二:数值分析学习报告 数值分析学习心得报告 班级:11级软工一班 姓名: * * * 学号: 20117610*** 指导老师:* * * 学习数值分析的心得体会 无意中的一次选择,让我接触了数值分析。 作为这学期的选修课,我从内心深处来讲,数值分析真的有点难。感觉它是在高等数学 和线性代数的基础上,又加深了探讨。虽然这节课很难,我学的不是很好,但我依然对它比 较感兴趣。下面就具体说说我的学习体会,让那些感兴趣的同学有个参考。 学习数值分析,我们首先得知道一个软件——matlab。matrix laboratory,即矩阵实验 室,是math work公司推出的一套高效率的数值计算和可视化软件。它是当今科学界最具影 响力、也是最具活力的软件,它起源于矩阵运算,并高速发展成计算机语言。它的优点是强 大的科学运算、灵活的程序设计流程、高质量的图形可视化与界面、便捷的与其他程序和语 言接口。 根据上网搜集到的资料,你就会发现matlab有许多优点: 首先,编程简单使用方便。到目前为止,我已经学过c语言,机器语言,java语言,这

《数值分析》第五章答案

习题5 1.导出如下3个求积公式,并给出截断误差的表达式。 (1) 左矩形公式:?-≈b a a b a f dx x f ))(()( (2) 右矩形公式:))(()(a b b f dx x f b a -≈? (3) 中矩形公式:?-+≈b a a b b a f dx x f ))(2 ( )( 解:(1) )()(a f x f ≈, )()()()(a b a f dx a f dx x f b a b a -=≈?? (2) )()(b f x f ≈,??-=≈b a b a a b a f dx b f dx x f ))(()()( )()(2 1)()()()(2 ηηξf a b dx b x f dx b x f b a b a '--=-'=-'=??,),(,b a ∈ηξ (3) 法1 )2 ( )(b a f x f +≈ , 法2 可以验证所给公式具有1次代数精度。作一次多项式 )(x H 满足 )2()2( b a f b a H +=+,)2 ()2(b a f b a H +'=+',则有 2 )2 )((!21)()(b a x f x H x f +-''= -ξ, ),(b a ∈ξ 于是 2.考察下列求积公式具有几次代数精度: (1) ?'+ ≈1 )1(2 1 )0()(f f dx x f ; (2) )3 1()31()(1 1f f dx x f +- ≈?-。 解: (1)当1)(=x f 时,左=1,右=1+0=1,左=右; 当x x f =)(时,左21= ,右=2 1 210=+,左=右; 当2 )(x x f =时,左=3 1 ,右=1,左≠右,代数精度为1。

东南大学_数值分析_第七章_偏微分方程数值解法

第七章 偏微分方程数值解法 ——Crank-Nicolson 格式 ****(学号) *****(姓名) 上机题目要求见教材P346,10题。 一、算法原理 本文研究下列定解问题(抛物型方程) 22(,) (0,0)(,0)() (0) (0,)(), (1,)() (0)u u a f x t x l t T t x u x x x l u t t u t t t T ?αβ???-=<<≤≤???? =≤≤??==<≤?? (1) 的有限差分法,其中a 为正常数,,,,f ?αβ为已知函数,且满足边界条件和初始条件。关于式(1)的求解,采用离散化方法,剖分网格,构造差分格式。其中,网格剖分是将区域{}0,0D x l t T =≤≤≤≤用两簇平行直线 (0) (0)i k x x ih i M t t k k N τ==≤≤?? ==≤≤? 分割成矩形网格,其中,l T h M N τ==分别为空间步长和时间步长。将式(1)中的偏导数使用不同的差商代替,将得到不同的差分格式,如古典显格式、古典隐格式、Crank-Nicolson 格式等。其中,Crank-Nicolson 格式具有更高的收敛阶数,应用更广泛,故本文采用Crank-Nicolson 格式求解抛物型方程。 Crank-Nicolson 格式推导:在节点(,)2 i k x t τ +处考虑式(1),有 22(,)(,)(,)222 i k i k i k u u x t a x t f x t t x τττ??+-+=+?? (2) 对偏导数 (,)2 i k u x t t τ ?+?用中心差分展开 []2311+13 1(,)(,)(,)(,) ()224k k i k i k i k i i k i k u u x t u x t u x t x t t t t ττηητ++??+=--<

数值分析第七章非线性方程求根习题答案

第七章非线性方程求根 (一)问题简介 求单变量函数方程 ()0f x = (7.1) 的根是指求*x (实数或复数),使得(*)0f x =.称*x 为方程(7.1)的根,也称*x 为函数() f x 的零点.若()f x 可以分解为 ()(*)()m f x x x g x =- 其中m 为正整数,()g x 满足()0g x ≠,则*x 是方程(7.1)的根.当m=1时,称*x 为单根;当m>1时,称*x 为m 重根.若()g x 充分光滑,*x 是方程(7.1)的m 重根,则有 (1)() (*)'(*)...(*)0,(*)0m m f x f x f x f x -====≠ 若()f x 在[a,b]上连续且()()0f a f b <,则方程(7.1)在(a,b)内至少有一个实根,称[a,b]为方程(7.1)的有根区间.有根区间可通过函数作图法或逐次搜索法求得. (二)方程求根的几种常用方法 1.二分法 设()f x 在[a,b]上连续,()()0f a f b <,则()0f x =在(a,b)内有根*x .再设()0f x =在(a,b)内 仅有一个根.令00,a a b b ==,计算0001()2x a b =+和 0()f x .若0()0f x =则*x x =,结束计算;若 00()()0 f a f x >,则令 10,1a x b b ==,得新的有根区间 11[,] a b ;若 00()()0 f a f x <,则令 10,10a a b x ==,得新的有根区间11[,]a b .0011[,][,]a b a b ?,11001 () 2b a b a -=-.再令1111 ()2x a b =+计算1()f x ,同上法得出新的有根区间22[,]a b ,如此反复进行,可得一有根区 间套 1100...[,][,]...[,] n n n n a b a b a b --???? 且110011 *,0,1,2,...,()...() 22n n n n n n a x b n b a b a b a --<<=-=-==-. 故 1 lim()0,lim lim ()* 2n n n n n n n n b a x a b x →∞→∞→∞-==+=

数值分析第四章学习小结

第四章学习小结 本章为非线性方程与非线性方程组的迭代解法,由此可分为两大节4.1非线性方程的迭代解法和4.2非线性方程组的迭代解法。本章以人口增长模型为引言,由于在实际应用中只有很少类型的非线性方程能解出根的解析表达式,对于大多数非线性方程,只能用数值法求出它的根的近似值,本章将要介绍几种常用的有效的数值求根方法,它们都属于迭代法,因而还要讨论这些方法的收敛性和收敛速度。 4.1.1对分法 (1)基本思想: ①确定方程有根的区间; ②将区间逐次分半缩小,得到一个区间长度以1/2的比例减小的含根区间序列{}k x ,在给定根的误差界时,利用长度趋于零的特点,可得到在某个区间中满足要求的近似根。收敛速度与公比为12 的等比数列的收敛速度相同。 (2)迭代终止条件 或者 (3)二分法的优缺点: 优点:程序简单,总能求出近似根,对()f x 要求不高。 缺点:收敛速度慢,只能求单根和奇数重根,不能求偶重根,复根。二分法一般用于对根求近似根。 4.1.2简单迭代法及其收敛性 迭代法的基本思想: 迭代法是一种逐次逼近法,用某个固定公式反复校正根的近似值,使 12 a b x +=2k k b a ε-<2 k k k b a x s ε--≤

之逐步精确化,最后得到满足精度要求的解。 迭代法的基本思想是将隐式方程()x x ?=的求根问题归结为计算一组显式公式1()k k x x ?+=,逐步过程实际上是一个逐步显示化的过程。 收敛性:若由迭代公式1().1,2,3...k k x x k ?+==产生的序列{}k x 收敛于x *,则x *是原方程的根。 收敛条件: a .非局部收敛性定理:设函数()[,]x C a b ?∈,在(a ,b )内可导,且满足两个条件: (1)当[,]x a b ∈时,()[,]x a b ?∈;(2)当[,]x a b ∈时,'()1x L ?≤<,其中L 为一常数。则有如下结论: (1)方程()x x ?=在[,]a b 上有唯一的根s ; (2)对任取的0[,]x a b ∈,简单迭代法1()k k x x ?+=产生的序列{}[,]k x a b ?且收敛于s ; (3)成立误差估计式101k k L s x x x L -≤--或11k k k L s x x x L --≤-- 这种形式的收敛定理称为大范围收敛性定理,但当条件不够充分时,预先指定一个区间常常是不可能的。 b .局部收敛性定理 设'(),()s s x ??=在包含s 的某个开区间内连续。如果'()1s ?<,则存在0δ>当0[,]x s s δδ∈-+时,由简单迭代法1()k k x x ?+=产生的序列 {}[,]k x s s δδ?-+且收敛于s 。 4.1.3简单迭代法的收敛速度

数值分析第五章学习小结【计算方法】

第五章最小二乘法与曲线拟合小结 一、本章知识梳理 1、 从整体上考虑近似函数同所给数据点 (i=0,1,…,m)误差 (i=0,1,…,m) (i=0,1,…,m)绝对值的最大值,即误差向量 的∞—范数;二是误差绝对值的和,即误差向量r的1—范数;三是误差 平方和的算术平方根,即误差向量r的2—范数;前两种方法简单、自然,但不便于微分运算,后一种方法相当于考虑 2—范数的平方,因此在曲线拟合 中常采用误差平方和来度量误差 (i=0,1,…,m)的整体大小。 数据拟合的具体作法是:对给定数据 (i=0,1,…,m),在取定的函 数类中,求,使误差(i=0,1,…,m)的平方和最小,即 从几何意义上讲,就是寻求与给定点 (i=0,1,…,m)的距离平方和为最小 的曲线(图6-1)。函数称为拟合函数或最小二乘解,求拟合 函数的方法称为曲线拟合的最小二乘法。 2、多项式拟合 假设给定数据点 (i=0,1,…,m),为所有次数不超过的多项式构成的函数类,现求一,使得 (1) 当拟合函数为多项式时,称为多项式拟合,满足式(1)的称为最小二乘 拟合多项式。特别地,当n=1时,称为线性拟合或直线拟合。 显然 为的多元函数,因此上述问题即为求的极值问题。由多元函数求极值的必要条件,得 (2) 即

(3) (3)是关于的线性方程组,用矩阵表示为 (4) 式(3)或式(4)称为正规方程组或法方程组。 可以证明,方程组(4)的系数矩阵是一个对称正定矩阵,故存在唯一解。 从式(4)中解出 (k=0,1,…,n),从而可得多项式 (5) 可以证明,式(5)中的满足式(1),即为所求的拟合多项式。我 们把称为最小二乘拟合多项式的平方误差,记作 由式(2)可得 (6) 多项式拟合的一般方法可归纳为以下几步: (1) 由已知数据画出函数粗略的图形——散点图,确定拟合多项式的次数n; (2) 列表计算和; (3) 写出正规方程组,求出; (4) 写出拟合多项式。 在实际应用中,或;当时所得的拟合多项式就是拉格朗日或牛 顿插值多项式。 3、曲线拟合: 曲线拟合,即把一组数据拟合为曲线,需遵循最小二乘法。常用双曲线型和指数型函数。

数值计算方法第七章习题 2013

计算方法 第七章 习题 复习与思考题 1.设f ∈C [a , b ],写出三种常用范数2 1 f f 及∞ f 。 2.f , g ∈C [a , b ],它们的内积是什么?如何判断函数族{? 0, ? 1, …, ? n }∈C [a , b ]在[a ,b ]上线性无关? 3.什么是函数f ∈C [a , b ]在区[a , b ]上的n 次最佳一致逼近多项式? 4.什么是f 在[a , b ] 上的n 次最佳平方逼近多项式?什么是数据{}m i f 0的最小二乘曲 线拟合? 5.什么是[ a , b ]上带权ρ (x )的正交多项式?什么是[ -1, 1 ]上的勒让德多项式?它有什 么重要性质? 6.什么是切比雪夫多项式?它有什么重要性质? 7.用切比雪夫多项式零点做插值得到的插值多项式与拉格朗日插值有何不同? 8.什么是最小二乘拟合的法方程?用多项式做拟合曲线时,当次数n 较大时为什么不直接求解法方程? 9.哪种类型函数用三角插值比用多项式插值或分段多项式插值更合适? 10.判断下列命题是否正确? (1)任何f (x ) ∈C [a , b ]都能找到n 次多项式P n (x ) ∈ H n ,使| f (x ) - P n (x ) | ≤ ε ( ε 为任给的误差限)。 (2)n n H x P ∈)(* 是f (x )在[ a , b ]上的最佳一致逼近多项式,则)()(lim * x f x P n n =∞ →对 ],[b a x ∈?成立。 (3)f (x ) ∈C [a , b ]在[a , b ]上的最佳平方逼近多项式P n (x ) ∈ H n 则)()(lim x f x P n n =∞ →。 (4))(P ~ x n 是首项系数为1的勒让德多项式,Q n (x ) ∈ H n 是任一首项系数为1的多项式,则 ? ? --1 1 21 1 2d )(d )](P ~ [x x Q x x n n 。 (5))(T ~ x n 是[-1 , 1]上首项系数为1的切比雪夫多项式。Q n (x ) ∈ H n 是任一首项系数为1的多项式,则 .)(max )(~ max 1 11 1x Q x T n x n x ≤≤-≤≤-≤ (6)当数据量很大时用最小二乘拟合比用插值好。

数值分析 第五章习题

第五章 习 题 1. 用高斯消去法解方程组 123234011921261x x x ????????????=??????????????????? 2. 用LU 分解,将第1题中的系数矩阵分解为L 和U 的乘积,L 是对角线元素为1的下三角矩阵,U 是上三角矩阵. 3. 用平方根法和T LDL 分解为求解方程组 123121332522334x x x x x x x ++=??+=??+=? 4. 证明 (1)两个下三角矩阵的乘积仍为下三角矩阵. (2)下三角矩阵之逆仍为下三角矩阵. 5. 用列主元素消去法解方程组 1231231 233472212320x x x x x x x x x ?+=???+?=?????=? 取4位数字计算. 6. 对四阶Hilbert 矩阵为系数的方程组 12341234 1234 12341111 234111102345111103456111104 567x x x x x x x x x x x x x x x x ?+++=???+++=???+++=???+++=? 试求其系数方程组A 的条件数()cond A ∞并分析方程组的性态。 7. 如果A 是一个对称正定矩阵,且带宽为21m +,证明在A 的三角分解T A LL =中出现的矩阵L 也是带状矩阵. 8. 设有三对角方程组

11121 2122232 b x c x d a x b x c x d +=+++= (121111) 1n n n n n n n n n n n n a x b x c x d a x b x d ???????++=+= 其系数矩阵有严格对角优势. 试写出用LU 分解求其解的计算公式. 9. 画出2R 中满足下列不等式的集合. (1)11x ≤ (2)21x ≤ (3)1x ∞≤ 10. 求证1I ≥,11A A ?≥. 11. 试证明2 21A A A ∞≤ 12. 对矩阵 2100121001210012A ????????=???????? 求A ∞,2A ,1A 和2()Cond A . 13. 比较下面两个方程组的解. 123123123111 2311102341110345x x x x x x x x x ?++=???++=???++=?? ,1231231231.000.500.3310.500.330.2500.330.250.200x x x x x x x x x ++=??++=??++=?

数值分析第七章上机题

数值分析第七章计算机实习题 写一程序实现下面问题的牛顿算法——求解方程组: ?? ???=--=-+.0)1sin(,18)7)(3(12321x e x x x 源程序如下: function [x,it,hist] = newton2(x0,f,g,maxit,tol) % Newton method for eqation systerm % INPUTS: % x0 initial point % f function % g gradient % maxit maximum iteration % tol tolerance for convergence % OUTPUTS: % x solution % it iteration % hist history of iteration format long ; if nargin<5, tol = 1e-7; if nargin<4, maxit = 100; if nargin<3, error('too few input!!'); end end end flag = 1; x0 = [0;0]; x = x0; hist = x; it = 0; for k = 1:maxit, x = x0 - feval(g,x0(1),x0(2))\feval(f,x0(1),x0(2)); if norm(x0-x)>=tol, x0 = x; else fprintf('\nNewton Iteration successes!!\n') return end it = it + 1;

hist = [hist x]; end flag = 0; fprintf('\nNewton Iteration fails!!\n'); 在命令窗口输入: >>f = inline('[(x1+3)*(x2^3-7)+18;sin(x2*exp(x1)-1)]','x1','x2'); >>g = inline ('[x2^3-7,3*x2^2*(x1+3);x2*exp(x1)*cos(x2*exp(x1)-1),exp(x1)*cos(x2*exp(x1)-1)]','x1','x2'); >> [x,it,hist] = newton2([0;0],f,g) 得到如下运行结果: >> [x,it,hist] = newton2([0;0],f,g) Newton Iteration successes!! x = -0.000000000000000 1.000000000000000 it = 5 hist = 0 -0.428571428571429 -0.141348392468100 -0.002875590925150 0.000000056935424 -0.000000000000101 0 1.557407724654902 1.087738055836075 1.001269946612821 1.000000431005363 1.000000000000127 由以上运行结果可知: 该方程组采用牛顿迭代法迭代5步可到足够精度,解为??? ? ??=10x .

数值分析第五章答案

数值分析第五章答案 【篇一:数值分析第五版计算实习题】 第二章 2-1 程序: clear;clc; x1=[0.2 0.4 0.6 0.8 1.0]; y1=[0.98 0.92 0.81 0.64 0.38]; n=length(y1); c=y1(:); or j=2:n %求差商 for i=n:-1:j c(i)=(c(i)-c(i-1))/(x1(i)-x1(i-j+1)); end end syms x df d; df(1)=1;d(1)=y1(1); for i=2:n %求牛顿差值多项式 df(i)=df(i-1)*(x-x1(i-1)); d(i)=c(i)*df(i); end disp(4次牛顿插值多项式); p4=vpa(collect((sum(d))),5) %p4即为4次牛顿插值多项式,并保留小数点后5位数 pp=csape(x1,y1, variational);%调用三次样条函数 q=pp.coefs; disp(三次样条函数); for i=1:4 s=q(i,:)*[(x-x1(i))^3;(x-x1(i))^2;(x-x1(i));1]; s=vpa(collect(s),5) end x2=0.2:0.08:1.08; dot=[1 2 11 12]; figure ezplot(p4,[0.2,1.08]); hold on y2=fnval(pp,x2); x=x2(dot);

y3=eval(p4); y4=fnval(pp,x2(dot)); plot(x2,y2,r,x2(dot),y3,b*,x2(dot),y4,co); title(4次牛顿插值及三次样条); 结果如下: 4次牛顿插值多项式 p4 = - 0.52083*x^4 + 0.83333*x^3 - 1.1042*x^2 + 0.19167*x + 0.98 三次样条函数 x∈[0.2,0.4]时, s = - 1.3393*x^3 + 0.80357*x^2 - 0.40714*x + 1.04 x∈[0.4,0.6]时,s = 0.44643*x^3 - 1.3393*x^2 + 0.45*x + 0.92571 x∈[0.6,0.8]时,s = - 1.6964*x^3 + 2.5179*x^2 - 1.8643*x + 1.3886 x∈[0.8,1.0]时,s =2.5893*x^3 - 7.7679*x^2 + 6.3643*x - 0.80571 输出图如下 2-3(1) 程序: clear; clc; x1=[0 1 4 9 16 25 36 49 64]; y1=[0 1 2 3 4 5 6 7 8];%插值点 n=length(y1); a=ones(n,2); a(:,2)=-x1; c=1; for i=1:n c=conv(c,a(i,:)); end q=zeros(n,n); r=zeros(n,n+1); for i=1:n [q(i,:),r(i,:)]=deconv(c,a(i,:));%wn+1/(x-xk) end dw=zeros(1,n); for i=1:n dw(i)=y1(i)/polyval(q(i,:),x1(i));%系数 end p=dw*q; syms x l8; for i=1:n

数值分析考试复习总结

1 误差 相对误差和绝对误差得概念 例题: 当用数值计算方法求解一个实际的物理运动过程时, 一般要经历哪几个阶段? 在哪些阶段将有哪些误差产生? 答: 实际问题-数学模型-数值方法-计算结果 在这个过程中存在一下几种误差: 建立数学模型过程中产生:模型误差 参数误差 选用数值方法产生:截断误差 计算过程产生:舍入误差 传播误差 6.设937.0=a 关于精确数x 有3位有效数字,估计a 的相对误差. 对于x x f -=1)(,估计)(a f 对于)(x f 的误差和相对误差. 解 a 的相对误差:由于 31021|)(|-?≤-≤a x x E . x a x x E r -=)(, 221018 1 10921)(--?=?≤ x E r . (1Th ) )(a f 对于)(x f 的误差和相对误差. |11||)(|a x f E ---==()25 .0210113 21??≤ -+---a x x a =310- 33 104110|)(|--?=-≤a f E r . □ 2有效数字 基本原则:1 两个很接近的数字不做减法: 2: 不用很小得数做分母(不用很大的数做分子) 例题: 4.改变下列表达式使计算结果比较精确: (1) ;1||,11211<<+--+x x x x 对 (2) ;1,11>>- - +x x x x x 对 (3) 1||,0,cos 1<<≠-x x x x 对. 解 (1) )21()122x x x ++. (2) ) 11(2x x x x x -++. (3) x x x x x x x cos 1sin )cos 1(sin cos 12+≈ +=-. □

相关文档 最新文档