文档库 最新最全的文档下载
当前位置:文档库 › 用于空调系统的湿空气循环制冷机性能分析_张振迎

用于空调系统的湿空气循环制冷机性能分析_张振迎

用于空调系统的湿空气循环制冷机性能分析_张振迎
用于空调系统的湿空气循环制冷机性能分析_张振迎

4.2-需求管理-信息中心XX系统性能评估报告

XX性能评估报告 (20XX年XX月份) 1性能评估结论 通过对XX服务器一个月指定实体业务的业务量分时统计和IT资源使用 率的性能分析,结合服务器处理能力TpmC的计算公式,建议XX应用服务器和Web服务器的CPU配置应从原先的3个CPU增加到4个CPU,当前内存配置保持不变。 2评估过程分析 2.1应用当前配置环境 XX应用部署在南海数据中心一台IBM P780小型机上。小型机的Model Type为9179-MHB,共64个CPU,每个CPU有4个Core。服务器的处理能力一般是由TpmC来计算的,TpmC是指在服务器CPU中每个Core每分钟的处理能力。基于部署XX的P780的配置,通过官方数据查到所配64个CPU的TpmC值为10,366,254,单个CPU的TpmC值为161,973。 XX应用共使用两个逻辑分区(LPAR)。两个LPAR的当前配置信息如下:

服务器主机名称所属应用 名称 IP地址 操作系 统版本 已分配的 CPU个数 CPU的频 率(GHZ) 已分配的 内存(GB) gdweb03 社保费系 统web服务 器 150.17.30.1 66 AIX 6.1 3(CPU) 3.86GHZ 32GB gdsbapp01 社保费系 统核心应 用服务器 150.17.30.1 70 AIX 6.1 3(CPU) 3.86GHZ 44GB 2.2应用业务量情况分析 以下是对指定实体业务基于2013年4月12日以来一个月数据的全天业务量的峰值情况进行分析。 增减员业务量统计 增减员业务在一天内有一个高峰时间段,下午15点-17点。具体的实体业务量的峰值如下: 业务时间实体业务量图表统计说明 08:00 3785 09:00 11035 10:00 27124 11:00 30041 12:00 32760 13:00 11301 14:00 15060 15:00 37066 16:00 38749 17:00 60384 18:00 60069 19:00 10370 20:00 5022 21:00 5217 22:00 1067 23:00 648 申报业务量统计

循环水温度控制方案

水务中心循环水系统控制方案 水务中心 2016年3月

循环水控制方案 1目的 根据不同季节,对循环水冷水温度控制指标进行细化,满足装置运行。 2基本原则 2.1满足生产需求的原则,首先在流量稳定情况下以调节水温为主,水温由开停风机来调节,当水温无法调节时,阶段性调节水量。 2.2可操作性原则。 2.3节能原则。 3.具体内容 3.1一循控制方案 3.1.1一循所供装置为常减压装置、焦化装置、工贸污油装置。 3.1.2具体温度指标控制 3.1.3 当风机全开水温不能满足生产要求时,生产装置对冷却器的流量进行优化调整,循环水场通过调节泵流量保证循环水压力的稳定,满足生产需求。 3.1.4由于季节变化生产装置进行冷却器流量大幅调整前,要及时将信息汇报给生产调度,生产调度通知到水务中心,以避免循环

水压力出现大的波动。 3.1.5循环水场严格控制好温度指标,根据昼夜温差做好动态调整。 3.1.6一循装置循环水温度的控制首先采取开停风机的手段来进行,如出现风机调整达到最大,而无效果时,通过调整循环水量的方式来进行。 3.1.7由于焦化装置热负荷较大,以上调整方式无效时,可关闭常减压、焦化装置循环水联通阀门,采用焦化装置、常减压装置分区供水的方式来进行。 3.1.8及时调整风机的开停,循环水冷水高低温差不应超过6℃。 3.1.9为确保循环水冷却效果,每年5月份及10月份,应组织对一循系统进行集中清洗。 3.1.10装置区水冷器管程循环水流速不应小于0.9m/s,以避免结垢及污物沉积,影响换热效果。 3.1.11装置区应及时对冷却效果不好的水冷器进行反冲洗。 3.1.12确保循环水泵、风机等设备完好,做好巡回检查。 3.1.13及时发现设备隐患,做到检修不过夜。 3.1.14听从调度指令,根据生产需要,进行温度调节。 3.2二循控制方案 3.2.1二循所供装置为催化装置、气分装置、MTBE装置和聚丙烯装置。 3.2.2具体温度指标控制

空调循环水加药装置特点及加药量计算

精心整理空调循环水加药装置特点、加药量计算 潍坊山水环保机械制造有限公司 空调循环水存在的问题及特点: 空调循环水一般分为三类:自来水、软化水和去离子水。最常用的为自来水。 存在的问题: 在冷却水循环使用的过程中,通过冷却构筑物的传热与传质交换,循环水中Ca2+、Mg2+、CL-、 2 4 SO 等离子,溶解性固体,悬浮物相应增加,空气中污染物如尘土、杂物、可溶性气体和换热器物料渗漏等均可进入循环水,致使微生物大量繁殖和在循环冷却水系统的管道中产生结垢、腐蚀和粘泥, 运营成本 杀菌

2、腐蚀指标 设备原材料、设备设计、制造、包装、运输等过程中执行以下标准: GB7190.2-1997 《大型玻璃纤维增强塑料冷却塔》 GB191-90 《包装储运图标记》 GB3538-83 《运输包装件各部件的标识方法》 GB6388-86 《运输包装收发货标志》 GB12348-90 《工业企业厂界噪声标准》 Q/LB08-95 《钢筋混凝土结构冷却塔安装》 药剂选用原则 循环水系统处理分成二大部分,第一部分:补充水处理,第二部分:循环水处理。循环水处理可以概括为去除悬浮物、控制泥垢及结垢、控制腐蚀及微生物杀菌等四个系统。泥垢及结垢、控制腐蚀及微生物等一般采用加药控制。 向循环水中投加阻垢、分散剂的方法来防止盐类垢。 加药剂为聚磷酸盐(三聚磷酸钠) 敞开式循环冷却水的加氯量处理宜采用定期投加,每天投加1~3次,余氯量控制在0.5~1.0mg/l之内。每

次加氯时间采用3~4h。加氯量按下式计算: G t =Q·g t /1000=4000立方米每小时*3mg/l=1.2Kg/h 式中G t——加氯量(Kg/h) Q——循环冷却水量(m3/h) g t——单位循环冷却水的加氯量,采用2~4mg/l 药剂的选用及投加量 缓蚀阻垢剂的复合配方为:铬酸盐+聚磷酸盐 投加量:投加量须根据循环水水质情况而确定,一般其投加量为40~60mg/l。 A、 G= 注: 2~5mg/l (1) (2) 1 次。每小 据此,加药装置选用参数如下: 溶解搅拌罐:V=1m3 贮液箱:V=2.0m3 计量泵最小投加量:66/H 2、杀菌剂加药装置 根据前面计算可知,本系统杀菌剂加药量为192kg/天,(100%纯度按每天溶药一次,药剂配制浓芳按20%设计,则每天的溶药量为192÷0.2=960kg/d,每次的溶药量为960kg/次。每小时投加量为960÷24=4L/h。 据此,加药装置选用参数如下: 溶解搅拌罐:V=1m3 贮液箱:V=2.0m3 计量泵最小投加量:40L/H

压缩空气制冷循环

压缩空气制冷循环 压缩空气制冷循环以空气为工质,其循环的装置简图见图6-21,循环的 图和图如图6-22所示。从冷库出来的空气状态为1,其温度(为冷库温度)压力为,接着进入压缩机进行压缩,升温升压到、,再进入 冷却器进行定压放热,温度下降到(=),然后进入膨胀机实现膨胀,使压 力下降到,温度进一步下降到最后进(),入冷库进行定压吸热过 程完成循环。循环的最高压力与最低压力之比称作增压比,用表示。 进行循环分析时,为突出主要问题,假定所有的过程都是可逆过程、在压缩机内的压缩过程及膨胀机内的膨胀过程均为可逆绝热过程并且空气可作为比热容取定值的理想气体。 压缩空气理想制冷循环的构成与燃气轮机装置定压加热理想循环一样仅是方向相反?是的,在热力学分析上,压缩空气制冷循环可以视为布雷敦逆循环。 参看图6-22,循环中工质从低温热源(冷库)吸热量亦即循环中工质的制冷量: 排向高温热源的热量为 压气机消耗的功为 膨胀气缸中回收的功为

所以,循环消耗的净功是 因此,循环的制冷系数为 考虑到1-2,3-4都是可逆绝热过程,因而有 将之代入制冷系数表达式可得 (6-20) 上式表明,循环增压比越小,制冷系数越大。但增压比越小,单位质量工质的制冷量也越小。当由(/)下降到(/)时制冷量也由面积1-4-4’-1’-1下降为面积1-9-9’-1’-1。所以,不能太小。 在相同的低温热源(冷库)和高温热源之间工作的卡诺逆循环的制冷系数为 与式(6-20)比较,因为,所以,这里再次看到相同温度两热源(和)之间卡诺逆循环的制冷系数最大。 压缩空气制冷循环的制冷量为 (6-21) 式中,是循环工质的质流量。可见制冷量取决于温差和质流量。

循环水系统加药系统方案要点

2000m3/h,2×1500m3/h 循环水系统投药系统 设 计 方 案 苏州得润水处理设备有限公司 2010年10月

目录 一、概述 (2) 二、循环冷却水处理设计的原则和要求 (2) 三、工艺流程的确定 (3) 四、循环水系统设计参数 (4) 五、设计规范标准 (6) 六、药剂选用原则 (7) 七、补充水及旁滤处理 (7) 八、循环水处理 (7) 九、清洗与预膜处理 (10) 十、药剂的选用及投药量 (13) 十一、投药设备的选型 (14) 十二、供货清单 (16) 十三、设备的投资概算 (16)

一、概述 在冷却水循环使用的过程中,通过冷却构筑物的传热与传质交换,循环水中Ca2+、Mg2+、CL-、 2 SO等离子,溶解性固体,悬浮物相应增加,空气中污染物如 4 尘土、杂物、可溶性气体和换热器物料渗漏等均可进入循环水,致使微生物大量繁殖和在循环冷却水系统的管道中产生结垢、腐蚀和粘泥,造成换热器换热效率降低,能源浪费,过水断面减少,通水能力降低,甚至使设备管道腐蚀穿孔,酿成事故。 循环冷却水处理的目的就在于消除或减少结垢、腐蚀和生物粘泥等危害,使系统可靠地运行。 循环水中能产生的盐垢有许多种,如碳酸钙、硫酸钙、碳酸镁、氢氧化锰、硅酸钙等,其中以碳酸钙垢最为常见,危害最大。 二、循环冷却水处理设计的原则和要求 1、安全生产、保护环境、节约能源、节约用水是在工业循环冷却水处理设计中需要贯彻的国家技术方针政策的几个重要方面。在符合安全生产要求方面:循环冷却水处理不当,首先会使用权冷却设备产生不同程度的结垢和腐蚀,导致能耗增加,严重时不仅会损坏设备,而且会引起工厂停车、停产和减产的生产事故,造成极大的经济损失。因此,安全生产首先应保证循环冷却水处理设施连续、稳定地运行并能达到预期的处理要求。其次,在循环冷却水处理的各个环节如循环水处理、旁流水处理、补充水处理及辅助生产设施如仓库、加药间等,设计中都应考虑生产上安全操作的要求。特别是使用的各种药剂如酸、碱、阻垢剂、杀菌灭藻剂等,常常是有腐蚀性、有素,对人体有害的。因此,对各种药剂的贮存、运输、配制和使用,设计上都必须有保证工作人员卫生、安全的设施。并按使用药剂的特性,具体考虑其防火、防腐、防素、防尘等安全生产要求。 2、循环冷却水处理,可以概括为去除悬浮物、控制泥垢、控制腐蚀及微生物等四个方面。 3、敞开式循环冷却水系统中冷却水吸收热量后,以冷却塔与大气直接接触,二氧化碳逸散,溶解氧和浊度增加,水中溶解盐类浓度增加以及工艺介质泄漏等,使循环水水质恶化,给系统带来结垢、腐蚀、污泥和菌藻问题。

系统性能评估

第7章 1.工程工作站:具有实现工程计算、程序编制和调试、作图、通信、资源共享的计算机环 境。 2.早期CAD环境:“大型机(超级小型机)+多路终端 3.工作站从应用对象、范围和功能需求上都不同于普通PC机 4.工作站与PC在配置上的一般区别:1. 图形处理能力:专业图形卡2. 可靠性: 采用多种 可靠性措施3. 性能: 采用高性能器件4. 扩展能力: 内存、多处理器等5. 软件配置: 操作系统、高性能图形处理软件等。 5.系统性能评价技术:从技术上, 主要有分析、模拟、测量三种技术 6.常采用的分析技术有:常采用排队论、随机过程、均值分析等方法进行近似求解,比如 流水线性能、多处理器系统性能分析、软件可靠性静态评估等。 7.分析技术的特点:特点是理论严密, 对基础理论的掌握要求较高。优点是节约人力/物 力, 可应用于设计中的系统。 8.模拟技术的特点:既可以应用于设计中或实际应用中的系统, 也可以与分析技术相结 合, 构成一个混合系统。 9.测量技术的特点: 10.模拟技术是基于试验数据的系统建模, 主要有: (1) 按系统的运行特性建立系统模型; (2) 按系统工作负载情况建立工作负载模型; (3) 编写模拟程序, 模拟被评价系统的运 行。 11.测量技术:该技术是对已投入使用的系统进行测量, 通常采用不同层次的基准测试程序 评估。不同层次指的是:核心程序、实际应用程序、合成测试程序 12.几乎所有基于模拟的评价方法都依赖于测试数据或实验值 13.总结:分为三种性能评价技术,分别是分析、模拟、测量,这三种技术分别对用不同成 熟度的系统。分析技术对应理论研究,特点是理论严密,基础知识掌握度高。模拟技术是对正在设计以及已经用于实际应用的系统进行建模,建模数据来源是实验数据。而测量技术的应用是对已经投入使用的系统进行测量。通常采用不同层次的基准测试程序,不同层次值的是:核心程序、实际应用程序、合成测试程序。 14.系统性能评价对象:内存、I?O、网络、操作系统、编译器的性能。 15.与程序执行的时间相关的两大因素:(1) 时钟频率(MHz);(2) 执行程序使用的总时钟周期 数。 16.CPU时间= 总时钟周期数?时钟周期= 总时钟周期数/ 时钟频率 17.IC(程序执行的指令数)和CPI(每条指令所需时钟数 18.CPU时间= CPI?IC ?时钟周期= CPI?IC /时钟频率 19.(1) 时钟频率: 反映计算机实现、工艺和组织技术; 20.(2) CPI: 反映计算机实现、指令集结构和组织; 21.(3) IC: 反映计算机指令集结构和编译技术。 22.系统性能评价标准:(1) 时钟频率(主频): 用于同类处理机之间(2) 指令执行速度法 (MIPS —定点运算) (3) 等效指令速度:吉普森(Gibson)法4)数据处理速率PDR(processing data rate)法(5) 基准程序测试法 23.MIPS指标的主要缺点是不能反映以下情况: ①不能反映不同指令对速度的影响②不能 反映指令使用频率差异的影响③不能反映程序量对程序执行速度的影响 24.吉普森(Gibson)法的主要缺点:(1) 同类指令在不同的应用中被使用的频率不同;(2) 程序 量和数据量对Cache 影响; (3) 流水线结构中指令执行顺序对速度的影响;(4) 编译程序对系统性能的影响。

空调冷却循环水系统设计

空调冷却循环水系统设计 民用建筑空调冷却循环水系统相对于工业冷却循环水系统,设计具有一些特点:循环水量较小,设备为定型产品,水质要求较低,季节性运转等。加上民用建筑设计周期短,设计人员往往根据以往的经验,形成定式思维,对一些具体的细节问题,关注不够,造成冷却水系统水温降不下来,系统能耗过大,运转操作不便等问题。该文针对冷却循环水系统经常出现的问题,谈谈自己的设计体会,旨在引起大家的进一步讨论,达到共同认识共同提高的目的。 一、冷却循环水系统设备的合理选型 1.设计基础资料 为保证冷却塔的冷却效果,必须注重气象参数的收集,气象参数应包括空气干球温度θ(℃),空气湿球温度τ(℃),大气压力P(104Pa),夏季主导风向,风速或风压,冬季最低气温等。 根据《采暖通风与空气调节设计规范》和《建筑给水排水设计规范》,冷却塔设计计算所选用的空气干球温度和湿球温度,应与所服务的空调等系统的设计空气干球温度和湿球温度相吻合,应采用历年平均不保证50小时的干球温度和湿球温度。 2、冷却循环水量确定 确定冷却循环水量时,首先要清楚准确地了解空调负荷及空调设备要求的冷却循环水量,同时还要关注空调机的选型,一般可根据制冷量(美RT),估算冷却循环水量Q(m3/h),对于机械式制冷:离心式、螺杆式、往复式制冷机,Q= 0.8RT。对于热力式制冷:单、双效溴化锂吸收式制冷机,Q=(1.0~1.1)RT ;设计时,冷却循环水量一般是由空调专业根据制冷机样本中给出的冷却水量提出

的。需用指出的是,制冷机样本中给出的冷却水量往往比用负荷法计算值小,尤其是进口机,这主要是由于目前冷却塔本身的热工性能达不到进口设备的要求。

循环水系统加药系统方案

循环水系统加药系统方案

2000m3/h,2×1500m3/h 循环水系统投药系统 设 计 方 案 苏州得润水处理设备有限公司 2010年10月

目录 一、概述 (1) 二、循环冷却水处理设计的原则和要求 (1) 三、工艺流程的确定 (2) 四、循环水系统设计参数 (3) 五、设计规范标准 (7) 六、药剂选用原则 (8) 七、补充水及旁滤处理 (8) 八、循环水处理 (8) 九、清洗与预膜处理 (12) 十、药剂的选用及投药量 (14) 十一、投药设备的选型 (16) 十二、供货清单 (17) 十三、设备的投资概算 (17)

一、概述 在冷却水循环使用的过程中,通过冷却构筑物的传热与传质交换,循环水中Ca2+、Mg2+、CL-、 2 SO等离子,溶解性固体,悬浮物相应增加,空气中污染物 4 如尘土、杂物、可溶性气体和换热器物料渗漏等均可进入循环水,致使微生物大量繁殖和在循环冷却水系统的管道中产生结垢、腐蚀和粘泥,造成换热器换热效率降低,能源浪费,过水断面减少,通水能力降低,甚至使设备管道腐蚀穿孔,酿成事故。 循环冷却水处理的目的就在于消除或减少结垢、腐蚀和生物粘泥等危害,使系统可靠地运行。 循环水中能产生的盐垢有许多种,如碳酸钙、硫酸钙、碳酸镁、氢氧化锰、硅酸钙等,其中以碳酸钙垢最为常见,危害最大。 二、循环冷却水处理设计的原则和要求 1、安全生产、保护环境、节约能源、节约用水是在工业循环冷 却水处理设计中需要贯彻的国家技术方针政策的几个重要方面。在符合 安全生产要求方面:循环冷却水处理不当,首先会使用权冷却设备产生 不同程度的结垢和腐蚀,导致能耗增加,严重时不仅会损坏设备,而且 会引起工厂停车、停产和减产的生产事故,造成极大的经济损失。因此,安全生产首先应保证循环冷却水处理设施连续、稳定地运行并能达到预 期的处理要求。其次,在循环冷却水处理的各个环节如循环水处理、旁 流水处理、补充水处理及辅助生产设施如仓库、加药间等,设计中都应 考虑生产上安全操作的要求。特别是使用的各种药剂如酸、碱、阻垢剂、杀菌灭藻剂等,常常是有腐蚀性、有素,对人体有害的。因此,对各种 药剂的贮存、运输、配制和使用,设计上都必须有保证工作人员卫生、 安全的设施。并按使用药剂的特性,具体考虑其防火、防腐、防素、防 尘等安全生产要求。 2、循环冷却水处理,可以概括为去除悬浮物、控制泥垢、控制 腐蚀及微生物等四个方面。 3、敞开式循环冷却水系统中冷却水吸收热量后,以冷却塔与大

中央空调循环水系统水质稳定处理维保方案

中央空调循环水系统水质稳定处理维保方案 1.中央空调工艺循环水系统化学清洗、钝化、预膜保护处理技术服务 1.1艺循环水系统化学清洗、钝化、预膜保护处理工艺程序 准备工作一一水力冲洗一一杀菌灭藻剥泥――排污 柔性法清洗(除锈除垢除油) 一-排污 钝化/预膜处理――排污 人工处理,过滤器清洗等 复位检查 正常运行 水质正常保养 1.2化学清洗前的准备措施(甲乙双方配合) 1)我方进一步了解熟悉系统的有关情况。 2)化学清洗前完成系统内被清洗的各腐蚀产物,结垢物的定性、定量分析。 3)化学清洗前完成系统内各组成设备的材质确定。 4)把不参与清洗的设备却机器要加临时短管,搭接临时旁路或盲板盲死等措施与清洗系统隔开。 5)为保清洗良好进行,防止气阻和清洗液残留,循环系统应配制和确认高点气孔和低点排污口。 6)为保证清洗的良好进行,进行快速有效的补水和排污工作可配制临时补水管和排污管。7)为检查清洗效果,确定分析点。 1.3水冲洗(试压、检漏) 水冲洗的目的用大流量的水尽可能冲刷掉系统申的灰尘、泥沙、金属腐蚀物等疏松的污垢,同时检查系统有无渗漏、气阻和死角情况,如有问题应及时处理。冲洗时;高点注满,低点排放,并控制进出水平衡。水压检漏实验,将全系统注满水,调节出口回水阀门,控制泵压,检查系统中焊缝、法兰、阀门、短管连接处泄漏情况并及时处理,以保证清洗过程的正常进行。

1.4杀菌灭藻清洗 杀菌灭藻清洗的目的:杀死系统内的微生物,并将表面附着的生物粘泥剥离脱落。排尽冲洗物后,注水充满系统循环,加入适量的杀菌灭藻剂后循环清洗,当系统内的浓度达到平衡时,即可结束。 1.5柔性化学清洗法" "柔性化学清洗法"的目的:利用有机高分子聚合物的对金属离子的高度选择性而只与金属的离子发生反应,生成溶度度极高的金属络合物(蟹合物),从而促进了铁锈、铜锈及其它金属氧化物和盐垢的溶解,而对金属基体无任何损害,从而达到除锈除垢的目的。注意高点排气放空,低点排污,阻止气阻和阻塞现象发生,影响清洗效果。定期测试清洗液浓度,金属离子浓度、温度、PH值,当金属离子浓度曲线趋于平衡时,即为清洗结束。 1.6钝化/预膜保护处理, 钝化/预膜处理目的:设备及管线经过清洗后,其金属表面处于高度活性状态,它很容易重新与氧结合而被氧化返锈。钝化/预膜保护处理的作用是在金属表面上形成能抑制金属阳极溶解过程中的电化学分子导体膜,而这层膜本身在介质申溶解度很小,以致使金属阳极溶解速度保持在很小的数值,则这层表面膜成为钝化/预膜。在金属表面形成完整钝化膜从而达到防锈防腐的目的。因此,设备和管线在清洗后则需要钝化/预膜处理,然后投入使用或加以封存。 1.7清洗后的水冲洗排污 水冲洗排污目的为了除去残留的污水溶液和系统脱落的固体颗粒,保证一个清洁的系统,以便下一个工作程序的顺利进行。清洗结束后,用大量的水冲洗,全系统开路清洗,不断轮开系统导淋,以使沉淀在短管内的杂质、残液排除。冲洗过程申,应每隔10分钟测定一次,当其曲线趋于平衡时停止冲洗。 1.8人工机械清理检查 对在系统清洗过程申,可能会有各类不溶的固体杂粒如石子、泥砂等沉积在过滤器、低处弯管处,因此将此 类污垢沉积物进行全面机械、人工清理。 1.9复位检查 检查完毕后,拆除或隔离临时系统,临时盲板,将系统复位至正常状态,以各调试启用。1.I0化学清洗总结

电脑系统性能分析与评价

浅谈计算机系统性能评价的认识和理解 随着科学技术的日益进步,计算机也得到快速发展,计算机性能成为人们关注的重点。计算机性能评价不仅是计算机网络和计算机系统研究与应用的重要理论基础和支撑技术,也是当今通信和计算机科学领域的重要研究方向。因此,进行计算机系统性能评价成为当务之急。 计算机性能评价是指对系统的动态行为进行研究和优化,包括对实际系统的行为进行分析、测量和模拟按照一定的性能要求对方案进行选择,对现有系统的性能缺陷和瓶颈进行改进,对未来系统的性能进行预测,以及在保证一定服务质量的前提下进行设计。性能评价技

术研究使性能成为数量化的、能进行度量和评比的客观指标,以及从系统本身或从系统模型获取有关性能信息的方法。性能评价通常是与成本分析综合进行的,借以获得各种系统性能和性能价格比的定量值,从而指导新型计算机系统(如分布式计算机系统)的设计和改进,以及指导计算机应用系统的设计和改进,包括选择计算机类型、型号和确定系统配置等。 1 计算机系统性能评测指标 计算机系统性能指标有两类:可用性、工作能力。 可用性:它指计算机能够持续工作时间,一般用平均无故障时间和可恢复性来表示。 工作能力:它指计算机在正常工作状态下所具有的能力。它们是系统性能评价的主要研究对象。常用的工作能力指标由:吞吐量、延迟和资源利用率。 吞吐量:单位时间内系统的处理能力,指单位时间内完成的任务数。对于不同目标可能含义不同。例如,在评价一个数据库系统时,所指的吞吐量可以是单位时间内交易完成的个数;在评价一个网络系统是,吞吐量指单位时间内传输的字节数等。 延迟:完成一个指定任务所花费的时间。例如,在评价一个数据库系统时,可以考察它完成一个查询,或完成一个数据处理所需要的时间;在评价一个网络系统时,可以考察发送一个网络包所需要的时间等。 资源利用率:指完成一个任务所需要花费的系统资源。例如完成一个数据处理、所占用处理器的时间、占用内存的大小或占用网络带宽的大小等。 吞吐量越高、延迟越少、资源利用率越低则表示系统的性能越好。 2 计算机性能的主要评测手段 计算机性能的主要评测手段主要包括测量、模拟、分析方法。 测量方法:测量是最基本、最重要的系统性能评价手段。测试设备向被测设备输入一组测试信息并收集被测设备的原始输出,然后进行选择、处理、记录、分析和综合,并且解释其结果。上述这些功能一般是由被测的计算机系统和测量工具共同完成的,其中测量工具完成测量和选择功能。测量工具分硬件工具和软件工具两类。硬件测量工具附加到被测计算机系统内部去测量系统中出现的比较微观的事件(如信号、状态)。典型的硬件检测器有定时器、序列检测器、比较器等。例如,可用定时器测量某项活动的持续时间;用计数器记录某一事件出现的次数;用序列检测器检测系统中是否出现某一序列(事件)等。数据的采集、状态的监视、寄存器内容的变化的检测,也可以通过执行某些检测程序来实现。这类检测程序即软件测量工具。例如,可按程序名或作业类收集主存储器、辅助存储器使用量、输入卡片数、打印纸页数、处理机使用时间等基本数据;或者从经济的角度收集管理者需要的信息;或者收集诸如传送某个文件的若干个记录的传送时间等特殊信息;或者针对某个程序或特定的设备收集程序运行过程中的一些统计量,以及发现需要优化的应用程序段等。硬件监测工具的监测精度和分辨率高,对系统干扰少;软件监测工具则灵活性和兼容性好,适用范围广。测量方法是最直接、最基本的方法,其他方法也要依赖于测量的量,但是它比较浪费时间,只适合于已经存在并运行的系统。 分析方法:分析方法可为计算机系统建立一种用数学方程式表示的模型,进而在给定输入条件下通过计算获得目标系统的性能特性。该方法一般应用于系统的设计阶段,这时候因

PDP空调循环水系统冲洗

四川虹欧显示器件有限公司 PDP项目一期工程普通机电安装工程 暖通空调工程循环水系统 通水方案 编写单位:四川华西集团有限公司PDP项目部 编写日期:2008年7月6日

目录 一、101#,102#、103#工程概况 (1) 二、冷冻水系统冲洗 (4) 三、温水、高温热水系统冲洗 (8) 四、冲洗系统的人员安排和组织机构 (12) 五、冲洗时间安排 (13)

一、101#,102#、103#工程概况 1.101#厂房概况 101#厂房所有空调机组和风机盘管均设置在两侧支持区,干冷盘管设置在一层及三层下夹层,空调水管系统分为低温冷冻水系统(LCH),中温冷冻水系统(CH),温水系统(WW),高温热水系统(HW),蒸汽系统(S),具体情况如下: 以上空调处理设备冷热水供应管路均采用无缝钢管,管路总量在30416米,由冷冻站和制热站引入生产车间支持区,冷热水沿管路供末端设备进行冷热交换,管路在进出末端设备的分支管上设置控制阀组,调节末端空调设备的换热量,经过换热后的冷热水再沿回水管路至冷热站,进行再次循环。

2.102#厂房概况 102#冷冻站分为三个独立的供回水系统,基本内容如下: (1)低温冷冻水系统:设计选用离心制冷机组6台,每台制冷量1150USRT(4043KW),设备供回水温度为5/12℃,冷冻水系统分为2级,即一次冷冻水和二次冷冻水,其中一次冷冻水系统为定流量,二次冷冻水系统为变流量系统,设计还选用一次冷冻水泵6台,二次冷冻水泵4台(变频泵),三用一备,补水箱一个,膨胀水箱一套,冷却水泵6台。 (2)中温冷冻水系统,设计选用离心制冷机组10台,九用一备(其中3台带热回收系统)。每台制冷量为1400USRT(4922KW),设备供回水温度为13/18℃,冷冻水系统分为2级,即一次冷冻水和二次冷冻水,其中一次冷冻水系统为定流量,二次冷冻水系统为变流量系统,设计还选用一次冷冻水泵10台(九用一备),二次冷冻水泵6台(变频泵,五用一备),补水箱一个,膨胀水箱一套,冷却水泵`10台。 (3)温水系统,热回收制冷机组3台,每台产生热量5450KW,设备供回水温度为37/29℃,热回收系统分为2级,即一次热回收系统和二次热回收系统,其中一次冷水系统为定流量,二次冷水系统为变流量系统,设计还选用一次热回收水泵3台,二次冷冻水泵4台(变频泵,三用一备),板式换热器3台,补水箱一个,膨胀水箱一套。同时热回收系统由锅炉房作为补充热源。 3.103#厂房概况 长虹PDP锅炉房位于长虹工业园虹欧显示器件有限公司103厂

中央空调水循环系统的控制设计

AB变频器PF400在中央空调系统中的设计和应用 一、前言 大部份建筑物在一年当中,只有几十天时间,中央空调处于最大负荷。中央空调冷负荷,始终处于动态变化之中,如每天早晚、每季交替、每年轮回、环境及人文等因素都实时影响着中央空调冷负荷。一般,冷负荷在5~60%范围内波动,大多数建筑物每年至少70%的时间是处于这种情况。而大多数中央空调,因系统设计多数以最大冷负荷为最大功率驱动。这样,就往往造成实际需要冷负荷与最大功率输出之间的矛盾,实际造成巨大能源浪费,给使用方造成巨额电费支出,增加经营者的成本,降低经营竞争力。 本文介绍了AB变频器PF400在中央空调系统的水循环、变频风机和冷却塔风机中的设计和应用。 二、PF400在中央空调水循环系统的设计 中央空调系统的水循环系统主要分为冷冻水(或热水)循环系统、冷却水循环系统,智能变频柜主要控制的对象为冷冻水(热水)回路和冷却水回路。如下图所示。 图一中央空调水循环控制原理 1、冷冻水循环的控制 由冷冻泵及冷冻水管道组成,从冷水机组流出的冷冻水由冷冻泵加压送入冷冻水管道,在个房间内进行热交换,带走房间内热量,从而使房间内的温度下降。 冷冻水泵的控制方式为:最高层(或最不利端)压力控制 在高层的中央空调系统中,由于各层的空调机想对应于热负载的变动开闭冷水进口阀,以此调节室温。由于冷冻水的流量经常发生变化,引起最高层水压的较大变化,为了解决该问题,需要控制冷水泵的出水阀,以保持最高层水压大致恒定,但大多数应用场合,都是保持出水阀门开度一定,任随压力变化。如果这样,会导致压力损失大,效率低。此时若采用转速控制,以保持最佳压力,可防止压力损失并较大幅度提高效率并取得好的节能效果。 2、冷却水循环的控制 由冷却泵及冷却水管道及冷却塔组成。冷水机组进行热交换,是水温冷却的同时,必将释放大量的热量。该热量被冷却水吸收,是冷却水温度升高。冷却泵将升了温冷却水压入冷却塔,使之在冷却塔中与大气进行热交换,然后再降了温的冷却水,送回到冷水机组。如此不断循环,带走冷水机组释放的热量。

中央空调循环水处理

中央空调循环水处理 Document number:WTWYT-WYWY-BTGTT-YTTYU-2018GT

中央空调循环水处理 随着我国国民经济的快速增长,中央空调被广泛使用,它不仅给人们带来舒适的环境,同时也被用来调节工业生产所需环境的温度和湿度。中央空调循环水系统包括冷却水系统、冷冻水系统和采暖水系统。冷却水系统是由热交换器、冷却水泵、管道、冷却塔、贮水池组成。冷却水在冷冻机里冷却受热受压的制冷剂,温度上升至37℃左右,经水泵送至冷却塔,冷却后返回至冷冻机中循环使用。冷冻水系统是由热交换器、冷冻水泵、管道、风机盘管、膨胀水箱组成。冷冻水在冷冻机中被制冷剂冷却至7℃左右后送往风机盘管,与空气进行热交换升温至12℃左右后,再返回到冷冻机中被冷却。热水和冷冻水共用一套管道系统。 1.中央空调系统特点 中央空调一般承担着夏季供冷、冬季供热的任务,春季和秋季停机检修或保养,即使在正常运行期间也根据气温的变化和工作环境的需要停机。大多数企事业单位由于编制上的限制不设专门水处理技术管理人员,实行粗放式管理,因此,水处理技术和方案对这一情况应有较强的适应性,既要有良好的处理效果,又要管理简单方便,水处理成本低廉。 2.冷冻水系统特点 冷冻水系统是以水做冷媒介质和空气进行能量交换的密闭式体系,虽然与外界接触较少,但在整个体系的最高处设有膨胀水箱,这样冷冻水介质还是和空气有所接触,使溶解氧和一些营养物进入冷冻水系统,导致粘泥沉积,不仅影响传热,还可能形成氧浓差引起设备的腐蚀,经常出现黄褐色水质或黑灰色

水质。冷冻水的化学处理采用一次性投加药剂的方法,重点控制设备的腐蚀及粘泥的产生。 3.冷却水系统特点 冷却水在循环使用过程中不断蒸发浓缩,含盐量不断上升,为了不使含盐量无限制的升高,必须排放掉一部分冷却水,同时补入新鲜水,前者称之为排污,后者称之为补水。含盐量上升后极易在热交换器的水侧形成水垢,垢的形成不仅使传热效率下降、制冷负荷增大,还会形成垢下腐蚀,造成水电浪费和缩短机组使用寿命。冷却水系统的另一特点是保有水量小,极易浓缩,如掌握不好排污量和补水量,浓缩倍数波动较大,难以保证水处理效果。因此,对于冷却水系统水处理的重点是控制结垢兼顾缓蚀并定时加药、排污、补水。 针对中央空调系统的特点和实际情况,选择适宜的水处理药剂和摸索出一条简便且适合现场情况的粗放式的管理模式,具有十分重要的现实意义。它可以有效的控制设备的腐蚀和结垢,延长设备的寿命,减少维修工作量,提高制冷效率,满足客户和工艺生产的需要。 ————国家工业水处理工程技术研究中心张凤仙高级工程师

可靠性及系统性能评价

两个部件的可靠度R 均为0.8,由着两个部件串联构成的系统可 靠度为:0.64;由这两个部件并联构成的系统的可靠度为:0.96。 串联系统: 设系统各个子系统的可靠性分别用R1,R2,R3、、、、、,Rn 表 示,则系统的可靠度R=R1*R2*R3*、、、、、*Rn 。 如果系统的各个子系统的失效率分别用R1,R2,R3、、、、 Rn 表示,则系统的失效率为R=R1+R2+、、、、+Rn 。 并联系统: 系统的可靠性R=1-(1-R1)*(1-R2)*、、、、、*(1-Rn )。 系统的失效率R=∑=n j j R 1111 平均无故障时间(MTBF )与失效率的关系为:MTBF=1/R 。 内存按字节编址,地址从90000(H )到CFFFF (H ),可以通过 内存容量的计算公式:内存容量=终止地址-起始地址+1, 内存容量=CFFFF (H )-90000(H )+1=40000(H )=256KB 。 基于Windows 、Linux 和UNIX 等操作系统的服务器称为开放系 统。开放系统的数据存储方式分为内置存储和外挂存储两种,而外挂 存储又根据连接方式分为直连式存储和网络话存储,目前应用的网络

化存储方式有两种,即网络接入存储和存储区域网络。 开始系统的直连式存储(DAS) 网络接入存储(NAS)是将存储设备连接到现有的网络上,来提供数据存储和文件访问服务的设备。DAS服务器是在专用主机上安装简化了的瘦操作系统文件服务器。 存储区域网络(SAN)是一种连接存储设备和存储管理子系统的专用网络。 廉价磁盘冗余阵列RAID RAID分为0~7这8个不同的冗余级别,其中RAID0级无冗余校验功能;RAID1采用磁盘镜像功能,磁盘容量的利用率是50%;RAID3利用一台奇偶校验盘来完成容错功能。所以如果利用4个盘组成RAIDS阵列,可以用3个盘用于有效数据,磁盘容量的利用率为75%。RAID0的磁盘容量利用率是最高的。 P239 项目段式管理页式管理段页式管理划分方式 虚地址 虚实转换 主要优点简化了任意增长和收缩的 数据段管理,利于进程间共消除了页外碎片结合了段与页的有点 便于控制存取访问

中央空调循环水系统

中央空调循环水处理方案 2011-09-21 中央空调循环水系统一般分为三部分,即循环水系统、冷冻水系统、采暖水系统。循环冷却水多为开式,冷冻水与采暖水为封闭式;目前,高层建筑或封闭式厂方的冷冻水与采暖水多为同一系统,在夏季走冷冻水,在冬季走采暖水。 一、概述 中央空调循环水系统一般分为三部分,即循环水系统、冷冻水系统、采暖水系统。循环冷却水多为开式,冷冻水与采暖水为封闭式;目前,高层建筑或封闭式厂方的冷冻水与采暖水多为同一系统,在夏季走冷冻水,在冬季走采暖水。这三套循环水系统各有特点,但存在同一问题:结垢、腐蚀和生物粘泥,如不进行适当的处理,势必会引起管道堵塞,腐蚀泄漏、传热效率大为降低等一系列问题,影响整个空调系统的正常工作。 多年来,我们对中央空调用水情况作了广泛的调查,综合起来看现中央空调水系统的用水分为三类,即未经过任何处理的自来水、软化水和去离子水。水中对设备主要产生影响的因素分别为碱度、PH值、Cl-、氧含量等。自来水因地区不同而水质变化较大,在水的循环过程中,硬度和碱度是造成结垢的主要因素,而Cl-、低PH值、溶解氧是造成腐蚀的罪魁祸首。在自来水中这两种危害同时存在,只是由于水质差异,危害的主副性有所区别;相对腐蚀而言,结垢性离子Ca2+、Mg2+、碱度为保护性离子,软化水正是由于去除了这些离子,增加了Na+、Cl-等腐蚀性离子,从而加重了设备的腐蚀,所以说软化水虽然避免了结垢问题,却加重了腐蚀,这种现象会随着时间推移而显露出来。如大港开发区某空调系统一年就出现腐蚀穿孔现象,可见软化水腐蚀性的强弱。去离子水相对地说即去除了结垢因素,也去除了腐蚀因素,但实际上并非如此,同样,去离子水中虽然不存在结垢性离子和腐蚀性离子,但却并未除去水中的溶解氧,初始时,腐蚀速度较慢,有一个逐渐加速过程,最终会导致同前两种水一样的红水现象(封闭式系统)。 空调水处理的必要性主要有以下三点,其一是延长管线和设备的使用寿命。如果在主要管线和设备上发生的泄露时,或在敷设管道上发生了泄露时,更换维修,不但要花费较大的费用,而且,在实施时存在着许多困难。空调系统水处理的必要性就在于使管线和设备达到设计的使用寿命。下表中数据可说明水处理的重要性;其二是节能。当结垢和腐蚀产生锈垢堆积物,都会导致传热效率下降,为达到设定效果,必须加大能量消耗同时还会造成缩短设备的使用寿命。在敞开式循环水系统中,采用水处理技术还会节省大量的补充水;其三是创造稳定舒适的工作和生活环境,保证中央空调系统稳定正常运行。 注:1:预防处理是指为预防危害发生而进行水处理;事后处理是指危害发生后进行水处理;实际使用年限指设备破旧而更换的时间。2:本数据来自日本“建筑业协会”统计,而中国还未有有关统计数据。 二、中央空调循环冷却水处理 1.中央空调循环冷却水基本使用自来水。多年来,由于水系统结垢和腐蚀造成机组功能下降、使用寿命降低、能耗增加,业主长期处于设备、管线维修的局面。为改变这种状况,水磁化器被引入中央空调水系统。实践证明,使用这种设备处理能力有限,不成功的报导很多。上世纪80年代中期在工业的冷冻水系统引入工业循环冷却水处理技术后非常成功,这就是循环冷却水化学水处理技术。该技术是向水中投加水质稳定剂——包括分散剂、阻垢剂、缓蚀剂、杀菌剂等。是通过化学方法,使水中结垢型离子稳定在水中,其原理是通过螫合、络合和吸附分散作用,使Ca2+、Mg2+稳定地溶于水中,并对氧化铁、二氧化硅等胶体也有良好的分散作用,本法是目前空调水处理使用最为普遍的一种方法,也是在工业循环水处理中应用面最广、技术最成熟的一种方法,实践证明是有效而经济的方法。 1.1缓蚀阻垢处理 过去使用以聚磷酸盐为主体的缓蚀剂,但是,如果冷却水系统在水高浓缩倍数下进行,由于磷酸盐会

中央空调水循环系统简介

中央空调系统简介 随着我国国民经济的快速增长,中央空调被广泛使用,尤其是城市的宾馆、饭店、大型商场、娱乐场所、大型写字楼、办公楼、现代化生产车间都相继安装了中央空调设备,它不仅给人们带来舒适的环境,同时也被用来调节工业生产所需环境的温度和湿度。中央空调循环水系统包括冷却水系统、冷冻水系统和采暖水系统。冷却水系统是由热交换器、冷却水泵、管道、冷却塔、贮水池组成。冷却水在冷冻机里冷却受热受压的制冷剂,温度上升至37℃左右,经水泵送至冷却塔,冷却后返回至冷冻机中循环使用。冷冻水系统是由热交换器、冷冻水泵、管道、风机盘管、膨胀水箱组成。冷冻水在冷冻机中被制冷剂冷却至7℃左右后送往风机盘管,与空气进行热交换升温至12℃左右后,再返回到冷冻机中被冷却。热媒水在热水锅炉中被加热至60℃左右后送往风机盘管,与空气进行热交换降至55℃左右后,再返回到锅炉中加热。热水和冷冻水共用一套管道系统。1.中央空调系统特点 中央空调一般承担着夏季供冷、冬季供热的任务,春季和秋季停机检修或保养,即使在正常运行期间也根据气温的变化和工作环境的需要停机。大多数企事业单位由于编制上的限制不设专门水处理技术管理人员,实行粗放式管理,因此,水处理技术和方案对这一情况应有较强的适应性,既要有良好的处理效果,又要管理简单方便,水处理成本低廉。 2.冷冻水系统特点 冷冻水系统是以水做冷媒介质和空气进行能量交换的密闭式体系,虽然与外界接触较少,但在整个体系的最高处设有膨胀水箱,这样冷冻水介质还是和空气有所接触,使溶解氧和一些营养物进入冷冻水系统,导致粘泥沉积,不仅影响传热,还可能形成氧浓差引起设备的腐蚀,经常出现黄褐色水质或黑灰色水质。因此,对于冷冻水系统水处理 的重点是控制设备的腐蚀及粘泥的产生。 3.冷却水系统特点 冷却水在循环使用过程中不断蒸发浓缩,含盐量不断上升,为了不使含盐量无限制的升高,必须排放掉一部分冷却水,同时补入新鲜水,前者称之为排污,后者称之为补水。含盐量上升后极易在热交换器的水侧形成水垢,垢的形成不仅使传热效率下降、制冷负荷增大,还会形成垢下腐蚀,造成水电浪费和缩短机组使用寿命。冷却水系统的另一特点是保有水量小,极易浓缩,如掌握不好排污量和补水量,浓缩倍数波动较大,难以保证水处理效果。因此,对于冷却水系统水处理的重点是控制结垢兼顾缓蚀。 中央空调系统为什么会有上面所讲的问题呢,主要是由于其媒介——水所造成的。 自然界中的水是怎样的? 水在自然界中大量的存在,比较容易取得,价格便宜。水的物理化学性质稳定,水的潜热大,这是水成为工业首选作为冷却介质或热载体的重要原因。但自然界中的水并非纯净的物质,因为水是很好的溶剂,当它流过岩石、矿床和土壤时,就会有很多的盐类溶入其中。空气中带入尘埃、有机物及其它们的分解产物,水中生长的物质,都将成为各种各样的杂质,溶入水中。那么,溶入水中的盐类和杂质以离子形态存在的有阳离子:Ca2+、Mg2+、Na+、Fe2+、Zn2+、 Cu2+、Mn2+、H+、NH4+等;以阴离子形态存在的有:CO 32-、HCO 3 -、Cl-、SO 4 2-、NO 3 -、HSiO 3 -、F-、 H 2PO 4 -、OH-、H 2 BO 3 -、HPO 4 2-、HCO 3 -、NO 2 -、HS-等;以气态存在于水中的有:CO 2 、O 2 、N 2 、HN 3 、 SO 2、H 2 S、CH 4 、H 2 等;以悬浮物形式存在于水中的有粘土、无机的土壤污物、有机污物、有 机废水、各种微生物;还有以胶体形式存在于水中的SiO 2、Fe 2 O 3 、Al 2 O 3 、MnO 2 、植物色素、 生长在水中的各种细菌和藻类。 人类可利用的淡水资源主要来自地表水(江河水、湖水)和地下水(井水),不同水源、不同地区、周围的不同环境和不同季节,自然界水中的各类杂质的品种和量有很大的差别。

相关文档
相关文档 最新文档