文档库 最新最全的文档下载
当前位置:文档库 › 第3章电弧理论

第3章电弧理论

第3章电弧理论
第3章电弧理论

第3章电弧理论

第3章电弧及电气触头的基本理论

教学要求:掌握电弧的形成及熄灭条件,熟悉电弧形成的物理过程、特性;掌握直流电弧

及交流电弧的特性及熄灭条件;掌握开关电

器常用的熄弧方法;了解电气触头的类型、

工作条件;掌握接触电阻的形成、发展、后

果及降低措施。

3.1电弧的形成和熄灭

概述

电弧——为一种气体游离放电现象

现象:开关电器开断电路时,触关间产生的耀眼的白光。

△电弧的存在说明电路中有电流,只有当

电弧熄灭,触头间隙成为绝缘介质时,电路

才算断开。

特征:

①电弧的能量集中,温度报高,亮度很强

例:10kvQF断开20kv的电流,电弧功率达到一万kw以上

EMBED AutoCAD.Drawing.14

②电弧由阴级区,阳极区和弧柱区组成弧柱处温

度最高,可达6~7k0C到1万度以上在弧柱

周围温度较低,亮度明显减弱的部分叫弧

焰,电流几手都人人弧柱内部流过。

③电弧的气体放电是自持放电,维持电弧燃烧的

电压很低在大气中,1cm长

的直流电弧的弧柱电压仅15~30v,在变压器油中,1cm长的直流电弧的弧柱

电压仅100~220v

④电弧是一束游离的气体,质量极轻,极易变形电弧在气体或液体的流动作用下或电动力作用下,能迅速移动、伸长或弯曲。

电弧的形成

1、带电质点的来源①电极发射大量自由电子:

热电子+强电场发射

②弧柱区的气体游离,产生大

量的电子和离子:碰撞游离+热游离

2、电弧的形成

EMBED Equation.3 eq

\o\ac(○,—) EMBED Equation.3

电弧的熄灭

去游离

介质的游离作用→电弧产生介质的去游离作

用→电弧熄灭

游离>去游离——电弧电流↑游离去游离游离=去游离——电弧电流不变(稳定燃烧)

游离<去游离——电弧电流↓→(熄灭)

复合:正负离子相互吸引,彼此中和去游离扩散:弧柱中的带电质点由于热运动逸出弧柱外。

影响游离和去游离的因素

①电弧温度:EMBED Equation.3

热游离↓→Q↓

速度↓→复合加强→Q↓

使温度降低的方法有:吹弧、拉长电弧、或与冷却介质表面接触。

②电场强度:E↓ →运动速度↓→复合↑

→Ih↓→Q↓→热游离↓

③气体介质的压力:F↓→自由行程缩短→离子浓

度↑→复合↑

真空数目少→磁撞游离↓→扩散↑

④介质特性:包括气体的介电强度、导热系数、

热量量、电负荷等

⑤电极材料:铜、银、铜钨、银钨合金

具有熔点高、导热能力强、热容量大的特点,可减少热电子发射和弧柱中的金属蒸气。

3.2 直流电弧的特性及熄灭

一、特性:

1、静态伏安特性曲线:EMBED Equation.3

EMBED AutoCAD.Drawing.14

EMBED Equation.3 为发弧电压、即

产生电弧的最小电压值

当 EMBED Equation.3 ↑时,热游离↑,EMBED Equation.3 ↓故EMBED Equation.3 ↓,EMBED

Equation.3 的变化与EMBED

Equation.3 成反比。

2、电弧电压分布图:

EMBED AutoCAD.Drawing.14

EMBED Equation.3 =阴极区电压(

EMBED Equation.3 )+弧柱区(

EMBED Equation.3 )+阳极区

EMBED Equation.3

EMBED Equation.3 :大小与

EMBED Equation.3 无关,在空气中

EMBED Equation.3

EMBED Equation.3 :< EMBED

Equation.3 、且EMBED

Equation.3 而减小甚至为零

EMBED Equation.3 :与EMBED

Equation.3 呈线性关系,在空气中

EMBED Equation.3

短弧:几个mm长、主要由 EMBED Equation.3 组成

长弧:几个cm~几个m长,主要由EMBED Equation.3 组成

△近阴极效应(短弧原理)

将长弧沿垂直方向切割成多段电弧串联,每

一段即构成一个短弧,获得一个

阴极区压降。如果加在触头间的电压小于各段短弧的阴极电压之和,则电弧就不

能维持而熄灭。

直流电弧的工作点

EMBED AutoCAD.Drawing.14

①开关闭全时, EMBED Equation.3

②K刚分: EMBED Equation.3

EMBED Equation.3

③电弧燃烧稳定量:EMBED Equation.3

EMBED Equation.3

有:△ EMBED Equation.3

当EMBED Equation.3 时,△EMBED Equation.3 ;当 EMBED

Equation.3 时,△EMBED

Equation.3

由弧稳定燃烧时,有: EMBED Equation.3

EMBED Equation.3

EMBED AutoCAD.Drawing.14

EMBED Equation.3 ,EMBED Equation.3 在上,

EMBED Equation.3 在下,△

EMBED Equation.3 ,EMBED

Equation.3

2点EMBED Equation.3 ,EMBED Equation.3 在下,

电路理论

电路理论 考点1:电路基本概念和基本定律 关联参考方向 如果指定流过元件的电流和参考方向是从标以电压正极性的一端指向负极性的一段,即两者的参考方向一致。 A.非关联 B.关联 C.都可以 D.不一定 某一元件的电压的参考方向的选择是任意的,它与电流的参考方向选择无关。 电功率和能量 当p>0,W>0,元件吸收功率与能量;反之元件释放电能或发出功率。 集总参数元件:在任何时刻,流入二端元件的一个端子的电流一定等于另一端子流出的电流,且两个端子之间的电压为单值量。 实验室有额定电压220V、额定功率100W的白炽灯12盏,另有额定电压220V、额定功率2kW的电炉5 A.22 kWh B.10.4 kWh C.22.4 kWh D.20.4 kWh A.吸收功率 B.发出功率 C.不能确定 含受控源的无源一端口输入电阻若为负值,表明一端口发出功率。 电阻的平均功率为正值,同样电感、电容的平均功率也为正值。错误 电阻元件在电路中总是消耗功率,电压源和电流源总是发出功率。错误 线性电阻元件 电压和电流取关联参考方向时,任何时刻两端电压电流满足欧姆定律,u=Ri。 电阻器上除给出额定阻值外,还给出额定功率。 线性电阻是指遵循欧姆定律的电阻。 若某不为零的有限值电阻两端电压为零,则通过该电阻的电流也一定为零。错误 通常电灯开得越多,总负载电阻越大。错误 在端口电压一定情况下,串联的负载电阻愈多,则总电阻愈大,电路中总功率也就愈大。错误

用一个满刻度偏转电流为50、电阻为的表头制成2.5V量程的直流电压表,则附加电阻应为497 k。错误 用一个满刻度偏转电流为50、电阻为表头,并联分流电阻,制成量程为10mA的直 流电流表,并联分流电阻应为10.05。 伏安特性 电阻元件的特性,通过原点的直线,横坐标为u,纵坐标为i。 A. B. C. D. 开路 不论端电压为何值,电流为0,相当于电阻无穷大(电导为零),伏安特性与电压轴重合; 短路 不论电流值为多少,端电压恒为零,相当于电阻为零(电导无穷大),伏安特性曲线与电流轴重合。 短路的伏安特性在平面上与电流 轴重合,它相当于R= 零 独立电压源/电流源 与通过元件的电流/端电压无关,总保持给定的时间函数,短/开路没有意义。功率方向取非关联方向,电源发出功率。 如图所示电路中,I=3A,若将电流源断开,则电流I为(A)。 A.1A B.2A C.-1A D.3A

第4章-电弧的基本理论

第4章电弧的基本理论 电弧的实质是高温等离子体。 等离子体:由部分电子被剥夺后的原子及原子被电离后产生的正负电子组成的离子化气体状物质,它是除去固、液、气外,物质存在的第四态。 等离子体分为:高温等离子体和低温等离子体。电弧是高温等离子体。 电弧的特点:导电性能强、能量集中、温度高、亮度大、质量轻、易变形等。 4.1电弧的形成与去游离 放电的形式:非自持式放电和自持式放电。 非自持式放电:需要外部游离因素来维持的放电形式,主要指在气体环境下,放电持续需要依靠外界游离因素所造成的原始游离才能实现。 它的特点: 1.外因影响放电,外界游离因素消失,放电也会衰减直至停止; 2.具有饱和性,稳定的外部因素单位时间里游离出的带电粒子数目是稳定的,于是形成饱和形式的放电现象。 自持式放电:指当电场强度(场强)达到或超过一定值时,出现的电子崩可仅由电场的作用而自行维持和发展,不必再依赖外界游离因素的放电现象。 电弧是一种自持式放电现象,即电极间的带电质点不断产生和消失,处于一种动态平衡状态。 自持式放电: 1.放电不再依赖外界游离因素; 2.自持放电的条件是:电源的能量足以维持电弧的燃烧; 3.放电电流迅速增加,放电间隙电压迅速降低; 4.伴随有强光和高温。 4.1.1介质中电弧形成的机理 电弧的形成过程:介质向等离子体态的转化过程; 电弧的产生和维持:弧隙里中性质点(分子和原子)被游离的结果,游离就是中性质点转化为带电质点的过程。 从电弧的形成过程来看,游离过程分三种形式: 1.强电场发射:是在弧隙间最初产生电子的原因; 2.碰撞游离》:由英国物理学家汤森德在1903年提出(汤森德机理) 3.热游离:电弧产生之后,弧隙的温度很高,在高温作用下,气体的不规则热运动速度增加;具有足够动能的中性质点互相碰撞,又可能游离出电子和离子。 还有光游离、热电子发射、金属气化等。 4.1.2电弧的去游离过程 去游离的主要形式:复合和扩散。 1.复合去游离 复合:指正离子和负离子互相吸引,结合在一起,电荷互相中和的过程。 2.扩散去游离 扩散:指带电质点从电弧内部逸出而进入周围介质的现象。 弧隙内的扩散去游离的形式: 浓度扩散和温度扩散。 游离和去游离是电弧燃烧中两个相反的过程。 游离过程使弧道中的带电离子增加,有助于电弧的燃烧; 去游离过程使弧道中的带电离子减少,有利于电弧的熄灭。 由焊接电源供给的,在两极间产生强烈而持久的气体放电现象—叫电弧。电弧是由于电场过强,气体发生电崩溃而持续形成等离子体,使得电流通过了通常状态下的绝缘介质(例如空气)所产生的瞬间火花现象。1808年汉弗里·;戴维(Humphry Davy)利用此一现象发明第一盏“电灯”—电弧灯(voltaic

焊条电弧焊理论试题

焊条电弧焊理论试题 车间:姓名: 一、判断图(共40道题,每题1分) 1酸性焊条比碱性焊条的脱氧效果好。() 2焊接时应尽量采用长弧焊接,因为长弧焊时电弧的范围大,保护效果好。() 3电磁压缩力对溶滴过渡起促进作用。() 4“三检制”通常指的是自检、工人之间的互检和专职检验人员的专检。() 5烘干焊条是减少焊缝金属含氧量的重要措施之一。() 6低碳钢和低合金钢晶粒度越细其脆性转变温越低。() 7当焊条药皮中含有较多易电离的元素K、Na、Ca等时,电弧燃烧稳定。() 8焊接时开坡口、留钝边的目的是为了使焊缝根部焊透。() 9焊接电流越大,熔深越深,因此,焊缝成型系数越小。() 10焊缝标准辅助符号中的黑旗表示焊缝为重要焊缝。() 11焊接变形在焊接时是必然要产生的,是不可避免的。() 12焊缝不对称时,应先焊焊缝多的一侧,以减少弯曲变形量。() 13结构刚度增大时,焊接残余应力也随之加大。() 14三角形加热法常用于厚度较大,刚度较大构件扭曲变形的矫正。() 15弯曲试验属于无损检验方法。() 16气密性检验又称为肥皂水试验。() 17奥氏体不锈钢和低碳钢焊接时,应用最多的焊接方法是焊条电弧焊。() 18立焊、横焊、仰焊时,应选用比平焊小的焊接电流。() 19焊条横向摆动的目的是为了获得一定宽度的焊缝。() 20清除焊件表面的铁锈、油漆等污物目的是提高焊缝金属的强度。() 21产生焊缝尺寸不符合要求的主要原因是焊件坡口开得不当或装配间隙不均匀及焊接方法选择不当。( ) 22焊接时,焊缝坡口钝边过大,坡口角度太小,焊根未清理干净,间隙太小会造成焊瘤缺陷。( )

23预防和减少焊接缺陷的可能性的检验是焊前检验。( ) 24焊缝中心形成的热裂纹往往是区域偏析的结果。( ) 25氢不但会产生气孔,也会促使形成延迟裂纹。( ) 26焊工推拉刀闸时,可戴绝缘手套且面部避开,以免发生事故。() 27产品是生产出来的,让员工第一次就要做对。() 28焊接接头中最危险的焊接缺陷是焊接裂纹。( ) 29焊接时电流过小,焊速过高,热量不够或者焊条偏离坡口一侧易产生未熔合。( ) 30没有质量意识的劳动,是无效的劳动。() 31焊接电流太小,层间清渣不净易引起的缺陷是夹渣。( ) 32焊缝的内部缺陷用肉眼无法检验,也不影响焊缝美观,所以无需控制。() 33用“E5015”焊条焊接时,应选用交流焊机。() 34质量“五不准”指的是不合格的材料不投入生产、不合格的毛坯不加工、不合格的工件不转入下一过程、不合格的零件不装配、不合格的产品不出厂。() 35电弧焊时,电弧拉长则电弧电压降低;电弧缩短则电弧电压增加。() 36造成凹坑的主要原因是电弧过长及角度不当,在收弧时未填满弧坑。( ) 37焊接接头热影响区组织主要取决于焊接线能量,过大的焊接线能量则造成晶粒粗大和脆化,降低焊接接头的韧性。( ) 38加工人的“三检”指的是自检、互检、完工检;“三按”指的是按设计图纸、按工艺文件、按技术标准(组织)生产。() 39普通低合金结构钢焊接时最容易出现的焊接裂纹是.冷裂纹()。 40焊条的直径越粗,产生的电阻热就越大。() 二、选择题(共40道题,每题1分) 1 使用工作照明灯的安全电压不应超过() V。 A、36 B、60 C、110 2焊条药皮的主要作用之一是()。 A.稳定电弧 B.防止偏吹 C.减小变形 D.减小应力 3 焊缝中心的杂质往往比周围多,这种现象称为()。 A、层状偏析 B、区域偏析 C、晶间偏析 4 疲劳强度最高的接头形式是()。 A、对接接头 B、T形接头 C、搭街街头 D、角接接头 5 立焊和仰焊时,促使溶滴过渡的力有()。

材料结构复习题

一、简要回答下列问题 1. 刃型位错与螺型位错在结构方面的主要区别是什么? 2. 一个环形位错能否各部分均为刃型位错?为什么? 3. 位错滑移和攀移的实质分别是什么? 4. 面心立方晶体的(111)面上有一]110[2 a b =的螺型位错,当其在(111)面上滑移受阻时,可通过交滑移转移到哪一个{111}面上继续滑移?为什么? 5. 为什么冷加工变形可在金属晶体中产生过饱和的点缺陷? 6. 随着塑性变形量的增加,晶体内部的位错密度发生何种变化?为什么? 7. 柯垂尔气团与斯诺克气团的主要区别是什么? 8. 晶体的滑移通常总是沿着其最密晶面和最密晶向进行,为什么? 9. 面心立方晶体中的全位错的柏氏矢量取何值时其组态最稳定?为什么? 10. 体心立方晶体中的全位错的柏氏矢量取何值时其组态最稳定?为什么? 11. 为何晶体的滑移通常总是沿着其最密晶面和密排晶向进行? 12. 晶体中存在的位错如右图所示, 位错线的正方向是图中箭头所标 示的方向,两位错的柏氏矢量均 平行于X 轴。现对晶体施加一个 σzx 的应力,请指出两位错运动后 滑移面两侧两部分晶体的相对位 移量。 二、 何谓点缺陷的热力学平衡性?何谓过饱和点缺陷?指出产生过饱和点缺陷 的主要途径和相应机制。 三、金属晶体切变强度的实测值远低于其理论计算值,试用位错滑移理论加以详 细说明。 四、试说明晶体中刃型位错与螺型位错在结构特征、柏氏矢量、应力场特征以及 受力时的运动方式诸方面的不同之处。 五、试分析位错线互相垂直的两个刃型位错之间的交割行为。 六、 试分析位错线互相平行且柏氏矢量相同的两个正刃型位错之间的相互作用情况。

3 第三讲 交流电弧的过零熄灭和重燃理论和自能式灭弧室的开断原理

第三讲 交流电弧的过零熄灭和重燃理论和自能式灭弧室的开断原理 1. 交流电流过零熄弧 工业交流电每半周电流要过零一次,交流电流总是在电流过零时熄灭的,这与直流电弧不同,熄灭交流电弧比熄灭直流电弧要容易得多。交流电弧过零的详细过程分下列两种情况来说明: 1.1 用图1(a )所示的电阻电路来分析。由于电弧电压远低于电源电压,也就是说电源电压足以维持电弧燃烧而不致发生强制熄弧,因此电弧电流i 与电源电压u 同时过零,见图1(b ),0t 是产弧时刻,此时断口间产生电弧电压a u 。由于电源电压u 远远地大于电弧电压a u ,电弧电流i 仍近似于为正弦波,因此它与电弧电压a u 同时过零。电流过零详细情况见图2。 图1 电阻分析电路的电弧电流过零 图2 实际电弧电流h i 与电弧电压h u 同时过零

1.2 用图3所示的电感电路来分析。图中,u 是电源电压,令wt E u m cos =,(m E 是电源电压的幅值),L 是分析电路中的电感,QF 表示断口,n R 表示电弧电阻,电弧电压h h h R i u =(h u 随h i 改变正负号)。h i 是电路电流(即电弧电流) 图4表示此时电弧电流的变化曲线。图4中e 表示电源电压随时间变化的曲线(瞬时值),h i 是电弧电流的瞬时值。h i 可分解为两个分量组成:一 个分量是滞后于电源电压e 90°的的正弦电源分量wt wL E i m sin =';另一个分量是随时间线性(假设电弧电阻是恒定值)变化的分量 )(α-=''wt wL u i h ,α表示起始燃烧时刻的相位角,π和2π表示一个半波和一个周波的相位角。 由电路数学分析得出i i i h ''-'=。 实际电弧电流h i 比其正弦电流分量i '过零提前过零1wt 相位角,这是由于在电感电路中,由于有电弧压降存在而导致了实际电弧电流h i 比电弧电压h u 提前过零,其提前过零的相位角是ξ,ξ的数值为若干μs 至数十μs 数量级。 电流过零详细情况见图5。 图3 电感分析电路 图4 电感分析电路中电弧电流的变化曲线

金属位错理论

金属位错理论 位错的概念最早是在研究晶体滑移过程时提出来的。当金属晶体受力发生塑性变形时,一般是通过滑移过程进行的,即晶体中相邻两部分在切应力作用下沿着一定的晶面晶向相对滑动,滑移的结果在晶体表面上出现明显的滑移痕迹——滑移线。为了解释此现象,根据刚性相对滑动模型,对晶体的理论抗剪强度进行了理论计算,所估算出的使完整晶体产生塑性变形所需的临界切应力约等于G/30,其中G为切变模量。但是,由实验测得的实际晶体的屈服强度要比这个理论值低3~4数量级。为解释这个差异,1934年,Taylor,Orowan和Polanyi 几乎同时提出了晶体中位错的概念,他们认为:晶体实际滑移过程并不是滑移面两边的所有原子都同时做刚性滑动,而是通过在晶体存在着的称为位错的线缺陷来进行的,位错再较低应力的作用下就能开始移动,使滑移区逐渐扩大,直至整个滑移面上的原子都先后发生相对滑移。按照这一模型进行理论计算,其理论屈服强度比较接近于实验值。在此基础上,位错理论也有了很大发展,直至20世纪50年代后,随着电子显微镜分析技术的发展,位错模型才为实验所证实,位错理论也有了进一步的发展。目前,位错理论不仅成为研究晶体力学性能的基础理论,而且还广泛地被用来研究固态相变,晶体的光、电、声、磁和热学性,以及催化和表面性质等。 一、位错的基本类型和特征 位错指晶体中某处一列或若干列原子有规律的错排,是晶体原子排列的一种特殊组态。从位错的几何结构来看,可将他们分为两种基本类型,即刃型位错和螺型位错。 1、刃型位错 刃型位错的结构如图1.1所示。设含位错的晶体为简单立方晶体,晶体在大于屈服值的切应力 作用下,以ABCD面为滑移面发生滑移。多余的半排原子面EFGH犹如一把刀的刀刃插入晶体中,使ABCD 面上下两部分晶体之间产生了原子错排,故称“刃型位错”。晶体已滑移部分和未滑移部分的交线EF就称作刃型位错线。

电弧产生的原理

電弧 一電弧的產生 1.熱電子發射&強電場發射 當開關斷開時﹐電觸頭分離過程中﹐由於動靜觸頭間的壓力和接觸面積不斷下降﹐接觸電阻迅速增大﹐使觸頭急劇發熱﹐溫度升高。在觸頭分開的瞬間﹐觸頭間立即充滿了不導電的介質(如空氣)﹐電流不能通過﹐即電路在一瞬間被切斷。但是由於這時觸頭溫度很高﹐金屬觸頭內的一部分自由電子﹐因具有較大的動能而從觸頭表面逸出﹐稱為“熱電子發 射”。同時由於觸頭分斷的瞬間距離很小﹐觸頭間電場強度很高﹐在強大電場力作用下﹐將陰極觸頭內的一部分電子從陰極表面拉出﹐稱“強電場發射”。這樣就使觸頭之間的介質中出現了自由電子。 2.碰撞遊離 自由電子在電場力作用下﹐逐漸加速運動﹐迅速奔向陽極﹐自由電子在向陽極高速運動的過程中﹐不斷與氣體分子發生碰撞﹐運動中的自由電子積累足夠大的動能時﹐碰撞會使中性的氣體分子分離成正離子和自由電子﹐稱“碰撞遊離”。 3.電弧 新產生的自由電子和原有的自由電子一起在電場中加速運動﹐又與其他的中性氣體分子碰撞﹐再次發生碰撞遊離﹐如此碰撞遊離連鎖發展下去﹐氣體介質中帶電質點大量增加﹐使原本絕緣的氣體間隙﹐由於存在著大量導電的自由電子和正離子﹐在電路電壓的作用下﹐失去絕緣而導電﹐稱為“擊穿” ﹐形成電弧。 4.熱遊歷 電弧放電時﹐電流的密度大﹐溫度高﹐弧柱溫度高達5000~13000℃。弧柱中的高溫氣體分子本身具有極高的動能而作劇烈的熱運動﹐在無規則的熱運動中相互碰撞而遊離﹐稱為“熱遊歷”。弧柱中導電的正離子和自由電子﹐就是靠熱遊歷來維持的。電弧越強﹐溫度越高﹐電弧就越穩定。 5.電弧電壓 開關觸頭分斷電路時產生電弧﹐其強弱除與電路的電壓有關外﹐還決定於被切斷電流的大小﹔電弧形成後﹐維護電弧穩定燃燒的電壓稱為電弧電壓﹐。電弧電壓沿整個弧長非均勻分佈﹐分為陰極壓降區﹐弧柱和陽極壓降區三部分﹐陰極壓降區只占弧長很少的一部分﹐但是電壓比較高﹐約10~~20V﹐陽極壓降區的電壓一般小於陰極壓降區的電壓﹐且隨電弧電流的增大而減小﹐甚至接近於零﹐弧柱雖然占弧長的大部分﹐電壓變化卻不大。陰極壓降對滅弧﹐尤其是低壓電路中的滅弧﹐具有重大意義。

电弧的原理

电弧 电弧当用开关电器断开电流时,如果电路电压不低于10—20伏,电流不小于80~100mA,电器的触头间便会产生电弧。电弧是高温高导电率的游离气体,它不仅对触头有很大的破坏作用,而且使断开电路的时间延长。因此,在了解开关电器的结构和工作情况之前,首先来看看其是如何产生和熄灭的。电弧的形成是触头间中性质子(分子和原子)被游离的过程。开关触头分离时,触头间距离很小,电场强度E很高(E = U/d)。当电场强度超过3×10---6---V/m时,阴极表面的电子就会被电场力拉出而形成触头空间的自由电子。这种游离方式称为:强电场发射。从阴极表面发射出来的自由电子和触头间原有的少数电子,在电场力的作用下向阳极作加速运动,途中不断地和中性质点相碰撞。只要电子的运动速度v足够高,电子的动能A = mv2足够大,就可能从中性质子中打出电子,形成自由电子和正离子。这种现象称为碰撞游离。新形成的自由电子也向阳极作加速运动,同样地会与中性质点碰撞而发生游离。碰撞游离连续进行的结果是触头间充满了电子和正离子,具有很大的电导;在外加电压下,介质被击穿而产生电弧,电路再次被导通。触头间电弧燃烧的间隙称为弧隙。电弧形成后,弧隙间的高温使阴极表面的电子获得足够的能量而向外发射,形成热电场发射。同时在高温的作用下(电弧中心部分维持的温度可达10000℃以上),气体中性质点的不规则热运动速度增加。当具有足够动能的中性质点相互碰撞时,

将被游离而形成电子和正离子,这种现象称为热游离。随着触头分开的距离增大,触头间的电场强度E逐渐减小,这时电弧的燃烧主要是依靠热游离维持的。在开关电器的触头间,发生游离过程的同时,还发生着使带电质点减少的去游离过程。电弧是一种空气导电的现象,在两电极之间产生强烈而持久的放电现象,称为电弧。电弧的能量集中,温度极高,亮度很强。例:10kv QF 断开20kv的电流,电弧功率达到一万kw以上。电弧由阴级区、阳极区和弧柱区组成。弧柱处温度最高,可达6-7k0C到1万度以上。在弧柱周围温度较低。亮度明显减弱的部分叫弧焰,电流几手都从弧柱内部流过。电弧的气体放电是自持放电,维持电弧燃烧的电压很低。在大气中,1cm长的直流电弧的弧柱电压仅15-30v。在变压器油中,1cm长的直流电弧的弧柱电压仅100-220v。电弧是一束游离的气体,质量极轻,极易变形。电弧在气体或液体的流动作用下或电动力作用下,能迅速移动,伸长或弯曲。电弧对电力设备、动力设备的断路器有破坏作用,必须尽量消除。但在机械、建筑等领域,电焊却是一种广泛应用的工艺。在化工等领域,电弧喷涂也得到广泛应用! 灭弧 灭弧室是盆状的,底部有孔,动触头在孔中穿过,与静触头接触形成导电通路。灭弧室、静触头和动触杆上都有铜钨合金,灭弧室外有灭弧线圈。当动触杆和静触头分开即分闸操作时电弧会马上转移到灭弧室内,电流流过线圈,在灭弧室内建立磁场。

第3章电弧理论

第3章电弧理论

第3章电弧及电气触头的基本理论 教学要求:掌握电弧的形成及熄灭条件,熟悉电弧形成的物理过程、特性;掌握直流电弧 及交流电弧的特性及熄灭条件;掌握开关电 器常用的熄弧方法;了解电气触头的类型、 工作条件;掌握接触电阻的形成、发展、后 果及降低措施。 3.1电弧的形成和熄灭 概述 电弧——为一种气体游离放电现象 现象:开关电器开断电路时,触关间产生的耀眼的白光。 △电弧的存在说明电路中有电流,只有当 电弧熄灭,触头间隙成为绝缘介质时,电路 才算断开。 特征: ①电弧的能量集中,温度报高,亮度很强 例:10kvQF断开20kv的电流,电弧功率达到一万kw以上 EMBED AutoCAD.Drawing.14 ②电弧由阴级区,阳极区和弧柱区组成弧柱处温

度最高,可达6~7k0C到1万度以上在弧柱 周围温度较低,亮度明显减弱的部分叫弧 焰,电流几手都人人弧柱内部流过。 ③电弧的气体放电是自持放电,维持电弧燃烧的 电压很低在大气中,1cm长 的直流电弧的弧柱电压仅15~30v,在变压器油中,1cm长的直流电弧的弧柱 电压仅100~220v ④电弧是一束游离的气体,质量极轻,极易变形电弧在气体或液体的流动作用下或电动力作用下,能迅速移动、伸长或弯曲。 电弧的形成 1、带电质点的来源①电极发射大量自由电子: 热电子+强电场发射 ②弧柱区的气体游离,产生大 量的电子和离子:碰撞游离+热游离 2、电弧的形成 EMBED Equation.3 eq \o\ac(○,—) EMBED Equation.3 电弧的熄灭 去游离 介质的游离作用→电弧产生介质的去游离作

电弧电接触理论

SF6断路器灭弧室设计 姓名:叶玮 学号: 2010255 专业:电机与电器 指导教师:曹云东 论文提交日期:年月日

目录 1 灭弧室简介 (1) 2 平均分闸速度 υ的设计 (1) f 3 触头开距 ι及全行程0ι设计 (3) k 4 喷嘴设计 (3) 4.1 上游区设计 (3) 4.2 喉颈部设计 (5) 4.3 下游区设计 (7) 5 总结 (8)

1 灭弧室简介 断路器的主要功能是安全可靠地开断与关合。目前高压SF6断路器的发展方向是单断口开断容量增大,而产品整体体积逐渐缩小,这就要求断路器开断过程中吹弧气体流动必须合理。SF6断路器是靠气吹来熄弧的,因此在开断过程中灭弧室内气流场的分布状况就成为研究高压SF6断路器开断特性非常重要的组成部分。 GCB 灭弧室带负荷开断过程,是一个涉及热力学、气体动力学、电磁学及高压绝缘等专业的极其复杂的物理过程,电弧的燃烧与熄灭特性与灭弧室结构息息相关。以往的灭弧室设计是以理论定性分析为基础结合研究试验的经验设计,设计可靠性小、盲目性大、成功率低。近年来,灭弧室开断特性的数学模拟计算软件包已做了许多研究,有成果但不能满足工程设计计算需要,还应继续研究。一个新的GCB 灭弧室数学计算模型(或新型灭弧室研究试品)设计的好坏,对计算机计算结果的可适用性及反复修改设计、重复计算的次数都有直接的影响。 SF 6断路器灭弧室的喷口,对开断过程中吹弧气体的流动起着控制作用,它直接影响着开断过程中喷口内SF6气体的介质强度的恢复特性。从而对灭弧室喷口的设计成为SF6断路器整体设计中的核心内容之一。断路器喷口结构对开断性能的影响很大,喷口是决定特高压断路器开断性能的最关键部件,也是特高压断路器设计的核心。为此,世界上各大SF6断路器制造厂家研发出各具特色、具有独立知识产权的喷口结构。但是,各公司的喷口的设计技术都是核心的机密。目前为止,研究喷口结构和气流控制的国内外报道极少。 影响灭弧室工作特性的主要元件和特性参数是:分闸速度;行程、超程和开距;压气缸直径与容积;喷嘴尺寸与形状;触头形状与尺寸。 2 平均分闸速度f υ的设计 确定f υ主要考虑两个因素,一是开断小电容电流(相当于冷态开断)时.要保证断口有足够的介质恢复强度;二是近区故障(SFL)开断时,对应短燃弧时间t d ,要保证断口有足够快的介质热恢复速度。 切空载长线GCB 开断小电容电流(31.5~500A)时,对应于最短燃弧时间的断口电强度可由下式计算 7.00 71f k 69.0t )(ρρυK E U K = 式 1 式中 6K ——设计裕度,6K =1.15; U ——恢复电压峰值(KV ) n n n 78.2327.12322U U U K U =??=?= 按JB /T 5871—199l 《交流高压断路器线路充电电流开合试验》表4及第11.2.2条,单相试验时恢复电压峰值为

电焊工作业基础理论知识

电焊工基础理论 培训资料 一、基本知识 1.什么叫焊接? 答: 两种或两种以上材质(同种或异种),通过加热或加压或二者并用,来达到原子之间的结合而形成永久性连接的工艺过程叫焊接. 2.什么叫电弧? 答: 由焊接电源供给的,在两极间产生强烈而持久的气体放电现象—叫电弧。 〈1〉按电流种类可分为: 交流电弧、直流电弧和脉冲电弧。 〈2〉按电弧的状态可分为: 自由电弧和压缩电弧(如等离子弧)。 〈3〉按电极材料可分为: 熔化极电弧和不熔化极电弧。 3.什么叫母材? 答: 被焊接的金属---叫做母材。 4.什么叫熔滴? 答:

焊丝先端受热后熔化,并向熔池过渡的液态金属滴---叫做熔滴。 5.什么叫熔池? 答: 熔焊时焊件上所形成的具有一定几何形状的液态金属部分---叫做熔池。 6.什么叫焊缝? 答: 焊接后焊件中所形成的结合部分。 7.什么叫焊缝金属? 答: 由熔化的母材和填充金属(焊丝、焊条等)凝固后形成的那部分金属。 8.什么叫保护气体? 答: 焊接中用于保护金属熔滴以及熔池免受外界有害气体(氢、氧、氮)侵入的?--保护气体。 9.什么叫焊接技术? 答: 各种焊接方法、焊接材料、焊接工艺以及焊接设备等及其基础理论的总称—叫焊接技术。 10.什么叫焊接工艺?它有哪些内容? 答: 焊接过程中的一整套工艺程序及其技术规定。内容包括:

焊接方法、焊前准备加工、装配、焊接材料、焊接设备、焊接顺序、焊接操作、焊接工艺参数以及焊后处理等。 11.什么叫CO2焊接? 答: 用纯度> 99.98%的CO2做保护气体的熔化极气体保护焊—称为CO2焊。 12.什么叫MAG焊接? 答: 用混合气体75--95% Ar + 25--5 % CO2,(标准配比:80%Ar + 20%CO2)做保护气体的熔化极气体保护焊—称为MAG焊。 13.什么叫MIG焊接? 答: 〈1〉用高纯度氩气Ar≥ 99.99%做保护气体的熔化极气体保护焊接铝及铝合金、铜及铜合金等有色金属; 〈2〉用98% Ar + 2%O2或95%Ar + 5%CO2做保护气体的熔化极气体保护焊接实心不锈钢焊丝的工艺方法--称为MIG焊。 〈3〉用氦+氩惰性混合气做保护的熔化极气体保护焊。 14.什么叫TIG(钨极氩弧焊)焊接? 答: 用纯钨或活化钨(钍钨、铈钨、锆钨、镧钨)作为不熔化电极的惰性气体保护电弧焊,简称TIG焊。

材料科学基础复习资料整理

一.名词解释 塑性韧性强度弹性比功分子键(空间)点阵固溶体间隙固溶体固溶强化位错多晶体单晶体反应扩散柯肯达尔效应二次结晶共晶转变包晶转变共析转变铁素体(非)均匀形核结构起伏成分过冷过冷度加工硬化再结晶淬透性(过)时效回火脆性调幅分解 二. 需掌握的知识点 1. 延性断裂和脆性断裂的区分标准—断裂前有无明显塑性变形。 2. 原子核外电子分布规律遵循的三个原则。 3. 金属键、离子键、共价键、分子键的特点。 4. 混合键比例计算与电负性差的关系。 5. fcc、bcc、hcp的常见金属、一个晶胞内原子数、配位数、致密度、常见滑移系等。 6. 固态合金相分为两大类:固溶体(间隙固溶体与置换固溶体)和中间相(区别 点)。 7.影响固溶体溶解度的因素。 8.间隙相和间隙化合物的区别。 9. 晶体缺陷几何特征分类-点、线、面缺陷。 10. 点缺陷的种类及其区别(肖脱基缺陷和弗兰克尔缺陷)。 11.获得过饱和点缺陷的方法及原因。 12. 各类位错运动方向与柏氏矢量、切应力、位错线的位向关系。 13. 位错的主要运动方式;常温下金属塑性变形的方式。 14. 位错的增殖机制:F-R位错增殖机制、双交滑移增殖机制的主要内容。 15.说明柏氏矢量的确定方法。掌握利用柏氏矢量和位错线的位向关系来判断位错 类型。 16.两根平行的螺型位错相遇时的相互作用情况。 17.刃型位错和螺型位错的不同点。 18. 大小角度晶界的位向差、常见类型、模型描述、能量等。 19. 扩散第一定律、第二定律的数学表达式及其字母的物理含义。 20. 体扩散的主要机制、适用对象、扩散激活能大小等;短路扩散等;反应扩散与原子扩散;多晶材料的三种扩散途径—晶内、晶界、表面扩散。 21.柯肯达尔效应的含义及说明的问题(重要意义)。 22. 上坡扩散:物质由低浓度→高浓度,说明扩散的真正原因是化学势梯度而非浓度梯度。 23. 反应扩散定义、特点、扩散层增厚速度的决定因素。 24. 影响扩散的主要因素简述及分别叙述。 25. 压力加工合金、铸造合金应选取何种成分的合金及原因。 26. 铁碳合金分类:三大类、七小类。 27. 亚、共、过共析钢的室温平衡组织组成、相组成及运用杠杆定律求相对含量。 28.结晶相变的热力学、动力学、能量及结构条件。 29.纯金属凝固时,正、负温度梯度与晶体生长形态的关系;实际合金凝固过程中 生长形态与成分过冷的关系。 30. 结晶的两个过程—晶核形成、晶核长大;纯金属结晶的三个必要条件—过冷、

TWIP钢位错滑移与孪生联合诱发塑性的跨尺度力学行为研究

TWIP钢位错滑移与孪生联合诱发塑性的跨尺度力学行为研究孪生诱导塑性(TWinning Induced Plasticity,简称TWIP)钢拥有极其优良的强度、塑性和成形性能,满足了汽车用钢高强高塑性的双重标准。TWIP钢是由位错滑移与孪生机制共同诱发塑性,掌握其塑性变形过程中微观机制相互作用机理及其对宏观增强增塑的影响规律是亟需解决问题之一。 为揭示各变形机制微结构演化特征及其宏观增强增塑机理,本文以TWIP钢塑性变形微区位错与孪生联合作用的跨尺度表征为切入点,分别发展了微观、细观和宏观尺度相对应的离散位错动力学、物理基唯象位错动力学和晶体塑性有限元方法,并进一步建立了离散位错与晶体塑性非直接耦合的跨尺度力学模型,系统研究了 TWIP钢变形过程中从微观到细观进而到宏观的塑性变形行为。本文的主要研究成果如下:考虑TWIP钢塑性变形过程孪晶、晶界与位错的相互作用,引入孪晶界位错反应及其拓扑反应准则,建立了耦合孪晶的TWIP钢多晶三维离散位错动力学(3D-DDD)模型。 该模型直观描述了位错在孪晶界和晶界的反应过程,尤其是不同位错在孪晶界的分解反应。应用该模型定量研究了 TWIP钢塑性变形过程中孪晶对流动应力的贡献。 结果表明,孪晶取向对流动应力影响具有明显的取向效应,在有利取向下,位错运动至孪晶界发生分解反应形成孪生位错协调塑性变形,此时孪晶对流动应力贡献较小。采用位错理论耦合孪生能量方法分别定量计算了孪晶表面源和内部源形核、长大对应的临界孪生应力,确定了 TWIP钢单晶孪晶内部源形核和表面源长大的激活演化方式,建立了考虑孪晶形核、增殖和长大的物理基唯象位错动力学(DD)模型,研究了 TWIP钢单晶塑性变形过程中孪生机制演化特点及其内在机

位错理论

铝合金生产中的冷热变形微观组织 绪论:铝及铝合金在实际生产中,主要以挤压形式进行生产,随着加工工艺和生产技术得到飞速发展,人们对铝及铝合金轧板的要求日益增多。对于变形铝合金来说,由于所含的合金元素不同,需要不同的变形方式:冷变形和热变形。这里简单介绍在这两种变形的微观组织。 关键词:铝及铝合金,变形铝合金,冷变形和热变性。

目录 铝合金生产中的冷热变形微观组织 (1) 绪论 (1) 一、冷变形中铝合金微观组织 (3) 1.1亚结构 (3) 1 .2变形织构 (3) 二、热变形中的纤维组织 (5) 2.1铝合金热变形中的动态回复 (5) 2.2铝合金热变形中的再结晶 (6) 三、铝合金变形微结构的分类 (6) 参考文献 (8)

一、冷变形中铝合金微观组织 铝材冷加工后,随着外形的改变.晶粒皆沿最大主变形发展方向被拉长、拉细或压扁。冷变形程度越大,品粒形状变化也越大。在晶粒被拉长的同时,晶间的夹杂物也跟着拉长,使冷变形后的金属出现纤维组织。 1.1亚结构 亚结构包括两种类型:较低温度下产生的胞状结构以及变形后因回复形成的亚晶[1]。金属晶体经过较大的冷塑性变形后,由于位错密度增大和发生交互作用,大量的位错堆积在局部区域,并相互缠结形成不均匀的分布,在晶粒内部出现了许多取向不同、大小约为10-3~10-6cm 的小晶块,这些小晶块(或小晶粒间)的取向差不大(小于1°),所以它们仍然维持在同一个大晶粒范围内,这些小晶块称为亚晶[2],这种组织称为亚结构。在冷轧变形中,随着应变量的增加,晶粒发生分裂,内部就生成亚结构[3]。亚晶的大小、完整程度、取向差与材料的纯度及形量和变形温度有关。当材料中含有杂质和第二相时,在变形量大和变形温度低的情况下,所形成的亚晶小,亚晶间的取向差大,亚晶的完整性差(即亚晶内晶格的畸变大)。冷变形过程中,亚晶结构对金属的加工硬化起重要作用,由于各晶块的方位个同,其边界又为大量位错缠结,对晶内的进一步滑移起阻碍作用。因此,亚结构可提高铝及铝合金材料的强度。 1.2变形织构 铝及铝合金在冷变形过程中,内部各晶粒间的相互作用及变形发展方向因受外力作用的影响,晶粒要相对于外力轴产生转动,而使其动作的滑移系有朝着作用力轴的方向(或最大主变形方向作定向旋转的趋势。在较大冷变形程度下,晶粒位向由无序状态变成有序状态的情况,称为择优取向。由此所形成的纤维状组织,因其具有严格的位向关系,所以被称为变形织构。变形织构一般分为两种[2]:一是拉拔时形成的织构,称为丝织构,其主要特征是各个晶粒的某一晶向大致与拉拔方向平行,如图1(a)所示;二是轧制时形成的织构,称为板织构,其主要特

电气工程师基本理论

一、专业基础知识40 1、什么是计算负荷 答计算负荷是一个假想的持续负荷其热效应与同一时间内实际变动的负荷所产生的最大热效应相等。 2、什么是尖峰电流 答指单台或多台用电设备持续1s左右的最大负荷电流。 3、计算负荷的方法有哪些答出3个即可 答需要系数法、利用系数法、单位面积法、单位指标法、二项式法。 4、企业年用电量如何确定 答用企业年平均负荷乘以年实际工作小时数来确定。 5、提高功率因数有何意义 答减少线路损耗、减少变压器损耗、减少线路及变压器电压损失。 6、接地装置的工频接地电阻值与冲击接地电阻值相等吗 答一般不相等冲击接地电阻一般小于工频接地电阻。 7、电力变压器装置的保护种类有哪些 答出4个即可 答电流速断保护过电流保护过负荷保护、纵联差动保护瓦斯保护温度保护。 8、变压器的节能措施有哪些 答合理选择变压器容量和数量选用节能型变压器使变压器在经济。 9、哪些电源可做应急电源 答供电系统中独立于正常电源的专用馈电线路、独立于正常供电系统的发电机组、蓄电池、干电池。 10、供配电系统的设计为减小电压偏差可采取哪些要求3个即可 答正确选择变压器的变压比和电压分接头降低配电系统阻抗采用补偿无功功率、使三相负荷平衡。 11、当需要限制变电所6kV侧的短路电流时可采取哪些措施3个即可 答主变压器分列运行采用高阻抗变压器在变压器回路中装设电抗器在出线侧加电抗器。 12、爆炸危险场所的释放源分为哪几级

答分为连续释级放源、第一级释放源、第二级释放源、多级释放源。 13、供电系统应简单可靠同一电压供电系统的配电级数有什么要求 答不宜超过三级。 14、电力负荷根据什么来分级分几级 答根据对供电可靠性的要求及中断供电在政治、经济上所造成的损失或影响的程度。电力负荷分三级。 15、一级负荷对供电电源的有哪些要求 答一级负荷应由两个电源供电当一个电源发生故障时另一个电源不应同时受到损坏一级负荷中特别重要的负荷除上述两个电源外还必须增设应急电源。 16、继电保护在技术上应满足的四项基本要求是什么 答选择性、速动性、灵敏性、可靠性。 17、二级负荷对供电电源有哪些要求 答宜由两个回路供电在负荷较小或地区供电条件困难时可由一回6kV及以上专用架空线路或电缆供电。 18、6kV线路一般设置哪些保护 答电流速断保护、过电流保护、单相接地保护。 19、6kV电力电容器一般设置哪些保护4个即可 答电流速断保护、过电压保护、低电压保护、开口三角电压保护、单相接地保护。 20、6kV电动机一般设置哪些保护 答电流速断保护、过负荷保护、低电压保护、单相接地保护。 21、6kV线路电压偏差允许值是多少 答77。 22、变压器的节能措施有哪些-3- 答合理选择变压器容量和台数选用节能型变压器加强运行管理使变压器经济运行。 23、影响照明质量的因素有哪些 答照度均匀度、眩光的控制、光源的颜色和显色性、频闪效应。 24、建筑物的哪些部位易受雷击 答屋面的女儿墙、屋檐、屋角、屋脊。

位错理论

《位错与位错强化机制》杨德庄编著哈尔滨工业大学出版社1991年8月第一版 1-2 位错的几何性质与运动特性 一、刃型位错 2.运动特性 滑移面:由位错线与柏氏矢量构成的平面叫做滑移面。 刃型位错运动时,有固定的滑移面,只能平面滑移,不能能交叉滑移(交滑移)。 刃型位错有较大的滑移可动性。这是由于刃型位错使点阵畸变有面对称性所致。 二、螺型位错 1. 几何性质 螺型位错的滑移面可以改变,有不唯一性。螺型位错能够在通过位错线的任意平面上滑移,表现出易于交滑移的特性。 同刃型位错相比,螺型位错的易动性较小。、 位于螺型位错中心区的原子都排列在一个螺旋线上,而不是一个原子列,使点阵畸变具有轴对称性。 2.混合位错 曲线混合位错的结构具有不均一性。 混合位错的运动特性取决于两种位错分量的共同作用结果。一般而言,混合位错的可动性介于刃型位错和螺型位错之间。随着刃型位错分量增加,使混合位错的可动性提高。 混合位错的滑移面应由刃型位错分量所决定,具有固定滑移面。 四、位错环 一条位错的两端不能终止于晶体内部,只能终止于晶界、相界或晶体的自由表面,所以位于晶体内部的位错必然趋向于以位错环的形式存在。一般位错环有以下两种主要形式: 1. 混合型位错环 在外力作用下,由混合型位错环扩展使晶体变形的效果与一对刃型位错运动所造成的效果相同。 2. 棱柱型位错环 填充型的棱柱位错环 空位型棱柱位错环 棱柱位错环只能以柏氏矢量为轴的棱柱面上滑移,而不易在其所在的平面上向四周扩展。因为后者涉及到原子的扩散,因而在一般条件下(如温度较低时)很难实现。 1-3 位错的弹性性质 位错是晶体中的一种内应力源。——这种内应力分布就构成了位错的应力场。——位错的弹

位错理论与应用试题

位错理论与应用试题 学院:材料科学与工程学院 学生: 老师: 日期:2011年5月2日

位错理论与应用试题: 1、解释:层错、扩展位错、位错束集、汤姆森四面体(20分) (1)、层错是一种晶体缺陷。如已知FCC结构的晶体,密排面{111}堆堆垛顺序为ABCABC……以“Δ”表示AB、BC、CA……次序,用“▽”表示相反次序,即BA、CB、AC……,则FCC的正常堆垛顺序为ΔΔΔ……,HCP 密排面{0001}按照…ABAB…顺序堆垛,则表示为:Δ▽Δ▽……若在FCC 中抽走一层C,则 A B C A B ↓ A B C A B C ΔΔΔΔ▽ΔΔΔΔΔ;插入一层A,则A B C A B ↓A↓C A B C ΔΔΔΔ▽▽△△△,即在“↓”处堆垛顺序发生局部错乱,出现堆垛层错,前者为抽出型层错,后者为插入型层错,可见FCC晶体中的层错可看成是嵌入了薄层密排六方结构。 (2)、一个全位错分解为两个或多个不全位错,其间以层错带相联,这个过程称为位错的扩展,形成的缺陷体系称为扩展位错。 (3)、扩展位错有时在某些地点由于某种原因会发生局部的收缩,合并为原来的非扩展状态,这种过程称为扩展位错的束集。 (4)、1953年汤普森(N. Thompson)引入参考四面体和一套标记来描述FCC 金属中位错反应,如下图。将四面体以ΔABC为底展开,各个线段的点阵矢量,即为汤普森记号,它把FCC金属中重要滑移面、滑移方向、柏氏矢量简单而清晰地表示出来。

2、位错的起源、增值机制及位错的分类?(15分) (1)、位错的起源主要有两个:第一个是位错本来就存在于籽晶或者其它导致晶体生长的壁面中,这些位错有一部分在晶体赖以生长的表面露头,就扩展到成长着的新晶体中;另一个是新晶体成长时的偶然性所造成的位错生核,其中包括:杂质颗粒等引起的内应力所产生的不均匀生核,成长中的不同部分的表面(如枝晶表面)之间的碰撞产生新的位错,空位片崩塌所造成的位错环。 (2)、位错的增值机制是被广泛引用的弗兰克–里德(Frank-Read,简称为F-R)源机制,如下图: 这种理论认为新位错的产生是原有位错增殖的结果。设想晶体中有一段位错AB,它的两端被位错网的结点钉住。沿着图(a)中b的方向对AB施加应力,AB由于两端被固定不能移动,只可能发生弯曲,结果如图(b)所示。由于位错所受的力恒与位错垂直,所以弯曲后的位错每一微段将继续受到力的作用,并沿着它的法线方向持续向外运动,发展情况如图(c)和(d)所示。当弯曲部分的位错互相靠近,如图(e)所示的那样,并最终相遇时,根据柏氏矢量可判知,在接触点的两根位错方向相反(分别是左旋和右旋),故它们相遇时会互相抵消,整根位错在该点处断开,大致形成一个位错环和一根新的位错,如图(f)所示。最后,在切应力的继续作用下,成为一个圆滑的椭圆环和一根直线,如图(g)所示。继续施加切应力时,上述的过程可以反复进行下去,源源不断地产生新的位错环。

相关文档