文档库 最新最全的文档下载
当前位置:文档库 › 第三章静态电磁场及其边值问题的解

第三章静态电磁场及其边值问题的解

电磁场与电磁波课后习题及答案六章习题解答

第六章 时变电磁场 有一导体滑片在两根平行的轨道上滑动,整个装置位于正弦时变磁场 5cos mT z e t ω=B 之中,如题图所示。滑片的位置由0.35(1cos )m x t ω=-确定,轨道终 端接有电阻0.2R =Ω,试求电流i. 解 穿过导体回路abcda 的磁通为 5cos 0.2(0.7) cos [0.70.35(1cos )]0.35cos (1cos )z z d B ad ab t x t t t t ωωωωωΦ==?=?-=--=+?g g B S e e 故感应电流为 11 0.35sin (12cos ) 1.75sin (12cos )mA in d i R R dt t t t t R ωωωωωωΦ = =-=-+-+E 一根半径为a 的长圆柱形介质棒放入均匀磁场0z B =B e 中与z 轴平行。设棒以角速 度ω绕轴作等速旋转,求介质内的极化强度、体积内和表面上单位长度的极化电荷。 解 介质棒内距轴线距离为r 处的感应电场为 00 z r r r B φωω=?=?=E v B e e B e 故介质棒内的极化强度为 00000(1)()e r r r r B r B εεεωεεω==-=-P E e e X 极化电荷体密度为 200 00 11()()2()P rP r B r r r r B ρεεωεεω?? =-??=- =--??=--P 极化电荷面密度为 0000()()P r r r a e r a B σεεωεεω==?=-?=-P n B e 则介质体积内和表面上同单位长度的极化电荷分别为 220020012()212()P P PS P Q a a B Q a a B πρπεεωπσπεεω=??=--=??=- 平行双线传输线与一矩形回路共面,如题图所示。设0.2a m =、0.1m b c d ===、7 1.0cos(210)A i t π=?,求回路中的感应电动势。

电磁场第三章作业解答

第三章作业解答 3.3 电荷均匀分布于两圆柱面间的区域中,体密度为30C m ρ, 两圆柱面半径分别为a 和b ,轴线相距为c )(a b c -<,如题3.3图()a 所示。求空间各部分的电场。 解 由于两圆柱面间的电荷不是轴对称分布,不能直接用高斯定律求解。但可把半径为a 的小圆柱面内看作同时具有体密度分别为0ρ±的两种电荷分布,这样在半径为b 的整个圆柱体内具有体密度为0ρ的均匀电荷分布,而在半径为a 的整个圆柱体内则具有体密度为0ρ-的均匀电荷分布,如题3.3图()b 所示。空间任一点的电场是这两种电荷所产生的电场的叠加。 在b r >区域中,由高斯定律0 d S q ε= ? E S ,可求得大、小圆柱 中的正、负电荷在点P 产生的电场分别为 220012 0022r b b r r πρρπεε==r E e 220012 0022r a a r r πρρπεε'-''==-''r E e 点P 处总的电场为 2211220 ()2b a r r ρε' '=+=-'r r E E E 在b r <且a r >'区域中,同理可求得大、小圆柱中的正、负电 荷在点P 产生的电场分别为 2200 22r r r πρρπεε==r E e 2222 0022r a a r r πρρπεε'-''==-''r E e 点P 处总的电场为 202220()2a r ρε' '=+=-' r E E E r 在a r <'的空腔区域中,大、小圆柱中的正、负电荷在点P 产 生的电场分别为 200300 22r r r πρρπεε==r E e 200300 22r r r πρρπεε''-''==-'r E e 点P 处总的电场为 0033 00 ()22ρρ εε''=+=-=E E E r r c

电磁场与电磁波课后习题及答案六章习题解答

第六章 时变电磁场 6.1 有一导体滑片在两根平行的轨道上滑动,整个装置位于正弦时变磁场 5cos mT z e t ω=B 之中,如题6.1图所示。滑片的位置由0.35(1cos )m x t ω=-确定,轨 道终端接有电阻0.2R =Ω,试求电流i. 解 穿过导体回路abcda 的磁通为 5cos 0.2(0.7)cos [0.70.35(1cos )]0.35cos (1cos )z z d B ad ab t x t t t t ωωωωωΦ==?=?-=--=+?B S e e 故感应电流为 11 0.35sin (12cos ) 1.75sin (12cos )mA in d i R R dt t t t t R ωωωωωωΦ = =-=-+-+E 6.2 一根半径为a 的长圆柱形介质棒放入均匀磁场0z B =B e 中与z 轴平行。设棒以角 速度ω绕轴作等速旋转,求介质的极化强度、体积和表面上单位长度的极化电荷。 解 介质棒距轴线距离为r 处的感应电场为 00 z r r r B φωω=?=?=E v B e e B e 故介质棒的极化强度为 00000(1)()e r r r r B r B εεεωεεω==-=-P E e e X 极化电荷体密度为 200 00 11()()2()P rP r B r r r r B ρεεωεεω?? =-??=- =--??=--P 极化电荷面密度为 0000()()P r r r a e r a B σεεωεεω==?=-?=-P n B e 则介质体积和表面上同单位长度的极化电荷分别为 220020012()212()P P PS P Q a a B Q a a B πρπεεωπσπεεω=??=--=??=- 6.3 平行双线传输线与一矩形回路共面,如题6.3图所示。设0.2a m = 、0.1m b c d ===、7 1.0cos(210)A i t π=?,求回路中的感应电动势。

电磁场与电磁(第三版)课后答案第3章

第三章习题解答 3.1 真空中半径为a 的一个球面,球的两极点处分别设置点电荷q 和q -,试计算球赤道平面上电通密度的通量Φ(如题3.1图所示)。 解 由点电荷q 和q -共同产生的电通密度为 33[]4q R R π+- +- = -=R R D 22322232 () (){}4[()][()]r z r z r z a r z a q r z a r z a π+-++-+-++e e e e 则球赤道平面上电通密度的通量 d d z z S S S Φ====??D S D e 22322232 ()[]2d 4()()a q a a r r r a r a ππ--=++? 2212 01)0.293()a qa q q r a =-=-+ 3.2 1911年卢瑟福在实验中使用的是半径为a r 的球体原子模型,其球体内均匀分布有总电荷量为Ze -的电子云,在球心有一正电荷Ze (Z 是原子序数,e 是质子电荷量),通 过实验得到球体内的电通量密度表达式为02314r a Ze r r r π?? =- ??? D e ,试证明之。 解 位于球心的正电荷Ze 球体内产生的电通量密度为 12 4r Ze r π=D e 原子内电子云的电荷体密度为 33 3434a a Ze Ze r r ρππ=- =- 电子云在原子内产生的电通量密度则为 3223 4344r r a r Ze r r r ρπππ==-D e e 故原子内总的电通量密度为 122314r a Ze r r r π??=+=- ???D D D e 3.3 电荷均匀分布于两圆柱面间的区域中,体密度为30C m ρ, 两 圆柱面半径分别为a 和b ,轴线相距为c )(a b c -<,如题3.3图()a 所示。求空间各部分 的电场。 解 由于两圆柱面间的电荷不是轴对称分布,不能直接用高斯定律求解。但可把半径为 a 的小圆柱面内看作同时具有体密度分别为0ρ±的两种电荷分布,这样在半径为 b 的整个圆 柱体内具有体密度为0ρ的均匀电荷分布,而在半径为a 的整个圆柱体内则具有体密度为 0ρ-的均匀电荷分布,如题3.3图()b 所示。空间任一点的电场是这两种电荷所产生的电场 的叠加。 在b r >区域中,由高斯定律 d S q ε= ? E S ,可求得大、小圆柱中的正、负电荷在点P 产生的电场分别为 2200120022r b b r r πρρπεε==r E e 220012 0022r a a r r πρρπεε' -''==-''r E e 题3.1 图 题3. 3图( )a

《电磁场与电磁波》 习题解答选

《电磁场与电磁波》(陈抗生)习题解答 第一章 引言——波与矢量分析 1.1 . ,,/)102102cos(102 6300p y v k f E m V x t y y E E 相速度相位常数度,频率波的传播方向,波的幅的方向,,求矢量设 解:m /V )x 102t 102cos(10y y E z E y E x E E 26300y 0z 0y 0 x 矢量E 的方向是沿Y 轴方向,波的传播方向是-x 方向; 波的幅度 m /V 10E E 3y 。 s /m 10102102k V ;102k ; MHZ 1HZ 1021022f 82 6 P 2 66 1.2 写出下列时谐变量的复数表示(如果可能的话) ) 6 sin()3 sin()()6(cos 1)()5() 2 120cos(6)()4(cos 2sin 3)()3(sin 8)()2() 4 cos(6)()1( t t t U t t D t t C t t t A t t I t t V (1)解: 4/)z (v j 23234 sin j 64cos 6e 6V 4 j (2)解:)2 t cos(8) t (I 2 )z (v j 8e 8I j 2

(3)解:) t cos 13 2t sin 13 3( 13)t (A j 32e 13A 2)z () 2t cos(13)t (A 13 3 cos ) 2 (j v 则则令 (4)解:)2 t 120cos(6) t (C j 6e 6C 2 j (5)(6)两个分量频率不同,不可用复数表示 1.3由以下复数写出相应的时谐变量] ) 8.0exp(4)2 exp(3)3() 8.0exp(4)2(1)1(j j C j C j C (1)解: t sin t cos j t sin j t cos )t sin j t )(cos j 1(e )j 1(t j t sin t cos )Ce (RE )t (C t j (2)解:)8.0t cos(4)e e 4(RE )Ce (RE ) t (C t j 8.0j t j (3)解:)8.0t (j ) 2t (j t j 8 .0j j t j e 4e 3e )e 4e 3(Ce 2 得:)t cos(3)8.0t cos(4)8.0t cos(4)2 t cos(3)Ce (RE )t (C t j 1.4 ] Re[, )21(,)21(000000 B A B A B A B A z j y j x B z j y j x A ,,,求:假定 解:1B A B A B A B A z z y y x x

电磁场与电磁波(第三章)

第3章习题 习题3.3 解: (1) 由?-?=E 可得到 a <ρ时, 0=-?=?E a >ρ时, φρφρ?φρsin 1cos 12222??? ? ??-+???? ??+-=-?=a A e a A e E (2) 圆柱体为等位体且等于0,所以为导体制成,其电荷面密度为 φεεερρρρcos 2000A E e E e a a n s -=?=?=== 习题3.5 证: 根据高斯定律q S d D S =?? ,得 0R r <时。ρππ344312 r D r =,则0 01113,3εερεερr r r D E r D === 0R r >时。ρππ3443022 R D r =,则203002 223023,3r R D E r R D ερερ=== 则中心点的电位为 20 0200 203 020 13633)0(0 ερεερερεερ?R R dr r R dr r dr E dr E r R R R r R += +=+=?? ??∞ ∞ 习题3.8

解: 根据高斯定律q S d D S =?? ,得同轴线内、外导体间的电场强度为 περ ρ2)(l q E = 内、外导体间的电压为 a b q d q Ed U l b a b a l ln 22περπερ ρ= ==?? 则同轴线单位长度的电容为 ) /ln(2a b U q U Q C l πε = == 则同轴线单位长度的静电储能为 )/ln(422212122 2 a b q d q dV E W l b a l V e περπρπερεε=??? ? ??==?? 习题3.11 解: (1) 设同轴电缆中单位长度的径向电流为I ,电流密度 )(2c a I e J <<=ρπρ ρ 介质中的电场 )(21 1 1b a I e J E <<==ρπρσσρ )(22 2 2c b I e J E <<==ρπρσσρ 而 ? ?+= ?+?=b a b a b c I a b I d E d E U ln 2ln 221 210πσπσρρ ) /ln()/ln(2120 21b c a b U I σσσπσ+=

电磁场与电磁波理论(第二版)(徐立勤-曹伟)第3章习题解答

第3章习题解答 3.1 对于下列各种电位分布,分别求其对应的电场强度和体电荷密度: (1)()2,,x y z Ax Bx C Φ=++; (2)(),,x y z Axyz Φ=; (3)()2,,sin z A B z Φρ?ρ?ρ=+; (4)()2,,sin cos r Ar Φθ?θ?=。 解:已知空间的电位分布,由E Φ=-?r r 和2 0/Φρε?=-可以分别计算出电场强度和体电荷密度。 (1) ()2x E e Ax B Φ=-?=-+r r r 0202εερA -=Φ?-= (2) ()x y z E A e yz e xz e xy Φ=-?=-++r r r r r 020=Φ?-=ερ (3) (2sin )cos z E e A Bz e A e B ρ?Φρ?ρ?ρ??=-?=-+++??r r r r 20004sin sin 3sin Bz Bz A A A ρεΦε??ε?ρρ???? =-?=-+-=-+ ? ???? ? (4) ()2sin cos cos cos sin r E e Ar e Ar e Ar θ?Φθ?θ??=-?=-+-r r r r r 200cos 2cos cos 6sin cos sin sin A A A θ??ρεΦεθ?θθ?? =-?=-+ - ?? ? 3.5 如题3.5图所示上下不对称的鼓形封闭曲面,其上均匀分布着密度为0S ρ的面电荷。 试求球心处的电位。 解:上顶面在球心产生的电位为 22001111100 ()()22S S d R d R d ρρ Φεε= +-=- 下顶面在球心产生的电位为 22 002222200 ()()22S S d R d R d ρρΦεε= +-=- 侧面在球心产生的电位为 030 014π4πS S S S R R ρρΦεε= = ? 式中2 12124π2π()2π()2π()S R R R d R R d R d d =----=+。因此球心总电位为 1230 S R ρΦΦΦΦε=++= 3.6有02εε=和05εε=的两种介质分别分布在0z >和0z <的半无限大空间。已知0z >时, 201050x y z E e e e =-+r r r r V /m 。试求0z <时的D r 。 解:由电场切向分量连续的边界条件可得 1t 2t E E =? 000520510x y z D D εε<=?=-? 代入电场法向方向分量满足的边界条件可得 1n 2n D D =? 050z z D <= 于是有 0001005050x y z z D e e e εε<=-+r r r r 3.9 如题 3.9图所示,有一厚度为2d 的无限大平面层,其中充满了密度为 ()0πcos x x d ρρ=的体电荷。若选择坐标原点为零电位参考点,试求平面层 之内以及平面层以外各区域的电位和电场强度。

电磁学复习资料第三章

第三章 稳恒电流 一、判断题 1、若导体内部有电流,则导体内部电荷体密度一定不等于零 2、通过某一截面的,截面上的电流密度必为零 3、通过某一截面上的电流密度,通过该截面的电流强度必为零 √ 4、如果电流是由几种载流子的定向运动形成的,则每一种载流子的定向运动对电流都有贡献 √ 5、一个给定的一段导体(材料、几何尺寸已知)其电阻唯一确定 6、静电平衡时,导体表面的场强与表面垂直,若导体中有稳电流,导体表面的场强仍然与导体表面垂直 7、金属导体中,电流线永远与电场线重合 √ 8、在全电路中,电流的方向总是沿着电势降落的方向 9、一个15W,12V 的灯泡接在一电源上时,能正常发光。若将另一500W ,24V 的灯泡接在同一电源上时也能正常发光 10、电源的电动势一定大于电源的路端电压 11、两只完全相同的电流表,各改装成10和1000V 的电压表,一只并联在5的负载两端,另一只并联在500V 的负载两端,通过两只表的电流一样大 √ 12、基尔霍夫方程对非稳恒电流也适用 13、有A 、B 两种金属,设逸出功>,其余的差异可忽略,则接触后,A 带正电,B 带负电 ?0=I ?0=j ???????

14、接触电势差仅来自两金属逸出功的不同 二、选择题 1、描写材料的导电性能的物理量是: (A )电导率 (B )电阻R (C )电流强度I (D )电压U A 2、在如图所示的测量电路中,准确测量的条件是: (A ) (B )>>R (C )<< (D )<

电磁学试题库电磁学第三章试题(含答案)

一、填 空 题 1、电介质的极化分为 ,和 。 答案内容:位移极化,取向极化。 2、如图,有一均匀极化的介质球,半径为R ,极化强度为P ,则极化电荷在球心处产生的场强是 。 答案内容: 3ε-P ; 3、0C C r ε=成立的条件是 。 答案内容:介质为均匀介质; 4、通常电介质的极化分为两类,其中无极分子的极化称为 有极分子的极化称为 。 答案内容:位移极化;取向极化; 5、如图所示,水平放置的平行电容器,极板长为L ,二极板间距为d ,电容器两极板间加有电压,据板右端L 处放置一个荧光屏S 。有一个质量为m ,电量为q 的粒子,从电容器左端的中央以速度0v 水平射入电场,粒子穿过电容器后 (两板间距离d 的大小能满足粒子穿过电容器),要求以水平速度打在荧光屏S 上,则加在电容器两极板间电压的大小应为 。 答案内容:2mgd/q ; 6、如图所示,平行板电容器的极板面积为S ,间距为d ,对此电容器充电之后,拆去电源,再插入相对介电常数为r ε,厚度为/2d 的均匀电介质板,设为插入介质前,两极板间的电场为0E ,插入介质后,介质内外的电场分 别为1E 和2E ,则:10/__________E E =,20/__________E E = 。 答案内容: 1/r ε;1. 7、有一平板电容器,用电池将其充电,这时电容器中储存能量为W 0,在不断开电池的情况下,将相对介电常数为r ε的电介质充满整个电容器,这时电容器内存储能量W= W 。 答案内容:r ε ; P z R

8、在平行板电容器之间放入一电介质板,如图所示,则电容器电容将为 ,设未放介质时电容为C 0 。 答案内容:021r r C εε+ ; 单选择题 1 1、如果电容器两极间的电势差保持不变,这个电容器在电介质存在时所储存的自由电荷与没有电介质(即真空)时所储存的电荷相比:( ) (A)增多; (B )减少; (C )相同; (D )不能比较。 答案内容:A ; 2、内外半径为21R R 和的驻极体球壳被均匀极化,极化强度为P P ;的方向平行于球壳直 径,壳内空腔中任一点的电场强度是: ( C ) (A ) 3ε= P E ; (B)0=E ; (C) 3ε- =P E ; (D) 32ε= P E 。 3、一个介质球其内半径为R ,外半径为R+a ,在球心有一电量为0q 的点电荷,对于R

《电磁场与电磁波》第4版(谢处方 编)课后习题答案 三章习题解答

三章习题解答 3.1 真空中半径为a 的一个球面,球的两极点处分别设置点电荷q 和q -,试计算球赤道平面上电通密度的通量Φ(如题3.1图所示)。 解 由点电荷q 和q -共同产生的电通密度为 33[]4q R R π+- +- = -=R R D 22322232 () (){}4[()][()]r z r z r z a r z a q r z a r z a π+-++-+-++e e e e 则球赤道平面上电通密度的通量 d d z z S S S Φ====??D S D e g g 223222320()[]2d 4()() a q a a r r r a r a ππ--=++? 2212 1)0.293()a qa q q r a =-=-+ 3.2 1911年卢瑟福在实验中使用的是半径为a r 的球体原子模型,其球体内均匀分布有总电荷量为Ze -的电子云,在球心有一正电荷Ze (Z 是原子序数,e 是质子电荷量),通过实验得到球体内的电通量密度表达式为02314r a Ze r r r π?? =- ??? D e ,试证明之。 解 位于球心的正电荷Ze 球体内产生的电通量密度为 12 4r Ze r π=D e 原子内电子云的电荷体密度为 33 3434a a Ze Ze r r ρππ=-=- 电子云在原子内产生的电通量密度则为 3223 4344r r a r Ze r r r ρπππ==-D e e 故原子内总的电通量密度为 122314r a Ze r r r π??=+=- ??? D D D e 3.3 电荷均匀分布于两圆柱面间的区域中,体密度为3 0C m ρ, 两圆柱面半径分别为a 和b ,轴线相距为c )(a b c -<,如题3.3图()a 所示。求空 间各部分的电场。 解 由于两圆柱面间的电荷不是轴对称分布,不能直接用高斯定律求解。但可把半径为a 的小圆柱面内看作同时具有体密度分别为0ρ±的两种电荷分布,这样在半径为b 的整个圆柱体内具有体密度为0ρ的均匀电荷分布,而在半径为a 的整个圆柱体内则具有体密度为0ρ-的均匀电荷分布,如题3.3图()b 所示。空间任一点的电场是这两种电荷所产生的电场的叠加。 在b r >区域中,由高斯定律0 d S q ε= ?E S g ?,可求得大、小圆柱中的正、负电荷在点P 产生 题3.1 图 题3. 3图()a

电磁场第四章习题测验解答

第四章习题解答 4.1 如题4.1图所示为一长方形截面的导体槽,槽可视为无限长,其上有一块与槽相绝缘的盖板,槽的电位为零,上边盖板的电位为,求槽内的电位函数。 解 根据题意,电位满足的边界条件为 ① ② ③ 根据条件①和②,电位的通解应取为 由条件③,有 两边同乘以,并从0到对积分,得到 故得到槽内的电位分布 4.2 两平行无限大导体平面,距离为,其间有一极薄的导体片由到 。上板和薄片保持电位 ,下板保持零电位,求板间电位的解。设在薄片平面上,从到,电位线性变化,。 解 应用叠 加原理,设板间的电位为 0U (,)x y ?(0,)(,)0y a y ??==(,0)0x ?=0(,)x b U ?=(,)x y ?1 (,)sinh( )sin()n n n y n x x y A a a ππ?∞ ==∑01 sinh( )sin()n n n b n x U A a a ππ∞ ==∑sin( )n x a πa x 002sin()d sinh()a n U n x A x a n b a a ππ==?0 2(1cos )sinh() U n n n b a πππ-=04,1,3,5,sinh()02,4,6,U n n n b a n ππ? =???=? ,0 1,3,5, 41(,)sinh()sin()sinh()n U n y n x x y n n b a a a ππ?π π== ∑ b d y =b y =)(∞<<-∞x 0U 0=y d y =0(0,)y U y d ?=(,)x y ?= 12(,)(,)x y x y ??+ 题4.1图 y o y bo y d y 题 4.2图

电磁学第三章

第三章静电场中的电介质重点 电介质:绝缘体 自由电荷:可宏观分离的电荷. 束缚电荷:约束在原子、分子中的带电粒子, 不能宏观分离 极化电荷:电介质由于极化产生的等效宏观电荷。 §1电介质的极化 讨论电介质在电场中的电性质 1. 偶极子模型 1.偶极子模型 近似正、负电荷分别集中在两点——偶极子模型 2. 偶极子 (1)偶极子: 相距极近的两个等值异号点电荷组成的系统. 偶极矩p = q l (2) 偶极子激发的电场 U(r)≈pcosθ/(4πε0r2) E r= -?U/?r=p r cosθπε 2 3 Eθ= -1 r (?U/?θ)= p r sinθ πε 4 3 Eφ= -1 r sinθ (?U/?φ)=0 E= -P/(4πε0r3)+3(P?r)r/(4πε0r5) 特点: E ∝ p/r3∝ q l/r3 <>l时一系列模型近似:点电荷、电荷对(偶极子)、双电荷对(电四极子)、……对中性分子,点电荷项为零,电荷对的作用成为最主要的 电偶极子在外场E中势能 W =-q0E?l=-P?E 2.电介质的极化 1. 无外场时分子的电特性 (1)有极分子

分子(固有)偶极矩p分子≠0 , 随机分布?P宏观=0 (2)无极分子 分子(固有)偶极矩p分子=0 ? P宏观=0 (3)分子电特性取决于分子结构 2. 在电场中分子极化 有极分子转向极化 响应时间: 10-2~10-10s ; 可以有损耗 无极分子位移极化: 响应时间: 10-14~10-16s; 无损耗 极化结果: 沿E方向有P宏观 3. 极化强度 定义: P=∑p分子/?V (库仑/米2) 即:单位体积内分子偶极矩之和 4.极化强度与场强关系 1. 线性关系 各向同性电介质P=χε0E 各向异性电介质P, E线性但不同向 说明:(1)线性关系的条件:E非很大. (2)均匀电介质:χ为常数 2. 其它 铁电体 驻极体(永电体) 5. 极化对流体黏度的影响—电流变效应(Electrorheological effect) 电流变效应: 一些特殊液体由于极化其黏度发生明显的、可逆的、连续的、可控的变化§2极化电荷 极化引起电介质内部电荷“重心”的规则分布, 宏观看有电荷效果 1. 极化电荷q’与P关系 求闭合曲面S内的极化电荷q’ 1. 位移极化情况 偶极子被S面切开贡献± q 通过d S的偶极子的贡献dq’= -qn dV = -P?d S S内的极化电荷 q’= -∮P? d S ρ’=?q’/?V= -??P P均匀?ρ’=0 q’=0 2. 转向极化情况介绍S dS

6 电磁场与电磁波 第六章 答案

6.2 自由空间中一均匀平面波的磁场强度为 )cos()(0x wt H a a H z y π-+= m A / 求:(1)波的传播方向;(2)波长和频率;(3)电场强度; (4)瞬时坡印廷矢量。 解:)cos()(0x wt H a a H z y π-+= m A / (1) 波沿+x 方向传播 (2) 由题意得:k=π rad/m , 波长m k 22==πλ , 频率Hz c f 8105.1?==λ (3))cos(120 )(0x wt H a a a H E z y x ππη--=?= m v / (4))(cos 24020x wt H a H E S x ππ-=?= 2 /m w 6.3无耗媒质的相对介电常数4=r ε,相对磁导率1=r μ,一平面电磁波沿+z 方向传播,其电场强度的表 达式为)106cos(80z t E a E y β-?= 求:(1)电磁波的相速;(2)波阻抗和β;(3)磁场强度的瞬时表达式;(4)平均坡印廷矢量。 解: (1)s m c v r r p /105.11 8?===εμμε (2))(6000Ω===πεεμμεμηr r , m r a d c w w r r /4===εμμεβ (3))4106cos(60180z t E a E a H x z -?-=?=π η m A / (4)π120]Re[2120*E a H E S z av =?= 2/m w 6.4一均匀平面波从海水表面(x=0)沿+x 方向向海水中传播。在x=0处,电场强度为m v t a E y /)10cos(1007π =,若海水的80=r ε,1=r μ,m s /4=γ。 求:(1)衰减常数、相位常数、波阻抗、相位速度、波长、趋肤深度; (2)写出海水中的电场强度表达式; (3)电场强度的振幅衰减到表面值的1%时,波传播的距离; (4)当x=0.8m 时,电场和磁场得表达式; (5)如果电磁波的频率变为f=50kHz ,重复(3)的计算。比较两个结果会得到什么结论? 解: (1)

电磁场与电磁波(西安交大第三版)第3章课后答案

第3章习题 3-1 半径为a 的薄圆盘上电荷面密度为s ρ,绕其圆弧轴线以角频率ω旋转形成电流,求电流面密度。 解:圆盘以角频率ω旋转,圆盘上半径为r 处的速度为r ω,因此电流面密度为 ? ωρρ?r v J s s s == 3-2 在铜中,每立方米体积中大约有28 105.8?个自由电子。如果铜线的横截面为2 10cm ,电 流为A 1500。计算 1) 电子的平均漂移速度; 2) 电流密度; 解:2)电流密度 m A S I J /105.110 10150064?=?== - 1) 电子的平均漂移速度 v J ρ= , 3102819/1036.1105.8106.1m C eN ?=???==-ρ s m J v /101.110 36.1105.14 10 6-?=??==ρ 3-3 一宽度为cm 30传输带上电荷均匀分布,以速度s m /20匀速运动,形成的电流,对应的电 流强度为A μ50,计算传输带上的电荷面密度。 解:电流面密度为 m A L I J S /7.1663 .050μ=== 因为 v J S S ρ= 2/33.820 7.166m C v J S S μρ=== 3-4 如果ρ是运动电荷密度,U 是运动电荷的平均运动速度,证明: 0=??+??+??t U U ρρρ 解:如果ρ是运动电荷密度,U 是运动电荷的平均运动速度,则电流密度为 U J ρ= 代入电荷守恒定律 t J ??-=??ρ 得 0=??+??+??t U U ρ ρρ 3-5 由m S /1012.17 ?=σ的铁制作的圆锥台,高为m 2,两端面的半径分别为cm 10和cm 12。 求两端面之间的电阻。 解:用两种方法

电磁学答案第3章.

第三章 静电场的电介质 3.2.1 偶极矩为p → =q l → 的电偶极子,处于场强为E 的外电场中,p → 与E → 的夹角为θ。 (1) 若是均匀的,θ为什么值时,电偶极子达到平衡? (2)如果E 是不均匀的,电偶极子能否达到平衡? 解: (1)偶极子受的力: F + =F _=qE 因而F → +=-F → _∴偶极子 受合力为零。偶极子受的力矩 T =p ?E 即 T=qEsin θ 当 T=0时,偶极子达到平衡, ∴ pEsin θ=0 p → ≠0 E → ≠0 ∴θ=0 , π θ=0这种平衡是稳定平衡。θ=π是不稳定平衡。 (2) 当E → 不是均匀电场时,偶极子除受力矩外还将受一个 力(作用在两个点电荷的电场力的合力)。所以不能达到平衡。 3.2.2 两电偶极子 1p →和2 p → 在同一直线上,所以它们之间距r 比它们自己的线度大的很多。证明:它们的相互作用力的大小为F= 4 02 123r p p πε,力的方向是:1 p → 与 2 p → 同方向时互相吸引,反方向时互相排斥。 证: 已知当r >>l 时,偶极子在其延长线上 一点的场强:E → =3 02r p πε→ 当 1p → 与 2p → 同方向时,如图 2p → 所受的力的大小: +→ F =E → q= r l r q p ∧ +3 201)2 (2πε

-→ F = - E → q= r l r q p ∧ --3 201)2 (2πε ∴F → = +→ F +-→ F =r l r l r q p ∧????? ? ?? ????--+323201)2(1 )2(12πε =r l r l l r q p ∧ ?? ? ???---?32223 222 01)2()2(2262πε 略去 4 22l 及 83 2 l 等高级小量。 F → =-r r ql p ∧ 4 02 146πε = -r r p p ∧ 4 02123πε 当 1p → 与 2p → 反方向时(如图) ,同理: F →= r l r l r q p ∧????? ? ?? ????--+323201)2(1 )2(12πε =012πεq p ?r l r l l r ∧ -+3222 3 222) 4 ()2(23 略去高级小量得: F → =r r P P ∧ 402123πε 3.2.3 一电偶极子处在外电场中,其电偶极矩为 ,其所在处的电场强度为 。 (1) 求电偶极子在该处的电位能, (2) 在什么情况下电偶极子的电位能最小?其值是 多少?

合工大电磁场与电磁波第六章答案汇总

第6章习题答案 6-1 在1=r μ、4=r ε、0=σ的媒质中,有一个均匀平面波,电场强度是 )3 sin(),(π ω+ -=kz t E t z E m 若已知MHz 150=f ,波在任意点的平均功率流密度为2μw/m 265.0,试求: (1)该电磁波的波数?=k 相速?=p v 波长?=λ波阻抗?=η (2)0=t ,0=z 的电场?)0,0(=E (3)时间经过μs 1.0之后电场)0,0(E 值在什么地方? (4)时间在0=t 时刻之前μs 1.0,电场)0,0(E 值在什么地方? 解:(1))rad/m (22πεπμεω== =r c f k )m/s (105.1/8?==r p c v ε )m (12== k π λ )Ω(60120πεμπη=r r = (2)∵ 62002 10265.02 121-?=== m r m av E E S εεμη ∴ (V/m)1000.12-?=m E )V/m (1066.83 sin )0,0(3-?==π m E E (3) 往右移m 15=?=?t v z p (4) 在O 点左边m 15处 6-2 一个在自由空间传播的均匀平面波,电场强度的复振幅是 米伏/1010) 202 ( j 4 20j 4 y x e e E z z e e πππ----+= 试求: (1)电磁波的传播方向? (2)电磁波的相速?=p v 波长?=λ频率?=f (3)磁场强度?=H (4)沿传播方向单位面积流过的平均功率是多少? 解:(1) 电磁波沿z 方向传播。 (2)自由空间电磁波的相速m/s 1038 ?==c v p )m (1.02022=== π π πλk ∵ πω 20== c k ∴ c πω20= ∴ Hz 1031029?===c f π ω (3))A/m )((106521 20j ) 2 20(j 7 y z x z z e e .e e E e H ππ πη -+--+?=?=

大物电磁学第三章习题静电场中的电介质

第三章 练习题 一、选择题 1、[ C ]关于D r 的高斯定理,下列说法中哪一个是正确的? (A) 高斯面内不包围自由电荷,则面上各点电位移矢量D r 为零. (B) 高斯面上D r 处处为零,则面内必不存在自由电荷. (C) 高斯面的D r 通量仅与面内自由电荷有关. (D) 以上说法都不正确. 2、[ D ]静电场中,关系式 0D E P ε=+r r r (A) 只适用于各向同性线性电介质. (B) 只适用于均匀电介质. (C) 适用于线性电介质. (D) 适用于任何电介质. 3、[ B ]一导体球外充满相对介电常量为r ε的均匀电介质,若测得导体表面附近场强为 E ,则导体球面上的自由电荷面密度0σ为: (A)0E ε. (B) E ε. (C) r E ε . (D) 0()E εε- . 4、[ A ]一平行板电容器中充满相对介电常量为r ε的各向同性的线性电介质.已知介质表面极化电荷面密度为σ'±,则极化电荷在电容器中产生的电场强度的大小为: (A) 0σε'. (B) 0r σεε'. (C) 02σε'. (D) r σε' . 5、[ B ]一平行板电容器始终与端电压一定的电源相联.当电容器两极板间为真空时,电 场强度为0E r ,电位移为0D r ,而当两极板间充满相对介电常量为r ε的各向同性的线性电介 质时,电场强度为E r ,电位移为D r ,则 (A) 0 0,r E E D D ε==r r r r . (B) 00,r E E D D ε==r r r r . (C) 00,r r E E D D εε==r r r r . (D) 00,E E D D ==r r r r . 6、 [ C ]一空气平行板电容器,两极板间距为d ,充电后板间电压为U 。然后将电源断开,在两板间平行地插入一厚度为d/3的与极板等面积的金属板,则板间电压变为

电磁场与电磁波第三章习题及参考答案

第3章习题 3-1 半径为的薄圆盘上电荷面密度为s ρ,绕其圆弧轴线以角频率旋转形成电流,求电流面 密度。 解:圆盘以角频率 旋转,圆盘上半径为r 处的速度为r ω,因此电流面密度为 ? ωρρ?r v J s s s ==ρ ρ 3-2 在铜中,每立方米体积中大约有28 105.8?个自由电子。如果铜线的横截面为2 10cm ,电 流为A 1500。计算 1) 电流密度; 2) 电子的平均漂移速度; 解:1)电流密度 m A S I J /105.110 10150064?=?== - 2) 电子的平均漂移速度 v J ρ=, 3102819/1036.1105.8106.1m C eN ?=???==-ρ s m J v /101.110 36.1105.1410 6-?=??==ρ 3-3 一宽度为cm 30传输带上电荷均匀分布,以速度s m /20匀速运动,形成的电流,对应的电 流强度为A μ50,计算传输带上的电荷面密度。 解:电流面密度为 m A L I J S /7.1663.050μ=== 因为 v J S S ρ= 所以 2/33.820 7.166m C v J S S μρ=== 3-4 如果ρ是运动电荷密度,U ρ 是运动电荷的平均运动速度,证明: 0=??+??+??t U U ρρρρρ 证:如果ρ是运动电荷密度,U ρ 是运动电荷的平均运动速度,则电流密度为 U J ρρρ= 代入电荷守恒定律 t J ??-=??ρρ 得 0=??+??+??t U U ρρρρρ 3-5 由m S /1012.17 ?=σ的铁制作的圆锥台,高为m 2,两端面的半径分别为cm 10和cm 12。 求两端面之间的电阻。

电磁场与电波课后习题及答案二章习题解答

二章习题解答 2.1 一个平行板真空二极管内的电荷体密度为4323004 9 U d x ρε--=- ,式中阴极板位于0x =,阳极板位于x d =,极间电压为0U 。如果040V U =、1cm d =、横截面210cm S =,求:(1)0x =和x d =区域内的总电荷量Q ;(2)2x d =和x d =区域内的总电荷量Q '。 解 (1) 4323 000 4 d ()d 9d Q U d x S x τ ρτε--==-=?? 11004 4.7210C 3U S d ε--=-? (2) 432002 4d ()d 9d d Q U d x S x τρτε--' '= = -=? ?11004(10.9710C 3U S d ε--=-? 2.2 一个体密度为732.3210C m ρ-=?的质子束,通过1000V 的电压加速后形成等速的 质子束,质子束内的电荷均匀分布,束直径为2mm ,束外没有电荷分布,试求电流密度和电流。 解 质子的质量271.710kg m -=?、电量191.610C q -=?。由 2 1 mv qU = 得 61.3710v ==? m 故 0.318J v ρ== 2A m 26(2)10I J d π-== A 2.3 一个半径为a 的球体内均匀分布总电荷量为Q 的电荷,球体以匀角速度ω绕一个直径 旋转,求球内的电流密度。 解 以球心为坐标原点,转轴(一直径)为z 轴。设球内任一点P 的位置矢量为r ,且r 与z 轴的夹角为θ,则P 点的线速度为 sin r φωθ=?=v r e ω 球内的电荷体密度为 3 43 Q a ρπ= 故 33 3sin sin 434Q Q r r a a φ φω ρωθθππ===J v e e 2.4 一个半径为a 的导体球带总电荷量为Q ,同样以匀角速度ω绕一个直径旋转,求球表 面的面电流密度。 解 以球心为坐标原点,转轴(一直径)为z 轴。设球面上任一点P 的位置矢量为r ,且r 与z 轴的夹角为θ,则P 点的线速度为 sin a φωθ=?=v r e ω 球面的上电荷面密度为 2 4Q a σπ= 故 2 sin sin 44S Q Q a a a φφω σωθθππ===J v e e 2.5 两点电荷18C q =位于z 轴上4z =处,24C q =-位于y 轴上4y =处,求(4,0,0)处 的电场强度。

相关文档
相关文档 最新文档