文档库 最新最全的文档下载
当前位置:文档库 › 六年级第20讲 数论综合(教师版)

六年级第20讲 数论综合(教师版)

六年级第20讲  数论综合(教师版)
六年级第20讲  数论综合(教师版)

第20讲数论综合

1 公元前后,居住在墨西哥东部尤卡坦半岛的玛雅人的记数法是二十进制,他们基本的数字符号仅有两个:“.”和“一”,“.”来自玉米、豆子或卵石的形状,表示1;“一”是豆荚的形状,表示5.用这两个符号的上、下排列,组成了1~19各个数字(如下图所示).

【答案】68097

【分析】17+4×20+10×202+8×203=68097

2 一个五位数恰好等于它各位数字和的2007倍,则这个五位数是——.

【答案】36126或54189

【分析】这个五位数为abcde,由题意abcde= 2007 (a+b+c+d +e)

由于9| 2007,可得9|abcde,则有9|(a+b+c+d+e), 2007×9=18063,这个五位数是18063的倍数,只可能为:18063,36126,54189,722525.经检验,36126和54189符合题意.

3 (1)从1到3998这3998个自然数中,有多少个数能被4整除?

(2)从1到3998这3998个自然数中,有多少个数的各位数字之和能被4整除?

【答案】 (1)999个,(2)999个.

【分析】(l)由于每连续4个自然数中必有一个能被4整除,3998÷4=999……2.因此从1到3998这3998个自然数中能被4整除的一共有999个‘

(2)为了方便,将0到3999这4000个整数都看成四位数abcd(不是四位则在前面补零,如12=0012).由于b.c,d各有10种数字可任意选择,而且当b.c.d选定后.为满足a+b+c+d 能被4整除,千位数字“必唯一确定.

事实上,若b+c+d=4K时,则a=o;若b+c+d=4K+l 时.则a=3 :若b+c+d=4K+2

时,则a=2;若b+C+d=4K+3,则a=1.(K为整数)

综上所述,在o到3999这4000个整数中有1×10 ×10×10=1000(个)数的各位数字之和能被4整除.因此,从1到3998这3998个自然数中有1ooo-1=999(个)数的各位数字之和能被4整除,

4 如下图所示,摆放2×2的“4宫格”要用12根火柴棒;摆放3×3的“9宫格”要用24

根火柴棒.小明用1300根火柴棒,恰好摆放成一个m×m的“m-宫格”,问m =?

76

4宫格 9宫格

【答案】25

【分析】m2向的火柴棒有m+1列,每列有m根,也共有m(m+1)根.所以,摆放”,m2宫格”共用了2m( m+1) 根火柴棒.

由2m(m+ l) =1300,得到m(m+1)=650=2×52×13=25×26.因此m=25 .

5 二十多位小朋友围成一圈做游戏,他们依顺时针顺序从小赵报1开始连续报数,但7的

倍数或带有数字7的数都要跳过去不报;报错的人表演一个节目.小明是第一个报错的人,当他右边的同学报90时他错报了91.如果他第一次报数报的是19,那么这群小朋友共有——人.

【答案】24

【分析】情况一:..跳过去不报”指一个小朋友报了6,下一个小朋友不报数而是拍手.再下一个小朋友报8.此时,每个人应当轮到的数和上一次轮到的数(报出来或者拍手跳过)之间的差等于总人数.小明本次应当拍手,而不是报出91.所以”总人数是91—19=72的约数.有72.36.24,18,……,其中是“二十多”的只有24.

情况二:,.跳过去不报”指一个小朋友报了6,下一个小朋友直接报8.此时.把所有i 的倍数和带有数字7的数去掉之后,剩余的数排成一列,每个人应当轮到的数和上一次轮到的

数在这个数列中的位置号之差等于总人数.

从19到90这72个数中,含有数字7的有27,37,47,57,67,70到79.87.共16个.是i 的倍数且不含有数字7的有21,28,35,42,49,56,63,84共8令,所以排除掉之后剩下48个.总人数应当是48的约数,有48,24,16,……,其中是“二十多”的也只有24。

这道题目存在两种不同的情况,但是答案却恰好相同,这确实是巧合,但也令人感叹数学之美妙!

6 从1至9这九个数字中挑出六个不同的数填在下图的六个圆圈内,使任意相邻两个圆圈内数字之和都是质数,那么最多能找出种不同的挑法来(六个数字相同、排列次序不同的都算同一种).

【答案】7 7本题采用枚举与筛选的方法求解.设以、a,b,c和x,y,z为1~9中的六个不同的数’

如下图排列,显然任意相邻两数之和均为大于2的质数,即奇质数,由于以a+x,以a+z 均为奇数,

因此(a+x)一(a+z)=x-z是偶数,这就是说x与z是同奇偶;从而可以推知,a,b,c同奇偶;

若x,y,z为偶数,这样x,y,z仅有四种取值方法(2,4,6;2,4,8;2,6,8;4,6,8).以2,6,8为例

7 能被3整除且至少有一个数字是6的四位数有个

【答案】1056

【分析】四位数共有9000个,其中3的信数有3000个.可以采用排除法,首先考虑有多少个叫位数是3的倍数但不含有数码6.

首位数码有8种选择,第二、三位数码都有9种选择。当前三位的数码确定后,如果它们的和除以3余数为0.则第四位数码可以为0、3、9;如果余数为1,则第四位数码可以为2、5、8;如果余数为2,则第四位数码可以为1、4、7.可见只要前三位数码确定了,第四位数码都有3种选择,所以四位数中是3的倍数似不含有数码6的数共有8×9×9×3-1944(个). 所以满足条件的四位数共有3000-1914=1056(个).

8 不大于2009的自然数中,被3整除且恰有一个数码是6的有 个

【答案】162

【分析】2000~2009之间没有满足条件的数,只需考虑0~1999之问.

首位数码有两种选法,只能是0或1:而数码6需要在剩下的二位中任选一个位置有三利选法;接下来一位除6之外均可选择.所以有9种选法;对于最后选数码的一位,如果已选的=

位数码的和除以3余数为0,则可以为0、3、9;如果余数为1,则可以为2、5、8;如果余数为2,贝可以为1、4、7.可见只要前三位数码确定了,最后一位数码都有3种选择,所以四位数中是3的倍数旦只含有个数码6的数共有2×3×9×3=162(个).

9 试说明,将1+21+31+。。。+401的和写成一个最简分数n

m 时,m 不会是5的倍数 【分析】分母中仅有25被52整除,因此通分后,公分母是52×a ,a 是不被5整除的自然数(事实上,a=25×32×7×11×13×17×19×23×29×31×37),并且除去示变为

外,其他分数的分子都是5的倍数。因面这些分数的和成为 ,其中b 是自然数,由于a 不是5的倍数.所以5×b 十a 不是5的倍数,当然约分后得到的最简分数”的分子m 不会是5的倍数。

10 数89之数码和为17.请问1、2、3、…、2008这2008个数之数码和的总和为多少?

【答案】28054

【分析】这2008个数的个位数码之和是

(1-213+4-5+6+7+8-9)×200+(1-2-3+4+5+6+7-8)-9036;这2008个数的十位数码之和是(1+2+3+4-5-66+7+8-9)×200=9000;这2008个数的百位数码之和是(1+2+3+4+5-6+7+8+9)×200一9000;这2008个数的千位数码之和是1×1000-2×9-1018;

11 21ab 是一个四位数,由四个阿拉伯数字a 、b ,1,2组成的其他23个四位数的和等于

【分析】

90669,求a 和6的值.

12 N是一个各位数字互不相等的自然数,它能被它的每个数字整除.N的最大值是

【分析】

13 在3和5之间插入6、30、20这三个数,得到3、6、30、20、5这样一串数.其中每相邻两个数的和可以整除它们的积(例如,3_』-6=9,9可以整除3×6;再如,6__-30=36,36可以整除6×30).

请你在4与3这两数之间的三个空中各填入一个非零的整数,使得其中每相邻两个数的和可以整除它们的积.

4、_ ___、____、____、3

【分析】

14 N为自然数,且N+l、N+2、…、N+9与690都有大于1的公因数.N的最小值为

【分析】

15 写一个首位数字比末位数字大2的n位数(n大于或等于3)A,交换首位数字和末尾数

字,得n位数B,A、B相减(大数减小数),所得的差为n位数C,把C的首位数字和末尾数字互换得D,C和D的和是S,不论写怎样的符合要求的数A,所得S都是一个常数K的倍数,则K的最大值是

【分析】

8至紫四位数共有9000个,其中3的信数有3000个.可以采用排除法,首先考虑有多少个叫位数是3的倍数但不含有数码6.

首位数码有8种选择,第二、三位数码都有9种选择。当前三位的数码确定后,如果它们的和除以3余数为0.则第四位数码可以为0、3、9;如果余数为1,则第四位数码可以为2、5、8;如果余数为2,则第四位数码可以为1、4、7.可见只要前三位数码确定了,第四位数码都有3种选择,所以四位数中是3的倍数似不含有数码6的数共有8×9×9×3-1944(个).

所以满足条件的四位数共有3000-1914=1056(个).

学而思 小升初专项训练__数论篇(1) 教师版

名校真题 测试卷10 (数论篇一) 时间:15分钟 满分5分 姓名_________ 测试成绩_________ 1 (05年人大附中考题) 有____个四位数满足下列条件:它的各位数字都是奇数;它的各位数字互不相同;它的每个数字都能整除它本身。 2 (05年101中学考题) 如果在一个两位数的两个数字之间添写一个零,那么所得的三位数是原来的数的9倍,问这个两位数 是__。 3 (05年首师附中考题) 211+2121202+21212121 13131313212121505 =__。 4 (04年人大附中考题) 甲、乙、丙代表互不相同的3个正整数,并且满足:甲×甲=乙+乙=丙×135.那么甲最小是____。 5 (02年人大附中考题) 下列数不是八进制数的是( ) A 、125 B 、126 C 、127 D 、128 【附答案】 1 【解】:6 2 【解】:设原来数为ab ,这样后来的数为a0b,把数字展开我们可得:100a+b=9×(10a+b),所以我们可以知道5a=4b,所以a=4,b=5,所以原来的两位数为45。 3 【解】:周期性数字,每个数约分后为211+212+215+21 13=1 4 【解】:题中要求丙与135的乘积为甲的平方数,而且是个偶数(乙+乙),这样我们分解135=5×3×3×3,所以丙最小应该是2×2×5×3,所以甲最小是:2×3×3×5=90。 5 【解】:八进制数是由除以8的余数得来的,不可能出现8,所以答案是D 。

第十讲 小升初专项训练 数论篇(一) 一、小升初考试热点及命题方向 数论是历年小升初的考试难点,各学校都把数论当压轴题处理。由于行程题的类型较多,题型多样,变化众多,所以对学生来说处理起来很头疼。数论内容包括:整数的整除性,同余,奇数与偶数,质数与合数,约数与倍数,整数的分解与分拆等。作为一个理论性比较强的专题,数论在各种杯赛中都会占不小的比重,而且数论还和数字谜,不定方程等内容有着密切的联系,其重要性是不言而喻的。 二、2007年考点预测 2007年的小升初考试将继续以填空和大题形式考查数论,命题的方向可能偏向小题考察单方面的知识点,大题则需综合运用数的整除,质数与合数,约数倍数以及整数的分拆等方法,希望同学们全面掌握数论的几大知识点,能否在考试中取得高分解出数论的压轴大题是关键。 三、基本公式 1)已知b|c,a|c,则[a,b]|c,特别地,若(a,b)=1,则有ab|c 。 [讲解练习]:若3a75b 能被72整除,问a=__,b=__.(迎春杯试题) 2)已知c|ab ,(b,c)=1,则c|a 。 3)唯一分解定理:任何一个大于1的自然数n 都可以写成质数的连乘积,即 n= p11a × p22a ×...×p k ak (#) 其中p1

(完整版)六年级奥数-第十一讲.数论综合(二).教师版[1]

第十一讲 数论综合(二) 教学目标: 1、 掌握质数合数、完全平方数、位值原理、进制问题的常见题型; 2、 重点理解和掌握余数部分的相关问题,理解“将不熟悉转化成熟悉”的数学思想 例题精讲: 板块一 质数合数 【例 1】 有三张卡片,它们上面各写着数字1,2,3,从中抽出一张、二张、三张,按任意次序排列出来, 可以得到不同的一位数、二位数、三位数,请你将其中的质数都写出来. 【解析】 抽一张卡片,可写出一位数1,2,3;抽两张卡片,可写出两位数12,13,21,23,31,32;抽三 张卡片,可写出三位数123,132,213,231,312,321,其中三位数的数字和均为6,都能被3整除,所以都是合数.这些数中,是质数的有:2,3,13,23,31. 【例 2】 三个质数的乘积恰好等于它们和的11倍,求这三个质数. 【解析】 设这三个质数分别是a 、b 、c ,满足11abc a b c =++(),则可知a 、b 、c 中必有一个为11,不妨 记为a ,那么11bc b c =++,整理得(1b -)(1c -)12=,又121122634=?=?=?,对应的2b =、13c =或3b =、7c =或4b =、5c = (舍去),所以这三个质数可能是2,11,13或3,7,11. 【例 3】 用1,2,3,4,5,6,7,8,9这9个数字组成质数,如果每个数字都要用到并且只能用一次,那 么这9个数字最多能组成多少个质数? 【解析】 要使质数个数最多,我们尽量组成一位的质数,有2、3、5、7均为一位质数,这样还剩下1、4、6、 8、9这5个不是质数的数字未用.有1、4、8、9可以组成质数41、89,而6可以与7组合成质数 67.所以这9个数字最多可以组成6个质数. 【例 4】 有两个整数,它们的和恰好是两个数字相同的两位数,它们的乘积恰好是三个数字相同的三位 数.求这两个整数分别是多少? 【解析】 两位数中,数字相同的两位数有11、22、33、44、55、66、77、88、99共九个,它们中的每个数都 可以表示成两个整数相加的形式,例如331322313301617=+=+=+==+L L ,共有16种形式,如果把每个数都这样分解,再相乘,看哪两个数的乘积是三个数字相同的三位数,显然太繁琐了.可以从乘积入手,因为三个数字相同的三位数有111、222、333、444、555、666、777、888、999,每个数都是111的倍数,而111373=?,因此把这九个数表示成一个两位数与一个一位数或两个两位数相乘时,必有一个因数是37或37的倍数,但只能是37的2倍(想想为什么?)3倍就不是两位数了. 把九个三位数分解:111373=?、222376743=?=?、333379=?、4443712746=?=?、5553715=?、6663718749=?=?、7773721=?、88837247412=?=?、9993727=?. 把两个因数相加,只有(743+)77=和(3718+)55=的两位数字相同.所以满足题意的答案是74和3,37和18. 板块二 余数问题 【例 5】 (2003年全国小学数学奥林匹克试题)有两个自然数相除,商是17,余数是13,已知被除数、除数、 商与余数之和为2113,则被除数是多少? 【解析】 被除数+除数+商+余数=被除数+除数+17+13=2113,所以被除数+除数=2083,由于被除数是除 数的17倍还多13,则由“和倍问题”可得:除数=(2083-13)÷(17+1)=115,所以被除数=2083-115=1968.

{小学数学}小六数学第21讲:数论综合教师版-——李寒松[仅供参考]

2021年{某某}小学 小 学 数 学 学 习 资 料 教师: 年级: 日期:

第二十一讲数论综合 数论是历年小升初的考试难点,各学校都把数论当压轴题处理。由于行程题的类型较多,题型多样,变化众多,所以对学生来说处理起来很头疼。数论内容包括:整数的整除性,同余,奇数与偶数,质数与合数,约数与倍数,整数的分解与分拆等。作为一个理论性比较强的专题,数论在各种杯赛中都会占不小的比重,而且数论还和数字谜,不定方程等内容有着密切的联系,其重要性是不言而喻的。 基本公式 1.已知b|c,a|c,则[a,b]|c,特别地,若(a,b)=1,则有ab|c。 2.已知c|ab,(b,c)=1,则c|a。 3.唯一分解定理:任何一个大于1的自然数n都可以写成质数的连乘积,即 n= p11a× p22a×...×p k k a(#) 其中p1

6.自然数是否能被3,4,25,8,125,5,7,9,11,13等数整除的判别方法。 7.平方数的总结: ①平方差:A2-B2=(A+B)(A-B),其中我们还得注意A+B, A-B同奇偶性。 ②约数:约数个数为奇数个的是完全平方数。约数个数为3的是质数的平方。 ③质因数分答案:把数字分答案,使他满足积是平方数。 ④立方和:A3+B3=(A+B)(A2-AB+B2)。 8.十进制自然数表示法,十进制和二进制,八进制,五进制等的相互转化。 9.周期性数字:abab=ab×101 1.全面掌握数论的几大知识点,能否在考试中取得高分,解出数论的压轴大题是关键。 2.牢记基本公式,并在解题中灵活运用公式。 例1:将4个不同的数字排在一起,可以组成24个不同的四位数(4×3×2×1=24)。将这24个四位数按从小到大的顺序排列的话,第二个是5的倍数;按从大到小排列的话,第二个是不能被4整除的偶数;按从小到大排列的第五个与第二十个的差在3000-4000之间。请求出这24个四位数中最大的一个。 答案:不妨设这4个数字分别是a>b>c>d 那么从小到大的第5个就是dacb,它是5的倍数,因此b=0或5,注意到b>c>d,所以b=5; 从大到小排列的第2个是abdc,它是不能被4整除的偶数;所以c是偶数,c<b=5,c=4或2 从小到大的第二十个是adbc,第五个是dacb,它们的差在3000-4000之间,所以a=d+4; 因为a>b,所以a至少是6,那么d最小是2,所以c就只能是4。而如果d=2,那么abdc的末2位是24,它是4的倍数,和条件矛盾。因此d=3,从而a=d+4=3+4=7。 这24个四位数中最大的一个显然是abcd,我们求得了a=7,b=5,c=4,d=3 所以这24个四位数中最大的一个是7543。 例2:一个5位数,它的各个位数字和为43,且能被11整除,求所有满足条件的5位数? 答案:现在我们有两个入手的选择,可以选择数字和,也可以选择被11整除,但我们发现被11整除性质的运用要具体的数字,而现在没有,所以我们选择先从数字和入手。 5位数数字和最大的为9×5=45,这样43的可能性只有9,9,9,9,7或9,9,9,8,8。这样我们接着用11的整除特征,发现符合条件的有99979,97999,98989符合条件。

数论--综合-第6讲初等数论竞赛班教师版

第六讲初等数论 初等数论是主要用算术方法研究整数最基本性质的一个数学分支,是数学中最古老的分支之一.近几十年来,初等数论在计算机科学、组合数学、代数编码、信号的数字处理等领域得到广泛应用.同时,初等数论在各类数学竞赛中占有重要地位,以国际数学奥林匹克为例,约有四分之一的题目是主要用初等数论知识来解的. 一、基础知识 1.整除理论 性质1:如果a\b t b\c t那么d|c; 性质2:若a\c t则对于任意整数x、y都有a\bx+cy 2.质数与合数 性质1:设n为大于1的正整数,p是n的大于1的约数中最小的正整数,则p为质数; 性质2:如果对任意1到亦之间的质数p,都有p不整除n,那么n为质数,这里n为大于1的正整 数; 性质3:质数有无穷多个; 性质4:质数中只有一个数是偶数,即2; 3.同余 定义:如果a、b除以m (正整数)所得得余数相同,那么称a、b对模m同余,记作 a=b (mod in) 性质X如果a三b (mod 则m\a-bt 性质2:若a = b (mod m) f c = d (mod 加)贝i]a + c = b + d (mod nt) a-c 三b-d (mod /H),ac = bd (mod ni) 性质3:a = b (mod m), n 为正整数,则a n = b" (mod m) 4.费尔马小定理 Fermat小定理:设p为质数,a为整数,则/三?(mod “).特别地,如果a不能被p整除,则三l(mod p) 二、例题部分 例1 (2006年希望杯初二培训题)已知一个五位数用4, 5, 6, 7, 8五个数码各一次组成,如64875 等,在这样的五位数中,能被55整除的有几个,它们分别是多少? 《数理天地》2005增刊P22, 80 例2 (★★, 86年全国)设a、b. c是三个互不相等的正整数,求证:在—b'c — bF, c3a-ca3三个数中,至少有一个数能被10整除;

六年级奥数-第十一讲.数论综合(二).教师版

第十一讲 数论综合(二) 教学目标: 1、 掌握质数合数、完全平方数、位值原理、进制问题的常见题型; 2、 重点理解和掌握余数部分的相关问题,理解“将不熟悉转化成熟悉”的数学思想 例题精讲: 板块一 质数合数 【例 1】 有三张卡片,它们上面各写着数字1,2,3,从中抽出一张、二张、三张,按任意次序排列出来,可以 得到不同的一位数、二位数、三位数,请你将其中的质数都写出来. 【解析】 抽一张卡片,可写出一位数1,2,3;抽两张卡片,可写出两位数12,13,21,23,31,32;抽三张卡片,可写出 三位数123,132,213,231,312,321,其中三位数的数字和均为6,都能被3整除,所以都是合数.这些数中,是质数的有:2,3,13,23,31. 【例 2】 三个质数的乘积恰好等于它们和的11倍,求这三个质数. 【解析】 设这三个质数分别是a 、b 、c ,满足11abc a b c =++(),则可知a 、b 、c 中必有一个为11,不妨记 为a ,那么11bc b c =++,整理得(1b -)(1c -)12=,又121122634=?=?=?,对应的2b =、13c =或3b =、7c =或4b =、5c = (舍去),所以这三个质数可能是2,11,13或3,7,11. 【例 3】 用1,2,3,4,5,6,7,8,9这9个数字组成质数,如果每个数字都要用到并且只能用一次,那么 这9个数字最多能组成多少个质数? 【解析】 要使质数个数最多,我们尽量组成一位的质数,有2、3、5、7均为一位质数,这样还剩下1、4、6、 8、9这5个不是质数的数字未用.有1、4、8、9可以组成质数41、89,而6可以与7组合成质数67.所以这9个数字最多可以组成6个质数. 【例 4】 有两个整数,它们的和恰好是两个数字相同的两位数,它们的乘积恰好是三个数字相同的三位 数.求这两个整数分别是多少? 【解析】 两位数中,数字相同的两位数有11、22、33、44、55、66、77、88、99共九个,它们中的每个数 都可以表示成两个整数相加的形式,例如331322313301617=+=+=+==+,共有16种形式,如果把每个数都这样分解,再相乘,看哪两个数的乘积是三个数字相同的三位数,显然太繁琐了.可以从乘积入手,因为三个数字相同的三位数有111、222、333、444、555、666、777、888、999,每个数都是111的倍数,而111373=?,因此把这九个数表示成一个两位数与一个一位数或两个两位数相乘时,必有一个因数是37或37的倍数,但只能是37的2倍(想想为什么?)3倍就不是两位数了. 把九个三位数分解:111373=?、222376743=?=?、333379=?、4443712746=?=?、5553715=?、6663718749=?=?、7773721=?、88837247412=?=?、9993727=?.?把两个因数相加,只有(743+)77=和(3718+)55=的两位数字相同.所以满足题意的答案是74和3,37和18. 板块二 余数问题 【例 5】 (2003年全国小学数学奥林匹克试题)有两个自然数相除,商是17,余数是13,已知被除数、除 数、商与余数之和为2113,则被除数是多少? 【解析】 被除数+除数+商+余数=被除数+除数+17+13=2113,所以被除数+除数=2083,由于被除数 是除数的17倍还多13,则由“和倍问题”可得:除数=(2083-13)÷(17+1)=115,所以被除

10数论问题的常用方法(教师版)

数论问题的常用方法 数论是研究数的性质的一门科学,它与中学数学教育有密切的联系。数论问题解法灵活,题型丰富,它是中学数学竞赛试题的源泉之一。下面介绍数论试题的常用方法. 1.基本原理 为了使用方便,我们将数论中的一些概念和结论摘录如下: 我们用),...,,(21n a a a 表示n 个整数1a ,2a ,…,n a 的最大公约数。用[1a ,2a ,…,n a ]表示 1a ,2a ,…,n a 的最小公倍数。对于实数x ,用[x ]表示不超过x 的最大整数,用{x }=x -[x ] 表示x 的小数部分。对于整数b a ,,若)(|b a m -,,1≥m 则称b a ,关于模m 同余,记为 )(mod m b a ≡。对于正整数m ,用)(m ?表示{1,2,…,m }中与m 互质的整数的个数, 并称)(m ?为欧拉函数。对于正整数m ,若整数m r r r ,...,,21中任何两个数对模m 均不同余,则称{m r r r ,...,,21}为模m 的一个完全剩余系;若整数)(21,...,,m r r r ?中每一个数都与m 互质,且其中任何两个数关于模m 不同余,则称{)(21,...,,m r r r ?}为模m 的简化剩余系。 定理1 设b a ,的最大公约数为d ,则存在整数y x ,,使得 yb xa d +=. 定理2 (1)若)(mod m b a i i ≡,1=i ,2,…,n ,)(mod 21m x x =,则 1 1n i i i a x =∑≡2 1 n i i i b x =∑; (2)若)(mod m b a ≡,),(b a d =,m d |,则 )(mod d m d b d a ≡; (3)若)(mod m b a ≡,),(b a d =,且1),(=m d ,则)(mod m d b d a ≡; (4)若b a ≡(i m mod ),n i ,...,2,1=,M=[n m m m ,...,,21],则b a ≡(M mod ). 定理3 (1)1][][1+<≤<-x x x x ; (2)][][][y x y x +≥+; (3)设p 为素数,则在!n 质因数分解中,p 的指数为 ∑ ≥1 k k p n .

六年级奥数-第十一讲[1].数论综合(二).教师版

第十一讲 数论综合(二) 例题精讲: 板块一 质数合数 【例 1】 有三张卡片,它们上面各写着数字1,2,3,从中抽出一张、二张、三张,按任意次序排列出来, 可以得到不同的一位数、二位数、三位数,请你将其中的质数都写出来. 【解析】 抽一张卡片,可写出一位数1,2,3;抽两张卡片,可写出两位数12,13,21,23,31,32;抽三 张卡片,可写出三位数123,132,213,231,312,321,其中三位数的数字和均为6,都能被3整除,所以都是合数.这些数中,是质数的有:2,3,13,23,31. 【例 2】 三个质数的乘积恰好等于它们和的11倍,求这三个质数. 【解析】 设这三个质数分别是a 、b 、c ,满足11 abc a b c =++(),则可知a 、b 、c 中必有一个为11,不妨记为a ,那么11bc b c =++,整理得(1b -)(1c -)12=,又121122634=?=?=?,对应的2b =、13c =或3b =、7c =或4b =、5c = (舍去),所以这三个质数可能是2,11,13或3,7,11. 【例 3】 用1,2,3,4,5,6,7,8,9这9个数字组成质数,如果每个数字都要用到并且只能用一次,那 么这9个数字最多能组成多少个质数? 【解析】 要使质数个数最多,我们尽量组成一位的质数,有2、3、5、7均为一位质数,这样还剩下1、4、6、 8、9这5个不是质数的数字未用.有1、4、8、9可以组成质数41、89,而6可以与7组合成质数 67.所以这9个数字最多可以组成6个质数. 【例 4】 有两个整数,它们的和恰好是两个数字相同的两位数,它们的乘积恰好是三个数字相同的三位 数.求这两个整数分别是多少? 【解析】 两位数中,数字相同的两位数有11、22、33、44、55、66、77、88、99共九个,它们中的每个数都 可以表示成两个整数相加的形式,例如331322313301617=+=+=+= =+,共有16种形式,如果把每个数都这样分解,再相乘,看哪两个数的乘积是三个数字相同的三位数,显然太繁琐了.可以从乘积入手,因为三个数字相同的三位数有111、222、333、444、555、666、777、888、999,每个数都是111的倍数,而111373=?,因此把这九个数表示成一个两位数与一个一位数或两个两位数相乘时,必有一个因数是37或37的倍数,但只能是37的2倍(想想为什么?)3倍就不是两位数了. 把九个三位数分解:111373=?、222376743=?=?、333379=?、4443712746=?=?、5553715=?、6663718749=?=?、7773721=?、88837247412=?=?、9993727=?. 把两个因数相加,只有(743+)77=和(3718+)55=的两位数字相同.所以满足题意的答案是74和3,37和18. 板块二 余数问题 【例 5】 (2003年全国小学数学奥林匹克试题)有两个自然数相除,商是17,余数是13,已知被除数、除数、 商与余数之和为2113,则被除数是多少? 【解析】 被除数+除数+商+余数=被除数+除数+17+13=2113,所以被除数+除数=2083,由于被除数是除数 的17倍还多13,则由“和倍问题”可得:除数=(2083-13)÷(17+1)=115,所以被除数=2083-115=1968. 【例 6】 已知2008被一些自然数去除,所得的余数都是10,那么这样的自然数共有多少个? 【解析】 本题为一道余数与约数个数计算公式的小综合性题目.由题意所求的自然数一定是2008-10即1998 的约数,同时还要满足大于10这个条件.这样题目就转化为1998有多少个大于10的约数,319982337=??,共有(1+1)×(3+1)×(1+1)=16个约数,其中1,2,3,6,9是比10小的约数,所以符合题目条件的自然数共有11个. 【例 7】 有一个整数,除39,51,147所得的余数都是3,求这个数. 【解析】 (法1) 39336-=,1473144-=,(36,144)12=,12的约数是1,2,3,4,6,12,因为余数为3要小于除 数,这个数是4,6,12; (法2)由于所得的余数相同,得到这个数一定能整除这三个数中的任意两数的差,也就是说它是任意两数差的公约数.513912-=,14739108-=,(12,108)12=,所以这个数是4,6,12.

六年级奥数-.数论综合.教师版

数论综合(二) 教学目标: 1、 掌握质数合数、完全平方数、位值原理、进制问题的常见题型; 2、 重点理解和掌握余数部分的相关问题,理解“将不熟悉转化成熟悉”的数学思想 例题精讲: 板块一 质数合数 【例 1】 有三张卡片,它们上面各写着数字1,2,3,从中抽出一张、二张、三张,按任意次序排列出来, 可以得到不同的一位数、二位数、三位数,请你将其中的质数都写出来. 【解析】 抽一张卡片,可写出一位数1,2,3;抽两张卡片,可写出两位数12,13,21,23,31,32;抽三 张卡片,可写出三位数123,132,213,231,312,321,其中三位数的数字和均为6,都能被3整除,所以都是合数.这些数中,是质数的有:2,3,13,23,31. 【例 2】 三个质数的乘积恰好等于它们和的11倍,求这三个质数. 【解析】 设这三个质数分别是a 、b 、c ,满足11abc a b c =++(),则可知a 、b 、c 中必有一个为11,不妨 记为a ,那么11bc b c =++,整理得(1b -)(1c -)12=,又121122634=?=?=?,对应的2b =、13c =或3b =、7c =或4b =、5c = (舍去),所以这三个质数可能是2,11,13或3,7,11. 【例 3】 用1,2,3,4,5,6,7,8,9这9个数字组成质数,如果每个数字都要用到并且只能用一次,那 么这9个数字最多能组成多少个质数 【解析】 要使质数个数最多,我们尽量组成一位的质数,有2、3、5、7均为一位质数,这样还剩下1、4、6、 8、9这5个不是质数的数字未用.有1、4、8、9可以组成质数41、89,而6可以与7组合成质数 67.所以这9个数字最多可以组成6个质数. 【例 4】 有两个整数,它们的和恰好是两个数字相同的两位数,它们的乘积恰好是三个数字相同的三位 数.求这两个整数分别是多少 【解析】 两位数中,数字相同的两位数有11、22、33、44、55、66、77、88、99共九个,它们中的每个数都 可以表示成两个整数相加的形式,例如331322313301617=+=+=+==+L L ,共有16种形式,如果把每个数都这样分解,再相乘,看哪两个数的乘积是三个数字相同的三位数,显然太繁琐了.可以从乘积入手,因为三个数字相同的三位数有111、222、333、444、555、666、777、888、999,每个数都是111的倍数,而111373=?,因此把这九个数表示成一个两位数与一个一位数或两个两位数相乘时,必有一个因数是37或37的倍数,但只能是37的2倍(想想为什么)3倍就不是两位数了. 把九个三位数分解:111373=?、222376743=?=?、333379=?、4443712746=?=?、5553715=?、6663718749=?=?、7773721=?、88837247412=?=?、9993727=?. 把两个因数相加,只有(743+)77=和(3718+)55=的两位数字相同.所以满足题意的答案是74和3,37和18. 板块二 余数问题 【例 5】 (2003年全国小学数学奥林匹克试题)有两个自然数相除,商是17,余数是13,已知被除数、除数、 商与余数之和为2113,则被除数是多少 【解析】 被除数除数商余数被除数除数+17+13=2113,所以被除数除数=2083,由于被除数是除数的17倍还多 13,则由“和倍问题”可得:除数=(2083-13)÷(17+1)=115,所以被除数=2083-115=1968. 【例 6】 已知2008被一些自然数去除,所得的余数都是10,那么这样的自然数共有多少个 【解析】 本题为一道余数与约数个数计算公式的小综合性题目.由题意所求的自然数一定是2008-10即1998 的约数,同时还要满足大于10这个条件.这样题目就转化为1998有多少个大于10的约数,319982337=??,共有(1+1)×(3+1)×(1+1)=16个约数,其中1,2,3,6,9是比10小的约数,所以符合题目条件的自然数共有11个. 【例 7】 有一个整数,除39,51,147所得的余数都是3,求这个数.

六年级奥数最详细全面-数论教师版

六年级奥数最详细全面-数论教师版

数论 数论问题本身范围很广,我们考察小学奥数的内容,完全平方数等知识点跟基础课内容结合很紧密,但又是小奥的重难点,我们有必要加以重视.本讲需要学生掌握的知识点有:平方数性质、平方差公式、约数个数定理、约数和定理、辗转相除法等. 本讲内容中,平方数部分是数论中最基本的部分,学生应当学会熟练运用平方差公式,对于约数和倍数部分,老师应当更注重其中的逻辑过程,可以适当用一些代数的方法将题目讲的更明白和透彻. 专题回顾 【例 1】一个5位数,它的各位数字和为43,且能被11整除,求所有满足条件的5位数. 【分析】现在我们有两个入手的选择,可以选择数字和,也可以选择被11整除,但我们发现被11整除性质的运用要有具体的数字,而现在没有,所以我们选择先从数字和入手. 5位数数字和最大的为9×5=45,这样43的可 能性只有9,9,9,9,7或9,9,9,8,8.这

样我们接着用11的整除特征,发现符合条件的有99979,97999,98989. 【例 2】 已知ABCA 是一个四位数,若两位数AB 是一个质数,BC 是一个完全平方数,CA 是一个质数与一个不为1的完全平方数之积,则满足条件的所有四位数是_____________. 【分析】 本题综合利用数论知识,因为AB 是一个质数,所以 B 不能为偶数,且同时B C 是一个完全平方数,则符合条件的数仅为16、36,当1B =时,满足AB 是一个质数的数有11,31,41,61,71,时,此时同时保证CA 是一个质数与一个不为1的完全平方数之积,只有3163符合; 当3B =,满足AB 是一个质数的数有13,23,43,53, 73,83,此时同时保证CA 是一个质数与一个不为 1的完全平方数之积,只有8368符合. 【例 1】 2001个连续的自然数之和为a b c d ???,若a 、b 、c 、d 都分解质因数 专题精讲

一元二次方程应用握手问题送卡片问题数论问题专练教师版

一元二次方程应用握手问题送卡片问题数论问题专练教师版命题人:潘五洲 一、 1. 【题文】某班同学毕业时都将自己的照片向全班其他同学各送一张表示留念,全班共送1035张照片,如果全班有x名同学,根据题意,列出方程为() A.x(x+1)=1035 B.x(x-1)=1035 C.x(x+1)=1035 D.x(x-1)=1035 答案:【答案】B 【解析】 试题分析:如果全班有x名同学,那么每名同学要送出(x-1)张,共有x名学生,那么总共送的张数应该是x(x-1)张,即可列出方程. ∵全班有x名同学, ∴每名同学要送出(x-1)张; 又∵是互送照片, ∴总共送的张数应该是x(x-1)=1035. 故选B 考点:由实际问题抽象出一元二次方程. 2. 【题文】摄影兴趣小组的学生,将自己拍摄的照片向本组其他成员各赠送一张,全组共互赠了182张,若全组有x名学生,则根据题意列出的方程是() A.B. C.D. 答案:【答案】 B. 【解析】 试题分析:设全组有名同学,则每名同学所赠的标本为:()件,那么名同学共赠: 件, 所以,.故选 B. 考点:由实际问题抽象出一元二次方程. 3. 【题文】有一人患了流感,经过两轮传染后共有100人患了流感,那么每轮传染中,平均一个人传染的人数为(). A.8人B.9人C.10人D.11人 答案:【答案】B 【解析】 试题分析:设每轮传染中平均一个人传染的人数为x人,第一轮过后有(1+x)个人感染,第二轮过后有(1+x)+x(1+x)个人感染,那么由题意可知1+x+x(1+x)=100,整理得,,解 得x=9或-11, x=-11不符合题意,舍去.那么每轮传染中平均一个人传染的人数为9人.故选 B. 考点:一元二次方程的应用. 4. 【题文】要组织一次排球邀请赛,参赛的每两个队之间都要比赛一场,根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛.设比赛组织者应邀请个队参赛,则满足的关系式为()

五年级数论完全平方数教师版

知识要点 完全平方数是数论板块中一个比较精华的小分支,从知识特点上讲属于约数倍数和质数 合数交叉的知识体系,其题目多为考察上述两块综合性知识,是杯赛和小升初试卷中的一个 热点. 一.完全平方数的主要性质 1、完全平方数的尾数只能是0,1,4,5,6,9。不可能是2,3,7,8。 2、在两个连续正整数的平方数之间不存在完全平方数。 3、完全平方数的约数个数是奇数,约数的个数为奇数的自然数是完全平方数。 4、若质数p 整除完全平方数2a ,则p 能被a 整除。 二.一些重要的推论 1、任何偶数的平方一定能被4整除;任何奇数的平方被4(或8)除余1.即被4除 余2或3的数一定不是完全平方数。 2、一个完全平方数被3除的余数是0或1.即被3除余2的数一定不是完全平方数。 3、自然数的平方末两位只有:00,01,21,41,61,81,04,24,44,64,84,25, 09,29,49,69,89,16,36,56,76,96。 4、完全平方数个位数字是奇数(1,5,9)时,其十位上的数字必为偶数。 5、完全平方数个位数字是偶数(0,4)时,其十位上的数字必为偶数。 6、完全平方数的个位数字为6时,其十位数字必为奇数。 7、凡个位数字是5但末两位数字不是25的自然数不是完全平方数;末尾只有奇数 个“0”的自然数不是完全平方数;个位数字为1,4,9而十位数字为奇数的自 然数不是完全平方数。 三.重点公式回顾:平方差公式:22()()a b a b a b -=+- 平方和公式: 22221+2+3++(1)(21)6n n n n ???=++÷ 完全平方数

基本性质和概念 【例 1】 (2000年“祖冲之杯”小学数学邀赛) 1234567654321(1234567654321) ?++++++++++++是 的平方. 【解析】 212345676543211111111=,212345676543217++++++++++++=, 原式22(11111117)7777777=?=. 【巩固】 (华杯赛试题)下面是一个算式:112123123412345123456+?+??+???+????+?????, 这个算式的得数能否是某个数的平方? 【解析】 判断一个数是否是某个数的平方,首先要观察它的个位数是多少.平方数的个位数只能是 0,1,4,5,6,9,而2,3,7,8不可能是平方数的个位数. 这个算式的前二项之和为3,中间二项之和的个位数为0,后面二项中每项都有因子2和5,个位 数一定是0,因此,这个0算式得数的个位数是3,不可能是某个数的平方. 【例 2】 写出从360到630的自然数中有奇数个约数的数. 【解析】 一个合数的约数的个数是在严格分解质因数之后,将每个质因数的指数(次数)加1后所得的乘积. 如:1400严格分解质因数后为23×52×7,所以它的约数有(3+1)×(2+1)×(1+1)=4×3×2=24 个.(包括1和它自身) 如果某个自然数有奇数个约数,那么这个数的所有质因子的个数均为偶数个.这样它们加1后均是 奇数,所得的乘积才能是奇数.而所有质因数的个数均是偶数个的数为完全平方数.即完全平方数 (除0外)有奇数个约数,反过来,有奇数个约数的数一定是完全平方数. 由以上分析知,我们所求的为360~630之间有多少个完全平方数? 18×18=324,19×19=361,25×25=625,26×26=676,所以在360~630之间的完全平方数为 192,202,212,222,232,242,252. 即360到630的自然数中有奇数个约数的数为361,400,441,484,529,576,625. 【巩固】 一个数的完全平方有39个约数,求该数的约数个数是多少? 【解析】 设该数为1212n a a a n p p p ???L ,那么它的平方就是1222212n a a a n p p p ???L , 因此()()()1221212139n a a a +?+??+=L . 由于39139313=?=?, ⑴所以,1213a +=,22113a +=,可得11a =,26a =; 故该数的约数个数为()()116114+?+=个; ⑵或者,12139a +=,可得119a =,那么该数的约数个数为19120+=个. 所以这个数的约数个数为14个或者20个. 【例 3】 从1到2008的所有自然数中,乘以72后是完全平方数的数共有多少个? 【解析】 完全平方数,其所有质因数必定成对出现. 而327223266=?=??,所以满足条件的数必为某个完全平方数的2倍, 由于2313119222008232322048??=<

最新小升初数学专项训练+典型例题分析-数论篇(教师版)

名校真题测试卷数论篇一 时间:15分钟满分5分姓名_________ 测试成绩 _________ 1 (13年人大附中考题) 有____个四位数满足下列条件:它的各位数字都是奇数;它的各位数字互不相同;它的每个数字都能整除它本身。 2 (13年101中学考题) 如果在一个两位数的两个数字之间添写一个零,那么所得的三位数是原来的数的9倍,问这个两 位数是__。 3 (13年首师附中考题) 21 1+ 2121 202+ 21212121 13131313212121 505=__。 4 (04年人大附中考题)甲、乙、丙代表互不相同的 3个正整数,并且满足:甲×甲=乙+乙=丙×135.那么甲最小是____。 5(02年人大附中考题) 下列数不是八进制数的是( ) A 、125 B 、126 C 、127 D 、128 【附答案】1 【解】: 6 2 【解】:设原来数为ab ,这样后来的数为a0b,把数字展开我们可得:100a+b=9×(10a+b), 所以我们可以知道5a=4b,所以a=4,b=5,所以原来的两位数为45。 3 【解】:周期性数字,每个数约分后为 21 1+ 21 2+ 21 5+ 21 13=1 4 【解】:题中要求丙与135的乘积为甲的平方数,而且是个偶数(乙+乙),这样我们分解135=5×3×3×3,所以丙最小应该是2×2×5×3,所以甲最小是:2×3×3×5=90。5 【解】:八进制数是由除以 8的余数得来的,不可能出现 8,所以答案是 D 。 小升初专项训练数论篇(一) 一、小升初考试热点及命题方向 数论是历年小升初的考试难点,各学校都把数论当压轴题处理。由于行程题的类型较多,题型多样,变化众多,所以对学生来说处理起来很头疼。数论内容包括:整数的整除性,同余 ,奇数

学而思_小升初专项训练__数论篇_教师版

学而思_小升初专项训练__数论篇(1)_教师版 名校真题(数论篇) 1 (05年人大附中考题) 有____个四位数满足下列条件:它的各位数字都是奇数;它的各位数字互不相同;它的每个数字都能整除它本身。 2 (05年101中学考题) 如果在一个两位数的两个数字之间添写一个零,那么所得的三位数是原来的数的9倍,问这个两位数是__。 3 (05年首师附中考题) 4 (04年人大附中考题) 甲、乙、丙代表互不相同的3个正整数,并且满足:甲×甲=乙+乙=丙×135.那么甲最小是____。 5 (02年人大附中考题) 下列数不是八进制数的是( ) A、125 B、126 C、127 D、128 【附答案】 1 【解】:6 2 【解】:设原来数为ab,这样后来的数为a0b,把数字展开我们可得:100a+b=9×(10a+b),所以我们可以知道5a=4b,所以a=4,b=5,所以原来的两位数为45。 3 【解】:周期性数字,每个数约分后为 4 【解】:题中要求丙与135的乘积为甲的平方数,而且是个偶数(乙+乙),这样我们分解135=5×3×3×3,所以丙最小应该是2×2×5×3,所以甲最小是:2×3×3×5=90。 5 【解】:八进制数是由除以8的余数得来的,不可能出现8,所以答案是D。小升初专项训练数论篇 基本公式 1)已知b|c,a|c,则[a,b]|c,特别地,若(a,b)=1,则有ab|c。 [讲解练习]:若3a75b能被72整除,问a=__,b=__.(迎春杯试题) 2)已知c|ab,(b,c)=1,则c|a。 3)唯一分解定理:任何一个大于1的自然数n都可以写成质数的连乘积,即 n= p11a×p22a×...×pkak(#) 其中p1

最详细全面六年级奥数-数论教师版word

数论问题本身范围很广,我们考察小学奥数的内容,完全平方数等知识点跟基础课内容结合很紧密, 但又是小奥的重难点,我们有必要加以重视.本讲需要学生掌握的知识点有:平方数性质、平方差公式、约数个数定理、约数和定理、辗转相除法等. 本讲内容中,平方数部分是数论中最基本的部分,学生应当学会熟练运用平方差公式,对于约数和倍数部分,老师应当更注重其中的逻辑过程,可以适当用一些代数的方法将题目讲的更明白和透彻. 【例 1】 一个5位数,它的各位数字和为43,且能被11整除,求所有满足条件的5位数. 【分析】 现在我们有两个入手的选择,可以选择数字和,也可以选择被11整除,但我们发现被11整除性 质的运用要有具体的数字,而现在没有,所以我们选择先从数字和入手. 5位数数字和最大的为9×5=45,这样43的可能性只有9,9,9,9,7或9,9,9,8,8.这样我们接着用11的整除特征,发现符合条件的有99979,97999,98989. 【例 2】 已知ABCA 是一个四位数,若两位数AB 是一个质数,BC 是一个完全平方数,CA 是一个质数与 一个不为1的完全平方数之积,则满足条件的所有四位数是_____________. 【分析】 本题综合利用数论知识,因为AB 是一个质数,所以B 不能为偶数,且同时BC 是一个完全平方 数,则符合条件的数仅为16、36,当1B =时,满足AB 是一个质数的数有11,31,41,61,71,时,此时同时保证CA 是一个质数与一个不为1的完全平方数之积,只有3163符合; 当3B =,满足AB 是一个质数的数有13,23,43,53,73,83,此时同时保证CA 是一个质数与一个不为1的完全平方数之积,只有8368符合. 专题回顾 第 5讲 数论(一) 教学目标

六年级奥数-.数论综合.教师版.docx

数论综合(二) 教学目标: 1、掌握质数合数、完全平方数、位值原理、进制问题的常见题型; 2、重点理解和掌握余数部分的相关问题,理解“将不熟悉转化成熟悉”的数学思想 例题精讲: 板块一质数合数 【例 1】有三张卡片,它们上面各写着数字1, 2, 3,从中抽出一张、二张、三张,按任意次序排列出来,可以得到不同的一位数、二位数、三位数,请你将其中的质数都写出来. 【解析】抽一张卡片,可写出一位数1, 2, 3;抽两张卡片,可写出两位数12, 13, 21, 23, 31, 32;抽三张卡片,可写出三位数123, 132,213, 231, 312,321 ,其中三位数的数字和均为6,都能被 3 整除,所以都是合数.这些数中,是质数的有:2,3, 13, 23, 31. 【例 2】三个质数的乘积恰好等于它们和的11 倍,求这三个质数. 【解析】设这三个质数分别是 a 、b、 c ,满足 abc11( a b c) ,则可知 a 、b、 c 中必有一个为11,不妨记为 a ,那么bc 11 b c,整理得 (b 1)(c 1)12,又12 1 12 2 6 3 4,对应的、 b 2 c 13 或 b 3 、 c7 或 b 4 、 c 5 (舍去),所以这三个质数可能是2, 11, 13 或 3, 7, 11. 【例 3】用 1, 2, 3, 4,5, 6, 7, 8, 9 这 9 个数字组成质数,如果每个数字都要用到并且只能用一次,那么这 9 个数字最多能组成多少个质数? 【解析】要使质数个数最多,我们尽量组成一位的质数,有2、3、5、7 均为一位质数,这样还剩下1、4、6、 8、 9 这 5 个不是质数的数字未用.有1、 4、 8、 9 可以组成质数41、 89,而 6可以与 7 组合成质数 67.所以这 9 个数字最多可以组成 6 个质数. 【例 4】有两个整数,它们的和恰好是两个数字相同的两位数,它们的乘积恰好是三个数字相同的三位数.求这两个整数分别是多少? 【解析】两位数中,数字相同的两位数有11、22、33、44、55、66、77、88、99 共九个,它们中的每个数都可以表示成两个整数相加的形式,例如33132 2 31330L L16 17 ,共有16种形式,如果把每个数都这样分解,再相乘,看哪两个数的乘积是三个数字相同的三位数,显然太繁琐了.可以从乘积入手,因为三个数字相同的三位数有111、 222、 333、 444、555、 666、 777、 888、999,每个数都是 111 的倍数,而11137 3 ,因此把这九个数表示成一个两位数与一个一位数或两个两 位数相乘时,必有一个因数是37 或 37的倍数,但只能是37 的 2倍 (想想为什么? )3 倍就不是两位数了. 把九个三位数分解:111373、22237 674 3、333379 、 444371274 6 、555 37 15 、 666 3718749、 7773721、 88837247412、 9993727. 把两个因数相加,只有 ( 74 3 )77 和( 37 18 )55的两位数字相同.所以满足题意的答案是74 和 3,37和 18. 板块二余数问题 【例 5】( 2003年全国小学数学奥林匹克试题)有两个自然数相除,商是17,余数是 13,已知被除数、除数、商与余数之和为2113,则被除数是多少? 【解析】被除数除数商余数被除数除数+17+13=2113,所以被除数除数=2083,由于被除数是除数的 17 倍还多 13,则由“和倍问题” 可得:除数 =(2083-13) ÷(17+1)=115,所以被除数 =2083-115=1968 .【例 6】已知2008被一些自然数去除,所得的余数都是10,那么这样的自然数共有多少个? 【解析】本题为一道余数与约数个数计算公式的小综合性题目.由题意所求的自然数一定是2008-10 即 1998的约数,同时还要满足大于10 这个条件.这样题目就转化为1998 有多少个大于10 的约数, 1998 2 3337 ,共有(1+1)×(3+1)×(1+1)=16个约数,其中1,2,3, 6, 9 是比 10 小的约数, 所以符合题目条件的自然数共有11 个. 【例 7】有一个整数,除39, 51, 147 所得的余数都是3,求这个数.

相关文档
相关文档 最新文档