文档库 最新最全的文档下载
当前位置:文档库 › 矩阵秩的等式与不等式的证明及应用

矩阵秩的等式与不等式的证明及应用

矩阵秩的等式与不等式的证明及应用
矩阵秩的等式与不等式的证明及应用

矩阵秩的等式与不等式的证明及应用

矩阵是高等代数的一个重要概念,也是线性代数中的主要研究对象,同时也是一种应用广泛的数学工具.不管是在数学学习还是实际问题中,我们常常会遇到许多比较复杂的计算问题,而使用矩阵来解决这些难题,往往会使问题简单化.早在古代,我国的《九章算术》就已经对矩阵有了初步的描述.而矩阵的理论起源,可追溯到18世纪.高斯在1801年、艾森斯坦在1844-1852年,先后把一个线性变换的全部系数用一个字母来表示,艾森斯坦还强调乘法次序的重要性.这些工作都孕育了矩阵的思想,但矩阵的正式定义直到1858年才由凯莱给出来.凯莱在《矩阵论的研究报告》中全面阐述了矩阵的一些理念,同时他还在文中给出了许多矩阵的运算法则以及矩阵转置的定义,证明了矩阵加法中的可交换性与可结合性,更为重要的是他还给出了伴随矩阵、矩阵可逆的概念.由于凯莱的奠基性工作,一般认为他是矩阵理论的创始人.

而矩阵的秩是矩阵的一个重要特征,是矩阵理论中研究的一个重要内容,它具有许多的重要性质.对于矩阵的秩的等式与不等式,近年来有一些学者对其进行了研究.张英,乔世东利用同解方程组、标准形、线性空间和同态基本定理来证明矩阵秩的一些性质;王廷明利用构造分块矩阵并通过广义初等变换的方法,证明矩阵秩的(不)等式;殷倩把分散的知识点及重要的常用结论整合在一起,归纳整理出若干常用有效的证明方法;徐小萍给出五个矩阵秩的不等式,并利用代数理论对其进行证明,然后用一些典型例题对其应用进行分析.在前人研究的基础上,本文进一步系统的探究了矩阵秩的等式与不等式及其应用.首先介绍矩阵秩的等式与不等式的研究背景和国内外的研究现状,其次介绍矩阵秩的定义与简单性质,然后给出一些矩阵秩的等式与不等式的证明,最后通过例子研究其在多方面的应用。

1

1 预备知识

1.1 矩阵的定义

定义1.1 由m n ?个数()1,2,,;1,2,

,ij a i m j n ==所排列成的m 行n 列的数

11121212221

2

n n m m mn

a a a a a a a a a

称为m 行n 列的矩阵,简称m n ?矩阵.记作

111212122212

,n n m m mn a a a a a a A a a a ??????=???

???

(1.1) 简记为()ij m n A a ?=或m n A ?,这m n ?个数称为A 的元素.

当m n =时,矩阵A 称为n 阶方阵.例如,431259370????

??????

就是一个3阶方阵.

1.2 矩阵秩的定义

定义1.2 通过在m n ?矩阵A 中任取k 行k 列(,k m k n ≤≤)的行列交叉处的

2k 个元素,而不改变它们在A 中所处的位置顺序而得到的k 阶行列式,称为矩阵A 的k 阶子式. m n ?矩阵A 的k 阶子式共有k

k

m n C C ?个.

定义 1.3 如果矩阵A 有一个不为零的r 阶子式D ,且所有1r +阶子式都为零,那么D 称为矩阵A 的最高阶非零子式,这个数r 称为矩阵A 的秩,记作()R A ,并且规定零矩阵的秩等于零.

2 矩阵秩的性质

在矩阵秩的问题当中,有些问题仅依靠定义来解决比较复杂和困难,而利用性质则会简单些,下面我们总结和归纳出了矩阵秩的一些性质.

性质2.1 矩阵的行秩与列秩相等.

证明 考虑线性方程组0AX =,首先如果未知数的个数超过A 的行秩,则它有非零解.设m n ?阶矩阵A 的行秩为r ,考虑方程组0AX =,它由m 个方程n 个未知数组成.从A 的行向量中任意选取r 个线性无关的行向量,重新组合成矩阵B ,所以方程组0AX =和0BX =同解.在这种情况下,如果B 的列数大于行数,那么方程组0BX =必有非零解,因此0AX =也有非零解.

接着证明行秩等于列秩.

设m n ?阶矩阵A 的行秩为r ,列秩为s .考虑A 的任意1r +个列向量组成的矩阵C ,因为C 的行秩小于或等于r (因为C 的行向量是由A 的行向量的一部分分量组成的),所以CX=0存在非零解,这表明这1r +个列向量是线性相关的.所以A 的列秩最大为r ,即s r ≤.同理可证r s ≤,因此s r =.

性质2.2 初等行(列)变换不改变矩阵的秩.

数域P 上的矩阵的初等行(列)变换是指以下三种变换: (1)用数域P 中的一个非零数k 乘以矩阵的某一行(列); (2)将矩阵的某一行(列)的c 倍加到另一行(列); (3)交换矩阵中两行(列)的位置.

证明 设m n ?矩阵A 通过一次初等行变换转变为m n ?矩阵B ,且

()1R A r =,()2R B r =.

1.初等交换变换:i j

r r

A B ?→(交换矩阵的第i 行与第j 行)

由于矩阵A 中的任意11r +阶子式均全为零,因此矩阵B 的任意11r +阶子式也为零.所以有矩阵B 中任11r +阶子式等于任意非零常数k 与矩阵A 的某个11r +阶子式的乘积.

2.初等乘法变换:i

kr A B →(将矩阵的第i 行与用非零常数k 相乘)

由于矩阵A 中的任意11r +阶子式全为零,因此矩阵B 的任意11r +阶子式也为零.所以有矩阵B 中任何11r +阶子式等于任意非零常数k 与A 的某个11r +阶子式的乘积.

3.初等加法变换:i j r kr

A B +→(将矩阵的第j 行的k 倍加到矩阵的第i 行上) 对于矩阵B 的任意11r +阶子式1

B .

(1)若1B 不包含矩阵B 的第i 行或同时包含第j 行与第i 行,那么由行列式的性

质得

11+1

r B D =

这里的1+1r D 为矩阵A 的任意11r +阶子式;

(2)若1B 包含第i 行但不包含第j 行,那么由行列式的性质得

11111r r B D k C ++=+

这里的11r D +,11r C +均为矩阵A 的11r +阶子式。由于矩阵A 的任意11r +阶子式全为零,因此

10B =

综上所述,矩阵A 经过一次初等行变换化为矩阵B 后,矩阵B 的11r +阶子式全为零,所以

21r r ≤

由于初等变换可逆,所以矩阵B 又可以经过初等行变换化为矩阵A ,即有

12r r ≤

所以

()()12,r r R A R B ==.

同理可证明初等列变换.

性质2.3 矩阵的乘积的秩()()()min ,R AB R A R B ≤????.

证明 只需要证明()()R AB A ≤R ,并且()()R AB B ≤R .现在我们将分别来证明这两个不等式.

1112121

2221

2

n n m m mn a a a a a a A a a a ??????=??????

令B 的行向量表示为12,,

,n B B B ,AB 的行向量表示为12,,

,m C C C .根据计算可

得i C 的第j 个分量和1122i i in n a B a B a B ++

+的第j 个分量都等于1

n

ik kj k a b =∑,因此

()

11221,2,,i i i in n C a B a B a B i m =++

+=,

也就是说矩阵AB 的行向量组12,,

,n C C C 可以用B 的行向量组线性表示,所以

AB 的秩不能超过B 的秩,即

()()R AB R B ≤.

同样地,令A 的列向量表示为12,,,n A A A ,AB 的列向量表示为12,,,s D D D .根

据计算可知

()

11221,2,

,i i i ni n D b A b A b A i s =++

+=.

这个式子表明,矩阵AB 的列向量组可以用矩阵A 的列向量组线性表示,所以前者的秩不可能超过后者的秩,即

()()

R AB R A ≤.

性质2.4 ()()()R A B R A R B ±≤+.

证法1 用广义初等变换可得

0000A A B A A B B B B +??????→→???????????? ()0R A+B 00

A A A

B R R B B +?????=≥????????. 但

()()00A R R A R B B ??

=+????

. 由以上两式即证

()()()R A+B R A R B ≤+.

证法2 设,m n A B ?∈,令()()11,

,,,

,n n A B ααββ==,

其中i α为A 的列向量,i β为B 的列向量.则

()11,

,n n A B αβαβ+=++.

再设()R A r =,()R B s =,设1,

,i ir αα为1,,n αα的一个极大线性无关组.

1,,j js ββ为1,,n ββ的一个极大线性无关组.作向量组 ()1122,,,n n αβαβαβI +++. ()11,

,,,

,i ir j js ααββ∏.

那么()I 可以用()∏线性表示.故

()()()()()

R A B R R r s R A R B +≤I ≤∏≤+≤+.

由于()()R B R B =-,故()()()()()()()R A B R A B R A R B R A R B -=+-≤+-=+,因此

()()()

R A B R A R B ±≤+.

性质2.5 任意两个等价的向量组必有相同的秩.

证明 把两个向量组分别排列成矩阵,设为A 和B .由于两者等价,所以存在可逆矩阵P 使得A=PB .由A=PB ,知

()()()=R A R PB R B =

由1B P A -=,知

()()()

1=R B R P A R A -≤

从而()()=R A R B .

性质2.6 ()()*

R A R A ≤.

证明 当()R A n =时,0A ≠,由于*AA A I =,故*

n

A A A =,则

1

*0n A A

-=≠,即()

*R A n =.

当()1R A n =-时,0A =,*0AA A I ==,从而()()*R A R A n +≤,即()*

1R A ≤.

又()1R A n =-,A 中至少有一个1n -阶代数余子式0ij A ≠,则*0A ≠,从而

()*1R A ≥,因此()*1R A =.

当()1R A n <-时,A 中每一个1n -阶子式全为零,故*A 中的元素全为零,

即*0A =,故()*

0R A =.

3 矩阵秩的等式与不等式的证明

3.1 用矩阵秩的理论证明秩的等式和不等式 命题3.1 ()()=T R A R A .

证明 根据矩阵转置的定义,A 的行向量组就是T A 的列向量组,所以A 的行秩就是T A 的列秩,又由性质2.1知()()=T R A R A ,命题得证.

命题3.2 ()()R kA R A =(其中0k ≠).

证明 kA 的行向量组可以用A 的行向量组线性表示,A 的行向量组也可以用

kA 的行向量组线性表示,所以kA 的行向量组等价于A 的行向量组.并由性质2.4

可证明它们的秩相等,然后通过秩的定义证明kA 与A 的秩相等,命题得证.

命题 3.3 设A 是一个m n ?矩阵,若P 是m m ?可逆矩阵,Q 是n n ?可逆矩阵,那么()()()=R A R PA R AQ =.

证明 令B PA =,由矩阵乘积的秩不超过各因子的秩可知()()R B R A ≤,但是由1A P A -=,又有()()R A R B ≤,所以()()()R A R B R PA ==.

令C AQ =,同理可得()()()=R A R C R AQ =,所以()()()=R A R PA R AQ =,命题得证.

3.2 用线性空间的理论证明秩的等式和不等式

引理 3.1 如果一个齐次线性方程组有非零解,那么它有基础解系,并且基础解系所包含解的个数为n r -,这里r 表示系数矩阵的秩,n r -表示自由未知量的个数.

命题3.4 设A 为n 阶方阵,如果由A 的列向量所生成的n

R 的子空间()R A 以及

A 的零空间(即核空间)()N A 的直和为n

R ,则()()2=R A R A .

证明 根据引理3.1,要证明()()2=R A R A ,只要证明0AX =与20A X =同解即可.

0AX =的解显然为20A X =的解.下面我们用反证法证明20A X =的任一解Y 同时

也是0AX =的解.

若0AY ≠,因为()0A AY =,故()AY N A ∈.

另一方面,()1

n

i i i AY y R A α==∈∑ ,其中

()()

1212,,,,,,,T

n n A Y y y y ααα==,

从而 ()()0AY R A N A ≠∈,

这与()()n =R R A N A ⊕矛盾,所以20A X =的任一解Y 同时也是0AX =的解,因此它们同解,故()()2=R A R A .

命题 3.5 设A 为s n ?矩阵,B 为n s ?矩阵,=AB BA ,证明

()()()()R A B R A R B R AB +≤+-.

证明 设1234,,,w w w w 分别为,,,A B A B AB +的线性空间,那么

()()

12dim ,dim w R A w R B ==

()()

34dim ,dim w R A B w R AB =+=

因为312w w w ?+,那么利用维数公式可得

()()312121

2dim dim dim dim dim w w w w w w w ≤+=+- (3.1)

因为AB 的行向量是B 的行向量的线性组合,那么有42w w ?,又AB BA =,所以

有41w w ?,因此有412w w w ?,所以有

()()1

2dim R AB w w ≤

(3.2)

将(3.2)代入(3.1),即得()()()()R A B R A R B R AB +≤+-.

命题3.6 若()()=R AB R B ,证明()()=R ABC R BC .

证明 设方程组0ABX =与0BX =的解空间分别为w AB ,w B . 若()()R AB R B =,根据引理3.1知

()()dim w =dim w AB B

又因为满足0BX =的解向量也满足0ABX =,所以

w w AB B ?

由以上两式可推出.

要证明()()=R ABC R BC ,只需要证明0ABCX =与0BCX =同解. 设方程组0ABCX =与0BCX =解空间分别为w ABC ,w BC . 显然w w ABC BC ?,接下来只需要证明w w ABC BC ?.

由0ABCX =知w w AB B CX ∈=,即0BCX =,因此w w ABC BC ?,命题得证. 3.3 用矩阵分块法证明秩的等式和不等式

命题3.7 ()()000A

A R R R A R

B B

C B B ????==+

? ?????

;其中C 是满秩的矩阵. 证明 ()()00A R R A R B B ??

=+ ???是显而易见的,现在利用矩阵的分块来证明左边的等式000A

A R R BC

B B ????=

? ?????

. 首先,对0A

BC

B ??

???中的0B ??

???

作列变换,使得00B BC ????→ ? ?????,也就是 00A A

BC B BC BC ????→ ? ?????

然后,用右边的列减去左边的列,得到

000A A BC BC BC ????→ ? ?????

最后,再次对右边作列变换1000BC BCC B -??????

→= ? ? ???????

作列变换,也就是 0000A A BC B ????

→ ? ??

??? 所以有

000000A

A A A BC

B BC

B B

C B ???????? ? ? ? ?????????

000A A R R BC

B B ????= ? ?????.

4 矩阵秩的等式与不等式的应用

4.1矩阵秩的不等式在判断n 阶方阵是否可逆的应用

矩阵的逆的定义:设()ij n n A a ?=,若存在n 阶方阵B ,使AB BA E ==,则B 是A 的逆矩阵,设为1A -,并称A 可逆.

用矩阵的秩描述:如果n 阶方阵A 的秩小于n ,则A 不可逆,如果n 阶方阵A 的秩等于n ,则A 可逆.

例4.1 判断矩阵135210117A ?? ?= ? ???与矩阵121110221B ??

?

= ? ?-??

是否可逆?

证明

1351251092100-3-1000-161170-120-12A ?????? ? ? ?=→→ ? ? ? ? ? ???????

所以()3R A =,A 可逆.

121021100110100021221021000B ?????? ? ? ?=→→ ? ? ? ? ? ?-??????

所以()23R B =≠,B 不可逆.

例4.2 设A 为s n ?矩阵,B 为n s ?矩阵,证明:当s n >时,方阵C AB =不可逆.

证明 因为()()()()}}{{min ,min ,R C R AB R A R B s n n s =≤≤=<,故C 不可逆.

4.2矩阵秩的等式在解线性方程组中的应用

对于一般形式的线性方程组

11112211211222221122n n n n m m mn n m

a x a x a x

b a x a x a x b a x a x a x b +++=??+++=???

?++

+=?

(4.1)

引入向量

111221

221212,,

,

m m a a a a a a αα????????????==????????????

1122,,

n n n mn m a b a b a b αβ????????????==????????????

那么线性方程组(4.1)可以改写成向量方程

1122+n n x a x a x a β

+

+=.

所以线性方程组(4.1)有解的充分必要条件向量β可以表成向量组12,,,n a a a 的

线性组合.

用秩的概念:线性方程组(4.1)有解的充要条件为其系数矩阵与增广矩阵秩相同,即()()=R A R B .

11

1211112

1121

2222122

221

2

12

,n n

n n m m mn m m mn

m a a a a a a b a a a a a a b A B a a a a a a b ????????????==????????????

. 证明 首先证明必要性.设线性方程组(4.1)有解,即β可以用向量组

12,,,n ααα线性表示.由此,我们可以立即推导出,向量组12,,,n ααα等价于向

量组12,,,,n αααβ,因此它们具有相同的秩.因为这两个向量组分别是矩阵A 与

12,,,,n αααβ的列向量组.因此,矩阵A 与12,,

,,n αααβ有相同的秩.

然后证明充分性.设矩阵A 与12,,,,n αααβ有相同的秩,就是说,它们的列

向量组12,,

,n ααα与12,,

,,n αααβ有相同的秩,令它们的秩为r .因为

12,,,n ααα中的极大线性无关组是由r 个向量组成,不妨设12,,

,r ααα是它的一

个极大线性无关组.显然,12,,,r ααα也是向量组12,,

,,n αααβ的一个极大线性

无关组,因此向量β可以用向量组12,,,r ααα线性表示.因为β可以用向量组

12,,,r ααα线性表示,那么当然它也可以用12,,

,n ααα线性表示.因此,方程组

(4.1)有解.

例4.3设有线性方程组

()()()12312312310131x x x x x x x x x λλλλ+++=??

+++=??

+++=?

提问:当λ取何值时,线性方程组(1)有唯一解;(2)无解;(3)有无穷多个解?并在有无穷多解时求其通解.

解 对增广矩阵(),B A b =作初等行变换,将其转化为行阶梯形矩阵,有

()13

21

31

11110111111311131111110r r r r r r B λλλλλλλλλ?--+++???? ? ?=+→+→

? ? ? ?++????

()

()()

()()3211

1111030300021313r r λλλλ

λλλλ

λλλλλλλλλλλ+????

++

?

?

--→-- ? ? ? ?--+-+-+-+?

??

?

(1)当0λ≠且-3λ≠时,()()3R A R B ==,方程组有唯一解; (2)当0λ=时,()()1,2R A R B ==,方程组无解; (3)当-3λ=时,()()2R A R B ==,方程组有无穷多个解. 接下来继续对增广矩阵B 作初等行变换,将其化为最简单的形式

112310110336011200000000B ----????

? ?=--- ? ? ? ?????

由此可得同解的线性方程组

13231

2x x x x =-??

=-?

因为3x 为自由未知量,令()3x c c R =∈.那么线性方程组的通解为

()123111210x x c c R x -?????? ? ? ?=+-∈ ? ? ? ? ? ???????

. 例4.4 设有向量组

(1)()11,0,2α'=,()21,1,3α'=,()31,1,2a α'=-+; (2)()11,2,3a β'=+,()22,1,6a β'=+,()32,1,4a β'=+.

试问:当a 为何值时,向量组(1)与(2)等价?当a 为何值时,向量组(1)与(2)不等价?

解 向量()1,2,3i i β=可以用123,,ααα线性表示,等价于线性方程组

()112233+1,2,3i x x x i αααβ+==有解.

对矩阵作初等行变换,有

()123123,,,,,αααβββ

11

1122011211232364a a a a ?? ?=- ? ?++++?? 102111011211001111a a a a -?? ?→- ? ?+-+-??

(1)当1a ≠-时,有行列式()123,,10a ααα=+≠,()123,,3R ααα=,故线性方程组()112233+1,2,3i x x x i αααβ+==均有唯一解.

所以123,,βββ可由向量组(1)线性表示.

行列式()123,,60βββ=≠,故123,,ααα可由向量组(2)线性表示.因此向量组(1)与(2)等价.

(2)当1a =-时,有()123123102111,,,,,011211000202αααβββ-??

?

→- ? ?--??

由于()()1231231,,,,,R R ααααααβ≠,线性方程组1122331x x x αααβ++=无解,故向量1β不能由123,,ααα线性表示.

因此向量组(1)与(2)不等价. 4.3矩阵秩的等式在研究幂等矩阵秩恒等式中的应用

例4.5 设A 为n 阶矩阵,且2A A =,证明()()R A R A E n +-=.

证明 由2=A A ,可得()=0A A E -.

()()R A R A E n

+-≤

又因为E A -和A E -有相同的秩,所以

()()()()

n R E R A E A R A R A E ==+-≤+-

由以上两式可得()()R A R A E n +-=,命题得证.

5结束语

本文首先介绍矩阵秩的等式与不等式的研究背景及研究现状,然后介绍矩阵和矩阵秩的定义、性质,最后重点探讨了矩阵秩的等式与不等式的证明及应用.关于矩阵秩的性质,我们主要对其中部分性质作了比较全面的归纳总结.关于矩阵秩的等式与不等式的证明,我们比较全面地总结了几种不同的证明方法并给出了例题.关于矩阵秩的等式与不等式的应用,我们结合例题讨论了矩阵秩的不等式在判断n阶方阵是否可逆的应用,矩阵秩的等式在解线性方程组中的应用,矩阵秩的等式在研究幂等矩阵秩恒等式中的应用.事实上,矩阵秩的等式与不等式在自然科学、社会经济、工程技术等相关领域都有着广泛的应用.这些方面都是可以补充和完善的,但由于本人学术能力有限和时间的关系未能再做深入研究.总的来说,本文比较系统地研究了矩阵秩的等式与不等式的证明及应用,能给学习和研究矩阵秩的等式与不等式的相关人员提供一定的帮助.

《矩阵的秩的等式及不等式的证明》

摘要 矩阵的秩是矩阵的一个重要特征,它具有许多的重要性质.本文总结归纳出了有关矩阵的秩的等式和不等式命题,以及证明这些命题常用的证明方法,即从向量组、线性方程组、线性空间同构、矩阵分块、矩阵初等变换等角度给出多种证明方法.本文主要解决以下几个问题:用矩阵已知的秩的理论证明矩阵秩的等式和不等式问题;用线性空间的方法证明矩阵秩的等式和不等式问题;用向量组秩的理论证明矩阵秩的等式和不等式问题;用矩阵分块法证明秩的等式和不等式问题.

目录 第一章绪论 (1) 第二章预备知识 (2) 第三章用矩阵的秩的理论证明秩的等式和不等式 (3) 第四章用线性空间的理论证明秩的等式和不等式 (6) 第五章用向量组秩的理论证明秩的等式和不等式 (10) 第六章用矩阵分块法证明秩的等式和不等式 (15) 第七章小结 (23) 参考文献 (24) 致谢 (25)

第一章绪论 矩阵的秩是矩阵的一个重要特征,是矩阵理论中研究的一个重要内容,它具有许多的重要性质.研究矩阵的秩对于解决矩阵的很多问题具有重要意义.矩阵的秩的等式及不等式的证明对于学习矩阵也是重点和难点,初学者在做这方面的题目往往不知如何下手.笔者归纳了矩阵的秩的常见等式和不等式以及与之相关的一些结论,并从向量组、线性方程组、矩阵分块、矩阵初等变换等角度探索了多种证明方法,它有助于学习者加深对秩的理解和知识的运用,也方便教师教学. 目前对矩阵秩的研究已经比较成熟了,但是由于秩是矩阵论里的一个基本而重要的概念,它仍然有着重要的研究价值,有关它的论文时见报端.很多国内外的有关数学书籍杂志对矩阵的秩都有讲述,如苏育才、姜翠波、张跃辉在《矩阵论》(科学出版社、2006年5月出版)中较完整地给出了矩阵秩的理论.北京大学数学系前代数小组编写的《高等代数》(高等教育出版社,2003年7月出版)也介绍了秩的一些性质.但是对秩的等式及不等式的介绍都比较分散,不全面也没有系统化,不方便初学者全面掌握秩的性质.因此有必要对矩阵的秩的等式和不等式进行一个归总,便于学习和掌握. 本文通过查阅文献资料,总结归纳出有关矩阵的秩的等式和不等式命题,以及证明这些命题常用的证明方法,从向量组、线性方程组、线性空间同构、矩阵分块、矩阵初等变换等角度给出多种证明方法.主要内容有:(1)用矩阵已知的秩的理论证明矩阵秩的等式和不等式问题;(2)用线性空间的方法证明矩阵秩的等式和不等式问题;(3)用向量组秩的理论证明矩阵秩的等式和不等式问题;(4)用矩阵分块法证明秩的等式和不等式问题.

矩阵秩重要知识点总结_考研必看

一. 矩阵等价 行等价:矩阵A 经若干次初等行变换变为矩阵B 列等价:矩阵A 经若干次初等列变换变为矩阵B 矩阵等价:矩阵A 经若干次初等行变换可以变为矩阵B ,矩阵B 经若干次初等行变换可以变成矩阵A ,则成矩阵A 和B 等价 矩阵等价的充要条件 1. 存在可逆矩阵P 和Q,PAQ=B 2. R(A)=R(B) 二. 向量的线性表示 Case1:向量b r 能由向量组A 线 性表示: 充要条件: 1.线性方程组A x r =b 有解 (A)=R(A,b) Case2:向量组B 能由向量组A 线性表示 充要条件: R(A)=R(A,B) 推论 ∵R(A)=R(A,B),R(B) ≤R(A,B) ∴R(B) ≤R(A) Case3:向量组A 能由向量组B 线性表示 充要条件: R(B)=R(B,A) 推论 ∵R(B)=R(A,B),R(A) ≤R(A,B) ∴R(A) ≤R(B) Case4:向量组A 和B 能相互表示,即向量组A 和向量组B 等价 充要条件: R(A)=R(B)=R(A,B)=R(B,A) Case5:n 维单位坐标向量组能由矩阵A 的列向量组线性表示 充要条件是: R(A)=R(A,E)

n=R(E)<=R(A),又R(A)>=n ,所以R(A)=n=R(A,E) 三. 线性方程组的解 1. 非齐次线性方程组 (1) R(A)=R(A,B),方程有解. (2) R(A)=R(A,B)=n ,解唯一. (3) R(A)=R(A,B)

矩阵的秩与向量组的秩一致

矩阵的“秩”,是线性代数第一部分的核心概念。 “矩阵的秩与向量组的秩一致。矩阵的秩就是其行(或列)向量组的秩。”怎样证明?就当做习题练一练。 设矩阵A的秩为r ,则A必有一个r 阶子式不为0,而所有 r + 1阶子式全为 0 逻辑1——r 阶子式不为0,则 r个r 维向量线性无关。 分析这是格莱姆法则推论,带来的直接判别方法。 (画外音:r个未知量 r个方程的齐次线性方程组仅有0 解的充分必要条件是其系数行列式不为0) 逻辑思维链——这r 个r 维向量与A 的行(或列)向量组有何关系? 逻辑2——(“线性无关,延长无关。”定理)—— 已知一个n 维向量组线性无关,如果在相同的位置,给组内每个向量都增加一个分量,则所得的n + 1维向量组也线性无关。 分析不妨认为给线性无关的n 维向量组a1,a 2,…,a k 的每个向量都加上第n + 1个分量,形成一个n + 1 维向量组b1,b 2,…,b k

若有一组不全为零的数c1,c2,…,c k ,使得c1b1+ c2b 2+ ---+ c k b k = 0 ,如何证明“这组常数只能全为0”? 每个向量有n + 1 分量,向量“线性组合为0”实际上是n + 1个等式。前n 个等式即 c1 a1+ c2a2+ ---+ c k a k = 0 由已知线性无关即得,这组常数只能全为0,而最后那个(第n + 1个)等式自然成立。 逻辑3 ——将线性无关的 r个r 维向量,逐次延长为矩阵A 的r 个行向量(或列向量),它们线性无关。 (潜台词:简而言之,不为0的r阶子式所在的r个行向量(或列向量)线性无关。) 逻辑思维链(关键问题)——这r 个行向量是行向量组的最大无关组吗? 唯一信息——A的所有r + 1阶子式全为0 分析不妨设不为0 的r 阶子式就由这r 个行的左起前r 个分量排成。(画外音:画个示意图最好。)

矩阵秩的基本不等式

1 矩阵秩的基本不等式 定理1:设,m n A R ∈,,n s B R ∈,则{}()()()min (),()r A r B n r AB r A r B +-≤≤。 证明:由于0Bx =的解一定是0ABx =的解,因此0Bx =的基础解系为0ABx =的基础解系的一部分。于是,()()s r B s r AB -≤-,即()()r AB r B ≤。 ()()()()()()T T T T r AB r AB r B A r A r A ==≤=。 这样,我们就证明了()()r AB r A ≤,()()r AB r B ≤,故{}()min (),()r AB r A r B ≤。 我们假设1x ,2x ,……,()s r B x -,()1s r B x -+,……,()s r AB x -为0ABx =的基础解系。其中,0i Bx =,1()i s r B ≤≤-;0j Bx ≠,()1()s r B j s r AB -+≤≤-。 下面,我们来证明向量组{} ()()1 s r AB j j s r B Bx -=-+是线性无关的。事实上,假设数j k , ()1()s r B j s r AB -+≤≤-,使得 ()()1 ()s r AB j j j s r B k Bx -=-+∑ ,于是() ()1 0s r AB j j s r B B x -=-+=∑ 。 这样, () ()1 0s r AB j j s r B x -=-+=∑ 为0Bx =的解。于是,存在数j k ,1()j s r B ≤≤-,使得 ()() ()1 1 ()s r AB s r B j j j j s r B j x k x --=-+== -∑ ∑,即()1 0s r AB j j j k x -==∑ 。由于向量组{} ()1 s r AB j j x -=线性无关,因 此,0j k =,()1()s r B j s r AB -+≤≤-。于是,向量组{}() ()1 s r AB j j s r B Bx -=-+线性无关。 又由于()0j j A Bx ABx ==,()1()s r B j s r AB -+≤≤-,因此{}() ()1 s r AB j j s r B Bx -=-+为 0Ax =的基础解系的一部分。于是, []()()11()()()s r AB s r B r B r AB n r A ---++=-≤- 即()()()r AB r A r B n ≥+-。 推论1:若,m n A R ∈,,n s B R ∈满足0AB =,则()()r A r B n +≤。 证明:0()()()r AB r A r B n =≥+-,于是()()r A r B n +≤。

矩阵的秩的相关不等式的归纳小结

矩阵的秩的相关不等式的归 纳小结 -标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

矩阵的秩的相关不等式的归纳小结 林松 (莆田学院数学系,福建,莆田) 摘要:利用分块矩阵,证明一些矩阵的秩的相关不等式,观察矩阵在运算后秩的变化,归纳出常见的有关矩阵的秩的不等式,由此引出等式成立的条件。 关键词:矩阵的秩,矩阵的初等变换 引言:矩阵的秩是指矩阵中行(或列)向量组的秩,与之等价的说法通常是指矩阵中不为零的子式的最高阶数,是矩阵最重要的数字特征之一。利用分块矩阵,把子式看成元素,可将高阶矩阵的运算化为较低阶矩阵的运算,也为矩阵的秩的一些常见不等式的证明带来了方便。本文将讨论矩阵的秩的一些常见不等式,并由此引出一些秩的不等式等号成立的等价条件。 一基本的定理 1 设A是数域P上n m ?矩阵,于是 ?矩阵,B是数域上m s 秩(AB)≤min [秩(A),秩(B)],即乘积的秩不超过个因子的秩 2设A与B是m n ?矩阵,秩(A±B)≤秩(A)+秩(B) 二常见的秩的不等式 1 设A与B为n阶方阵,证明若AB = 0,则 r(A) + r(B) ≤ n 证:设r(A) = r,r(B )= s,则由AB = 0,知,B的每一列向量都是以A为系数方阵的齐次线性方程组的解向量。 当r = n时,由于该齐次方程组只要零解,故此时 B = 0,即此时r(A) = n,r(B) = 0,结论成立。 当r〈 n 时,该齐次线性方程组的基础解系中含n-r个向量,

从而B 的列向量组的秩≤n-r,即r (B )≤ n-r 所以 r(A) + r(B) ≤ n 2设A 为m n ?矩阵,B 为n s ?矩阵,证明不等式r(AB)≤r(A)+r(B)-n 证:设E 为n 阶单位矩阵, S E 为S 阶单位方阵,则由于 000S E B A AB A E E E B ??????= ? ? ?-?????? 而 0S E B E ?? ?-?? 可逆,故 r(A)+r(B) ≥ 秩 0A E B ?? ? ?? =秩 0A AB E ?? ???=秩 0 0AB E ?? ??? =r(AB)+r(E) =r(AB)+n 从而r(AB) ≥ r(A) + r(B) - n 3设A ,B 都是n 阶方阵,E 是n 阶单位方阵,证明 秩(AB-E )≤秩(A-E )+秩(B-E ) 证:因为0A E B E B E --?? ? -??00B E ?? ???00AB E B E -?? = ?-?? 故秩(AB-E )≤秩00AB E B E -?? ?-??≤秩0A E B E B E --?? ?-?? =秩(A-E )+秩(B-E ) 因此 秩(AB-E )≤秩(A-E )+秩(B-E ) 4 设A ,B ,C 依次为,,m n n s s t ???的矩阵,证明 r(ABC) ≥ r(AB) + r(BC) - r(B)

矩阵秩的一些著名结论

引言 矩阵的秩是高等代数中一个应用及其广泛的理论,有关矩阵的秩的等式或不 等式的证明,常常和向量组的秩,线性方程组的解等密切相关,推证有难度也有技巧。熟练掌握关于矩阵秩的一些结论及其证明技巧,对有关理论的学习会有很大的裨益。矩阵A 中的最大阶不为零的子式的阶数就称为矩阵A 的秩,记为r(A).一些平凡的理论及概念读者可参阅一些权威教材,这里只对一些经典的理论做一讨论. 1. 证明: 设B A ,为两个同阶矩阵,则有r(A ﹢B)≤r(A)﹢r(B) 证 设A =(α1,α 2 ,…, αn ), B =() ββ βn ,...,,2 1 则 A +B =( α1 +β1 ,α2 +β 2 ,…, αn +βn ) 不妨设A 列向量的极大线性无关组为 α1 ,α 2 ,…, α r . (1≤r ≤n); B 列向量的极大线性无关组为β1,β2,…βs . (1≤s ≤n). 则k i i 1 =αα1 +α 2 2 k i +…+ α r ir k ; βi =β1 1 l i +β 2 2 l i +…+ β s is l ; 则 αi +β i = k i 1 α1 +α 2 2 k i +…+αr ir k +β1 1 l i +β 2 2 l i +…+ β s is l ; 即A +B 的列向量可由 α1 ,α 2 ,…, α r , β 1 , β 2 ,… β s 线性表出, 故)()()(B +A =+≤B +A r r s r r . 2. 若AB =O ,则)()(B r A r +n ≤. 证 记 ),...,,(2 1 ββ βn B =,由AB =O ,知B 的每一列都是O =AX 解, 即O =A β i ,i =1,2,…,n 又因O =AX 的基础解系所含向量个数为)(A r n -, 换言之, O =AX 的所有解所构成的向量组的秩为)(A r n -.故≤)(B r )(A r n -, 即)()(B r A r +n ≤.

1求下列向量组的秩与一个极大线性无关组

习题4.3 1.求下列向量组的秩与一个极大线性无关组: (1) []12,1,3,1T α=-, []23,1,2,0T α=-, []31,3,4,2T α=-,[]44,3,1,1T α=-. (2) []11,1,1,1T α=, []21,1,1,1T α=--, []31,1,1,1T α=--,[]41,1,1,1T α=---. (3) []11,1,2,4T α=-, []20,3,1,2T α=,[]33,0,7,14T α=, []41,1,2,0T α=-,[]52,1,5,6T α=. 分析 向量组的秩等于该向量组构成的矩阵的秩, 所以求向量组的秩可以转化为求矩阵的秩. 先把向量构成矩阵通过矩阵的初等行变换成阶梯形, 通过阶梯形便可得到矩阵的秩, 它也就是该向量组的秩, 而阶梯形的阶梯头所在的列对应的向量便构成该向量组的一个极大线性无关组. 解 (1) []1 23 423141133113301123241000010210000αααα--???????? ---??? ?=??→????????--???? , 所以该向量组的秩为2, 且1α, 2α为它的一个极大线性无关组. (2) []1 23 41111111111110 1011111001111110001αααα--???? ????---??? ?=??→???? ---???? --???? , 所以该向量组的秩为4, 且1α,2α,3α,4α为它的一个极大线性无关组. (3) []1 234 51031 21 0312130110110121725000104214060 0000ααααα???? ????--? ???=??→???? ??? ? ???? , 所以该向量组的秩为3, 且1α,2α,4α为它的一个极大线性无关组. 2.计算下列向量组的秩,并判断该向量组是否线性相关. (1) []11,1,2,3,4T α=-,[]23,7,8,9,13T α=-,

矩阵的秩及其求法

第五节:矩阵的秩及其求法 一、矩阵秩的概念 1. k 阶子式 定义1 设 在A 中任取k 行k 列交叉处元素按原相对位置组成的 阶行列式,称为A 的一个k 阶子式。 例如 共有 个二阶子式,有 个三阶子式 矩阵A 的第一、三行,第二、四列相交处的元素所构成的二阶子式为 而 为 A 的一个三阶子式。显然, 矩阵 A 共有 个 k 阶子式。 2. 矩阵的秩 定义2 设 有r 阶子式不为0,任何r +1阶子式(如果存在的话)全 为0 , 称r 为矩阵A 的秩,记作R (A )或秩(A )。 规定: 零矩阵的秩为 0 . 注意:(1) 如 R ( A ) = r ,则 A 中至少有一个 r 阶子式 所有 r + 1 阶子式为 0,且更高阶子式均为 0,r 是 A 中不为零的子式的最高阶数,是唯一的 . (2) 有行列式的性质, (3) R(A ) ≤m , R (A ) ≤n , 0 ≤R (A ) ≤min { m , n } . (4) 如果 An ×n , 且 则 R ( A ) = n .反之,如 R ( A ) = n ,则 因此,方阵 A 可逆的充分必要条件是 R ( A ) = n . 二、矩阵秩的求法 1、子式判别法(定义)。 例1 设 为阶梯形矩阵,求R (B )。 解 由于 存在一个二阶子式不为0,而任何三阶子式全为0,则 R (B ) = 2. 结论:阶梯形矩阵的秩=台阶数。 例如 一般地,行阶梯形矩阵的秩等于其“台阶数”—— 非零行的行数。 () n m ij a A ?={}),min 1(n m k k ≤≤? ? ??? ??----=1 10145641321A 182423=C C 43334=C C 101 22--= D 1 0156 43213-=D n m ?k n k m c c () n m ij a A ?=0, r D ≠()(). T R A R A =0,A ≠0.A ≠??? ? ? ??=000007204321B 0 2 021≠????? ??=010*********A ????? ??=001021B ???? ? ??=100010011C 125034000D ?? ? = ? ? ??2 123508153000720 000 0E ?? ? ?= ? ??? ()3=A R ()2=B R ()3=C R ()2R D =()3 R E =

实验矩阵的秩与向量组的极大无关组

项目五 矩阵运算与方程组求解 实验2 矩阵的秩与向量组的极大无关组 实验目的 学习利用Mathematica 求矩阵的秩,作矩阵的初等行变换; 求向量组的秩与极大无关组. 基本命令 1. 求矩阵M 的所有可能的k 阶子式组成的矩阵的命令:Minors[M,k]. 2. 把矩阵A 化作行最简形的命令:RowReduce[A]. 3. 把数表1,数表2, …,合并成一个数表的命令:Join[list1,list2,…]. 例如输入 Join[{{1,0,-1},{3,2,1}},{{1,5},{4,6}}] 则输出 {{1,0,-1},{3,2,1},{1,5},{4,6}} 实验举例 求矩阵的秩 例2.1 (教材 例2.1) 设,815073*********???? ? ??-------=M 求矩阵M 的秩. 输入 Clear[M]; M={{3,2,-1,-3,-2},{2,-1,3,1,-3},{7,0,5,-1,-8}}; Minors[M,2] 则输出 {{-7,11,9,-5,5,-1,-8,8,9,11},{-14,22,18,-10,10,-2, -16,16,18,22},{7,-11,-9,5,-5,1,8,-8,-9,-11}} 可见矩阵M 有不为0的二阶子式. 再输入 Minors[M,3] 则输出 {{0,0,0,0,0,0,0,0,0,0}} 可见矩阵M 的三阶子式都为0. 所以.2)(=M r

例2.2 已知矩阵???? ? ??----=1t 0713123123M 的秩等于2, 求常数t 的值. 左上角的二阶子式不等于0. 三阶子式应该都等于0. 输入 Clear[M]; M={{3,2,-1,-3},{2,-1,3,1},{7,0,t,-1}}; Minors[M,3] 输出为 {{35-7t,45-9t,-5+t}} 当5=t 时, 所有的三阶子式都等于0. 此时矩阵的秩等于2. 例2.3 (教材 例2.2) 求矩阵???????? ??-----322 4211631095114047116的行最简形及其秩. 输入 A={{6,1,1,7},{4,0,4,1},{1,2,-9,0},{-1,3,-16,-1},{2,-4,22,3}} MatrixForm[A] RowReduce[A]//MatrixForm 则输出矩阵A 的行最简形 ???????? ??-0000000010000510 01 01 根据矩阵的行最简形,便得矩阵的秩为3. 矩阵的初等行变换 命令RowfReduce[A]把矩阵A 化作行最简形. 用初等行变换可以求矩阵的秩与矩阵的逆. 例2.4 设,41311221222832A ???? ? ??--=求矩阵A 的秩. 输入

关于“矩阵的行列式不等式”的几点注记

关于“矩阵的行列式不等式”的几点注记 摘要本文给出了实矩阵的若干行列式不等式的证明,并在复数域上针对正定矩阵建立了行列式不等式。针对实矩阵,主要给出了五个命题阐述其行列式不等式,同时对有些命题作出了引申与进一步说明;针对复正定矩阵,给出了三个命题,在这三个命题的证明过程中用到了Schur定理和Holder不等式。 关键词实矩阵;复正定矩阵;行列式;不等式 Several Notes for “Inequalities on the Determinant of Matrix” Abstract In this paper, several determinantal inequalities on real matrix are proved. As applications, some inequalities on determinants of positively definite matrices are established in complex number field. For the real matrix, five propositions are given to explain its determinantal inequalities, and some time, extensions and further states are made for some propositions. For the complex positively definite matrix, three propositions are given, in the process of the proof of the three propositions, the Schur theorem and Holder inequality are used. Key words real matrix; complex positively definite matrix; determinant; inequality

矩阵秩的等式与不等式的证明及应用

矩阵秩的等式与不等式的证明及应用 矩阵是高等代数的一个重要概念,也是线性代数中的主要研究对象,同时也是一种应用广泛的数学工具.不管是在数学学习还是实际问题中,我们常常会遇到许多比较复杂的计算问题,而使用矩阵来解决这些难题,往往会使问题简单化.早在古代,我国的《九章算术》就已经对矩阵有了初步的描述.而矩阵的理论起源,可追溯到18世纪.高斯在1801年、艾森斯坦在1844-1852年,先后把一个线性变换的全部系数用一个字母来表示,艾森斯坦还强调乘法次序的重要性.这些工作都孕育了矩阵的思想,但矩阵的正式定义直到1858年才由凯莱给出来.凯莱在《矩阵论的研究报告》中全面阐述了矩阵的一些理念,同时他还在文中给出了许多矩阵的运算法则以及矩阵转置的定义,证明了矩阵加法中的可交换性与可结合性,更为重要的是他还给出了伴随矩阵、矩阵可逆的概念.由于凯莱的奠基性工作,一般认为他是矩阵理论的创始人. 而矩阵的秩是矩阵的一个重要特征,是矩阵理论中研究的一个重要内容,它具有许多的重要性质.对于矩阵的秩的等式与不等式,近年来有一些学者对其进行了研究.张英,乔世东利用同解方程组、标准形、线性空间和同态基本定理来证明矩阵秩的一些性质;王廷明利用构造分块矩阵并通过广义初等变换的方法,证明矩阵秩的(不)等式;殷倩把分散的知识点及重要的常用结论整合在一起,归纳整理出若干常用有效的证明方法;徐小萍给出五个矩阵秩的不等式,并利用代数理论对其进行证明,然后用一些典型例题对其应用进行分析.在前人研究的基础上,本文进一步系统的探究了矩阵秩的等式与不等式及其应用.首先介绍矩阵秩的等式与不等式的研究背景和国内外的研究现状,其次介绍矩阵秩的定义与简单性质,然后给出一些矩阵秩的等式与不等式的证明,最后通过例子研究其在多方面的应用。 1

矩阵秩的相关结论证明及举例

华北水利水电大学 矩阵秩的相关结论证明及举例 课程名称:线性代数 专业班级:能源与动力工程(热动)101班 成员组成:王威威 联系方式: 2014年12月30日

一:摘要 矩阵的秩是数学中一个极其重要并广泛应用的概念,是线性代数的一个重要研究对象,因此,矩阵的秩的结论作为线性代数的一个重要结论已经渗透到各章节之中,他把线性代数的内容紧紧联系在一起,矩阵的秩作为矩阵的一个重要本质属性则贯穿矩阵理论的始终,所以对矩阵秩的研究不仅能帮助我们更好地学习矩阵,而且也是我们学习好线性代数各章节的有力保证。 关键词:矩阵秩结论证明 英文题目 Abstract: Matrix rank is an extremely important and widely us ed in the mathematical concept, is an important res earch object of linear algebra, as a result, the c onclusion of the rank of matrix as an important co nclusion of linear algebra has penetrated into chapt er, associate the content of the positive linear al gebra and matrix of rank as an important essential attribute of the matrix, however, throughout the c ourse of the theory of matrix so that the study o f matrix rank can not only help us better learning matrix and chapter we learn good linear algebra Key words:matrix rank conclusion proof

矩阵的秩的相关不等式的归纳小结

矩阵的秩的相关不等式的归纳小结 林 松 (莆田学院数学系,福建,莆田) 摘要:利用分块矩阵,证明一些矩阵的秩的相关不等式,观察矩阵在运算后秩的变化,归纳出常见的有关矩阵的秩的不等式,由此引出等式成立的条件。 关键词:矩阵的秩,矩阵的初等变换 引言:矩阵的秩是指矩阵中行(或列)向量组的秩,与之等价的说法通常是指矩阵中不为零的子式的最高阶数,是矩阵最重要的数字特征之一。利用分块矩阵,把子式看成元素,可将高阶矩阵的运算化为较低阶矩阵的运算,也为矩阵的秩的一些常见不等式的证明带来了方便。本文将讨论矩阵的秩的一些常见不等式,并由此引出一些秩的不等式等号成立的等价条件。 一 基本的定理 1 设A 是数域P 上n m ?矩阵,B 是数域上m s ?矩阵,于是 秩(AB )≤min [秩(A ),秩(B )],即乘积的秩不超过个因子的秩 2 设A 与B 是m n ?矩阵,秩(A ±B )≤秩(A )+秩(B ) 二 常见的秩的不等式 1 设A 与B 为n 阶方阵,证明若AB = 0,则 r(A) + r(B) ≤ n 证:设r(A) = r,r(B )= s,则由AB = 0,知,B 的每一列向量都是以A 为系数方阵的齐次线性方程组的解向量。 当r = n 时,由于该齐次方程组只要零解,故此时 B = 0,即此时 r(A) = n ,r(B) = 0,结论成立。 当r 〈 n 时,该齐次线性方程组的基础解系中含n-r 个向量, 从而B 的列向量组的秩≤n-r,即r (B )≤ n-r 所以 r(A) + r(B) ≤ n 2设A 为m n ?矩阵,B 为n s ?矩阵,证明不等式r(AB)≤r(A)+r(B)-n 证:设E 为n 阶单位矩阵, S E 为S 阶单位方阵,则由于 000S E B A AB A E E E B ??????= ? ? ?-??????

关于矩阵秩的一个不等式

关于矩阵秩的一个不等式 Ξ 沈 华 (湖北大学数学系 武汉 430062) 对任意矩阵M ,用r (M )表示M 的秩。熟知,矩阵的秩是矩阵的一个重要不变量,对矩阵的加法和乘法,我们有下面两个基本的不等式。 (一)设A 、B 是两个m ×n 矩阵,则 r (A +B )≤r (A )+r (B ) (1) (二)设A 、B 分别是两个m ×n 、n ×l 矩阵,则 r (A )+r (B )-n ≤r (A B )≤m in{r (A ),r (B )}它通常被称为Sylvester 不等式。 对这两个不等式,有不同的证明和理解,见[1、2]。在本文里,我们要结合矩阵的满秩分解,用不等式(二)来研究不等式(一),从中给出r (A +B )≤r (A )+r (B )的一个推广形式。本文所需的矩阵知识是基本的,可在[1、2]里找到。 现在,对任意m ×n 矩阵M ,我们用C M 、R M 分别表示由M 的所有列向量、行向量所生成的向量空间。明显地,向量空间C M 、R M 的维数为di m C M =di m R M =r (M )。进一步地,对任意分块矩阵M =(M 1,M 2)和N = N 1N 2 ,根据定义容易验证向量空间C M =C M 1+C M 2,向量空间R N =R N 1+R N 2。 本文的目的是证明如下的 定理 设A 、B 是两个m ×n 矩阵,则 r (A )+r (B )-(d 1+d 2)≤r (A +B )≤r (A )+r (B )-m ax{d 1、d 2} (2)这里d 1=di m (C A ∩C B ),d 2=di m (R A ∩R B )。 (2)是比(1)精确的不等式。根据(2)式,我们立即得到下面的推论1 设A 、B 、d 1、d 2的意义如上述定理所述,则r (A +B )=r (A )+r (B )当且仅当d 1=d 2=0。 注意到r (-B )=r (B )及C -B =C B 、R -B =R B ,这样根据推论1,可以得到有趣的推论2 设A 、B 是两个m ×n 矩阵,则有r (A +B )=r (A )+r (B )当且仅当r (A -B )=r (A )+r (B )。 先证明一个预备性结果。 引理 设A 是个秩为r 的m ×n 矩阵,对A 的任意满秩分解A =H L ,均有C A =C H ,R A =R L ,这里H 为m ×r 列满矩阵,L 为r ×n 行满矩阵。 证明 设A =(Α1、Α2、…、Αn ),H =(Β1、Β2、…、Βr ),L =(l ij )r ×n ,从A =H L 得到Αi =l 1i Β1+l 2i Β2+…+l ri Βr (1≤i ≤n )。这样由Α1、Α2、…、Αn 生成的向量空间C A <由Β、Β2、…、Βr 生成的向量空间C H .注意到di m C A =r (A )=r (H )=di m C H ,我们立即得到C A =C H 。 又A 的转置矩阵A ′有满秩分解A ′=L ′H ′ ,于是C A ′=C L ′,也就是说,R A =R L 。61 高等数学研究STUD IES I N COLL EGE M A TH E M A T I CS V o l 16,N o 11 M ar .,2003 Ξ

矩阵的秩及其多样性的解法

矩阵的秩及其多样性的解法 数学学院 数学与应用数学(师范)专业 摘 要:矩阵论是代数学中一个重要组成部分和主要研究对象,而矩阵的秩又是矩阵的一个重要指标,本文研究了与矩阵的秩的相关性质及其多样性的解法, 用定理和实例说明了行列式、线性空间、线性方程组、分块矩阵和矩阵秩的关系及其在求矩阵的秩中的应用。 关键词: 矩阵的秩; 行列式; 线性方程组; Abstract :Matrix theory is an important part of the main object of study in algebra and rank of the matrix is an important indicator of the matrix, we study the rank of the matrix solution of the nature and diversity of theorems and examples illustratedeterminant, linear space, linear equations, the block matrix and the matrix rank and matrix rank. Keywords: Rank of matrix; V ector; Linear equations; 引言、引理 矩阵理论是高等代数的主要内容之一, 在数学及其它科学领域中有着广泛的应用.在矩阵理论中, 矩阵的秩是一个重要的概念. 它是矩阵的一个数量特征, 而且是初等变换下的不变量. 本文归纳了矩阵的秩相关性质及等价条件,并从行列式、线性方程组、线性空间以及分块矩阵的角度来阐述矩阵秩的不同解法。 矩阵的秩的等价刻划 设A F m n ?∈ ,则rank(A)=r ?A 中不为零的子式的最大阶数是r ; ?A 中有一个r 阶子式D 不等于零,所有包含D 作为子式的 r+1阶子式全为零; ? 存在可逆矩阵m n P F ?∈,m n Q F ?∈,使得000r E P A Q ?? = ??? ; ? A 的行(列)向量的极大无关组所含向量的个数为r;

求向量组的秩与极大无关组(修改整理)-向量组的极大无关组与秩

求向量组的秩与最大无关组 一、对于具体给出的向量组,求秩与最大无关组 1、求向量组的秩(即矩阵的秩)的方法:为阶梯形矩阵 【定理】矩阵的行秩等于其列秩,且等于矩阵的秩.(三秩相等) ①把向量组的向量作为矩阵的列(或行)向量组成矩阵A; ②对矩阵A进行初等行变换化为阶梯形矩阵B; ③阶梯形B中非零行的个数即为所求向量组的秩. 【例1】求下列向量组a1=(1, 2, 3, 4),a2 =( 2, 3, 4, 5),a3 =(3, 4, 5, 6)的秩. 解1:以a1,a2,a3为列向量作成矩阵A,用初等行变换将A化为阶梯形矩阵后可求. 因为阶梯形矩阵的列秩为2,所以向量组的秩为2. 解2:以a1,a2,a3为行向量作成矩阵A,用初等行变换将A化为 阶梯形矩阵后可求. 因为阶梯形矩阵的行秩为2,所以向量组的秩为2. 2、求向量组的最大线性无关组的方法 方法1 逐个选录法 给定一个非零向量组A:α1, α2,…, αn ①设α1≠ 0,则α1线性相关,保留α1 ②加入α2,若α2与α1线性相关,去掉α2;若α2与α1线性无关,保留α1,α2;

③依次进行下去,最后求出的向量组就是所求的最大无关组 【例2】求向量组:()()()1231,2,12,3,14,1,1,,,T T T ααα=-=-=-的最大无关组 解:因为a 1非零,故保留a 1 取a 2,因为a 1与a 2线性无关,故保留a 1,a 2 取a 3,易得a 3=2a 1+a 2,故a 1,a 2 ,a 3线性相关。 所以最大无关组为a 1,a 2 方法2 初等变换法 【定理】 矩阵A 经初等行变换化为B ,则B 的列向量组与A 对应的列向量组有相同的线性相关性. 证明从略,下面通过例子验证结论成立. 向量组:α1=(1,2,3)T , α2=(-1,2,0)T , α3=(1,6,6)T 由上可得,求向量组的最大线性无关组的方法: (1)列向量行变换 ①把向量组的向量作为矩阵的列向量组成矩阵A ; ②对矩阵A 进行初等行变换化为阶梯形矩阵B ; ③A 中的与B 的每阶梯首列对应的向量组,即为最大无关组. 【例3】求向量组 :α1=(2,1,3,-1)T , α2=(3,-1,2,0)T , α3=(1,3,4,-2)T , α4=(4,-3,1,1)T 的秩和一个最大无关组, 并把不属于最大无关组的向量用最大无关组线性表示。 解 以α1,α2,α3,α4为列构造矩阵A , 并实施初等行变换化为行阶梯形矩阵求其秩:

一些特殊矩阵的秩等式

一些特殊矩阵的秩等式 引言 矩阵的秩可以利用矩阵的非零子式的阶数定义,也可以利用矩阵的行向量组或列向量组的秩来定义,即: 定义1 设A 是数域F 上的m n ?矩阵,称矩阵A 不为零的最高阶数为矩阵A 的秩. 定义2设A 是数域F 上的m n ?矩阵,12,,,m βββ 是其行向量组,12,,,n ααα 是其列向量组,称向量组12,,,m βββ 的秩为A 的行秩,向量组12,,,n ααα 的秩为A 的列秩. 可以证明,对矩阵A ,行秩等于列秩.称矩阵A 的行秩(列秩)为矩阵A 的秩. 记作()rank A . 矩阵的秩是矩阵的一种重要特征,利用矩阵的秩特征,可以讨论矩阵的一些性质.很多特殊矩阵的特征都可以利用秩关系来刻画. 本文将在已有关于矩阵秩关系的基础上,在第一部分主要讨论诸如幂等矩阵、对合矩阵等特殊矩阵的秩等式关系,第二部分则主要讨论矩阵运算下的秩关系. A 是矩阵,T A 为A 的转置矩阵,I 为单位矩阵,A *为A 的伴随矩阵. n I 为n n ?的 单位矩阵,n V 为n 维线性空间.如果矩阵A ,B ∈n n C ?,满足2A =A ,2n B I =,则分别称A 、B 为幂等矩阵、对和矩阵. 1 幂等矩阵的秩恒等式 定理1.1[1] n 阶矩阵A 满足2A =A ,则()rank A +()rank I A -=n . 证明 (证法一) 设()rank A =r ,由2A =A 可得()A A I -=0, 则()A I -的每一个列向量都是以A 为系数的方阵的齐次线性方程组的解向量. (i)当r =n 时,由于齐次线性方程组只有零解,故此时A I -=0, 即此时 ()rank A =n ,()rank A I -=0,()rank A +()rank A I -=n , 结论成立. (ii)当r

矩阵秩的基本不等式

矩阵秩的基本不等式 定理1:设,m n A R ∈,,n s B R ∈,则{}()()()min (),()r A r B n r AB r A r B +-≤≤。 证明:由于0Bx =的解一定是0ABx =的解,因此0Bx =的基础解系为0ABx =的基础解系的一部分。于是,()()s r B s r AB -≤-,即()()r AB r B ≤。 ()()()()()()T T T T r AB r AB r B A r A r A ==≤=。 这样,我们就证明了()()r AB r A ≤,()()r AB r B ≤,故{}()min (),()r AB r A r B ≤。 我们假设1x ,2x ,……,()s r B x -,()1s r B x -+,……,()s r AB x -为0ABx =的基础解系。其中,0i Bx =,1()i s r B ≤≤-;0j Bx ≠,()1()s r B j s r AB -+≤≤-。 下面,我们来证明向量组{}() ()1s r AB j j s r B Bx -=-+是线性无关的。事实上,假设数j k , ()1()s r B j s r AB -+≤≤-,使得 () ()1 ()s r AB j j j s r B k Bx -=-+∑,于是()()10s r AB j j s r B B x -=-+=∑。 这样, ()()10s r AB j j s r B x -=-+=∑为0Bx =的解。于是,存在数j k ,1()j s r B ≤≤-,使得 () ()()11()s r AB s r B j j j j s r B j x k x --=-+==-∑∑,即()10s r AB j j j k x -==∑。由于向量组{}()1s r AB j j x -=线性无关,因 此,0j k =,()1()s r B j s r AB -+≤≤-。于是,向量组{}() ()1s r AB j j s r B Bx -=-+线性无关。 ; 又由于()0j j A Bx ABx ==,()1()s r B j s r AB -+≤≤-,因此{}()()1s r AB j j s r B Bx -=-+为 0Ax =的基础解系的一部分。于是, []()()11()()()s r AB s r B r B r AB n r A ---++=-≤- 即()()()r AB r A r B n ≥+-。 推论1:若,m n A R ∈,,n s B R ∈满足0AB =,则()()r A r B n +≤。 证明:0()()()r AB r A r B n =≥+-,于是()()r A r B n +≤。

相关文档
相关文档 最新文档