文档库 最新最全的文档下载
当前位置:文档库 › 因式分解的常用方法(基本公式法,分拆法,配方法,换元法,待定系数法)

因式分解的常用方法(基本公式法,分拆法,配方法,换元法,待定系数法)

因式分解的常用方法(基本公式法,分拆法,配方法,换元法,待定系数法)
因式分解的常用方法(基本公式法,分拆法,配方法,换元法,待定系数法)

因式分解方法归纳总结

第一部分:方法介绍

初中数学教材中主要介绍了提取公因式法、运用公式法、分组分解法和十字相乘法.本讲及下一讲在中学数学教材基础上,进一步着重换元法,待定系数法的介绍.

一、提公因式法.:ma+mb=m(a+b)

二、运用公式法.

(1)(a+b)(a -b) = a 2-b 2 ---------a 2-b 2=(a+b)(a -b);

(2) (a ±b)2 = a 2±2ab+b 2 ——— a 2±2ab+b 2=(a ±b)2;

(3) (a+b)(a 2-ab+b 2) =a 3+b 3------ a 3+b 3=(a+b)(a 2-ab+b 2);

(4) (a -b)(a 2+ab+b 2) = a 3-b 3 ------a 3-b 3=(a -b)(a 2+ab+b 2).

下面再补充两个常用的公式:

(5)a 2+b 2+c 2+2ab+2bc+2ca=(a+b+c)2;

(6)a 3+b 3+c 3-3abc=(a+b+c)(a 2+b 2+c 2-ab -bc -ca);

例.已知a b c ,,是ABC ?的三边,且222

a b c ab bc ca ++=++,

则ABC ?的形状是( )

A.直角三角形 B 等腰三角形 C 等边三角形 D 等腰直角三角形

解:222222222222a b c ab bc ca a b c ab bc ca ++=++?++=++ 222()()()0a b b c c a a b c ?-+-+-=?==

三、分组分解法

例2、分解因式:bx by ay ax -+-5102

解法一:第一、二项为一组; 解法二:第一、四项为一组;

第三、四项为一组。 第二、三项为一组。

解:原式=)5()102(bx by ay ax -+- 原式=)510()2(by ay bx ax +-+- =)5()5(2y x b y x a --- =)2(5)2(b a y b a x ---

=)2)(5(b a y x -- =)5)(2(y x b a --

练习:分解因式1、bc ac ab a -+-2 2、1+--y x xy

(二)分组后能直接运用公式

例3、分解因式:ay ax y x ++-2

2

分析:若将第一、三项分为一组,第二、四项分为一组,虽然可以提公因

式,但提完后就能继续分解,所以只能另外分组。

解:原式=)()(2

2ay ax y x ++-

=)())((y x a y x y x ++-+

=))((a y x y x +-+

例4、分解因式:2222c b ab a -+-

解:原式=222)2(c b ab a -+-

=22)(c b a --

=))((c b a c b a +---

练习:分解因式3、y y x x 3922--- 4、yz z y x 2222---

综合练习:(1)3223y xy y x x --+ (2)b a ax bx bx ax -+-+-22

(3)181696222-+-++a a y xy x (4)a b b ab a 4912622-++-

(5)92234-+-a a a (6)y b x b y a x a 222244+--

(7)222y yz xz xy x ++-- (8)122222++-+-ab b b a a (9))1)(1()2(+---m m y y (10))2())((a b b c a c a -+-+

(11)abc b a c c a b c b a 2)()()(222++++++(12)

abc c b a 33

33-++

四、十字相乘法.

(一)二次项系数为1的二次三项式

直接利用公式——))(()(2q x p x pq x q p x ++=+++进行分解。

特点:(1)二次项系数是1;

(2)常数项是两个数的乘积;

(3)一次项系数是常数项的两因数的和。

思考:十字相乘有什么基本规律?

例.已知0<a ≤5,且a 为整数,若2

23x x a ++能用十字相乘法分解因

式,求符合条件的a . 解析:凡是能十字相乘的二次三项 式ax 2+bx+c ,都要求

24b ac ?=- >0而且是一个完全平方数。

于是98a ?=-为完全平方数,1a =

例8、分解因式:2

21288b ab a --

分析:将b 看成常数,把原多项式看成关于a 的二次三项式,利用十字相

乘法进行分解。

1 8b

1 -16b

8b+(-16b)= -8b

解:221288b ab a --=)16(8)]16(8[2b b a b b a -?+-++

=)16)(8(b a b a -+

练习8、分解因式(1)2223y xy x +-(2)2286n mn m +-(3)226b ab a --

(四)二次项系数不为1的齐次多项式

例9、22672y xy x +- 例10、2322+-xy y x

1 -2y 把xy 看作一个整体 1 -1

2 -3y 1 -2

(-3y)+(-4y)= -7y (-1)+(-2)= -3

解:原式=)32)(2(y x y x -- 解:原式=)2)(1(--xy xy

练习9、分解因式:(1)224715y xy x -+ (2)8622+-ax x a

综合练习10、(1)17836--x x (2)22151112y xy x -- (3)10)(3)(2-+-+y x y x (4)344)(2

+--+b a b a (5)

2

22265x y x y x -- (6)2634422++-+-n m n mn m (7)3424422---++y x y xy x (8)2222)(10)(23)(5b a b a b a ---++ (9)10364422-++--y y x xy x (10)

2

222)(2)(11)(12y x y x y x -+-++

思考:分解因式:abc x c b a abcx +++)(2222

五、换元法。

例13、分解因式(1)2005)12005(200522---x x

(2)2)6)(3)(2)(1(x x x x x +++++

解:(1)设2005=a ,则原式=a x a ax ---)1(22

=))(1(a x ax -+

=)2005)(12005(-+x x

(2)型如e abcd +的多项式,分解因式时可以把四个因式两两分组相乘。

原式=222)65)(67(x x x x x +++++

设A x x =++652,则x A x x 2672+=++

∴原式=2)2(x A x A ++=222x Ax A ++

=2)(x A +=22)66(++x x

练习13、分解因式(1))(4)(22222y x xy y xy x +-++

(2)90)384)(23(22+++++x x x x

(3)222222)3(4)5()1(+-+++a a a

例14、分解因式(1)262234+---x x x x

观察:此多项式的特点——是关于x 的降幂排列,每一项的次数依次少1,

并且系数成“轴对称”。这种多项式属于“等距离多项式”。

方法:提中间项的字母和它的次数,保留系数,然后再用换元法。

解:原式=)1162(222x x x x x +---=[]6)1()1(2222-+-+x x x

x x 设t x x =+1,则21222-=+t x

x ∴原式=[

]6)2222---t t x (

=()10222--t t x =()()2522+-t t x =??

? ??++??? ??-+215222x x x x x =??

? ??++??? ??-+21··522·x x x x x x =()()1225222+++-x x x x =)2)(12()1(2--+x x x (2)144234+++-x x x x

解:原式=22

241(41)x x x x x -+++=??????+??? ??--??? ?

?+1141222x x x x x 设y x x =-1,则21222+=+y x

x ∴原式=22(43)x y y -+=2(1)(3)x y y --

=)31)(11(2----x

x x x x =()()13122----x x x x 练习14、(1)673676234+--+x x x x

(2))(2122234x x x x x +++++

六、添项、拆项、配方法。

例15、分解因式(1)4323+-x x

解法1——拆项。 解法2——添项。

原式=33123+-+x x 原式=444323++--x x x x

=)1)(1(3)1)(1(2-+-+-+x x x x x =)44()43(2++--x x x x =)331)(1(2

+-+-+x x x x =)1(4)4)(1(++-+x x x x

=)44)(1(2+-+x x x =)44)(1(2+-+x x x

=2)2)(1(-+x x =2)2)(1(-+x x

(2)3369-++x x x

解:原式=)1()1()1(369-+-+-x x x

=)1()1)(1()1)(1(333363-++-+++-x x x x x x

=)111)(1(3363+++++-x x x x

=)32)(1)(1(362++++-x x x x x

练习15、分解因式

(1)893+-x x (2)4224)1()1()1(-+-++x x x

(3)1724+-x x (4)22412a ax x x -+++

(5)444)(y x y x +++ (6)444222222222c b a c b c a b a ---++

七、待定系数法。

例16、分解因式613622-++-+y x y xy x

分析:原式的前3项226y xy x -+可以分为)2)(3(y x y x -+,则原多项式

必定可分为)2)(3(n y x m y x +-++

解:设613622-++-+y x y xy x =)2)(3(n y x m y x +-++

∵)2)(3(n y x m y x +-++=mn y m n x n m y xy x --+++-+)23()(622

∴613622-++-+y x y xy x =mn y m n x n m y xy x --+++-+)23()(622

对比左右两边相同项的系数可得??

???-==-=+613231mn m n n m ,解得???=-=32n m ∴原式=)32)(23(+--+y x y x

例17、(1)当m 为何值时,多项式652

2-++-y mx y x 能分解因式,并分

解此多项式。

(2)如果823+++bx ax x 有两个因式为1+x 和2+x ,求b a +的值。

(1)分析:前两项可以分解为))((y x y x -+,故此多项式分解的形式必

为))((b y x a y x +-++

解:设6522-++-y mx y x =))((b y x a y x +-++

则6522-++-y mx y x =ab y a b x b a y x +-+++-)()(22 比较对应的系数可得:?????-==-=+65ab a b m b a ,解得:?????==-=132m b a 或??

???-=-==132m b a

∴当1±=m 时,原多项式可以分解;

当1=m 时,原式=)3)(2(+--+y x y x ;

当1-=m 时,原式=)3)(2(--++y x y x

(2)分析:823+++bx ax x 是一个三次式,所以它应该分成三个一次式相乘,

因此第三个因式必为形如c x +的一次二项式。

解:设823+++bx ax x =))(2)(1(c x x x +++

则823+++bx ax x =c x c x c x 2)32()3(2

3+++++ ∴?????=+=+=82323c c b c a 解得??

???===4147c b a ,

∴b a +=21

练习17、(1)分解因式2910322-++--y x y xy x

(2)分解因式675232

2+++++y x y xy x

(3) 已知:p y x y xy x +-+--1463222能分解成两个一次因式

之积,求常数p 并且分解因式。

(4) k 为何值时,253222+-++-y x ky xy x 能分解成两个一次

因式的乘积,并分解此多项式。

第二部分:习题大全

经典一:

1、观察下列等式的规律,并根据这种规律写出第(5)个等式。

()()

()()()

()()()()

()()()()()

24284216842(1) 111(2) 1111(3) 11111(4) 111111(5) _________________________________________________x x x x x x x x x x x x x x x x x x -=+--=++--=+++--=++++-

经典二:

因式分解小结

知识总结归纳

因式分解是把一个多项式分解成几个整式乘积的形式,它和整式乘法互为逆运算,在初中代数中占有重要的地位和作用,在其它学科中也有广泛应用,学习本章知识时,应注意以下几点。

1. 因式分解的对象是多项式;

2. 因式分解的结果一定是整式乘积的形式;

3. 分解因式,必须进行到每一个因式都不能再分解为止;

4. 公式中的字母可以表示单项式,也可以表示多项式;

5. 结果如有相同因式,应写成幂的形式;

6. 题目中没有指定数的范围,一般指在有理数范围内分解;

7. 因式分解的一般步骤是:

(1)通常采用一“提”、二“公”、三“分”、四“变”的步骤。即首先看有无公因式可提,其次看能否直接利用乘法公式;如前两个步骤都不

能实施,可用分组分解法,分组的目的是使得分组后有公因式可提或可利用公式法继续分解;

(2)若上述方法都行不通,可以尝试用配方法、换元法、待定系数法、试除法、拆项(添项)等方法;

下面我们一起来回顾本章所学的内容。

1. 通过基本思路达到分解多项式的目的

例1. 分解因式x x x x x 54321-+-+-

分析:这是一个六项式,很显然要先进行分组,此题可把x x x x x 54321-+-+-和分别看成一组,此时六项式变成二项式,提取公因式后,再进一步分解;也可把x x 54-,x x 32-,x -1分别看成一组,此时的六项式变成三项式,提取公因式后再进行分解。

解一:原式=-+--+()()x x x x x 54321

=-+--+=--+=--+++x x x x x x x x x x x x x 32232221111111()()

()()

()()()

解二:原式=()()()x x x x x 54321-+-+-

=-+-+-=-++=-++-=--+++2x x x x x x x x x x x x x x x x x 4244222211111121111()()()

()()

()[()]

()()()

2. 通过变形达到分解的目的

例1. 分解因式x x 3234+-

解一:将32x 拆成222x x +,则有

原式=++-=+++-=++-=-+x x x x x x x x x x x x 322222242222212()

()()()

()()

()()

解二:将常数-4拆成--13,则有

原式=-+-=-+++-+=-++=-+x x x x x x x x x x x x 322221331113314412()

()()()()

()()

()()

3. 在证明题中的应用

例:求证:多项式()()x x x 2241021100--++的值一定是非负数 分析:现阶段我们学习了两个非负数,它们是完全平方数、绝对值。本题要证明这个多项式是非负数,需要变形成完全平方数。

证明:()()x x x 2241021100--++

=+---+=+---+=---++()()()()()()()()()()x x x x x x x x x x x x 2237100

272310051456100

22

设y x x =-25,则

原式无论取何值都有的值一定是非负数=-++=-+=--≥∴--++()()()()()()y y y y y y y x x x 146100816440

4102110022

222Θ

4. 因式分解中的转化思想

例:分解因式:()()()a b c a b b c ++-+-+2333

分析:本题若直接用公式法分解,过程很复杂,观察a+b ,b+c 与a+2b+c 的关系,努力寻找一种代换的方法。

解:设a+b=A ,b+c=B ,a+2b+c=A+B

∴=+--=+++--=+=+=++++原式()()

()()()A B A B A A B AB B A B A B AB AB A B a b b c a b c 333

322333

22

3333332

说明:在分解因式时,灵活运用公式,对原式进行“代换”是很重要的。

中考点拨

例1.在?ABC 中,三边a,b,c 满足a b c ab bc 222166100--++= 求证:a c b +=2

证明:Θa b c ab bc 222166100--++=

∴++-+-=+--=+--+=+>∴+>+->-+=+=a ab b c bc b a b c b a b c a b c a b c

a b c a b c a b c a c b 2222226910250

350

820

880

20

2即,即于是有即()()()()Θ

说明:此题是代数、几何的综合题,难度不大,学生应掌握这类题不能丢分。

例2. 已知:x x x x

+

=+=12133,则__________ 解:x x x x x x 3321111+=+-+()()

=++--=?=()[()]x x x x

1121212

2

说明:利用x x x x 2221

12+

=+-()等式化繁为易。

题型展示

1. 若x 为任意整数,求证:()()()7342---x x x 的值不大于100。 解:100)4)(3)(7(2

----x x x Θ

=--+---=----+-=----+=---≤∴---≤()()()()()()[()()]

()()()()x x x x x x x x x x x x x x x x x 7232100

5145610058516540

7341002222222

说明:代数证明问题在初二是较为困难的问题。一个多项式的值不大于100,即要求它们的差小于零,把它们的差用因式分解等方法恒等变形成完全平方是一种常用的方法。

2.

将a a a a 222222216742++++++()()分解因式,并用分解结果计算。 解:a a a a 22221++++()()

=+++++=++++=++a a a a a a a a a a a 2222

222

2221211()()()()

∴++=++==6742366143184922222()

说明:利用因式分解简化有理数的计算。

实战模拟

1. 分解因式:

()()131083108

233315543222x x x x x a a a a ---+++-++-()()

()()323352476223x xy y x y x x --+-+-+

2. 已知:x y xy x y +==-+6133,,求:的值。

3. 矩形的周长是28cm ,两边x,y 使x x y xy y 32230+--=,求矩形的面积。

4. 求证:n n 35+是6的倍数。(其中n 为整数)

5. 已知:a 、b 、c 是非零实数,且

a b c a b c b c a c a b

22211111113++=+++++=-,()()(),求a+b+c 的值。

6. 已知:a 、b 、c 为三角形的三边,比较a b c a b 222224+-和的大小。

经典三:因式分解练习题精选

一、填空:(30分)

4、若n m y x -=))()((4222y x y x y x +-+,则m=_______,n=_________。

5、在多项式2353515y y y ?=中,可以用平方差公式分解因式的

有________________________ ,其结果是 _____________________。

6、若16)3(22+-+x m x 是完全平方式,则m=_______。

7、_____))(2(2(_____)2++=++x x x x

8、已知,01200520042=+++++x x

x x Λ则.________2006=x 9、若25)(162++-M b a 是完全平方式M=________。

15、方程042=+x x ,的解是________。

二、选择题:(10分)

1、多项式))(())((x b x a ab b x x a a --+---的公因式是( )

A 、-a 、

B 、))((b x x a a ---

C 、)(x a a -

D 、)(a x a --

2、若22)32(9-=++x kx mx ,则m ,k 的值分别是( )

A 、m=—2,k=6,

B 、m=2,k=12,

C 、m=—4,k=—12、

D m=4,k=12、

3、下列名式:4422222222,)()(,,,y x y x y x y x y x --+---+--中能用平方差公

式分解因式的有( )

A 、1个,

B 、2个,

C 、3个,

D 、4个

4、计算)10

11)(911()311)(211(2232----Λ的值是( ) A 、21 B 、20

11.,101.,201D C 三、分解因式:(30分)

1 、234352x x x --

2 、 2633x x -

3 、 22)2(4)2(25x y y x ---

4、22414y xy x +--

5、x x -5

6、13-x

7、2ax a b ax bx bx -++--2

8、811824+-x x

9 、24369y x -

10、24)4)(3)(2)(1(-++++x x x x

五、计算: (15)

(1) 0.7566.24366.3?-

? (2) 200020012121??? ??+??

? ??- (3)2244222568562?+??+?

六、试说明:(8分)

1、对于任意自然数n ,22)5()7(--+n n 都能被动24整除。

2、两个连续奇数的积加上其中较大的数,所得的数就是夹在这两个连续奇数之间的偶数与较大奇数的积。

七、利用分解因式计算(8分)

1、一种光盘的外D=11.9厘米,内径的d=3.7厘米,求光盘的面积。(结果保留两位有效数字)

因式分解法(提公因式法、公式法)

因式分解法(提公因式 法、公式法) -CAL-FENGHAI.-(YICAI)-Company One1

【知识要点】 1、提取公因式:型如()ma mb mc m a b c ++=++,把多项式中的公共部分提取出来。 ☆提公因式分解因式要特别注意: (1)如果多项式的首项系数是负的,提公因式时要将负号提出,使括号内第一项的系数是 正的,并且注意括号内其它各项要变号。 (2)如果公因式是多项式时,只要把这个多项式整体看成一个字母,按照提字母公因式的办法提出。 (3)有时要对多项式的项进行适当的恒等变形之后(如将a+b-c 变成-(c-a-b )才能提公 因式,这时要特别注意各项的符号)。 (4)提公因式后,剩下的另一因式须加以整理,不能在括号中还含有括号,并且有公因式的还应继续提。 (5)分解因式时,单项式因式应写在多项式因式的前面。 2、运用公式法:把我们学过的几个乘法公式反过来写就变成了因式分解的形式: ()()22a b a b a b -=+-; ()2 222a ab b a b ±+=±。 平方差公式的特点是:(1) 左侧为两项;(2) 两项都是平方项;(3) 两项的符号相反。 完全平方公式特点是: (1) 左侧为三项;(2) 首、末两项是平方项,并且首末两项的符号相同; (3) 中间项是首末两项的底数的积的2倍。 ☆运用公式法分解因式,需要掌握下列要领: (1)我们学过的三个乘法公式都可用于因式分解。具体使用时可先判断能否用公式分解,然后再选择适当公式。(2)各个乘法公式中的字母可以是数,单项式或多项式。 (3)具体操作时,应先考虑是否可提公因式,有公因式的要先提公因式再运用公式。 (4)因式分解一定要分解到不能继续分解为止,分解之后一定要将同类项合并。 【典例分析】 例1.分解下列因式: (1)2 2321084y x y x y x -+ (2)233272114a b c ab c abc --+

因式分解之套公式法

因式分解之套公式法 【知识精读】 1.把乘法公式反过来,就可以得到因式分解的公式。 常用公式有:平方差公式 a b a b a b 2 2 -=+-()() 完全平方公式 a ab b a b 2 2 2 2±+=±() 立方和、立方差公式 a b a b a ab b 3 3 2 2 ±=±?+()()μ 2. 补充:欧拉公式: a b c abc a b c a b c ab bc ca 3 3 3 2 2 2 3++-=++++---()() = ++-+-+-1 2 222()[()()()]a b c a b b c c a 特别地:(1)当a b c ++=0时,有a b c abc 3333++= (2)当c =0时,欧拉公式变为两数立方和公式。 【典例精析】 (一)运用公式分解因式 1. 把a a b b 22 22+--分解因式的结果是( ) A. ()()()a b a b -++22 B. ()()a b a b -++2 C. ()()a b a b -++2 D. ()()a b b a 2 2 22-- 分析:a a b b a a b b a b 2 2 2 2 2 2 22212111+--=++---=+-+()()。 再利用平方差公式进行分解,最后得到()()a b a b -++2,故选择B 。 说明:解这类题目时,一般先观察现有项的特征,通过添加项凑成符合公式的形式。同时 要注意分解一定要彻底。 2.因式分解:x xy 3 2 4-=________。 解:x xy x x y x x y x y 3 2 2 2 4422-=-=+-()()()

人教版初中数学因式分解易错题汇编及答案

人教版初中数学因式分解易错题汇编及答案 一、选择题 1.若a b +=1ab =,则33a b ab -的值为( ) A .± B . C .± D .【答案】C 【解析】 【分析】 将原式进行变形,3322 ()()()a b ab ab a b ab a b a b -=-=+-,然后利用完全平方公式的 变形22()()4a b a b ab -=+-求得a-b 的值,从而求解. 【详解】 解:∵3322 ()()()a b ab ab a b ab a b a b -=-=+- ∴33)a b b ab a =-- 又∵22()()4a b a b ab -=+- ∴22()414a b -=-?= ∴2a b -=± ∴33(2)a b ab =±=±- 故选:C . 【点睛】 本题考查因式分解及完全平方公式的灵活应用,掌握公式结构灵活变形是解题关键. 2.下列各式从左到右的变形中,是因式分解的为( ). A .()x a b ax bx -=- B .()()222111x y x x y -+=-++ C .()()2111x x x -=+- D .()ax bx c x a b c ++=+ 【答案】C 【解析】 【分析】 根据因式分解的定义作答.把一个多项式化成几个整式的积的形式,叫做把这个多项式因式分解,也叫做把这个多项式分解因式. 【详解】 解:A 、是整式的乘法运算,故选项错误; B 、右边不是积的形式,故选项错误; C 、x 2-1=(x+1)(x-1),正确; D 、等式不成立,故选项错误. 故选:C . 【点睛】 熟练地掌握因式分解的定义,明确因式分解的结果应是整式的积的形式.

因式分解之换元法、待定系数法、因式定理及其它.题库教师版

换元法、待定系数法、因式定理及其它 板块一:换元法 【例1】 分解因式:2222(48)3(48)2x x x x x x ++++++ 【考点】因式分解 【难度】4星 【题型】解答 【关键词】换元法 【解析】将248x x u ++=看成一个字母,可利用十字相乘得 原式2232()(2)u xu x u x u x =++=++22(48)(482)x x x x x x =++++++ 22(58)(68)x x x x =++++2(2)(4)(58)x x x x =++++,其实也可用十字相乘的思想解答 【答案】2(2)(4)(58)x x x x ++++ 【例2】 分解因式:22(52)(53)12x x x x ++++- 【考点】因式分解 【难度】5星 【题型】解答 【关键词】希望杯培训试题,换元法 【解析】方法1:将25x x +看作一个整体,设25x x t +=,则 原式=22(2)(3)1256(1)(6)(2)(3)(51)t t t t t t x x x x ++-=+-=-+=+++- 方法2:将252x x ++看作一个整体,设252x x t ++=,则 原式=22(1)1212(3)(4)(2)(3)(51)t t t t t t x x x x +-=+-=-+=+++- 方法3:将253x x ++看作一个整体,过程略.如果学生的能力到一定的程度,甚至连换元都不用,直 接把25x x +看作一个整体,将原式展开,分组分解即可, 则原式22222(5)5(5)6(51)(56)(2)(3)x x x x x x x x x x =+++-=+-++=++2(51)x x +-. 【答案】2(2)(3)(51)x x x x +++- 【例3】 分解因式:(1)(3)(5)(7)15x x x x +++++ 【考点】因式分解 【难度】4星 【题型】解答 【关键词】换元法 【解析】2(2)(6)(810)x x x x ++++ 【答案】2(2)(6)(810)x x x x ++++ 【例4】 分解因式:(1)(2)(3)(4)24a a a a ----- 【考点】因式分解 【难度】4星 【题型】解答 【关键词】换元法

运用公式法因式分解

运用公式法因式分解 一、教学目标 1. 认知目标:分解因式的意义. 2. 能力目标:掌握公式法分解因式的步骤,灵活运用公式法分解因式. 二、教学重难点 1. 重点:观察各项多项式是否含有公因式. 2. 难点:提取公因式要提“全”提“净”;合理选用公式进行因式分解. 三、教学过程 (一)温故 1. 分解因式:把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式分解因式. 2. 乘法公式: 平方差公式:(a+b)(a-b)=a2-b2 完全平方式:(a-b)2=a2-2ab+b2 (a+b)2=a2+2ab+b2 3. 练一练 (二)知新 例1. 把下列各式分解因式: (1) (a+b)2 -1 (2) x4-1 (1) (a+b)2 -1

解析:应先观察多因式的特征,后利用公式法分解. 解: (a+b)2 -1=(a+b)2 -12=(a+b+1)(a+b-1) (2) x4-1 解析:发现两项均可写成平方的形式,并且两项符号相反,故可用平方差公式分解,且注意一定要分解彻底. x4-1= x4-12=(x2+1)(x2-1)= (x2+1)(x+1)(x-1) 小练手1: (1) (x-3y)2-4x2 (2) 9(a+2b)2-4(a-b)2 例 2. x3-xy2 分析:观察多项式的特征,主要看它的项数、次数,根据其特点,首先采取提公因式法,之后利用公式法分解。 x3-xy2=x(x2-y2)=x(x+y)(x-y) 小小总结: 分解因式步骤:提取公因式法---公式法---直到各个因式能化简到不能化简为止. 小练手2 (x-3y)2-4x2 9(a+2b)2-4(a-b)2 例 3.把下列各式分解因式: (1) m2-12m+36 (2) –a2+2ab-b2 (1) m2-12m+36 解析:直接利用完全平方差公式

(完整版)因式分解练习题(公式法)

因式分解习题(二)公式法分解因式 专题训练一:利用平方差公式分解因式 题型(一):把下列各式分解因式 1、24x - 2、29y - 3、21a - 4、224x y - 5、2125b - 6、222x y z - 7、2240.019m b - 8、2219 a x - 9、2236m n - 10、2249x y - 11、220.8116a b - 12、222549p q - 13、2422a x b y - 14、41x - 15、4416a b - 16、 44411681a b m - 题型(二):把下列各式分解因式 1、22()()x p x q +-+ 2、 22(32)()m n m n +-- 3、2216()9()a b a b --+ 4、229()4()x y x y --+ 5、22()()a b c a b c ++-+- 6、224()a b c -+

题型(三):把下列各式分解因式 1、53x x - 2、224ax ay - 3、322ab ab - 4、316x x - 5、2433ax ay - 6、2(25)4(52)x x x -+- 7、324x xy - 8、343322x y x - 9、4416ma mb - 10、238(1)2a a a -++ 11、416ax a -+ 12、 2216()9()mx a b mx a b --+ 题型(四):利用因式分解解答下列各题 1、证明:两个连续奇数的平方差是8的倍数。 2、计算 ⑴22758258- ⑵22429171- ⑶223.59 2.54?-? ⑷2222211111(1)(1)(1)(1)(1)234910 - --???--

初中数学因式分解中的换元法学法指导

初中数学因式分解中的换元法学法指导 徐卫东 刘建英 因式分解是初中数学的重要内容之一,是多项式乘法的逆运算,在代数式的化简、求值、解方程等领域中都有着广泛、直接的应用。但当一个多项式的项数、字母较多,次数较高或还含有代数式乘积的项时,结构复杂,容易造成思路混乱,这时可对多项式中某些相同的部分设辅助元代换,达到减少项数、降低次数,便于分解因式。把复杂、繁难的问题变得简单、容易的目的。举例简解如下。 一、整体换元 例1 因式分解.2)1x x ()1x x (2424--++-+ 解:设A 1x x 24=-+,原式)1x x )(2x x ()2A )(1A (2A A 24242++-+=+-=-+= ). 1x x )(1x x ()2x )(1x )(1x (]x )1x )[(2x )(1x ()x 1x 2x )(2x x (2222222222424+-+++-+=-++-=-++-+= 例2 若βα、是方程0c bx x 2=++的两根。因式分解.c ]c x )1b (x [b ]c x )1b (x [222++++++++ 解:因为βα、是方程0c bx x 2=++的两根,所以.c ),(b αβ=β+α-= 设A c x )1b (x 2=+++,原式).A )(A (A )(A c bA A 22β-α-=αβ+β+α-=++= 但-αβ+β-α-+=α-αβ+β-α-+=α-+++=α-x x x x x )1(x c x )1b (x A 222 ),x )(1()1x ()1x (x )x ()x x x (2α-+β-α=+β-α-+β-=α+αβ-α-+β-=α 同理),x )(1x (A β-+α-=β- 所以原式).1x )(1x )(x )(x (+β-+α-β-α-= 二、局部换元 例3 因式分解.14)8x 5x )(5x 5x (22-++-+ 解:设,A x 5x 2=+ 原式14)8A )(5A (-+-= ). 9x 5x )(6x )(1x () 9x 5x )(6x 5x () 9A )(6A (54 A 3A 2222+++-=++-+=+-=-+= 例4 因式分解.x )6x 5x )(6x 7x (222+++++ 解:设A 6x 5x 2=++,原式.)6x 6x ()x A (x Ax 2A x )x 2A (A 222222++=+=++=++= 三、局部分解后,重组再换元 例5 因式分解.91)9x )(35x 4x 4(22---- 解:原式91)]3x )(5x 2[()]3x )(7x 2[(91)3x )(3x )(5x 2)(7x 2(--+?+-=--++-= ,A 21x x 291)15x x 2)(21x x 2(222=-------=设原式91A 6A 91)6A (A 2-+=-+= )8x x 2)(7x 2)(4x ()8x x 2)(28x x 2()13A )(7A (222--+-=----=+-=

因式分解一_提取公因式法和公式法_超经典

因式分解(一) ——提取公因式与运用公式法 【学习目标】(1)让学生了解什么是因式分解; (2)因式分解与整式的区别; (3)提公因式与公式法的技巧。 【知识要点】 1、提取公因式:型如()ma mb mc m a b c ++=++,把多项式中的公共部分提取出来。 ☆提公因式分解因式要特别注意: (1)如果多项式的首项系数是负的,提公因式时要将负号提出,使括号内第一项的系数是正的, 并且注意括号内其它各项要变号。 (2)如果公因式是多项式时,只要把这个多项式整体看成一个字母,按照提字母公因式的办法提出。 (3)有时要对多项式的项进行适当的恒等变形之后(如将a+b-c 变成-(c-a-b )才能提公因式, 这时要特别注意各项的符号)。 (4)提公因式后,剩下的另一因式须加以整理,不能在括号中还含有括号,并且有公因式的还应继续提。 (5)分解因式时,单项式因式应写在多项式因式的前面。 2、运用公式法:把我们学过的几个乘法公式反过来写就变成了因式分解的形式: ()()22a b a b a b -=+-; ()2 222a ab b a b ±+=±。 平方差公式的特点是:(1) 左侧为两项;(2) 两项都是平方项;(3) 两项的符号相反。 完全平方公式特点是: (1) 左侧为三项;(2) 首、末两项是平方项,并且首末两项的符号相同; (3) 中间项是首末两项的底数的积的2倍。 ☆运用公式法分解因式,需要掌握下列要领: (1)我们学过的三个乘法公式都可用于因式分解。具体使用时可先判断能否用公式分解,然后再选择适当公式。(2)各个乘法公式中的字母可以是数,单项式或多项式。 (3)具体操作时,应先考虑是否可提公因式,有公因式的要先提公因式再运用公式。 (4)因式分解一定要分解到不能继续分解为止,分解之后一定要将同类项合并。 【经典例题】 例1、找出下列中的公因式: (1) a 2b ,5ab ,9b 的公因式 。 (2) -5a 2,10ab ,15ac 的公因式 。 (3) x 2y(x -y),2xy(y -x) 的公因式 。

因式分解公式法

14.3因式分解(公式法) 知识点一:因式分解的概念 因式分解是把一个多项式分解成几个整式乘积的形式,它和整式乘法互为逆运算, 识时,应注意以下几点。 1. 因式分解的对象是多项式; 2. 3. 4. 5. 6. 知识点二:基本公式 1、(a+b)(a-b) = a2-b2 2、(a±b)2 = a2±2ab+b2——— 3、(a+b)(a2-ab+b2) =a3+b3 4、(a-b)(a2+ab+b2) = a3-b3 5、a2+b2+c2+2ab+2bc+2ca=(a+b+c) 6、a3+b3+c3-3abc=(a+b+c)(a2+b2+c 知识点三:方法及典型例题 一、直接用公式: 分解因式。 例1、分解因式: (1)x2-9; 二、提公因式后用公式: 再看是否能利用公式法。 例2、分解因式: (1)x5y3-x3y5;(2)4x3y+4x2y2+xy3。 三、系数变换后用公式:当所给的多项式不能直接利用公式法分解因式,往往需要调整系数,转换为符合公式的形式,然后再利用公式法分解. 例3、分解因式: (1)4x2-25y2; (2)4x2-12xy2+9y4. . (2)16x4-72x2y2+81y4. (2)(x+y)2+4-4(x+y). 1、多项式22 44 x xy y -+-分解因式的结果是() (A)2 (2) x y -(B)2 (2) x y --(C)2 (2) x y --(D)2 () x y + 2、下列多项式中,能用公式法进行因式分解的是()

(A)2 2 x y + (B)2 2 2x xy y -+ (C)2 2 2x xy y +- (D)2 2 x xy y ++ 3、 4 1x -的结果为( ) A.2 (x 4A.x -5、25a A.40 678、 24a -9、(12800-(2) 11、把下列各式分解因式. (1)249x -; (2)22 4169x y -; (3)2125a -+; (4)220.01625m n -. 12、把下列各式分解因式. 2 (2)2 (2)6(2)9a b a b ++++;(3) )2 2 44mn m n ---. 33 ab a b ++的值. 2025x +; (3)22 2 816a b abc c -+;5)2()4()4a b a b +-++. (2)22222()4x y x y +-. 16、把 ) A 、x +3 B 、(x +3)2 C 、x -3 D 、x 2+9 2、若9x 2-m x y +16y 2是一个完全平方式,则m=( ) A 、12 B 、24 C 、±12 D 、±24 3、若- b ax x -+221分解成)7)(4(2 1 +--x x ,则a 、b 的值为( )

用换元法分解因式

用换元法分解因式 我们的课本中介绍了对一个多项式进行因式分解的很多方法,比如提公因式法、运用公式法、分组分解法等等,这些方法都是最基础的因式分解方法.一些同学在解答课外题时,往往感到只用这些方法还是有点力不从心,于是他们纷纷找到李老师,请她“再传授几招,以便能够解答更多类型的因式分解题目”. 李老师欣然应允,当场就为同学们介绍了一种因式分解的常用方法——换元法.李老师把换元法分解因式分成了三种情况: 一、换单项式 例1分解因式x6+14x3y+49y2. 分析:注意到x6=(x3)2,若把单项式x3换元,设x3=m,则x6=m2,原式变形为 m2+14my+49y2 =(m+7y)2 =(x3+7y)2. 二、换多项式 例2分解因式(x2+4x+6)+(x2+6x+6)+x2. 分析:本题前面的两个多项式有相同的部分,我们可以只把相同部分换元,设x2+6=m,则x2+4x+6=m+4x,x2+6x+6=m+6x,原式变形为 (m+4x)(m+6x)+x2 =m2+10mx+24x2+x2 =m2+10mx+25x2 =(m+5x)2 =(x2+6+5x)2 =[(x+2)(x+3)]2 =(x+2)2(x+3)2.

以上这种换元法,只换了多项式的一部分,所以称为“局部换元法”.当然,我们还可以把前两个多项式中的任何一个全部换元,就成了“整体换元法”.比如,设x2+4x+6=m,则x2+6x+6=m+2x,原式变形为 m(m+2x)+x2 =m2+2mx+x2 =(m+x)2 =(x2+4x+6+x)2 =(x2+5x+6)2 =[(x+2)(x+3)]2 =(x+2)2(x+3)2. 另外,还可以取前两个多项式的平均数进行换元,这种换元的方法被称为“均值换元法”,可以借用平方差公式简化运算.对于本例,设m= [(x2+4x+6)+(x2+6x+6)]=x2+5x+6,则x2+4x+6=m-x,x2+6x+6=m+x, (m+x)(m-x)+x2 =m2-x2+x2 =m2 =(x2+5x+6)2 =[(x+2)(x+3)]2 =(x+2)2(x+3)2. 例3分解因式(x-1)(x+2)(x-3)(x+4)+24. 分析:这道题的前面是四个多项式的乘积,可以把它们分成两组相乘,使之转化成为两个多项式的乘积.无论如何分组,最高项都是x2,常数项不相等,所以只能设法使一次项相同.因此,把(x-1)(x+2)(x-3)(x+4)分组为[(x-1)(x+2)][(x-3)(x+4)]=(x2+x-2)(x2+x-12),从而转化成例2形式加以解决. 我们采用“均值换元法”,设m=[(x2+x-2)+(x2+x-12)]=x2+x-7,则x2+x-2=m+5,x2+x-2=m-5,原式变形为 (m+5)(m-5)+24 =m2-25+24 =m2-1

《公式法因式分解》教学设计

《公式法因式分解》教学设计 永年县第八中学——胡平亮 一、教学内容:冀教版七年级数学第十一章公式法分解因式 二、教学目标: 知识与技能 1、经历逆用平方差公式的过程. 2、会运用平方差公式,并能运用公式进行简单的分解因式. 过程与方法 1、在逆用平方差公式的过程中,培养符号感和推理能力. 2、培养学生观察、归纳、概括的能力. 情感与价值观要求: 在分解过程中发现规律,并能用符号表示,从而体会数学的简捷美;让学生在合作探究的学习过程中体验成功的喜悦;培养学生敢于挑战;勇于探索的精神和善于观察、大胆创新的思维品质。 三、教学重点: 利用平方差公式进行分解因式 四、教学难点: 领会因式分解的解题步骤和分解因式的彻底性。 五、教学准备: 深研课标和教材,分析学情,制作课件 六、教学过程; 一、知识回顾 1、根据因式分解的概念,判断下列由左边到右边的变形,哪些是因式分解,哪些不是,为什么? (1)、(2x-1)2=4x2-4x+1 否 (2)、 3x2+9xy-3x=3x(x+3y-1) 是 (3)、4x2-1-4xy+y2=(2x+1)(2x-1)-y(4x-y) 否 2、把下列各式进行因式分解

(1). a3b3-a2b-ab (2)(3x+y)(3x-y) (3)、(x+5)(x-5) 利用一组整式的乘法运算复习平方差公式,为探究运用平方差公式进行分解因式打下基础。 二、导入新课: 你能把多项式:x2 -25、9x2 -y2分解因式吗? 利用一组运用平方差公式分解因式的习题,引导学生利用逆向思维去探究如何分解 a2- b2类的二次二项式。学生从对比整式的乘法去探索分解因式方法,可以感受到这种互逆变形以及它们之间的联系。 三、探究与交流 a2- b2=(a+b)(a-b) (1)用语言怎样叙述公式? (2)公式有什么结构特征? (3)公式中的字母a、b可以表示什么?引导学生观察平方差公式的结构特征, 学生在互动交流中,既形成了对知识的全面认识,又培养了观察、分析能力以及合作交流的能力。 判断:下列多项式能不能运用平方差公式分解因式? (1) m2-1 (2)4m2-9 (3)(3)4m2+9 (4)(4)x2-25y + (5) -x2-25y2 (6) -x2-25y2 通过这一组判断,使学生加深理解和掌握平方差公式的结构特征,既突出了重点,也培养了学生的应用意识。 四、体验新知: (A)通过自学例1: 分解因式(1)25-16x2 (2)9a2 -1/4b2 引导学生得出分解因式的一般步骤,向学生渗透“化归”思想。 要让学生明确: (1)要先确定公式中的a和b; (2)学习规范的步骤书写。 (B)例2、分解因式9(m+n)2-(m-n)2

因式分解公式法完全平方公式教案

第 1 单元(章)第课时编制人纪丽娜审核人吕翠珍审批人于忠翠 课题:公式法 使用人备注课型:新授课第 2 课时 【教学目标】: 知识与技能: 使学生了解运用公式法分解因式的意义;会用公式法(直接 用公式不超过两次)分解因式(指数是正整数);使学生清楚地 知道提公因式法是分解因式的首先考虑的方法,再考虑用平方差 公式或完全平方公式进行分解因式. 过程与方法: 经历通过整式乘法的完全平方公式逆向得出运用公式法分 解因式的方法的过程,发展学生的逆向思维和推理能力. 情感态度价值观: 培养学生灵活的运用知识的能力和积极思考的良好行为,体 会因式分解在数学学科中的地位和价值。 【学情分析】:学生在七年级下册第一章中已经学习过完 全平方公式,将其逆用就是本节课所涉及的主体知识.对于公式 逆用,学生已经不是第一次接触了,在上一节课中学生已经经历 过将平方差公式逆用的过程,应该说是比较熟悉的。 【教学重点难点】:会用公式法分解因式. 【教法与学法】:自主探究、合作归纳 【教具】:多媒体 【板书设计】: 公式法(2) 复习回顾例1.把下列各式因式分解

形如2 22b ab a+ ±的多项式 称为完全平方式例2.把下列各式因式分解:完全平方式可以进行因式分解 a2–2ab+b2=(a–b)2 a2+2ab+b2=(a+b)2 【教学活动过程】: 第一环节复习回顾 活动内容: 活动目的:回顾完全平方公式,直入主题将完全平方公式倒置得新的分解因式方法. 注意事项:在上一课时平方差公式倒置学习的基础上,学生比较容易理解和接受此课时的学习铺垫内容. 第二环节学习新知 活动内容: 49 14 )1(2+ +x x 2 23 6 3)1(ay axy ax+ +

因式分解 公式法 运用平方差公式分解因式【一等奖教案】新人教版2829

14.3.2公式法 第1课时运用平方差公式分解因式 ◇教学目标◇ 【知识与技能】 灵活运用平方差公式进行因式分解. 【过程与方法】 经历探索利用平方差公式进行因式分解的过程,感受逆向思维的意义. 【情感、态度与价值观】 培养良好的推理能力,体会“化归”与“换元”的思想方法,形成灵活的应用能力. ◇教学重难点◇ 【教学重点】 理解平方差公式因式分解,并学会应用. 【教学难点】 领会因式分解的解题步骤和分解因式的彻底性. ◇教学过程◇ 一、情境导入 计算①252-242;②352-342;③982-972. 看谁算的最快最准,把你的方法给大家分享. 二、合作探究 探究点1平方差公式因式分解 典例1下列各式中,能运用平方差公式分解的多项式是() A.x2+y2 B.1-x2 C.-x2-y2 D.x2-xy

[解析]x2+y2不能运用平方差公式分解,故A错误;1-x2能运用平方差公式分解,故B正确;-x2-y2不能运用平方差公式分解,故C错误;x2-xy不能运用平方差公式分解,故D错误. [答案] B 因式分解:(a+b)2-4b2=. [答案](a+3b)(a-b) 探究点2先提公因式再用公式 典例2把多项式ax2-4ay2分解因式的结果是. [解析]原式提取公因式,再利用平方差公式分解即可.原式=a(x2-4y2)=a(x+2y)(x-2y). [答案]a(x+2y)(x-2y) 探究点3熟练运用平方差公式 典例3因式分解:4(m+n)2-9(m-n)2. [解析]4(m+n)2-9(m-n)2 =[2(m+n)]2-[3(m-n)]2 =[2(m+n)+3(m-n)][2(m+n)-3(m-n)] =(2m+2n+3m-3n)(2m+2n-3m+3n) =(5m-n)(5n-m). 因式分解:(p-4)(p+1)+3p. [解析](p-4)(p+1)+3p =p2-3p-4+3p =(p+2)(p-2).

公式法因式分解知识点讲解及练习

公式法因式分解知识点讲解及练习 1.平 方 差公式: )b a )(b a (b a 22-+=- 因式分解 22)b a )(b a (b a -=-+ 整式乘法 2、分解因式的一般步骤为: (1)若多项式各项有公因式,则先提取公因式。 (2)若多项式各项没有公因式,则根据多项式特点,选用平方差公式或完全平方公式。 (3)每一个多项式都要分解到不能再分解为止。 3、分组分解法,适用于四项以上的多项式,例如22a b a b -+-没有公因式,又不能直接利用分式法分 解,但是如果将前两项和后两项分别结合,把原多项式分成两组。再提公因式,即可达到分解因式的目 的。例如:22a b a b -+-= 22()()()()()()(1)a b a b a b a b a b a b a b -+-=-++-=-++, 这种利用分组来分解因式的方法叫分组分解法。 4、原则:分组后可直接提取公因式或可直接运用公式,但必须使各组之间能继续分解。 5、有些多项式用分组分解法时,分解方法并不唯一,无论怎样分组,只要能将多项式正确分解即可。 题型一 公式法因式分解 例 1将下列各式因式分解 225-36x 22916b a - 点评::能用平方差公式因式分解的多项式的特征:(1)有且只有两个平方项: (2)两个平方项异号。 知识梳理

巩 固1、计算 (1)22758258- (2)22429171- (3)223.59 2.54?-? 2、已知0001.03,100003=-=+b a b a ,求229a b -的值。 3、把多项式()()2 249b a b a --+分解因式 * 平方差公式中字母b a 、不仅可以表示数,而且也可以表示其他代数式。 例2判断下列各式是不是完全平方式 (1) 222y xy x ++ (2)2244y xy x ++ (3)226b ab a +- (5)222y x xy ++- (6)2242b ab a ++ (4) 412++x x

《因式分解---待定系数法、换元法、添项拆项法》知识点归纳

《因式分解---待定系数法、换元法、添项拆项法》知识点归纳知识体系梳理 ◆ 添项拆项法 有的多项式由于“缺项”,或“并项”因此不能直接分解。通过进行合适的添项或拆项后利用分组而分解的方法称为添项、拆项法。 大凡来说,添项拆项后要能运用提公因式法、公式法、十字相乘法、分组分解法分解。如果添项拆项后,不能运用四种基本方法分解,添项拆项也是无用的。 ◆ 待定系数法 有些多项式不能直接分解因式,我们可以先假设它已分解成几个含有待定系数因式的乘积形式。然后再把积乘出来。 用等号两边同次项次系数相等的方法把这些待定系数求出来,进而得出因式分解结果,这种分解因式的方法叫做待定系数法分解因式。 ◆ 换元法 所谓换元,即对结构比较繁复的代数式,把其中某些部分看成一个整体,用新的字母代替(即换元),则能使繁复 的问题简单化、明朗化,象这种利用换元来解决繁复问题的方法,就叫 。换元法在减少代数式的项数、降低多项式结构繁复程度等方面都有着独到的作用。 (1)、使用换元法时,一定要有

意识,即把某些相同或相似的部分看成一个 。 (2)、换元法的种类有:单个换元、多个换元、局部换元、整体换元、分外值换元和几何换元。 (3)、利用换元法解决问题时,最后要让原有的数或式“回归”。 ★★ 典型例题、方法导航 ◆ 方法一:添项拆项法 【例1】分解因式: 分析:此多项式是三次三项式,缺项不能直接分解。可考虑添项拆项法分解。从它的最高次项看是三次,因此我们可以猜想它最多可分解成三个一次二项式的积,即 ,再看常数项可分解成±1、±2,因此我们可猜想分解的结果可能是或或,但的中间项是,因此是不可能的,因此只可能是前面两种的其中一种。下面请看: 解: 其结果是我们猜想中的第一种。此题还有其他分解方法吗?在注意到分解结果中有和的因式,因此还有其他更多的分解方法。 方法二: 方法三: 方法四: 方法五:

45.3.2因式分解公式法(第1课时)

14.3.2公式法导学案(第1课时) 备课时间: 主备:张洪波 高永爱 审核:高永爱 使用时间: 【学习目标】 1.运用平方差公式分解因式,能说出平方差公式的特点. 2.会用提公因式法与平方差公式法分解因式. 3.会两次运用平方差公式分解因式,知道因式分解必须进行到不能分解为止. 【学习重难点】 学习重点:用平方差公式法进行因式分解. 学习难点:把多项式进行必要变形,灵活运用平方差公式分解因式 【自主学习】 1、对于等式x 2+x = x (x+1): 1) 如果从左到右看,是一种什么变形? 2) 什么叫因式分解?这种因式分解的方法叫什么? 3) 如果从右到左看,是一种什么变形? 4) 因式分解和整式乘法是两种互为_______的变形. 【合作探究】 探究一: 1.计算:(1)(x-1)(x+1)=_________;(2)(y+4)(y-4)=_______ 2.根据1题的结果分解因式:(1)21_____x -=;(2)216________y -= 3.你能将22a b -进行因式分解吗?你是如何思考的? 分析:要将22a b -进行因式分解,可以发现它_________公因式,不能用提公因式法分解因式,但我们还可以发现这个多项式是两个数的 ____________ 形式,所以用平方差公式可以写成如下 形式:

结论:多项式的乘法公式的逆向应用,就是多项式的因式分解公式,如果被分解的多项式符合公式的条件,就可以直接写出因式分解的结果,这种分解因式的方法称为运用公式法。 拓展延伸: 1.把一个单项式写成平方的形式: (1)24a =( )2;(2)40.16a =( )2;(3)221.21a b =( )2; 例1:分解因式:(1);249x -; (2)22()()x p x q +-+ (3).22221.1b b a - 结论:(1)中的_______(2)中的________和(3)中的________相当于平方差公式中的a ;(1)中的______(2)中的_________和(3)中的__________相当于平方差公式中的b ,这说明公式中的a 和b 可以表示一个数,也可以表示一个单项式,或是多项式,只要符合公式的特点( )()22-,就可以运用公式分解因式. 总结平方差公式的特点: ①左边是二项式,每项都是 的形式,两项的符号 . ②右边是两个多项式的 ,一个因式是两数的 ,另一个因式是这两数的 . 例2:因式分解:(1)44x y - ; (2)3a b ab -; 【尝试应用】 1.口答:①24x -=_________ ②29t -= ③21649____m -= ④2254______x -+= 2.因式分解: (1)22125 a b -; (2)2294a b -; (3)24x y y -;

最新人教版因式分解教案

案例研习:因式分解 一、案例背景 设计者:尹振强,衢州学院教师教育学院数学与应用数学 学生:衢州市新星初中八年级一班 45人 教材:人教版八年级上册因式分解 二、学情分析 教学对象是八年级学生,在学习本节前,学生已经掌握了整式乘法运算,对乘法分配律有了一定的认识;虽然对整式的运算比较熟悉,对互逆过程也有一定的感知,但因式分解一直是初中数学教学的一个难点,原因在于分解因式的方法很多,变化技巧较高,且没有一种一般有效的方法。教学中要注意把握教学要求,防止随意拓宽内容和加深题目的难度。教科书对于因式分解这部分内容要求仅限于因式分解的两种基本方法,即提公因式法和公式法,教学中则应让学生牢固地掌握。 三、知识分析 。提公因式法因式分解是义务教育课程标准实验教科书(人教版)《数学》八年级上册第十五章第四单元第一节内容,是在学生已经学习了整式乘法运算的基础上引入的,本教科书安排了多项式因式分解比较基本的知识和方法,它包括因式分解的有关概念,整式乘法与因式分解的区别与联系,因式分解的两种基本方法,即提公因式法和公式法,共3课时,其中提公因式法1课时,公式法2课时。因式分解是解析式的一种恒等变形,学习分解因式一是为解高次方程作准备,二是学习对于代数式变形的能力,从中体会分解的思想、逆向思考的作用。它不仅是现阶段学生学习的重点内容,而且也是学生后续学习的重要基础。本教材是在学生学习了整式运算的基础上提出来的,事实上,它是整式乘法的逆向运用,与整式乘法运算有密切的联系.分解因式的变形不仅体现了一种“化归”的思想,而且也是解决后续——分式化简、解方程、恒等变形等学习的基础,为数学交流提供了有效的途径.分解因式在整个教材中起到了承上启下的作用综上所述,本节课无论是在知识传承,还是在对学生数学思维训练、能力培养上都有举足轻重的作用。 四、学习目标 知识与技能:理解因式分解与整式乘法的区别;懂得寻找公因式,正确运用提公因式法因式分解 过程与方法:(1)由学生自主探索解题途径,在此过程中,通过观察、对比等手段,发现因式分解与整式乘法的区别,确定多项式各项的公因式的方法,加强学生的直觉思维,渗透化归的思想方法,培养学生的观察能力; ( 2)由乘法分配律的逆运算过渡到因数分解,再由单项式与多项式的乘法运算过渡到因式分解,进一步发展学生的类比思想; (3)寻找出确定多项式各项的公因式的一般方法,培养学生的初步归纳能力。 情感态度与价值观:通过引例问题情境的创设,诱发学生的求知欲,进一步认识数学与生活的密切联系;通过观察、对比等手段,培养学生善于类比归纳,发展学生的数学探究能力,通过有一定梯次的变式训练,锻炼其克服困难的意志,发展学生合作交流的良好品质。 教学重点:因式分解的概念及用提公因式法提公因式。

因式分解—公式法

14.3.2 公式法(平方差公式) 授课时间: 教学目标: 1.知识与技能:会应用平方差公式进行因式分解,发展学生推理能力。 2.过程与方法:经历探索利用平方差公式进行因式分解的过程,发展学生的逆向思维,感受数学知识的完整性。 3.情感、态度与价值观: 培养学生良好的互动交流的习惯,体会数学在实际问题中的应用价值。 教学重点:掌握平方差公式的特点及运用平方差公式进行因式分解的方法。 教学难点:提取公因式与平方差公式结合进行因式分解的思路和方法。 教学过程: (一) 复习提问: 1. 讲评上节课作业,复习用提取公因式法分解因式。 2. 计算:(1)))((b a b a -+; (2))3)(3(-+a a ; (3))35)(35(y x y x -+; (4))43 1)(431(n m n m +-。 (设计意图:通过以上练习,复习用平方差公式进行整式的乘法计算,进一步引导学生理解整式的乘法与因式分解的关系) (二)讲解新课: 我们知道,整式乘法与因式分解相反,因此,利用这种关系,可以得到因式分解的方法,如果把乘法公式反过来,就可以用来把某些多项式分解因式, 这种分解因式的方法叫做运用公式法,今天我们学习公式中的一种。 板书“平方差公式”。 把乘法公式22))((b a b a b a -=-+,反过来,就得到))((22b a b a b a -+=-, 这就是说,两个数的平方差,等于这两个数的和与这两个数的差的积。 公式特征:二项式、差的形式、两项分别是平方数或平方式,符合此特征的二项式可用平方差公式进行因式分解,分解为这两个底数的和与这两个底数的差的积。解题的关键在于找出这两项的底数,相当于公式中的a 、b 。 如:把22925y x -进行因式分解,因为22)5(25x x =,22)3(9y y =,底数分别为x 5、y 3,则22925y x -分解为)35)(35(y x y x -+。 下面我们举例说明,如何利用平方差公式分解因式:

因式分解综合应用(换元法与添项拆项)(人教版)(含答案)

学生做题前请先回答以下问题 问题1:目前我们学习的因式分解的方法有哪些? 问题2:换元、添项拆项是复杂多项式进行分解因式的常用技巧之一,通过对复杂多项式的处理,最终都转化为____________. 问题3:换元是复杂多项式进行分解因式的常用技巧之一,当多项式中的某一部分_______时,我们会________将其替换,从而简化式子的形式. 以下是问题及答案,请对比参考: 问题1:目前我们学习的因式分解的方法有哪些? 答:提公因式法,公式法,分组分解法,十字相乘法. 问题2:换元、添项拆项是复杂多项式进行分解因式的常用技巧之一,通过对复杂多项式的处理,最终都转化 为. 答:四种基本方法. 问题3:换元是复杂多项式进行分解因式的常用技巧之一,当多项式中的某一部分时,我们会将其替换,从而简化式子的形式. 答:重复出现;设元. 因式分解综合应用(换元法与添项拆项)(人教 版) 一、单选题(共10道,每道10分) 1.把因式分解,正确结果是( ) A. B. C. D.

答案:B 解题思路: 试题难度:三颗星知识点:因式分解的技巧——换元法 2.把因式分解,正确结果是( ) A. B. C. D. 答案:B 解题思路:

试题难度:三颗星知识点:因式分解的技巧——换元法 3.把因式分解,正确结果是( ) A. B. C. D. 答案:B 解题思路: 试题难度:三颗星知识点:因式分解的技巧——换元法

4.把因式分解,正确结果是( ) A. B. C. D. 答案:A 解题思路: 试题难度:三颗星知识点:因式分解的技巧——换元法 5.把因式分解,正确结果是( ) A. B. C. D. 答案:C 解题思路:

公式法因式分解练习

运用公式法分解因式 思维导航:运用公式法是分解因式的常用方法,运用公式法分解因式的思路主要有以下几种情况: 一、直接用公式:当所给的多项式是平方差或完全平方式时,可以直接利用公式法分解因式。 例1、 分解因式:(1)x 2-9; (2)9x 2-6x+1。 二、提公因式后用公式:当所给的多项式中有公因式时,一般要先提公因式,然后再看是否能利用公式法。 例2、 分解因式:(1)x 5y 3-x 3y 5; (2)4x 3y+4x 2y 2+xy 3。 三、系数变换后用公式:当所给的多项式不能直接利用公式法分解因式,往往需要调整系数,转换为符合公式的形式,然后再利用公式法分解. 例3、 分解因式:(1)4x 2-25y 2; (2)4x 2-12xy 2+9y 4. 四、指数变换后用公式:通过指数的变换将多项式转换为平方差或完全平方式的形式,然后利公式法分解因式,应注意分解到每个因式都不能再分解为止. 例4、 分解因式:(1)x 4-81y 4; (2)16x 4-72x 2y 2+81y 4. 五、重新排列后用公式:当所给的多项式不能直接看出是否可用公式法分解时,可以将所给多项式交换位置,重新排列,然后再利用公式。 例5、 分解因式:(1)-x 2+(2x-3)2; (2)(x+y)2+4-4(x+y). 六、整理后用公式:当所给的多项式不能直接利用公式法分解时,可以先将其中的项去括号整理,然后再利用公式法分解。 例6 、分解因式: (x-y)2-4(x-y-1). 七、连续用公式:当一次利用公式分解后,还能利用公式再继续分解时,则需要用公式法再进行分解,到每个因式都不能再分解为止。 例7、 分解因式:(x 2+4)2-16x 2. 练习: 1、多项式2244x xy y -+-分解因式的结果是( ) (A)2(2)x y - (B)2(2)x y -- (C)2(2)x y -- (D)2()x y + 2、 41x -的结果为( ) A.22(1)(1)x x -+ B.22(1)(1)x x +- C.2(1)(1)(1)x x x -++ D.3(1)(1)x x -+ 3、222516a kab a ++是一个完全平方式,那么k 值为( )

相关文档
相关文档 最新文档