文档库 最新最全的文档下载
当前位置:文档库 › 低压直流电源DC12V24V防雷设计保护电路

低压直流电源DC12V24V防雷设计保护电路

低压直流电源DC12V24V防雷设计保护电路
低压直流电源DC12V24V防雷设计保护电路

低压直流电源DC12V/24V 防雷设计保护电路陶瓷气体放电管的应用背景:

一直以来,在低压电源端口的雷击保护器件的选型方面,人们更多的是选择压敏电阻MOV或者瞬态抑制二极管 TVS,但是,由于压敏电阻 MOV在失效时会引起火灾,普通 600W 或者1500W 的TVS通流能力又很小,而现在很多客户对测试等级的要求又很高,尤其是用于基站的产品,防护等级可达到3KA@8/20卩S,如此一来,选择气体放电管 GDT

作为防护器件才能满足市场需求。可是常规气体放电管GDT又会带来续流问题,因此,选

择合适的气体放电管GDT才能根本解决低压电源端口的雷击保护问题。

二、采用气体放电管保护的传统方案的问题:

针对DC12/24V 和AC24V端口的雷击保护传统的方案通常都选择常规的两端和三端

气体放电管GDT来作为保护器件,旧方案如下:

上述图的陶瓷气体放电管老方案,四点的不足:

(1 ) GDT的体积大:

&F091M

BJDO^O

L

(2 )气体放电管GDT的残压高:

体放电管的弧光压低:GDT的弧光压比电源电压低,就会导致续流的危险。

(4 )供电电源浮地时,气体放电管GDT容易误动作

供电电源出现浮地时,应用上图传统的方案时,由于气体放电管的阻抗很大,所以在放

电管两端会叠加一个很高的电压,如果气体放电管GDT的直流开启电压过低(方案中用的

是直流击穿电压90V的GDT),则会导致放电管 GDT误动作,此时气体放电管会处于“常亮”的状态,致使系统的供电能力下降甚至丧失。由此可见,选择90V的气体放电管,很

防浪涌电路汇总

防浪涌电路汇总

————————————————————————————————作者:————————————————————————————————日期:

防浪涌电路调研总结 常用的防浪涌电路有三种方案: 一、利用传统的防雷元器件组合成防浪涌电路,例如TVS管(瞬态抑制二极管),气体放电管,PTC(热敏电阻)等。这些防雷元器件的价格都很低。 二、光耦合电路。(光隔离器件,价格较低,TPL521-4价格为2元左右。) 三、磁耦合电路。磁隔离是ADI公司iCoupler专利技术,是基于芯片级变压器的隔离技术。利用该公司生产的相关芯片可以大大简化电路,减少PCB的面积。(adm2483的价格在10元左右,adm3251e的价格在10元~20元之间。) 浪涌的来源:浪涌通常由自然界的雷电、电源系统(特别是带很重的感性负载)开关切换时引起的,浪涌的产生将带来能量巨大的瞬变过压或过流,例如感应雷在RS-485传输线上引起的瞬变干扰,其能量可在瞬间烧毁连结传输线上的全部器件。 通常所说的防浪涌,有两个耐压指标,一个是共模,一个是差模。自然界雷电或大电流切换时产生的浪涌一般认为是共模的,而差模形式的浪涌往往是由于数据电缆附近有高压线经过,数据电缆与高压线之间因绝缘不良而产生的,虽然后者比前者产生的电压和电流要小得多,但它不像前者那样只维持很短的几毫秒,而会在数据通信网络中较长时间内稳定地存在。光耦或磁耦器件标称的耐压是共模,也就是前端到后端之间的耐压。如果超过这个耐压,前端后端都一起烧坏;器件不会标称差模的耐压,这个由电路的设计来决定,如果超过这个耐压,前端烧坏,后端不会烧坏。 防浪涌电路通常分为隔离法和规避法: 一、隔离法 光耦合(需要隔离电源) 光耦合器(optical coupler,OC)亦称光电隔离器,简称光耦。光耦合器以光为媒介传输电信号。它对输入、输出电信号有良好的隔离作用,所以,它在各种电路中得到广泛的应用。目前它已成为种类最多、用途最广的光电器件之一。光耦合器一般由三部分组成:光的发射、光的接收及信号放大。输入的电信号驱动发光二极管(LED),使之发出一定波长的光,被光探测器接收而产生光电流,再经过进一步放大后输出。 只要浪涌产生的电压幅值不超过光耦器件标称的值(通常为2500V),光耦就不会损坏,即使浪涌电压长时间地存在也不会对被隔离的设备产生损害。值得注意的是,光耦一般只能抑制共模形式的浪涌,不能抑制差模形式的浪涌。光耦

电力企业信息系统的整体防雷保护参考文本

电力企业信息系统的整体防雷保护参考文本 In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each Link To Achieve Risk Control And Planning 某某管理中心 XX年XX月

电力企业信息系统的整体防雷保护参考 文本 使用指引:此安全管理资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 计算机系统是以耐压能力较低的电子设备组成的,在 国内,尤其是雷电频繁的华南地区,易发生雷电对电力企 业计算机系统的干扰和破坏事故,致使各类电子设备损 坏。计算机系统不能安全可靠运行所带来的间接损失可能 远远超出设备本身的价值,如导致系统的中断或瘫痪,造 成的损失则更难估量。广州电力工业局送电管理所(简称 “广州送电所”)充分认识到雷电的危害性和计算机系统安 全的重要性,于20xx年对计算机系统进行了有效的防雷保 护。 1 整体防雷保护技术 1.1 防雷保护的三道防线

雷电破坏的主要方式是直接对建筑物或构筑物发生闪击,巨大能量集中在闪击点,直接损坏建筑物结构。外部防雷措施是利用金属接闪体迎击雷电,利用下线将电流导向大地,从而保护建筑物的安全。因此外部防雷是整体防雷中的第一道防线。 雷击损坏计算机系统的主要方式是雷击瞬间产生的电磁脉冲(雷电的二次效应)感应在电源或通信线路上。由于线路上产生的高达数百万伏的浪涌过电压和数百千安的瞬间电流,是普通的电子设备难以承受的,因此,阻塞沿电源或通信线路引入的过电压波危害设备(内部避雷保护)并限制被保护设备上的浪涌过电压幅值(过电压保护)就成为防雷保护的第二、三道防线。 1.2 防雷保护的技术措施 IEC的防雷技术组(TC/81)在对雷电现象作了大量实验和研究的基础上,提出了分级保护、整体防雷的理论体

高压架空线路的防雷保护(最新版)

高压架空线路的防雷保护(最 新版) Security technology is an industry that uses security technology to provide security services to society. Systematic design, service and management. ( 安全管理 ) 单位:______________________ 姓名:______________________ 日期:______________________ 编号:AQ-SN-0902

高压架空线路的防雷保护(最新版) 1.引言 佛山电力局送电管理所所辖110kV及以上高压送电线路总长732.8km,分布于珠江三角洲一带,属于雷电活动频繁地区,年平均雷暴日高达80~90天。近年来,根据我市电网故障分类统计,高压送电线路因雷击而引起的事故日益增多,雷击引起的跳闸占总跳闸率的70~80%,1999年是雷电活动最为强烈的一年,我所110kV及以上线路跳闸总数达到了10次之多。2000年线路17次事故障碍中,因雷击而引起的达到13次。严重威胁着输变电设备的安全运行,也大大加重了运行维护人员的劳动强度。由此可见,加强线路防雷保护尤为迫切。 2.雷电对电力线路的危害 架空线路受到直接雷击或线路附近落雷时,导线上会因电磁感

应而产生过电压,即大气过电压(外过电压)。这个电压往往高出线路相电压的2倍及以上,使线路绝缘遭受破坏而引起事故。当雷击线路时,巨大的雷电流在线路对地阻抗上产生很高的电位差,从而导致线路绝缘闪络。雷击不但危害线路本身的安全,而且雷电会沿导线迅速传到变电站,若站内防雷措施不良,则会造成站内设备严重损坏。 3.防范措施及应用情况 根据运行经验,采取降低杆塔接地电阻、加装耦合地线及线路避雷器、减小线路地线保护角、增加绝缘子片数、采用自动重合闸等措施均可以有效地降低雷击跳闸率。以上加强防护措施可根据线路的重要性、雷电活动的频数、地形地貌特点以及土壤电阻率等情况确定选取合理的一种或几种组合。 3.1架设地线以及减少地线保护角 地线是送电线路最基本的防雷措施之一,它的功能:①防止雷直击导线;②雷击杆塔时对雷电流的分流作用,减小流入杆塔的雷电流,使杆塔顶电位降低;③对导线有耦合使用,降低雷击杆塔时

常用的防雷典型电路

防雷器基本电路图目录 一、交流电源防雷器 (一)单相并联式防雷器(电路一~电路三) 1~3(二)三相并联式防雷器(电路一~电路三)4~6(三)单相串联式防雷器(通用安全保护电路)7(四)三相串联式防雷器(通用安全保护电路)8二、通信机房用直流电源防雷器 (一)并联式防雷器 1、正极接地(–48V)直流电源 9 2、负极接地(+24V)直流电源 10 3、正负对称(±110V)直流电源 11 (二)串联式防雷器 1、正极接地(–48V)直流电源 12 2、负极接地(+24V)直流电源 13 3、正负对称(±110V)直流电源 14 三、通用二级信号防雷器 (一)双绞线型信号电路 通用电路一~通用电路五 15~19 (二)同轴线型信号电路 (1)外导体接地电路(通用电路一~通用电路三) 20~22 (2)外导体不接地电路(通用电路一~通用电路二) 23~24 (三)提高传输频率/速率的方法25

四、小功率电源变压器或开关电源保护电路(电路一~电路三) 26~28 五、通讯电子设备的保护电路(电路一~电路三)29~31 六、直流电源与信号同传的保护电路32 七、信号电路的双重二级保护方式33 八、检测/控制电路的保护(接地、不接地)34~35 九、单级信号防雷器 1、只用玻璃放电管的保护电路 36 2、只用半导体过压保护器的保护电路 37 3、只用TVS管的保护电路 38 4、复合单级保护电路 39 十、天馈防雷器 1、单级电路天馈防雷器 40 2、二级电路天馈防雷器 41 3、三级电路天馈防雷器 42 十一、防静电保护器 43

(一)单相并联式防雷器 电路一:最简单的电路 600V。当要求的通流容量≤3KA时,可以用玻璃放电管代替。 4、压敏电阻和气体放电管都必须按冲击10次以上的降额值计算通流容量(压敏电阻为一次冲击通流容量的三分之一左右,气体放电管为最大通流容量的一半左右)。

过电压保护电路汇总

新疆大学 课程设计报告 所属院系:科学技术学院 专业:电气工程及其自动化 课程名称:电子技术基础上 设计题目:过电压保护电路设计 班级:电气14-1 学生姓名:庞浩 学生学号:20142450007 指导老师: 常翠宁 完成日期:2016. 6. 30

1.双向二极管限幅电路

图2 经典过电压保护电路 经典过电压保护电路虽然有许多优点,但是由于Multisim 12.0中无法找到元件 MAX6495,无法进行仿真,所以不选用该方案。 3.智能家电过电压保护电路 电路原理:该装置工作原理见图,电容器C1将220V 交流市电降压限流后,由二极管1D V 、 2D V 整流,电容器2C 担任滤波,得到12V 左右的直流电压。当电网电压正常时, 稳压二极管VDW 不能被击穿导通,此时三极管VT 处于截止状态,双向可控硅VS 受到电压触发面导通,插在插座XS 中的家电通电工作。(图3) 图3 智能家电过压保护电路 如果电网电压突然升高,超过250V ,此时在RP 中点的电压就导致VDW 击穿导通,VDW 导通后,又使得三极管VT 导通,VT 导通后,其集电极—发射极的压降很小,不足以触发VS ,又导致VS 截止,因此插座XS 中的家电断电停止工作,因而起到了保护的目的。一旦电网电压下降,VT 又截止,VT 的集电极电位升高,又触发VS 导通,家电得电继续工作。 R 电阻5.1K1,RP 电位器15K 选用多圈精密电位器1,C1金属化纸介电容0.47uF 耐压≥400V1,C2电解电容100uF/25V1,1D V 、 2D V 整流二极管IN40072,VDW 稳压二极管 12V 的2CW121,VT 晶体三极管3DA87C 、3DG12等1,VS 双向可控硅6—10A 耐压≥600V1,CZ 电源插座10A 250V1 该装置的调试十分简单,当电网电压为220V 时,调整RP ,使VDW 不击穿,当电压升高至250V ,VT 饱和导通即可,调试时用一调压变压器来模拟市电的变化更方便。 优点:能够保护家用电器避免高电压的冲击带来的伤害,、 缺点:需要购买二极管,NPN 型BJT 以及双向可控硅VS ,不太经济。

通信直流电源输入防浪涌电路

通信直流电源输入防浪涌电路 一、过压浪涌测试方法 对于一些特定环境和用途的电子设备, 其供电电源中经常会有电压浪涌(本文所指浪涌均为过压浪涌),通讯设备过压涌浪主要有以下几种形式,具体参数如下: 为防止这些过压涌浪对后端用电设备的影响,在电源设计过程中必须对电源进行涌浪测试。 相关浪涌测试要求为:用电设备应经受五次过压浪涌,两次过压浪涌之间的时间间隔为1 min。 过压浪涌检测方法:首先用电设备在正常稳态电压下供电, 然后使用电设备输入电压增加到浪涌电压,最后输入电压恢复到正常稳态电压。过压浪涌后,电源及后端设备不应发生任何故障。 二、实际案例 某通信公司采用ACBEL出品的SV48-28-450B电源模块制作的-48V直流转换电源在做2KV浪涌测试时,输入前端电路起火,直接损坏后端的MOSFET。 经过分析,该直流转换电源由于前端防涌浪电路在2KV高电压冲击下,产生大电流冲击,导致电路板起火并损毁后端MOSFET,最直接的原因应是电源前端设计的防涌浪电路失效。 三、电路设计 为了保护用此电源的通讯设备,防止受浪涌电压冲击而损坏,所以对防涌浪电路进行了设计。具体电路图如下:

本电路采用两级防雷电路来进行防雷及浪涌处理,是一种较高等级的直流防雷及浪涌处理电路。现在通信客户输入端需要满足IEC61000规定的输入对大地要满足2KV,4KV浪涌电压,雷击电流5KA,10KA的要求。 此电路的工作原理如下:当感应雷击或浪涌电压产生时,由于L1会阻挡电压的突变,让前级电路先动作,前级四个MOV(MOV1--4)管,两个放电管(FDG1,2)来泄放大电流,随后,小部分的能量通过后级的L1电感,两个MOV管(MOV5,6)来泄放较小的电流,同时进一步钳位输入端的浪涌电压,以防止损坏后面的器件和电源模块。器件的结电容会影响他们的动作时间,三种器件中,TVS的响应动作时间最快,FDG的次之,MOV的最慢。由于MOV的损坏多数是呈短路状态,为了防止短路时起火,所以要串联保险管,保险管要选择防爆慢熔型,且要满足8/20微秒电流波形的冲击。差模电感L1还可以和后级电容组成EMC差模滤波,对1MHZ以下的干扰有较好的抑制作用,注意此电感一定要是空心线圈,这样通过大电流时不会饱和,太大时其体积也大,L2,L3是两个共模电感,Q1是防反接MOSFET,Q2和R9是防开机时的瞬态冲击电流。此电路在模块前端不仅具有防浪涌功能,而且兼具干扰抑制和防反接功能。 四、更改设计电路后测试效果 通过现场分析,采用我们提供的此电路后,多次实际测试,成功抑制2KV浪涌,保护了后端的器件。

直流电源过电压过流保护电路

直流电源过电压、欠电压及过流保护电路 该保护电路在直流电源输入电压大于30V或小于18V或负载电 流超过35A时,晶闸管都将被触发导 通,致使断路器QF跳闸。图中,YR 为断路器QF的脱扣线圈;KI为过电 流继电器。 带过流保护的电动自行车无级调速电路

图中,RC为补偿网络,以改善电动机的力矩特性。具体数值由实验决定。 电路如图16-91所示。它适用于电动自行车或电动三轮车。调节电位器RP,可改变由555 时基集成电路A组成的方波发生器的方波占空比,达到调速的目的。Rs是过电流取样电 阻,当电动机过载时,Rs上的压降增大,使三极管VTz导通,触发双向晶闸管V导通,分 流了部分负载,从而保护了功率管VTi。 过流保护用电子保险的制作电路图 本电路适用于直流供电过流保护,如各种电池供电的场合。 如果负载电流超过预设值,该电子保险将断开直流负载。重置电路时,只需把电源关掉,然后再接通。该电路有两个联接点(A、B标记),可以连接在负载的任意一边。 负载电流流过三极管T4、电阻R10和R11。A、B端的电压与负载电流成正比,大多数的电压分配在电阻上。当电源刚刚接通时,全部电源电压加在保险上。三极管T2由R4的电流导通,其集电极的电流值由下式确定:VD4=VR7+0.6。因为D4上的电压(VD4)和R7上的电压(VR7)是恒定的,所以T2的集电极电流也是恒定。该三极管提供稳定的基极电流给T3,因而使其导通,接着又提供稳定的基极电流给T4。保险导电,负载有电流流过。当电源刚接通时,电容器C1提供一段延时,从而避免T1导电和保持T2断开。

保险上的电压(VAB)通常小于2V,具体值取决于负载电流。当负载电流增大时,该电压升高,并且在二极管D4导通时,达到分流部分T2的基极电流,T2的集电极电流因而受到限制。由此,保险上的电压进一步增大,直到大约4.5V,齐纳二极管D1击穿,使T1导通,T2便截止,这使得T3和T4也截止,此时保险上的电压增大,并且产生正反馈,使这些三极管保持截止状态。 C1的作用是给出一段短时延迟,以便保险可以控制短时过载,如象白炽灯的开关电流,或直流电机的启动电流。因此,改变C1的值可以改变延迟时间的长短。该电路的电压范围是10~36V的直流电,延迟时间大约0.1秒。对于电路中给出的元件值,负载电流限制为1A。通过改变元件值,负载电流可以达到10mA~40A。选择合适额定值的元件,电路的工作电压可以达到6~500V。通过利用一个整流电桥(如下面的电源电路),该保险也可以用于交流电路。电容器C2提供保险端的瞬时电压保护。二极管D2避免当保险上的电压很低时,C1经过负载放电。 过压过流保护器电路图 当电源供给电压或负载吸取的电流太大时,下图电路可断开负载给出故障指示。 正常工作时,Tr1和Tr2均截止,555复位,555中的放电晶体管导通,它从Tr3基极吸取电流,使Tr3处开饱和,电源5~12V便直接送主负载。当负载吸取电流超过规定值时,Rsc上压降增加,使Tr1导通,555被触发,于是内部放电晶体管截止,跟着Tr3也截止,将电源与负载隔离,这时555处于单稳状态,单稳时间一到,只要负载过流现象不排除,555又重新触发,Tr3继续将负载隔离。

电源系列浪涌保护器

电源系列浪涌保护器 电源避雷器的分类: (1)按保护电源的特性分类:分为交流电源避雷器和直流电源避雷器。交流电源避雷器又分为单相电源避雷器和三相电源避雷器。 (2)按所使用的防雷元件的特性分类:采用与开关特性相仿的放电隙的电源避雷器称为开关型电源避雷器;采用其他压敏电阻和瞬态管等防雷元件的电源避雷器称为限压型电源避雷器。 (3)按电源避雷器组成的级数多少分类:分为单级电源避雷器和多级电源避雷器 5)按电源避雷器结构和安装方式分:有采用35mm标准导轨安装的可直接装入配电柜 和配电箱的浪涌抑制器,俗称电源模块;有采用箱式结构的箱式电源避雷器。 工作原理: (1)方框图: 三相电源避雷器和直流电源避雷器的方框图如图11和图12所示。从图中可看出保护功能配置情况。 在第一图中有相线对雷地、中线对雷地、相线对中线和相线对相线之间的保护,分别称为保护模式:L-PE、N-PE、L-N和L-L。其中相对于PE的保护称为纵向保护,其余L-N 和 L-L称为横向保护。在第二图中有V+对雷地、V-对雷地和V+对V-的保护,分别称为保 护模式V+—PE、V-—PE和V+—V-,其中V+—PE和V-—PE称为纵向保护,V+—V- 称为横向保护。 根据有关标准规定,交流电源避雷器必须有纵向保护,宜有横向保护。直流电源避雷器必须有横向保护,宜有纵向保护。 2)基本电路:

将单个防雷元件或二个以上防雷元件的组合代入方框图即得到具体的电原理图。应 用不同的防雷元件可得到以下几种基本电路: a、压敏电阻电路; b、电源模块电路: 带有自动脱离装置(热熔断器和电流熔断器)的压敏电阻,同时具有用颜色变化显 示是否失效的窗口和遥信端子。 c、压敏电阻与气体放电管的串联组合电路:其最大的优点是无短路隐患 d、压敏电阻矩阵网络电路:有自动热保护功能和分部分的失效指示功能 e、空气放电隙 采用高熔点铜钨合金制作。在使用时应设置后备保护。 (3)辅助功能: a、工作指示:绿灯亮表示供电正常 b、劣化指示:红灯亮表示压敏电阻已劣化、失效。 c、自动脱离:应用熔断器、断路器实现压敏电阻劣化、失效后与电网脱离。 d、遥信接口:电源避雷器劣化、失效时遥信接口内的通—断开关自动进行通—断 转换。 e、雷击计数: 记录幅度大于1kA的雷电流入侵的次数,用数码管或电磁计数器显示累计的次数。 3.3主要技术指标: (1)最高持续运行电压: a、定义:SPD在运行中能持续耐受的最大直流电压或工频电压有效值。 b、最高持续运行电压取决于SPD的标称导通电压V1mA。对于单个压敏电阻元件国内外均执行以下规定: c、在选用SPD时,SPD的最高持续运行电压应略高于当地电网可能出现的最高电压。 在不能到现场考察或在现场用户不能提供最高电网电压时应选用U~max≥350V的产品。 d、U~max=275V的SPD一般只能用在UPS电源后面。 (2)放电电流: a、定义: 1、标称放电电流:施加规定波形(8/20μs)和次数(同一极性5次)放电电流冲击 后标称导通电压变化率小于10%,漏泄电流和限制电压仍在合格范围内的最大的放电电流幅值。 2、最大放电电流:施加规定波形(8/20μs)放电电流冲击1次后不发生实质性损坏,不炸裂,不燃烧的最大的放电电流幅值,一般最大放电电流=(1.5∽2.5)×标称放电电流。 3、最大冲击电流:施加规定波形(10/350μs)放电电流冲击1次后不发生实质性损坏,不炸裂,不燃烧的最大的放电电流幅值,一般仅对架空进线电源系统的第一级电源SPD有此 指标要求。 b、放电电流是衡量电源避雷器泄放雷电流能力的指标,应根据当地雷电强度、被保护

电力企业信息系统的整体防雷保护(标准版)

( 安全管理 ) 单位:_________________________ 姓名:_________________________ 日期:_________________________ 精品文档 / Word文档 / 文字可改 电力企业信息系统的整体防雷 保护(标准版) Safety management is an important part of production management. Safety and production are in the implementation process

电力企业信息系统的整体防雷保护(标准 版) 计算机系统是以耐压能力较低的电子设备组成的,在国内,尤其是雷电频繁的华南地区,易发生雷电对电力企业计算机系统的干扰和破坏事故,致使各类电子设备损坏。计算机系统不能安全可靠运行所带来的间接损失可能远远超出设备本身的价值,如导致系统的中断或瘫痪,造成的损失则更难估量。广州电力工业局送电管理所(简称“广州送电所”)充分认识到雷电的危害性和计算机系统安全的重要性,于2001年对计算机系统进行了有效的防雷保护。 1整体防雷保护技术 1.1防雷保护的三道防线 雷电破坏的主要方式是直接对建筑物或构筑物发生闪击,巨大能量集中在闪击点,直接损坏建筑物结构。外部防雷措施是利用金

属接闪体迎击雷电,利用下线将电流导向大地,从而保护建筑物的安全。因此外部防雷是整体防雷中的第一道防线。 雷击损坏计算机系统的主要方式是雷击瞬间产生的电磁脉冲(雷电的二次效应)感应在电源或通信线路上。由于线路上产生的高达数百万伏的浪涌过电压和数百千安的瞬间电流,是普通的电子设备难以承受的,因此,阻塞沿电源或通信线路引入的过电压波危害设备(内部避雷保护)并限制被保护设备上的浪涌过电压幅值(过电压保护)就成为防雷保护的第二、三道防线。 1.2防雷保护的技术措施 IEC的防雷技术组(TC/81)在对雷电现象作了大量实验和研究的基础上,提出了分级保护、整体防雷的理论体系,即:整体防雷保护应该是外部防雷、内部避雷过压保护和接地技术的统一体。在具体技术措施上可归纳为均压-分流-屏蔽-接地技术,这是避雷保护中最重要和最有效的4个要素。 2整体防雷保护技术的应用 避雷器是一种雷电流的泄放通道,也是一种等电位连接体,在

电源浪涌保护器常识

电涌保护器SPD应用常识 作者:来源:时间:2008-03-10 电涌保护器SPD应用常识 随着国民经济的不断发展,现代化水平的快速提高,在信息化带动工业化的指引下,各类信息设备、电子计算机、精密仪器、数据网络设备的应用越来越广泛,此类设备一般工作电压低、耐压水平低、敏感性高、抗干扰能力低,因而极易受到雷电电流脉冲的危害。每年都给人类造成巨大的直接经济损失。而因重要设备损坏使网络陷入瘫痪而造成的间接损失更是惊人,已引起国内相关领域对此类系统加强保护的高度重视。 近年来,“SPD”这个名词已越来越多地被专业研究、产品制造及工程设计的人们所提到。作为雷电防护装置体系中的重要组成部分,“SPD”已被广泛用于邮电通讯、广播电视、金融证券、保险、电力、铁道、交通、机场、石化、市政建设等各个行业。可以毫不夸张地说,凡是装有IT设备的场所,就有应用SPD的必须。 那么SPD究竟是一种什么产品呢?SPD有哪些功能呢?SPD是如何选择应用的呢?在这里我们着手用尽可能通俗的语言向各位介绍一些有关SPD产品的基础知识。希望对那些尚未接触过SPD或对SPD知之甚少而又想掌握SPD知识,并进而使用SPD产品的读者有所收益。 一、什么是SPD(SPD介述) SPD这一名词英语全称是surge protectiye device其译意为电涌保护器,是限制雷电反击、侵入波、雷电感应和操作过电压而产生的瞬时过电压和泄放电涌电流(沿线路传送的电流、电压或功率的暂态波。其特性是先快速上升后缓慢下降)的器件。一端口SPD与被保护电路并联,能分开输入和输出端,在这些端子之间设有特殊的串联阻抗;二端口SPD有两组输入和输出端子,在这些端子之间有特

浪涌保护器工作原理

以下是电源系统SPD选择的要点: 欧阳学文 1、根据被保护线路制式,例如:单相220V、三相 220/380V TNC/TNS/TT等,选择合适制式SPD 2、根据被保护设备的耐冲击电压水平,选择SPD的电压保护水平Up。一般终端设备的耐冲击电压1.5kV,具体可参照GB 503435.4。Up值小于其耐冲击电压即可。 3、根据线路引入方式,有无因直击雷击中而传到雷电流的风险,选择一级或者二级SPD。一级SPD是有雷电流泄放参数的10/350波形的。 4、根据GB 500576.3.4里的分流计算,计算线路所需的泄放电流强度,选择合适放电能力的SPD,需要SPD标称放电电流参数大于线路的分流电涌电流即可。 至于型号,不同厂家型号不一,没什么参考价值。建议选择知名品牌,现在防雷市场鱼龙混杂,不要贪图便宜而使用劣质产品。 浪涌保护器设计原理、特性、运用范畴 设计原理

在最常见的浪涌保护器中,都有一个称为金属氧化物变阻器(Metal Oxide Varistor,MOV)的元件,用来转移多余的电压。如下图所示,MOV将火线和地线连接在一起。MOV由三部分组成:中间是一根金属氧化物材料,由两个半导体连接着电源和地线。 这些半导体具有随着电压变化而改变的可变电阻。当电压低于某个特定值时,半导体中的电子运动将产生极高的电阻。反之,当电压超过该特定值时,电子运动会发生变化,半导体电阻会大幅降低。如果电压正常,MOV会闲在一旁。而当电压过高时,MOV可以传导大量电流,消除多余的电压。随着多余的电流经MOV转移到地线,火线电压会恢复正常,从而导致MOV的电阻再次迅速增大。按照这种方式,MOV仅转移电涌电流,同时允许标准电流继续为与浪涌保护器连接的设备供电。打个比方说,MOV的作用就类似一个压敏阀门,只有在压力过高时才会打开。 另一种常见的浪涌保护装置是气体放电管。这些气体放电管的作用与MOV相同——它们将多余的电流从火线转移到地线,通过在两根电线之间使用惰性气体作为导体实现

保护电路设计方法 - 过电压保护

保护电路设计方法- 过电压保护 2.过电压 保护 ⑴过电 压的产生 及抑制方 法 ①过电压产生的原因 对于IGBT开关速度较高,IGBT关断时及FWD逆向恢复时,产生很高的di/dt,由于模块周围的接线的电感,就产生了L di/dt电压(关断浪涌电压)。 这里,以IGBT关断时的电压波形为例,介绍产生原因和抑制方法,以具体电路(均适用IGBT/FWD)为例加以说明。 为了能观测关断浪涌电压的简单电路的图6中,以斩波电路为例,在图7中示出了IGBT关断时的动作波形。 关断浪涌电压,因IGBT关断时,主电路电流急剧变化,在主电路分布电感上,就会产生较高的电压。关断浪涌电压的峰值可用下式求出: V CESP=E d+(-L dI c/dt) 式中dl c/dt为关断时的集电极电流变化率的最大值;V CESP为超过IGBT的C-E间耐压(V CES)以至损坏时的电压值。 ②过电压抑制方法 作为过电压产生主要因素的关断浪涌电压的抑制方法有如下几种: 1.在IGBT中装有保护电路(=缓冲电路)可吸浪涌电压。缓冲电路的电容,采用薄膜电容,并靠近IGBT 配置,可使高频浪涌电压旁路。

2.调整IGBT的驱动电路的V CE或R C,使di/dt最小。 3.尽量将电件电容靠近IGBT安装,以减小分布电感,采用低阻抗型的电容效果更佳。 4.为降低主电路及缓冲电路的分布电感,接线越短越粗越好,用铜片作接线效果更佳。 ⑵缓冲电路的种类和特 缓冲电路中有全部器件紧凑安装的单独缓冲电路与直流母线间整块安装缓冲电路二类。 ①个别缓冲电路 为个别缓冲电路的代表例子,可有如下的缓冲电路 1.RC缓冲电路 2.充放电形RCD缓冲电路 3.放电阻止形RCD缓冲电路 表3中列出了每个缓冲电路的接线图。特点及主要用途。 表3 单块缓冲电路的接线圈特点及主电用途

几种实用的直流开关电源保护电路

几种实用的直流开关电源保护电路 1 引言 随着科学技术的发展,电力电子设备与人们的工作、生活的关系日益密切,而电子设备都离不开可靠的电源,因此直流开关电源开始发挥着越来越重要的作用,并相继进入各种电子、电器设备领域,程控交换机、通讯、电子检测设备电源、控制设备电源等都已广泛地使用了直流开关电源[1-3].同时随着许多高新技术,包括高频开关技术、软开关技术、功率因数校正技术、同步整流技术、智能化技术、表面安装技术等技术的发展,开关电源技术在不断地创新,这为直流开关电源提供了广泛的发展空间[4].但是由于开关电源中控制电路比较复杂,晶体管和集成器件耐受电、热冲击的能力较差,在使用过程中给用户带来很大不便。为了保护开关电源自身和负载的安全,根据了直流开关电源的原理和特点,设计了过热保护、过电流保护、过电压保护以及软启动保护电路。 2 开关电源的原理及特点 2.1工作原理 直流开关电源由输入部分、功率转换部分、输出部分、控制部分组成。功率转换部分是开关电源的核心,它对非稳定直流进行高频斩波并完成输出所需要的变换功能。它主要由开关三极管和高频变压器组成。图1画出了直流开关电源的原理图及等效原理框图,它是由全波整流器,开关管V,激励信号,续流二极管Vp,储能电感和滤波电容C组成。实际上,直流

开关电源的核心部分是一个直流变压器。 2.2特点 为了适应用户的需求,国内外各大开关电源制造商都致力于同步开发新型高智能化的元器件,特别是通过改善二次整流器件的损耗,并在功率铁氧体(Mn-Zn)材料上加大科技创新,以提高在高频率和较大磁通密度下获得高的磁性能,同时SMT技术的应用使得开关电源取得了长足的进展,在电路板两面布置元器件,以确保开关电源的轻、小、薄。因此直流开关电源的发展趋势是高频、高可靠、低耗、低噪声、抗干扰和模块化。 直流开关电源的缺点是存在较为严重的开关干扰,适应恶劣环境和突发故障的能力较弱。由于国内微电子技术、阻容器件生产技术以及磁性材料技术与一些技术先进国家还有一定的差距,因此直流开关电源的制作技术难度大、维修麻烦和造价成本较高, 3 直流开关电源的保护 基于直流开关电源的特点和实际的电气状况,为使直流开关电源在恶劣环境及突发故障情况下安全可靠地工作,本文根据不同的情况设计了多

浪涌防护

电子设备的浪涌防护 浪涌 浪涌顾名思义就是瞬间出现超出稳定值的峰值,它包括浪涌电压和浪涌电流。 浪涌电压是指的超出正常工作电压的瞬间过电压。本质上讲,浪涌是发生在仅仅几百万分之一秒时间内的一种剧烈脉冲。可能引起浪涌的原因有:重型设备、短路、电源切换或大型发动机。而含有浪涌阻绝装置的产品可以有效地吸收突发的巨大能量,以保护连接设备免于受损。 浪涌电流是指电源接通瞬间或是在电路出现异常情况下产生的远大于稳态电流的峰值电流或过载电流。 在电子设计中,浪涌主要指的是电源(只是主要指电源)刚开通的那一瞬息产生的强力脉冲,由于电路本身的非线性有可能高于电源本身的脉冲;或者由于电源或电路中其它部分受到本身或外来尖脉冲干扰叫做浪涌.它很可能使电路在浪涌的一瞬间烧坏,如PN结电容击穿,电阻烧断等等. 而浪涌保护就是利用非线性元器件对高频(浪涌)的敏感设计的保护电路,简单而常用的是并联大小电容和串联电感. 供电系统浪涌的来源分为外部(雷电原因)和内部(电气设备启停和故障等)。供电系统浪涌的产生 供电系统浪涌的来源分为外部(雷电原因)和内部(电气设备启停和故障等)。 外部原因: 雷击对地闪电可能以两种途径作用在低压供电系统上: (1)直接雷击:雷电放电直接击中电力系统的部件,注入很大的脉冲电流。发生的概率相对较低。 (2)间接雷击:雷电放电击中设备附近的大地,在电力线上感应中等程度的电流和电压。 直接雷击是最严重的事件,尤其是如果雷击击中靠近用户进线口架空输电线。在发生这些事件时,架空输电线电压将上升到几十万伏特,通常引起绝缘闪络。雷电电流在电力线上传输的距离为一公里或更远,在雷击点附近的峰值电流可达 100kA或以上。在用户进线口处低压线路的电流每相可达到5kA到10kA。在雷电活动频繁的区域,电力设施每年可能有好几次遭受雷电直击事件引起严重雷电电流。而对于采用地下电力电缆供电或在雷电活动不频繁的地区,上述事件是很少发生的。 间接雷击和内部浪涌发生的概率较高,绝大部分的用电设备损坏与其有关。所以电源防浪涌的重点是对这部分浪涌能量的吸收和抑制。 内部原因: 内部浪涌发生的原因同供电系统内部的设备启停和供电网络运行的故障有关:供电系统内部由于大功率设备的启停、线路故障、投切动作和变频设备的运行等原因,都会带来内部浪涌,给用电设备带来不利影响。特别是计算机、通讯等微电子设备带来致命的冲击。即便是没有造成永久的设备损坏,但系统运行的异常和

风力发电机组防雷保护系统解析

风力发电机组防雷保护系统解析 随着能源消费方式的变革,风能产业发展日趋迅速,风电机组的防雷成为风电产业发展的重中之重,本文简单介绍了雷电的形成及危害、风电机组防雷的必要性及主要措施。 标签:风电机组;防雷保护;导雷通道 1 雷电的形成及危害 1.1 雷电的形成 雷电的形成过程简单来说,雷云中带有大量的电荷,在静电感应的作用下,雷云的另一侧和雷云下方的地面上(或雷云下方的建筑物等)将带有大量的极性相反的电荷。据统计,80%-90%的雷云将带有大量的负电荷,当电荷积累到一定程度,即产生强电場,由于叶片等导体尖端的电荷特别密集,尖端附近的电场更是特别强,空气在强电场的作用下发生电离,空气成为导电通道。 1.2 雷电的危害 由于风电机叶片形状多有尖锐部分,尖端电荷特别密集,往往会发生尖端发电。同时,在强电场作用下,叶片表面曲率大的地方,等电位面密,电场强度剧增,致使它附近的空气被电离而产生气体放电,即电晕放电。这两种现象发生的同时常常伴随着巨大的能量的变化,叶片温度急剧升高,高温分解叶片周围气体,使其急剧膨胀产生气体爆裂现象,对叶片表面造成损害。 2 防雷的必要性 相对于普通建筑物,风电机具有高空尖的特征。高:风电机组常常为某个地区的高大建筑物,是一个地区的制高点。空:风电机组的选址常常在沿海一带或者比较空旷的风力资源优越的地带,这样就决定了风电机组周围环境必定是人烟稀少,建筑物稀稀落落的情况。尖:风电机组的叶片形状等风电机的主要构件常常有尖锐突起部分,这就为尖端放电的形成提供了良好的条件。高空尖的特征决定了风电机组遭受雷击的概率极大,造成不可估量的损失, 3 主要防雷措施 3.1 叶片的防雷 ①无叶尖阻尼器结构的叶片防护方式由于没有叶尖阻尼器,防雷措施实施起来相对较容易,如下图1所示,叶尖部分的上部铺设有铜丝网,作为接闪器。叶尖的主体部分内部设有铜导体,铜导体末端与金属法兰相连。当叶片遭受直击雷时,产生的强大电流便在铜丝网中汇聚于铜导体中,短时迅速的将电流输送至金

保护电路图全集

保护电路图全集 一.低功耗定时开关电路图 二.LM339组成的过压、欠压及过热保护电路 进线电源过压及欠压对开关电源造成的危害,主要表现在器件因承受的电压及电流应力超出正常使用的范围而损坏,同时因电气性能指标被破坏而不能满足要求。因此对输入电源的上限和下限要有所限制,为此 采用过压、欠压保护以提高电源的可靠性和安全性。 温度是影响电源设备可靠性的最重要因素。根据有关资料分析表明,电子元器件温度每升高2℃,可靠性下降10%,温升50℃时的工作寿命只有温升25℃时的1/6,为了避免功率器件过热造成损坏,在开关电 源中亦需要设置过热保护电路。 图4是仅用一个4比较器LM339及几个分立元器件构成的过压、欠压、过热保护电路。取样电压可以直接从辅助控制电源整流滤波后取得,它反映输入电源电压的变化,比较器共用一个基准电压,N1.1为欠压比较器,N1.2为过压比较器,调整R1可以调节过、欠压的动作阈值。N1.3为过热比较器,RT为负温度系数的热敏电阻,它与R7构成分压器,紧贴于功率开关器件IGBT的表面,温度升高时,RT阻值下降,适当选取R7的阻值,使N1.3在设定的温度阈值动作。N1.4用于外部故障应急关机,当其正向端 输入低电平时,比较器输出低电平封锁PWM驱动信号。由于4个比较器的输出端是并联的,无论是过压、欠压、过热任何一种故障发生,比较器输出低电平,封锁驱动信号使电源停止工作,实现保护。如将电路 稍加变动,亦可使比较器输出高电平封锁驱动信号。

图4 过压、欠压、过热保护电路 · [图文] 低功耗定时开关电路图 · [图文] LM339组成的过压、欠压及过热保护电路 · [图文] 采用继电器和限流电阻构成的软启动电路 · [图文] 采用晶闸管和限流电阻组成的软启动电路 · [组图] 防浪涌软启动电路 · [图文] CW431CS过电压保护应用电路 · [图文] 弧焊电源保护电路的设计 · [图文] 电动车控制器短路保护时间的计算方法 · 太阳能热水器与防雷电设计方案 · ESD保护元件的对比分析及大电流性能鉴定 · [图文] PolySwitch元件的保护特性解析 · 如何正确选择中小型断路器 · 变频器过电压产生的原因及解决方法 · [图文] ESD保护时怎样维持USB信号完整性 · [图文] 集成运算放大器输出过流保护电路原理 · [图文] 集成运算放大器供电过压保护电路原理 · [图文] 保险丝熔断自愈电路图原理 · [图文] 停电自锁保护开关电路原理图 · [图文] 压敏电阻原理及应用 · [图文] 选用压敏电阻的方法 · [图文] 整流电源的过压保护-压敏电阻及其应用 · [图文] 用于三极管的过压保护-压敏电阻及其应用 · [图文] 彩电消磁电路的过压保护-压敏电阻及其应用 · [组图] 显像管放电保护-压敏电阻及其应用 · [图文] 直流电机的稳速保护-压敏电阻及其应用 · [图文] 固态继电器电路的过压保护-压敏电阻及其应用 · [图文] 电视机的防雷保护-压敏电阻及其应用 · [图文] 电视机稳压保护器-压敏电阻及其应用 · [图文] 由TL431组成的高精度的恒流源电路图 · [图文] 带滞回区的电池放电保护电路 · [图文] 红外线探测报警器制作原理 · [图文] 过流保护电路原理 · [图文] 直流电路的过流保护设计方法 · [图文] 蒸汽熨斗自动保护电路原理图 · [图文] 含指示灯的短路保护电路 · [图文] 三相三线制电源缺相保护电路 · [图文] 锂芯保护电路 · [图文] T3(E3)保护电路及解决方案 · [图文] VDSL保护电路及解决方案

电涌保护器设备工作原理

电涌保护器(Surge protection Device)是电子设备雷电防护中不可缺少的一种装置,过去常称为“避雷器”或“过电压保护器”英文简写为SPD。电涌保护器的作用是把窜入电力线、信号传输线的瞬时过电压限制在设备或系统所能承受的电压范围内,或将强大的雷电流泄流入地,保护被保护的设备或系统不受冲击而损坏。 电涌保护器的类型和结构按不同的用途有所不同,但它至少应包含一个非线性电压限制元件。用于电涌保护器的基本元器件有:放电间隙、充气放电管、压敏电阻、抑制二极管和扼流线圈等。 一、SPD的分类: 1、按工作原理分: 1.开关型:其工作原理是当没有瞬时过电压时呈现为高阻抗,但一旦响应雷电瞬时过电压时,其阻抗就突变为低值,允许雷电流通过。用作此类装置时器件有:放电间隙、气体放电管、闸流晶体管等。 2.限压型:其工作原理是当没有瞬时过电压时为高阻扰,但随电涌电流和电压的增加其阻抗会不断减小,其电流电压特性为强烈非线性。用作此类装置的器件有:氧化锌、压敏电阻、抑制二极管、雪崩二极管等。 3.分流型或扼流型 分流型:与被保护的设备并联,对雷电脉冲呈现为低阻抗,而对正常工作频率呈现为高阻抗。 扼流型:与被保护的设备串联,对雷电脉冲呈现为高阻抗,而对正常的工作频率呈现为低阻抗。 用作此类装置的器件有:扼流线圈、高通滤波器、低通滤波器、1/4波长短路器等。 按用途分:(1)电源保护器:交流电源保护器、直流电源保护器、开关电源保护器等。 (2)信号保护器:低频信号保护器、高频信号保护器、天馈保护器等。 二、SPD的基本元器件及其工作原理: 1.放电间隙(又称保护间隙): 它一般由暴露在空气中的两根相隔一定间隙的金属棒组成(如图15a),其中一根金属棒与所需保护设备的电源相线L1或零线(N)相连,另一根金属棒与接地线(PE)相连接,当瞬时过电压袭来时,间隙被击穿,把一部分过电压的电荷引入大地,避免了被保护设备上的电压升高。这种放电间隙的两金属棒之间的距离可按需要调整,结构较简单,其缺点时灭弧性能差。改进型的放电间隙为角型间隙,它的灭弧功能较前者为好,它是*回路的电动力F 作用以及热气流的上升作用而使电弧熄灭的。 2.气体放电管: 它是由相互离开的一对冷阴板封装在充有一定的惰性气体(Ar)的玻璃管或陶瓷管内组成的。为了提高放电管的触发概率,在放电管内还有助触发剂。这种充气放电管有二极型的,也有三极型的, 气体放电管的技术参数主要有:直流放电电压Udc;冲击放电电压Up(一般情况下Up≈(2~3)Udc;工频而授电流In;冲击而授电流Ip;绝缘电阻R(>109Ω);极间电容(1-5PF) 气体放电管可在直流和交流条件下使用,其所选用的直流放电电压Udc分别如下:在直流条件下使用:Udc≥1.8U0(U0为线路正常工作的直流电压) 在交流条件下使用:U dc≥1.44Un(Un为线路正常工作的交流电压有效值) 3.压敏电阻: 它是以ZnO为主要成分的金属氧化物半导体非线性电阻,当作用在其两端的电压达到一定数值后,电阻对电压十分敏感。它的工作原理相当于多个半导体P-N的串并联。压敏电阻的特点是非线性特性好(I=CUα中的非线性系数α),通流容量大(~2KA/cm2),常

防雷保护和接地设计

防雷保护和接地设计 7.1 直击雷保护 7.1.1 保护对象 屋外配电装置,包括组合导线、母线廊道。 7.1.2保护措施 ①110KV配电装置装设避雷针或装设独立避雷针;②主变压器装设独立避雷针;③屋外组合导线装设独立避雷针。 7.1.3 避雷针装设应注意的问题 应妥善采用独立避雷针和构架避雷针,其联合保护范围应覆盖全所保护对象。根据《电力设备过电压保护技术规程》SDJ —76规定:独立避雷针(线)宜设独 7 立的接地装置,避雷针及其接地装置与道路或出入口等的距离不宜小于3m。110KV及以上的配电装置,一般将避雷针装在其构架或房顶上;6KV及以上的配电装置,允许将避雷针装在其构架或房顶上;35KV及以下高压配电装置,构架或房顶上不宜装设避雷针。装在构架上的避雷针应与接地网连接,并应在其附近装设集中接地装置。避雷针与主接地网的地下连接点至变压器接地线与主接地网的地下连接点,沿接地体的长度不得小于15m。在主变压器的门型构架上,不应装设避雷针、避雷线。 110KV及以上配电装置,可将线路的避雷线引接到出线门型架上;35KV配电装置可将线路的避雷线引接到出线门型架上,但应集中接地装置。 我国规程规定: (1)110KV及以上的配电装置,一般将避雷针在构架上。但是在土壤电阻率ρ﹥Ω? 1000m的地区,仍宜装设独立避雷针,以免发生反击; (2)35KV及以下的配电装置应采用独立避雷针来保护; (3)10KV的配电装置,在ρ﹥Ω? 500m的地区宜采用独立避雷针,在ρ﹤500m的地区容许采用构架避雷针。 Ω? 变电站的直击雷防护设计内容主要是选择避雷针的指数、高度、装设位置、验算它们的保护范围、应有的接地电阻、防雷接地装置的设计等。 7.2 雷电侵入波保护 7.2.1 保护措施 避雷器结合进线段保护。装设阀式避雷器是变电站对雷电过电压波进行防护的主要措施,它的保护作用主要是限制过电压波的幅值.但是为了使阀式避雷器

相关文档