文档库 最新最全的文档下载
当前位置:文档库 › 2. 第二讲 线性子空间

2. 第二讲 线性子空间

第二章 内积空间

第二章 内积空间 目的:在线性空间中引入向量的长度、向量之间夹角等度量概念,深化对线性空间、线性变换等的研究。 §1 内积空间的概念 定义2-1 设V 是实数域R 上的线性空间。如果对于V 中任意两个向量βα,,都有一 个实数(记为()βα,)与它们对应,并且满足下列条件(1)-(4),则实数()βα,称为向量βα,的内积。 (1) ()()αββα,,=; (2)),(),(βαβαk k =,(R k ∈) (3)),(),(),(γβγαγβα+=+,(V ∈γ) (4)()0,≥αα,当且仅当θα=时,等号成立。 此时线性空间V 称为实内积空间,简称为内积空间。 例2-1 对于n R 中的任二向量()n x x x X ,,,21 =,()n y y y Y ,,,21 =,定义内积 ()∑==n i i i y x Y X 1 ,,n R 成为一个内积空间。内积空间n R 称为欧几里得(Euclid )空间,简称 为欧氏空间。由于n 维实内积空间都与n R 同构,所以也称有限维的实内积空间为欧氏空间。 例2-2 如果对于n n R B A ?∈?,,定义内积为()∑== n j i ij ij b a B A 1 ,,,则n n R ?成为一个内积 空间。 例2-3 ],[b a R 定义dx x g x f x g x f b a ? = )()())(),((,则可以验证))(),((x g x f 满足内积 的条件,从而],[b a R 构成内积空间。 内积()βα,具有下列基本性质 (1) ()()βαβα,,k k =,(R k ∈);(2) ()()()γαβαγβα,,,+=+; (3) ()()0,,==βθθα。

第二章 赋范线性空间-黎永锦

第2章 赋范线性空间 虽然不允许我们看透自然界本质的秘密, 从而认识现象的真实原因,但仍可能 发生这样的情形:一定的虚构假设 足以解释许多现象. Eurler L . (欧拉) (1707-1783,瑞士数学家) Schmidt E .在1908 年讨论由复数列组成的空间}||: ){(1 2∞<∑∞ =i i i z z 时引入记号 ||||z 来表示2 11 )(∑∞ =i i i z z ,||||z 后来就称为z 的范数.赋范空间的公理出现在Riesz F .在 1918 年关于],[b a C 上关于紧算子的工作中,但赋范空间的定义是在 1920到1922年间由 Banach S .(1892—1945)、Hahn H .(1879—1934)、Helly E .(1884—1943)和 Wiener N .(1894—1964)给出的,其中以Banach S .的工作最具影响. 2.1赋范空间的基本概念 线性空间是Peano Giuseppe 在1888年出版的书Geometrical Calculus 中引进的.Banach S .在1922年的工作主要是建立具有范数的完备空间,以后为了纪念他称之为 Banach 空间.他定义的空间满足三组公理,第一组公理定义了线性空间,第二组定义了范数, 第三组给出了空间的完备性. 定义 2.1.1 设K 是实数域R 或复数域C ,X 是数域K 上的线性空间,若||||?是X 到R 的映射,且满足下列条件: (1) 0||||≥x 且0||||=x 当且仅当0=x ; (2) ||||||||||x x λλ=,对任意X x ∈和任意K ∈λ ;

空间分析复习重点

空间分析的概念空间分析:是基于地理对象的位置和形态特征的空间数据分析技术,其目的在于提取和传输空间信息。包括空间数据操作、空间数据分析、空间统计分析、空间建模。 空间数据的类型空间点数据、空间线数据、空间面数据、地统计数据 属性数据的类型名义量、次序量、间隔量、比率量 属性:与空间数据库中一个独立对象(记录)关联的数据项。属性已成为描述一个位置任何可记录特征或性质的术语。 空间统计分析陷阱1)空间自相关:“地理学第一定律”—任何事物都是空间相关的,距离近的空间相关性大。空间自相关破坏了经典统计当中的样本独立性假设。避免空间自相关所用的方法称为空间回归模型。2)可变面元问题MAUP:随面积单元定义的不同而变化的问题,就是可变面元问题。其类型分为:①尺度效应:当空间数据经聚合而改变其单元面积的大小、形状和方向时,分析结果也随之变化的现象。②区划效应:给定尺度下不同的单元组合方式导致分析结果产生变化的现象。3)边界效应:边界效应指分析中由于实体向一个或多个边界近似时出现的误差。生态谬误在同一粒度或聚合水平上,由于聚合方式的不同或划区方案的不同导致的分析结果的变化。(给定尺度下不同的单元组合方式) 空间数据的性质空间数据与一般的属性数据相比具有特殊的性质如空间相关性,空间异质性,以及有尺度变化等引起的MAUP效应等。一阶效应:大尺度的趋势,描述某个参数的总体变化性;二阶效应:局部效应,描述空间上邻近位置上的数值相互趋同的倾向。 空间依赖性:空间上距离相近的地理事物的相似性比距离远的事物的相似性大。 空间异质性:也叫空间非稳定性,意味着功能形式和参数在所研究的区域的不同地方是不一样的,但是在区域的局部,其变化是一致的。 ESDA是在一组数据中寻求重要信息的过程,利用EDA技术,分析人员无须借助于先验理论或假设,直接探索隐藏在数据中的关系、模式和趋势等,获得对问题的理解和相关知识。 常见EDA方法:直方图、茎叶图、箱线图、散点图、平行坐标图 主题地图的数据分类问题等间隔分类;分位数分类:自然分割分类。 空间点模式:根据地理实体或者时间的空间位置研究其分布模式的方法。 茎叶图:单变量、小数据集数据分布的图示方法。 优点是容易制作,让阅览者能很快抓住变量分布形状。缺点是无法指定图形组距,对大型资料不适用。 茎叶图制作方法:①选择适当的数字为茎,通常是起首数字,茎之间的间距相等;②每列标出所有可能叶的数字,叶子按数值大小依次排列;③由第一行数据,在对应的茎之列,顺序记录茎后的一位数字为叶,直到最后一行数据,需排列整齐(叶之间的间隔相等)。 箱线图&五数总结 箱线图也称箱须图需要五个数,称为五数总结:①最小值②下四分位数:Q1③中位数④上四分位数:Q3⑤最大值。分位数差:IQR = Q3 - Q1 3密度估计是一个随机变量概率密度函数的非参数方法。 应用不同带宽生成的100个服从正态分布随机数的核密度估计。 空间点模式:一般来说,点模式分析可以用来描述任何类型的事件数据。因为每一事件都可以抽象化为空间上的一个位置点。 空间模式的三种基本分布:1)随机分布:任何一点在任何一个位置发生的概率相同,某点的存在不影响其它点的分布。又称泊松分布

线性空间与子空间

第一讲线性空间 一、线性空间的定义及性质 [知识预备] ★集合:笼统的说就是指一些事物(或者对象)组成的整体 集合的表示:枚举、表达式 集合的运算:并(U),交(I) 另外,集合的“与”(+):并不就是严格意义上集合的运算,因为它限定了集合中元素须有可加性。 ★数域:一种数集,对四则运算封闭(除数不为零)。比如有理数域、实数域(R)与复数域(C)。实数域与复数域就是工程上较常用的两个数域。 线性空间就是线性代数最基本的概念之一,也就是学习现代矩阵论的重要基础。线性空间的概念就是某类事物从量的方面的一个抽象。 1.线性空间的定义: 设V就是一个非空集合,其元素用x,y,z等表示;K就是一个数域,其元素用k,l,m等表示。如果V满足[如下8条性质,分两类] (I)在V中定义一个“加法”运算,即当x,y V ∈时,有唯一的与+∈(封闭性),且加法运算满足下列性质 x y V (1)结合律()() ++=++; x y z x y z (2)交换律x y y x +=+; (3)零元律存在零元素o,使x+o x =;

(4)负元律 对于任一元素x V ∈,存在一元素y V ∈,使x y +=o,且称y 为x 的负元素,记为(x -)。则有()x x +-= o 。 (II)在V 中定义一个“数乘”运算,即当x V ∈,k K ∈时,有唯一的kx V ∈(封闭性),且数乘运算满足下列性质 (5)数因子分配律 ()k x y kx ky +=+; (6)分配律 ()k l x kx lx +=+; (7)结合律 ()()k lx kl x =; (8)恒等律 1x x =; [数域中一定有1] 则称V 为数域K 上的线性空间。 注意:1)线性空间不能离开某一数域来定义,因为同一个集合,如果 数域不同,该集合构成的线性空间也不同。 (2)两种运算、八条性质 数域K 中的运算就是具体的四则运算,而V 中所定义的加法 运算与数乘运算则可以十分抽象。 (3)除了两种运算与八条性质外,还应注意唯一性、封闭性。 唯一性一般较显然,封闭性还需要证明,出现不封闭的情况:集合小、运算本身就不满足。 当数域K 为实数域时,V 就称为实线性空间;K 为复数域,V 就称为复线性空间。 例1. 设R +={全体正实数},其“加法”及“数乘”运算定义为 x y=xy , k k x x =o 证明:R +就是实数域R 上的线性空间。

第二章内积空间

第二章 内积空间 在以前学习的线性代数中,我们知道在n R 中向量的长度、夹角和正交等性 质是用内积刻划的,在本章中将内积的概念推广到一般线性空间,从而讨论一般线性空间中向量的度量性质。定义了内积的线性空间称为内积空间,常用的内积空间有欧氏空间与酉空间。 §2.1欧氏空间与酉空间 一、欧氏空间与酉空间 定义1 设V 是R 上的线性空间,如果V 中每对向量,x y ,按某一对应法则都有唯一确定的实数(,)x y 与之对应且满足: ),(),(.1x y y x = ),(),(.2y x y x λ=λ,λ?∈R ),(),(),(.3z y z x z y x +=+,z V ?∈ 0),(.4≥x x 等号成立当且仅当x θ= 则称(,)x y 为V 的内积。称定义了上述内积的有限维线性空间()V R 为欧几里得空间,简称欧氏空间,称21 ),(x x x =为x 的长度或模。 例1 在[]n P x 中定义1 0((),())()()f x g x f x g x dx =?,(),()[]n f x g x P x ∈,则[]n P x 构成一个欧氏空间。 例2 在n n ?R 中对,n n A B ??∈R 定义T (,)tr()A B AB =,则n n ?R 为欧氏空间。 证明 因为,,,n n A B C λ??∈∈R R (1) T T T T (,)tr tr[()]tr (,)A B AB AB BA B A ==== (2) T T (,)tr tr (,)A B AB AB A B λλλλ=== (3) T T T (,)tr[()]tr[](,)(,)A B C A B C AC BC A C B C +=+=+=+

第一章 线性空间与线性变换概述

第一章 线性空间与线性变换 线性空间与线性变换是学习现代矩阵论时经常用到的两个极其重要的概念.本章先简要地论述这两个概念及其有关理论,然后再讨论两个特殊的线性空间,这就是Euclid 空间和酉空间. §1.1 线性空间 线性空间是线性代数最基本的概念之一,也是学习现代矩阵论的重要基础,所考虑的数域是实数域(记为R)和复数域(记为C),统称数域F . 一、线性空间的定义及性质 定义1 设V 是一个非空集合,F 是一数域.如果存在一种规则,叫做V 的加法运算:对于V 中任意两个元素,αβ,总有V 中一个确定的元素γ与之对应.γ称为αβ与的和,记为γαβ=+.另有一种规则,叫做V 对于F 的数乘运算:对于F 中的任意数k 及V 中任意元素α,总有V 中一个确定的元素σ与之对应,σ叫做k 与α的数乘,记为k σα=.而且,以上两种运算还具有如下的性质: 对于任意α,β,V γ∈及k ,l F ∈,有 1)αββα+=+; 2)()()αβγαβγ++=++; 3)V 中存在零元素0,对于任何V α∈,恒有αα+=0; 4)对于任何V α∈,都有α的负元素V β∈,使0αβ+=; 5)1αα=; 6)()()k l kl αα=;(式中kl 是通常的数的乘法) 7)()k l k l ααα+=+;(式中k l +是通常的数的加法) 8)()k k k αβαβ+=+. 则称V 为数域F 上的一个线性空间,也称向量空间. V 中所定义的加法及数乘运算统称为线性运算,其中数乘又称数量乘 法.在不致产生混淆时,将数域F 上的线性空间简称为线性空间. 需要指出,不管V 的元素如何,当F 为实数域R 时,则称V 为实线性空间;当F 为复数域C 时,就称V 为复线性空间. 线性空间{0}V =称为零空间.

空间计量经济学模型归纳

空间计量经济学模型 空间相关性是指 () ,i j y f y i j =≠即i y 与j y 相关 模型可表示为() (),1i j j i i y f y x i j βε=++≠ 其中,()f g 为线性函数,(1)式的具体形式为 () ()2,0,2i ij j i i i i j y a y x N βεεδ≠=++∑: 如果只考虑应变量空间相关性,则(2)式变为(3)式 ()()21 ,0,,1,2...3n i ij j i i i y W y N i n ρεεδ==+=∑: 式中 1 n ij j i W y =∑为空间滞后算子,ij W 为维空间权重矩阵n n W ?中的元素,ρ为待估的空间自相 关系数。0ρ≠,存在空间效应 (3)式的矩阵形式为() ()21, 0,4u n y Wy N I ρεδ?=: (4)式称为一阶空间自回归模型,记为FAR 模型 当在模型中引入一系列解释变量X 时,形式如下 () ()2,0,5n y Wy X N I ρβεεδ=++: (5)式称为空间自回归模型,记为SAR 模型 当个体间的空间效应体现在模型扰动项时有 () ()21,,0,6u n y X u u Wu N I βλεδ?=+=: (6)式成为空间误差模型,记为SEM 模型 当应变量与扰动项均存在空间相关时有 () ()2121,,0,7u n y W y X u u W u N I ρβλεεδ?=++=+: (7)式称为一般空间模型,记为SAC 模型 当0X =且20W =时,SAC →FAR ;当20W =时,SAC →SAR 当10W =时,SAC →SEM

空间复用MIMO系统的信号均衡

第十一章 空间复用MIMO 系统的信号均衡 11.1 线性均衡 如图11所示为一个R T N N ?的MIMO 系统,H 为信道矩阵,ji h (1,2,...;1,2...R T j N i N = =)为第i 根发射天线到第j 根接受天线的增益, i h 为H 的第i 行。12x [,,,]T T N x x x = 为空间复用后的发射信号,12y [,,,]R T N y y y = 为对应的接收信号,其中i x ,i y 分别为第i 根发射天线和第i 根接受天线的发射或接受信号。i z 为第i 根接受天线处方差2 z σ的高斯白噪声, 12z [,,...,]R T N z z z =。则: 1122y Hx+z z T T N N h x h x h x = =+++ (11.1) 图11.1 空间复用MIMO 系统模型 MIMO 系统中每个接收天线上收到的都是各个发送天线上发送的信号的叠加,线性均衡即通过接收信号y 与加权矩阵W 的相乘来减小甚至消除其他天线对目标天线信号的干扰。即: 12x [,,,]Wy T T N x x x == , (11.2) 可见每个符号的判决都是通过接收信号的线性组合得到的,故称为线性均衡,它包括破零算 法(ZF )和最小均方二乘算法(MMSE )。 11.1.1 ZF 均衡 ZF 均衡的的加权矩阵为: 1W (H H)H H H ZF -= (11.3) 则接收信号y 均衡得到的对应发射信号为: 1x W y x (H H)H z x z ZF ZF H H ZF -==+=+ (11.4) 其中1 z W z (H H)H z H H ZF ZF -== 。由于误码率与z ZF 的功率紧密相关,由9.1章可知后验噪

线性空间与子空间

第一讲 线性空间 一、 线性空间的定义及性质 [知识预备] ★集合:笼统的说是指一些事物(或者对象)组成 的整体 集合的表示:枚举、表达式 集合的运算:并(),交() 另外,集合的“和”(+):并不是严格意义上集合的运算,因为它限定了集合中元素须有可加性。 ★数域:一种数集,对四则运算封闭(除数不为零)。比如有理数域、实数域(R )和复数域(C )。实数域和复数域是工程上较常用的两个数域。 线性空间是线性代数最基本的概念之一,也是学习现代矩阵论的重要基础。线性空间的概念是某类事物从量的方面的一个抽象。 1. 线性空间的定义: 设V 是一个非空集合,其元素用x,y,z 等表示;K 是一个数域,其元素用k,l,m 等表示。如果V 满足[如下8条性质,分两类] (I )在V 中定义一个“加法”运算,即当x,y V ∈时,有唯一的和 x y V +∈(封闭性),且加法运算满足下列性质 (1)结合律 ()()x y z x y z ++=++; (2)交换律 x y y x +=+;

(3)零元律 存在零元素o ,使x +o x =; (4)负元律 对于任一元素x V ∈,存在一元素y V ∈,使x y +=o ,且称y 为x 的负元素,记为(x -) 。则有()x x +-= o 。 (II )在V 中定义一个“数乘”运算,即当x V ∈,k K ∈时,有唯一的kx V ∈(封闭性),且数乘运算满足下列性质 (5)数因子分配律 ()k x y kx ky +=+; (6)分配律 ()k l x kx lx +=+; (7)结合律 ()()k lx kl x =; (8)恒等律 1x x =; [数域中一定有1] 则称V 为数域K 上的线性空间。 注意:1)线性空间不能离开某一数域来定义,因为同一个集合, 如果数域不同,该集合构成的线性空间也不同。 (2)两种运算、八条性质 数域K 中的运算是具体的四则运算,而V 中所定义的加法运算和数乘运算则可以十分抽象。 (3)除了两种运算和八条性质外,还应注意唯一性、封闭 性。唯一性一般较显然,封闭性还需要证明,出现不封闭的情况:集合小、运算本身就不满足。 当数域K 为实数域时,V 就称为实线性空间;K 为复数域,V 就称为复线性空间。 例1. 设R +={全体正实数},其“加法”及“数乘”运算定义为

空间分析复习重点

空间分析的概念 空间分析:是基于地理对象的位置和形态特征的空间数据分析技术,其目的在于提取和传输空间信息。包括空间数据操作、空间数据分析、空间统计分析、空间建模。 空间数据的类型 空间点数据、空间线数据、空间面数据、地统计数据 属性数据的类型 名义量、次序量、间隔量、比率量 属性:与空间数据库中一个独立对象(记录)关联的数据项。属性已成为描述一个位置任何可记录特征或性质的术语。 空间统计分析陷阱1)空间自相关:“地理学第一定律”—任何事物都是空间相关的,距离近的空间相关性大。空间自相关破坏了经典统计当中的样本独立性假设。避免空间自相关所用的方法称为空间回归模型。2)可变面元问题MAUP :随面积单元定义的不同而变化的问题,就是可变面元问题。其类型分为:①尺度效应:当空间数据经聚合而改变其单元面积的大小 、形状和方向时,分析结果也随之变化的现象。②区划效应:给定尺度下不同的单元组合方式导致分析结果产生变化的现象。3)边界效应:边界效应指分析中由于实体向一个或多个边界近似时出现的误差。 生态谬误 在同一粒度或聚合水平上,由于聚合方式的不同或划区方案的不同导致的分析结果的变化。(给定尺度下不同的单元组合方式) 空间数据的性质 空间数据与一般的属性数据相比具有特殊的性质 如空间相关性,空间异质性,以及有尺度变化等引起的MAUP 效应等。一阶效应:大尺度的趋势,描述某个参数的总体变化性;二阶效应:局部效应,描述空间上邻近位置上的数值相互趋同的倾向。 空间依赖性:空间上距离相近的地理事物的相似性比距离远的事物的相似性大。 空间异质性:也叫空间非稳定性,意味着功能形式和参数在所研究的区域的不同地方是不一样的,但是在区域的局部,其变化是一致的。 ESDA 是在一组数据中寻求重要信息的过程,利用EDA 技术,分析人员无须借助于先验理论或假设,直接探索隐藏在数据中的关系、模式和趋势等,获得对问题的理解和相关知识。 常见EDA 方法:直方图、茎叶图、箱线图、散点图、平行坐标图 主题地图的数据分类问题 等间隔分类;分位数分类:自然分割分类。 空间点模式:根据地理实体或者时间的空间位置研究其分布模式的方法。 茎叶图:单变量、小数据集数据分布的图示方法。 优点是容易制作,让阅览者能很快抓住变量分布形状。缺点是无法指定图形组距,对大型资料不适用。 茎叶图制作方法:①选择适当的数字为茎,通常是起首数字,茎之间的间距相等;②每列标出所有可能叶的数字,叶子按数值大小依次排列; ③由第一行数据,在对应的茎之列,顺序记录茎后的一位数字为叶,直到最后一行数据,需排列整齐(叶之间的间隔相等)。 箱线图&五数总结 箱线图也称箱须图需要五个数,称为五数总结:①最小值②下四分位数:Q1③中位数④上四分位数:Q3⑤最大值。分位数差:IQR = Q3 - Q1 3密度估计是一个随机变量概率密度函数的非参数方法。 应用不同带宽生成的100个服从正态分布随机数的核密度估计。 空间点模式:一般来说,点模式分析可以用来描述任何类型的事件数据。因为每一事件都可以抽象化为空间上的一个位置点。 空间模式的三种基本分布:1)随机分布:任何一点在任何一个位置发生的概率相同,某点的存在不影响其它点的分布。又称泊松分布 2)均匀分布:个体间保持一定的距离,每一个点尽量地远离其周围的邻近点。在单位(样方)中个体出现与不出现的概率完全或几乎相等。 11?()n i i x x f x K nh h =-??= ???∑

01 线性空间与子空间

第一讲 线性空间 一、 线性空间的定义及性质 [知识预备] ★集合:笼统的说是指一些事物(或者对象)组成 的整体 集合的表示:枚举、表达式 集合的运算:并(U ),交(I ) 另外,集合的“和”(+):并不是严格意义上集合的运算,因为它限定了集合中元素须有可加性。 ★数域:一种数集,对四则运算封闭(除数不为零)。比如有理数域、实数域(R )和复数域(C )。实数域和复数域是工程上较常用的两个数域。 线性空间是线性代数最基本的概念之一,也是学习现代矩阵论的重要基础。线性空间的概念是某类事物从量的方面的一个抽象。 1. 线性空间的定义: 设V 是一个非空集合,其元素用x,y,z 等表示;K 是一个数域,其元素用k,l,m 等表示。如果V 满足[如下8条性质,分两类] (I )在V 中定义一个“加法”运算,即当x,y V ∈时,有唯一的和x y V +∈(封闭性),且加法运算满足下列性质 (1)结合律 ()()x y z x y z ++=++; (2)交换律 x y y x +=+; (3)零元律 存在零元素o ,使x +o x =; (4)负元律 对于任一元素x V ∈,存在一元素y V ∈,使

x y +=o ,且称y 为x 的负元素,记为(x -) 。则有()x x +-= o 。 (II )在V 中定义一个“数乘”运算,即当x V ∈,k K ∈时,有唯一的kx V ∈(封闭性),且数乘运算满足下列性质 (5)数因子分配律 ()k x y kx ky +=+; (6)分配律 ()k l x kx lx +=+; (7)结合律 ()()k lx kl x =; (8)恒等律 1x x =; [数域中一定有1] 则称V 为数域K 上的线性空间。 注意:1)线性空间不能离开某一数域来定义,因为同一个集合, 如果数域不同,该集合构成的线性空间也不同。 (2)两种运算、八条性质 数域K 中的运算是具体的四则运算,而V 中所定义的加法运 算和数乘运算则可以十分抽象。 (3)除了两种运算和八条性质外,还应注意唯一性、封闭 性。唯一性一般较显然,封闭性还需要证明,出现不封闭的情况:集合小、运算本身就不满足。 当数域K 为实数域时,V 就称为实线性空间;K 为复数域,V 就称为复线性空间。 例1. 设R +={全体正实数},其“加法”及“数乘”运算定义为 x y=xy , k k x x =o 证明:R +是实数域R 上的线性空间。 [证明] 首先需要证明两种运算的唯一性和封闭性

3.1 赋范线性空间和Banach空间

第3章 赋范线性空间 3.1 赋范线性空间和Banach 空间 3.1.1 赋范线性空间 定义3.1.1 (范数,赋范线性空间) 设X 为是实(或:复)数域F 的线性空间,若对x X ?∈,存在一个实数x 于之对应,且满足下列条件: (1) 0≥x ; 且0=x ?=0x ; (非负性 (non-negativity)) (2) αα=x x ,α∈F ; (正齐(次)性 (positive homogeneity)) (3) +≤+x y x y ,,X ∈x y ; (三角不等式(triangle inequality)) 则称x 为x 的范数(norm),称(,)X ? (或:X )为赋范线性空间(normed linear space), 简称赋范空间(normed space). 例3.1.1 空间[,]C a b 是闭区间[,]a b 上的连续函数全体所成的线性空间。对[,]f C a b ?∈,规定 [,] max ()t a b f f t ∈=, (3.1.1) 易证f 是f 的范数,则[,]C a b 按上述范数成为赋范线性空间。 例 3.1.2 设[,]a b L 是闭区间[,]a b 上的Lebesgue 可积函数全体所成的线性空间。对 [,]f a b ?∈L ,规定 ()d b a f f t t =?, (3.1.2) 若将在[,]a b 上满足()()f t g t ?=的两个函数,f g 视为同一个函数,即将在[,]a b 上满足 ()0f t ? =的函数f 视为恒等于零的函数,即0f =,则在[,]a b L 上,f 是f 的范数,从而 [,]a b L 按上述范数成为赋范线性空间。 例 3.1.3 在n 维实向量空间n R 或n 维复向量空间(称为酉空间)n C 中,对 12(,,,)n n x x x x ?=∈R (或n C ),令 12 21n i i x x =??= ??? ∑, (3.1.3)

1.什么是线性空间什么是线性变换线性变换

1. 什么是线性空间?什么是线性变换?线性变换的秩如果小于空间的维数将会怎样?平方的秩? 2. 描述一下密度矩阵的特征,纯态和混合态的区别(表现在密度矩阵的秩) 3. 什么是U 变换,U 变换对应的矩阵满足什么样的特点。U 矩阵一定是可对角化的吗?对应欧氏空 间的正交变换有什么特点?正交变换对应的矩阵的矩阵元一定是实的吗? 4. 什么是厄米算符,厄米算符的物理意义?对应的矩阵具有什么样的特点?厄米算符的本征值具有 什么样的特征?厄米算符对应的矩阵的矩阵元是实的吗?厄米算符是否可以表示成实矩阵,特点是什么?互相对易的厄米算符具有共同的本征态,具有共同本征态的算符一定是对易的吗?具有共同本征值的呢?厄米算符的和是厄米算符吗?厄米算符的乘积呢?直积呢?不对易的厄米算符一定不可交换吗? 5. exp (A )exp (B )=exp (A+B )?LnA 怎么计算? 6. 简单介绍一下三种picture 的物理意义,态的特征,算符的特征。为什么采用这三种picture ,只有 这三种picture 吗?你觉得相互作用picture 可以用在什么地方?Heisenberg picture 的波函数不随时间演化,本征态呢?与哈密顿量对易算符的本征态呢?本征值怎么样? 7. 传播子的物理意义?路径积分与惠更斯原理有什么联系吗?两个光子能够叠加吗?最小作用原 理和路径积分的联系。 8. 什么是态的纠缠?什么是直积态? 9. 量子力学的五大假设是什么?什么是测量假设?测量假设可以从量子力学的其它假设推导出来 吗?能够从态演化过程推导出来吗?它是一个物理过程吗? 10. EPR 佯谬讲了一些什么内容?说明了什么物理本质? 11. Bell 不等式怎么写?它有什么作用?2),(),(),(),(≤-++=''''b a b a b a b a u u E u u E u u E u u E S 12. 在quantum teleportation 中,对于粒子1的初态10βαψ+=,如果根据粒子1和2的Bell 基测 量结果推知粒子3的量子态为10βαψ-=,10αβψ+=以及10αβψ-=,怎么样才能是粒子3的态恢复到粒子1原来的量子态? 13. 什么是定态? 第二次作业中的2.2题中的(e)小问, 为什么在上一次测量x μ得到0μ+之后隔一个时间间隔t ?再测量x μ,得到0μ+的几率并不完全等于1? 1). 若体系的H 不显含时间t ,在初始时刻(t=0)体系处于某一个能量本征态)()0,(E ψψ=,其中),(),(t r E t r H E E ψψ=,则 ]/exp[)(),( iEt t E -=ψψ

线性变换和矩阵

§3 线性变换和矩阵 一、线性变换关于基的矩阵 设V 是数域P 上n 维线性空间.n εεε,,,21 V 的一组基,现在建立线性变换与矩阵关系. 空间V 中任意一个向量ξ可以被基n εεε,,,21 线性表出,即有关系式 n n x x x εεεξ+++= 2211 (1) 其中系数是唯一确定的,它们就是ξ在这组基下的坐标.由于线性变换保持线性关系不变,因而在ξ的像A ξ与基的像A 1ε,A 2ε,…,A n ε之间也必然有相同的关系: A ξ=A (n n x x x εεε+++ 2211) =1x A (1ε)+2x A (2ε)+…+n x A (n ε) (2) 上式表明,如果知道了基n εεε,,,21 的像,那么线性空间中任意一个向量ξ的像也就知道了,或者说 1. 设n εεε,,,21 是线性空间V 的一组基,如果线性变换?与?在这组基上的作用相同,即 A i ε= B i ε, ,,,2,1n i = 那么A = B . 结论1的意义就是,一个线性变换完全被它在一组基上的作用所决定.下面指出,基向量的像却完全可以是任意的,也就是 2. 设n εεε,,,21 是线性空间V 的一组基,对于任意一组向量n ααα,,,21 一定有一个线性变换?使 A i ε=i α .,,2,1n i = 定理1 设n εεε,,,21 是线性空间V 的一组基,n ααα,,,21 是V 中任意n 个向量.存在唯一的线性变换?使

A i ε=i α .,,2,1n i = 定义2 设n εεε,,,21 是数域P 上n 维线性空间V 的一组基,A 是V 中的一个线性变换.基向量的像可以被基线性表出: ?? ? ?? ? ?+++=+++=+++=. , , 22112222112212211111n nn n n n n n n n a a a A a a a A a a a A εεεεεεεεεεεε 用矩阵表示就是 A (n εεε,,,21 )=(A (1ε),A ?(2ε),…, A (n ε)) =A n ),,,(21εεε (5) 其中 ??? ??? ? ??=nn n n n n a a a a a a a a a A 212222111211 矩阵A 称为线性变换A 在基n εεε,,,21 下的矩阵. 例 1 设m εεε,,,21 是n )(m n >维线性空间V 的子空间W 的一组基,把它扩充为V 的一组基n εεε,,,21 .指定线性变换A 如下 ?? ?+====. ,,1,0,,,2,1,n m i A m i A i i i εεε 如此确定的线性变换A 称为子空间W 的一个投影.不难证明 A 2=A 投影A 在基n εεε,,,21 下的矩阵是

空间统计学

Statistics for spatial data; Noel A.C. Cressie, Wiley& Sons,1991 空间统计学 0 引言 0.1定义 空间统计学由于许多学科的需求发展迅速。 空间统计学涉及的领域:生物学、空间经济学、遥感科学、图像处理、环境与地球科学( 大地测量、地球物理、空间物理、大气科学等等)、生态学、地理学、流行病学、农业经济学、林学及其它学科 空间过程或随机场定义: {}(),Z s s =∈Z S (1) 式中S 是空间位置s 的集合,可以是预先确定的,也可以随机的,2d d ?=S R 是二维欧 氏空间;()Z s 取值于状态空E 。 空时过程:如考虑时间,则 {} (,),,(,)d Z s t s s t + =∈∈?Z S R R 式中S 是空间位置s 的集合,可以是预先确定的,也可以随机的;t + ∈R ;()Z s 取值于状态空E 。 注意:上述为标量值过程,但也可扩展为向量过程。 0.2 空间数据类型 0.2.1 连续型地学统计数据(Geostatistical data ) 此时, 2d d ?=S R 是连续欧氏子空间,即连续点的集合,随机场{} (),Z s s ∈S 在实值空间E 上的n 个固定位置n s s s ,,,21 取值。如图为连续型空间数据

(a )降雨量分布图;(b) 土壤孔穴分布图。(符号大小正比于属性变量值) Geostatistical (spatial) data is usually processed by the geostatistical method that has been set out in considerable detail since Krige published his important paper. In summary, this method consists of an exploratory spatial data analysis, positing a model of (non-stationary) mean plus ( intrinsically stationary) error, non-parametrically estimating variogram or covariogram, fitting a valid model to the estimate, and kriging ( predicting )unobserved parts from the available data. This last step yields not only a predictor, but a mean squared prediction error. 0.2.2 离散型格网数据(Lattice data ) 此时, 2d d ?=S R 是固定的离散空间点,非随机点集合,随机场{}(),Z s s ∈S 在 2d d ?=S R 的空间点采样。空间点可以是给定邻接图关系、表示成网状的地理区域, 如图2-a 。()Z s 是在s 观测的某种感兴趣的值状态空间可以是、也可以不是实值的,比如GDP 、工业产值、农业产值、房产价格;在遥感图像分析领域,空间点就是规则的像元(pixel)集合图2-b 。 Goals for these types of data includes constructing and analyzing explicative models, quantifying spatial correlations, classification, segmentation, prediction and image restoration

空间计量经济学

? 陈强,《高级计量经济学及Stata应用》课件,第二版,2014年,高等教育出版社。 第29章 空间计量经济学 29.1 地理学第一定律 许多经济数据都涉及一定的空间位置。比如,研究全国各省的GDP、投资、贸易、R&D等数据。 此前各章很少关注各省经济之间的互动,通常假设各省的变量相互独立。 但各省经济有着广泛的联系,而且越近的省份联系越密切。 1

根据Tobler (1970),“所有事物都与其他事物相关联,但较近的事物比较远的事物更关联”(Everything is related to everything else, but near things are more related than distant things)。 这被称为“地理学第一定律”(First Law of Geography)。 各省之间的距离信息并不难获得,比如是否相邻,直线距离或运输距离。 将各省的变量数据,再加上各省的位置信息(或相互距离),即可得到“空间数据”(spatial data或areal data)。 研究如何处理空间数据的计量经济学分支,称为“空间计量经济学”(spatial econometrics)。 2

空间计量经济学的最大特色在于充分考虑横截面单位之间的空间依赖性(spatial dependence)。 空间效应(spatial effects)包括空间依赖性与“空间异质性”(spatial heterogeneity)。 由于标准的计量经济学也考虑横截面单位之间的异质性(比如异方差),故空间计量经济学的关注重点为空间依赖性。 空间计量经济学诞生于1970年代。近年来,空间计量经济学蓬勃发展并进入主流,可归功于两方面。 首先,由于GIS(地理信息系统)的发展,空间数据或包含地理信息的数据(geo-referenced data)日益增多。 3

第六章 线性空间与线性变换

第六章 线性空间与线性变换 柴中林 (A) 1. 检验下列集合对于所指的线性运算是否构成实数域上的线性空间: (1)全体n 阶上三角矩阵,对矩阵的加法和数量乘法。 (2)平面上不平行于某一向量的全部向量所成的集合,对向量的加法和数乘运算。 (3)平面上的全体向量对于通常的加法和如下定义的数量乘法:k 。a =0 . 2. 设V 1和V 2都是线性空间V 的子空间,如果V 1∪V 2也是的子空间,求证有:V 1 V 2或V 2 V 1。 3. 检验下列各向量集合是否是R 3的子空间: (1)},0|),,{(213211R x x x x x x V i ∈≥=, (2)}(|),,{(3212有理数)Q x x x x V i ∈=. 4. R 4中,求向量ξ在基α1,α2,α3,α4下的坐标,已知: (1)α1(1,1,1,1), α2=(1,1,-1,-1), α3=(1,-1,1,-1), α4=(1,-1,-1,1), ξ=(1,2,1,1)。 (2)α1(1,1,0,1), α2=(2,1,3,-1), α3=(1,1,0,0), α4=(1,1,-1,-1), ξ=(0,0,0,1)。 5. R 4中,求由基α1,α2,α3,α4到基β1,β2,β3,β4的过渡矩阵,并求向量ξ在指定基下的坐标。已知: (1)α1=(1,0,0,0), α2=(0,1,0,0), α3=(0,0,1,0), α4=(0,0,0,1), β1=(2,1,-1,1), β2=(0,3,1,0), β3=(5,3,2,1), β4=(6,6,1,3)。 ξ=(1,2,1,1)在基β1,β2,β3,β4下的坐标。 (2)α1=(1,1,1,1), α2=(1,1,-1,-1), α3=(1,-1,1,-1), α4=(1,-1,-1,1), β1=(1,1,0,1), β2=(2,1,3,1), β3=(1,1,0,0), β4=(0,1,-1,-1)。 ξ=(1,0,0,-1)在基α1,α2,α3,α4下的坐标。 6. 向量α、β、γ满足0321=++γβαk k k ,且k 1k 2≠0, 求证向量组α、β和向量组β、γ生成相同的向量空间。 7. 判断下面所定义的变换,哪些是线性变换,哪些不是: (1)在线性空间V 中,T (ξ)=ξ+α,其中α∈V 是一已知向量, (2)在R 3 中, T T x x x x x x x T ),,()),,((233221321+=, (3)在R 3中,T T x x x x x x x x T ),,2()),,((13221321+-=, (4)在P[x]n 中,T(f (x ))=f (x +1). 8. 证明线性变换将一个子空间变为一个子空间。 9. 已知矩阵A 与B 相似,C 与D 相似,证明: ???? ??C A 00与???? ??D B 00相似。 10. 设α1,α2,α3,α4是4维线性空间V 的一组基, 线性变换T 在这组基下的矩阵为: ??????? ??--------=7113102/52/92/1323133425T ,

空间统计笔记系列(1-5)

空间统计笔记之一(基础知识) 前段时间在学习空间统计相关的知识,于是把ArcGIS里Spatial Statistics工具箱里的工具好好研究了一遍,同时也整理了一些笔记上传分享。这一篇先聊一些基础概念,工具介绍篇随后上传。 空间统计研究起步于上个世纪70年代,空间统计其核心就是认识与地理位置相关的数据间的空间依赖、空间关联等关系,通过空间位置建立数据间的统计关系。空间统计学依赖于tablor 地理学第一定律,即空间上越临近的事物拥有越强的相似程度;和空间异质性,即空间位置差异造成的行为不确定现象。例如要度量犯罪率与教育程度的关系,不同地区(文教区、贫困区)可能不一样。 利用GIS进行空间统计分析最早可追溯到1854年的伦敦大霍乱(黑死病)。当时盛行的理论是“空气传染”,而不是现在的病菌传染。John Snow 医生开始也相信空气传染学说,但证据使他不得不转向病菌学说。他通过观察霍乱病例在空间上分布的特征,找到了其空间上聚集的地方,进一步找到了致病的水井。利用空间统计可帮助我们发现、判断并证实事物在空间上分布的规律和特征,从而对研究进行辅助决策。 几个空间统计基本概念 ?自相关指数 Moran指数和Geary系数是两个用来度量空间自相关的全局指标。Moran指数反映的是空间邻接或空间邻近的区域单元属性值的相似程度,Geary 系数与Moran指数存在负相关关系。 Moran指数I的取值一般在[-1,1]之间,小于0表示负相关,等于0表示不相关,大于0表示正相关; Geary系数C的取值一般在[0,2]之间,大于1表示负相关,等于1表示不相关,而小于1表示正相关; ?回归分析 回归分析(regression analysis)是确定两个或多个变量间相互依赖的定量关系的一种统计分析方法。按照自变量和因变量之间的关系类型,可分为线性回归分析和非线性回归分析。如果在回归分析中,只包括一个自变量和一个因变量,且二者的关系可用一条直线近似表示,这种回归分析称为一元线性回归分析。如果回归分析中包括两个或两个以上的自变量,且因变量和自变量之间是线性关系,则称为多元线性回归分析。 ?欧几里得距离&曼哈顿距离

相关文档