文档库 最新最全的文档下载
当前位置:文档库 › 量子力学习题与及解答

量子力学习题与及解答

量子力学习题与及解答
量子力学习题与及解答

量子力学习题及解答

第一章 量子理论基础

1.1 由黑体辐射公式导出维恩位移定律:能量密度极大值所对应的波长m λ与温度T 成反比,即

m λ T=b (常量)

; 并近似计算b 的数值,准确到二位有效数字。

解 根据普朗克的黑体辐射公式

dv e c

hv d kT

hv v v 1

1

833

-?

=πρ, (1)

以及 c v =λ, (2)

λρρd dv v v -=, (3)

,1

18)()

(5-?=?=??

? ??-=-=kT

hc v v e

hc c

d c d d dv λλλ

πλλρλλλρλρ

ρ

这里的λρ的物理意义是黑体内波长介于λ与λ+d λ之间的辐射能量密度。

本题关注的是λ取何值时,λρ取得极大值,因此,就得要求λρ 对λ的一阶导数为零,由此可求得相应的λ的值,记作m λ。但要注意的是,还需要验证λρ对λ的二阶导数在m λ处的取值是否小于零,如果小于零,那么前面求得的m λ就是要求的,具体如下:

011511

86'

=????

?

??

-?+--?=-kT

hc kT hc e kT hc e hc λλλλλπρ ? 011

5=-?+--kT hc

e kT

hc λλ ? kT

hc

e kT hc λλ=--)1(5 如果令x=kT

hc

λ ,则上述方程为

x e x =--)1(5

这是一个超越方程。首先,易知此方程有解:x=0,但经过验证,此解是平庸的;另外的一个解可以通过逐步近似法或者数值计算法获得:x=4.97,经过验证,此解正是所要求的,这样则有

xk

hc T m =

λ 把x 以及三个物理常量代入到上式便知

K m T m ??=-3109.2λ

这便是维恩位移定律。据此,我们知识物体温度升高的话,辐射的能量分布的峰值向较短波长方面移动,这样便会根据热物体(如遥远星体)的发光颜色来判定温度的高低。

1.2 在0K 附近,钠的价电子能量约为3eV ,求其德布罗意波长。

解 根据德布罗意波粒二象性的关系,可知

E=hv ,

λ

h

P =

如果所考虑的粒子是非相对论性的电子(2c E e μ<<动),那么

e

p E μ22

= 如果我们考察的是相对性的光子,那么

E=pc

注意到本题所考虑的钠的价电子的动能仅为3eV ,远远小于电子的质量与光速平方的乘积,即eV 6

1051.0?,因此利用非相对论性的电子的能量——动量关系式,这样,便有

p

h =

λ nm

m m E c hc E h e e 71.01071.031051.021024.12296

6

2=?=????=

==--μμ

在这里,利用了

m eV hc ??=-61024.1

以及

eV c e 621051.0?=μ

最后,对

E

c hc e 2

2μλ=

作一点讨论,从上式可以看出,当粒子的质量越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强;同样的,当粒子的动能越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强,由于宏观世界的物体质量普遍很大,因而波动性极弱,显现出来的都是粒子性,这种波粒二象性,从某种子意义来说,只有在微观世界才能显现。

1.3 氦原子的动能是kT E 2

3

=

(k 为玻耳兹曼常数),求T=1K 时,氦原子的德布罗意波

长。

解 根据

eV K k 3101-=?,

知本题的氦原子的动能为

,105.12

3

233eV K k kT E -?=?==

显然远远小于2c 核μ这样,便有

E

c hc 2

2核μλ=

nm

m m

37.01037.0105.1107.321024.193

9

6

=?=?????=

---

这里,利用了

eV eV c 962107.3109314?=??=核μ

最后,再对德布罗意波长与温度的关系作一点讨论,由某种粒子构成的温度为T 的体系,其中粒子的平均动能的数量级为kT ,这样,其相庆的德布罗意波长就为

T

kc hc E

c hc 2

2

22μμλ=

=

据此可知,当体系的温度越低,相应的德布罗意波长就越长,这时这种粒子的波动性就越明显,特别是当波长长到比粒子间的平均距离还长时,粒子间的相干性就尤为明显,因此这时就能用经典的描述粒子统计分布的玻耳兹曼分布,而必须用量子的描述粒子的统计分布——玻色分布或费米公布。

1.4 利用玻尔——索末菲的量子化条件,求:

(1)一维谐振子的能量;

(2)在均匀磁场中作圆周运动的电子轨道的可能半径。 已知外磁场H=10T ,玻尔磁子124

109--??=T J M B ,试计算运能的量子化间隔△E ,

并与T=4K 及T=100K 的热运动能量相比较。

解 玻尔——索末菲的量子化条件为

?=nh pdq

其中q 是微观粒子的一个广义坐标,p 是与之相对应的广义动量,回路积分是沿运动轨道积一圈,n 是正整数。

(1)设一维谐振子的劲度常数为k ,谐振子质量为μ,于是有

2

22

12kx p E +=μ

这样,便有

)2

1(22kx E p -

±=μ 这里的正负号分别表示谐振子沿着正方向运动和沿着负方向运动,一正一负正好表示一个来回,运动了一圈。此外,根据

22

1kx E =

可解出 k

E

x 2±

=± 这表示谐振子的正负方向的最大位移。这样,根据玻尔——索末菲的量子化条件,有

??-++

-=--+-x x x x nh dx kx E dx kx E )21(2)()21(22

2μμ ? nh dx kx E dx kx E x x x x =-+-??+--+)2

1(2)21(22

2μμ ?

h n dx kx E x x 2)21(22=-?+-

μ 为了积分上述方程的左边,作以下变量代换;

θsin 2k

E

x =

这样,便有

h n

k E d E 2

sin 2cos 222

2=???

? ???-

θθμπ

π

?

?-

=?

22

2

cos 2cos 2π

π

θθθμh n d k E E

?

h n

d k

E 2

cos 222

2=

?

?=

π

π

θθμ

这时,令上式左边的积分为A ,此外再构造一个积分

?-?

=22

2sin 2π

πθθμ

d k

E B

这样,便有

??--?

=-?=?

=+22

22

2cos 2,

22π

ππ

πθ

θμ

μ

πθμ

d k

E B A k

E d k

E B A (1)

??--==22

22

,

cos )

2(2cos π

ππ

π???

θθμ

d k

E

d k

E

这里? =2θ,这样,就有

0sin ==-?-π

π

d k

E

B A (2)

根据式(1)和(2),便有

k

E A μ

π

=

这样,便有

h n

k

E 2

=

μ

π

? k

h n E μπ2=

,

k nh μ=

其中π

2h h =

最后,对此解作一点讨论。首先,注意到谐振子的能量被量子化了;其次,这量子化的能量是等间隔分布的。

(2)当电子在均匀磁场中作圆周运动时,有

B q R

υυμ

=2

? qBR p ==μυ

这时,玻尔——索末菲的量子化条件就为

?

θ20

)(nh R qBRd

? nh qBR =?π22 ? nh qBR =2

又因为动能耐μ

22

p E =,所以,有

μμ22)(2

222R B q qBR E =

= ,

22B nBN q nB qBn =?==μμ 其中,μ

2

q M B =

是玻尔磁子,这样,发现量子化的能量也是等间隔的,而且 B BM E =?

具体到本题,有 J J E 232410910910--?=??=?

根据动能与温度的关系式

kT E 2

3=

以及

J eV K k 223106.1101--?==?

可知,当温度T=4K 时,

J J E 2222106.9106.145.1--?=???=

当温度T=100K 时,

J J E 2022104.2106.11005.1--?=???=

显然,两种情况下的热运动所对应的能量要大于前面的量子化的能量的间隔。

1.5 两个光子在一定条件下可以转化为正负电子对,如果两光子的能量相等,问要实现实种转化,光子的波长最大是多少?

解 关于两个光子转化为正负电子对的动力学过程,如两个光子以怎样的概率转化为正负电子对的问题,严格来说,需要用到相对性量子场论的知识去计算,修正当涉及到这个过程的运动学方面,如能量守恒,动量守恒等,我们不需要用那么高深的知识去计算,具休到

本题,两个光子能量相等,因此当对心碰撞时,转化为正风电子对反需的能量最小,因而所对应的波长也就最长,而且,有

2c hv E e μ==

此外,还有

λ

hc

pc E =

=

于是,有

2

c hc

e μλ

=

?

2c hc e μλ=

nm

m m 3126

6104.2104.21051.01024.1---?=?=??= 尽管这是光子转化为电子的最大波长,但从数值上看,也是相当小的,我们知道,电子是自然界中最轻的有质量的粒子,如果是光子转化为像正反质子对之类的更大质量的粒子,那么所对应的光子的最大波长将会更小,这从某种意义上告诉我们,当涉及到粒子的衰变,产生,转化等问题,一般所需的能量是很大的。能量越大,粒子间的转化等现象就越丰富,这样,也许就能发现新粒子,这便是世界上在造越来越高能的加速器的原因:期待发现新现象,新粒子,新物理。

第二章波 函数和薛定谔方程

2.1证明在定态中,几率流与时间无关。 证:对于定态,可令

)]

r ()r ()r ()r ([m

2i ]

e )r (e )r (e )r (e )r ([m

2i )

(m 2i J e

)r ( )

t (f )r ()t r (**Et i

Et i **Et i Et i **Et

i

ψψψψψψψψψψψψψψψ?-?=?-?=?-?===-----)()(,

可见t J 与

无关。

2.2 由下列定态波函数计算几率流密度: ikr ikr e r

e r -==

1

)2( 1)1(21ψψ 从所得结果说明1ψ表示向外传播的球面波,2ψ表示向内(即向原点) 传播的球面波。

解:分量只有和r J J 21

在球坐标中 ?

θθ?

θ??

+??+??=?s i n r 1e r 1e r r 0

r m r k r m r k r r ik r r r ik r r m i r e r

r e r e r r e r m i m

i J ikr ikr ikr ikr

3

020

220

1*

1*111 )]11(1)11(1[2 )]1(1)1(1[2 )

(2 )1(==+----=??-??=?-?=--ψψψψ r J 1

与同向。表示向外传播的球面波。

r

mr k r mr k r )]r 1ik r 1(r 1)r 1ik r 1(r 1[m 2i r )]e r 1(r e r 1)e r 1(r e r 1[m 2i )

(m

2i J )2(3020

220

ikr ikr ikr ikr *2*222

-=-=---+-=??-??=?-?=--ψψψψ

可见,r J

与2反向。表示向内(即向原点) 传播的球面波。

补充:设ikx

e x =)(ψ,粒子的位置几率分布如何?这个波函数能否归一化?

∞==??∞

dx dx ψψ*

∴波函数不能按1)(2

=?

dx x ψ方式归一化。

其相对位置几率分布函数为 12

==ψ

ω表示粒子在空间各处出现的几率相同。

2.3 一粒子在一维势场

??

?

??>∞≤≤<∞=a x a x x x U ,,

,0 00)( 中运动,求粒子的能级和对应的波函数。

解:t x U 与)(无关,是定态问题。其定态S —方程

)()()()(22

2

2x E x x U x dx d m ψψψ=+-

在各区域的具体形式为

Ⅰ: )()()()(2 01112

22x E x x U x dx d m x ψψψ=+-< ① Ⅱ: )()(2 0 2222

2x E x dx d m a x ψψ=-

≤≤ ② Ⅲ: )()()()(2 3332

22x E x x U x dx

d m a x ψψψ=+-> ③ 由于(1)、(3)方程中,由于∞=)(x U ,要等式成立,必须

0)(1=x ψ 0)(2=x ψ

即粒子不能运动到势阱以外的地方去。

方程(2)可变为0)(2)(222

22=+x mE

dx x d ψψ

令2

2

2 mE

k =

,得 0)()

(222

22=+x k dx

x d ψψ 其解为 kx B kx A x cos sin )(2+=ψ ④

根据波函数的标准条件确定系数A ,B ,由连续性条件,得 )0()0(12ψψ=⑤

)()(32a a ψψ=⑥

⑤ 0=?B

0sin =?ka A )

,3 ,2 ,1( 0

sin 0

==?=∴≠n n ka ka A π ∴x a

n A x π

ψsin )(2= 由归一化条件 1)(2

=?

dx x ψ

得 1sin 0

2

2

=?

a

xdx a

n A

π

mn a

b

a xdx a n x a m δππ?

=*2

sin sin

x a n a x a

A πψs i n 2)(22=

∴=

?

2

2

2

mE k = ),3,2,1( 22

2

22 ==

?n n ma E n π可见E 是量子化的。

对应于n E 的归一化的定态波函数为

??

?

??><≤≤=-a x a x a x xe a

n a t x t

E i

n n , ,0 0 ,sin 2),( πψ

#

2.4. 证明(2.6-14)式中的归一化常数是a

A 1=

'

??

?

?

?≥<+'=a x a x a x a n A n ,0 ),(sin πψ (2.6-14)

由归一化,得

a

A a x a n n a A a A dx a x a

n A x A dx a x a

n A dx a x a

n A dx a

a a

a

a

a a a a

a

n 222

2

22

2

22

)

(sin 2)(cos

2

2)](cos 1[21)(sin 1'=+?'-'=+'-

'=+-'

=+'==-----∞?

???πππ

ππ

ψ

∴归一化常数a

A 1=

' #

2.5 求一维谐振子处在激发态时几率最大的位置。

解:2

22

1

22)(x

xe x ααπ

α

ψ-?=

2

22

223

222

112 24)()(x

x

e x e x x x α

α

π

α

π

α

αψω--?=

??

==

22]22[2 )(323

1x e x x dx x d ααπαω--=

0 )

(1=dx

x d ω,得 ±∞=±==x x x 1

由)(1x ω的表达式可知,±∞==x x 0,

时,0)(1=x ω。显然不是最大几率的位置。

222

2)]251[(4)]22(2)62[(2 )( 44223

322223212x

x e x x e

x x x x dx x d ααααπ

α

αααπ

αω----=---=而

0142 )(32

1212<-=±

=e dx x d x παω

可见μω

α

±

=1

x 是所求几率最大的位置。 #

2.6 在一维势场中运动的粒子,势能对原点对称:)()(x U x U =-,证明粒子的定态波函数具有确定的宇称。

证:在一维势场中运动的粒子的定态S-方程为

)()()()(22

2

2x E x x U x dx d ψψψμ=+- ①

将式中的)(x x -以代换,得

)()()()(22

2

2x E x x U x dx

d -=--+--ψψψμ ② 利用)()(x U x U =-,得

)()()()(22

2

2x E x x U x dx

d -=-+--ψψψμ ③ 比较①、③式可知,)()(x x ψψ和-都是描写在同一势场作用下的粒子状态的波函数。由于它们描写的是同一个状态,因此)()(x x ψψ和-之间只能相差一个常数c 。方程①、③可相互进行空间反演 )(x x -?而得其对方,由①经x x -→反演,可得③,

)()(

x c x ψψ=-? ④

由③再经x x →-反演,可得①,反演步骤与上完全相同,即是完全等价的。

)()(

x c x -=?ψψ ⑤ ④乘 ⑤,得

)x ()x (c )x ()x ( 2

-=-ψψψψ 可见,12

=c

1±=c

当1+=c 时,)x ()x (

ψψ=-,)(x ψ?具有偶宇称, 当1-=c 时,)()(

x x ψψ-=-,)(x ψ?具有奇宇称, 当势场满足)()( x U x U =-时,粒子的定态波函数具有确定的宇称。#

2.7 一粒子在一维势阱中

?????≤>>=a x a

x U x U

,0 ,0)(0

运动,求束缚态(00U E <<)的能级所满足的方程。

解法一:粒子所满足的S-方程为

)()()()(22

2

2x E x x U x dx

d ψψψμ=+- 按势能)(x U 的形式分区域的具体形式为

Ⅰ:)x (E )x (U )x (dx d 2110122

2ψψψμ=+- a x <<∞- ①

Ⅱ:)()(2222

2

2x E x dx

d ψψμ=- a x a ≤≤- ②

Ⅲ:)x (E )x (U )x (dx d 233032

2

2ψψψμ=+- ∞<

整理后,得

Ⅰ: 0)

(212

01

=--''ψμψ E U ④

Ⅱ:. 0E

2222

=+''ψμψ

⑤ Ⅲ:0)(23203

=--''ψμψ E U ⑥ 令 2

2

220212 )(2 E k E U k μμ=-= 则

Ⅰ: 01211

=-''ψψk ⑦ Ⅱ:. 02222=-''ψψk ⑧

Ⅲ:01213

=-''ψψk ⑨ 各方程的解为

x

k x k 3222x

k x k 11

1

1

1

Fe Ee x k cos D x k sin C Be Ae -+-+=+=+=ψψψ

由波函数的有限性,有 0

)(0

)(31=?∞=?-∞E A 有限有限ψψ

因此

x

k 3x k 111

Fe

Be -==ψψ

由波函数的连续性,有

)

13( Fe k a k sin D k a k cos C k ),a ()a ()

12( Fe

a k cos D a k sin C ),a ()a ()

11( a k sin D k a k cos C k Be k ),a ()a ()

10( a k cos D a k sin C Be ),a ()a (a k 1222232a

k 22322222a k 12122a k 211

11

1

-----=-?'='=+?=+=?-'=-'+-=?-=-ψψψψψψψψ

整理(10)、(11)、(12)、(13)式,并合并成方程组,得

F e k aD k sin k aC k cos k 00

F e

aD k cos aC k sin 000D a k sin k aC k cos k B e k

00aD k cos aC k sin B e a k 12222a

k 222222a k 122a k 1111=+-+=-++=+--=+-+----

解此方程即可得出B 、C 、D 、F ,进而得出波函数的具体形式,要方程组有非零解,必须

0Be k a k sin k a

k cos k 0

e

a

k cos a k sin 00

a

k sin k a k cos k e k 0a k cos a k sin e a

k 12222a

k 222222a

k 122a

k 1111=--------

]a k 2c o s k k 2a k 2s i n

)k k [(e ]

a k 2sin k a k 2sin k a k 2cos k k 2[e ]a k sin e k a k cos a k sin e k a k cos e k a k cos a k sin e k [e k ]a k cos a k sin e

k a k sin e k k a k cos a k sin e k a k cos e k k [e e k a k sin k a k cos k e a

k cos a

k sin 0a k cos a

k sin e k e k a k sin k a

k cos k e a k cos a k sin 0

a

k sin k a k cos k e 022122122a k 222

1222221a k 222a k 222a k 122a k 222a k 1a k 122a k 2222a k 2122a

k 2222a k 21a k a

k 12222a k 2222a k 1a

k 12222a k 222222a

k 111111111111111111--=-+-=-+++--++++-==

-----

----=------------------

∵ 012≠-a

k e

∴02cos 22sin )(22122

122=--a k k k a k k k

即 022)(2122

12

2=--k k a k tg k k 为所求束缚态能级所满足的方程。# 解法二:接(13)式

a k sin D k k

a k cos C k k a k cos D a k sin C 21221222+=

+- a k sin D k k

a k cos C k k a k cos D a k sin C 21

221222+-=+

2cos k 2 2sin )( 0

2cos 2 2sin ) 1( 0

cos sin cos sin cos sin 0)cos sin )(sin cos (

0)cos sin )(sin cos (

)cos sin )(sin cos (0

)cos sin (sin cos cos sin sin cos 2212212

22122212

22222122212222122221

2221222122212221222122212

2212221

2

2212=--=-+-=--+=-+=-+--+-=--+-+a k k a k k k a k k k

a k k k a k a k a k k k

a k k k a k a k k k a k a k k k

a k a k k k a k a k k k

a k a k k k a k a k k k

a k a k k k a k a k k k a k a k k k a k a k k k a k a k k k

#

解法三:

(11)-(13))(sin 21122F B e

k a k D k a

k +=?-

(10)+(12))F B (e a k cos D 2a

k 21+=?- )a ( k a tgk k )

12()10()

13()11(122=?+-

(11)+(13)a

ik e B F k a k C k 1)(cos 2122---=?

(12)-(10)a

ik 21e

)B F (a k sin C 2--=?

令 ,,a k a k 22==ηξ 则

)

d ( ctg )c ( tg ηξξηξξ-==或

)f ( a U 2)k k (2

202

22122 μηξ=

+=+

合并)b ()a (、

: 212

221222k k k k a k tg -=

利用a

k tg 1a tgk 2a k 2tg 2222-= #

解法四:(最简方法-平移坐标轴法)

Ⅰ:1101

2

2ψψψμE U =+''- (χ≤0) Ⅱ:22

2

2ψψμ

E =''- (0<χ<2a )

k a ctgk k )

10 ( ) 12 ( )

13 ( ) 11 ( 1 2 2 - = ? - +

Ⅲ:3303

2

2ψψψμ

E U =+''- (χ≥2a ) ???

?

?

?

???=--''=+''=--''?0)(2020)(232

0322212

01ψμψψμψψμψ E U E E U

??

???=-''==+''-==-''(3) 0k E 2k (2) 0k )E U (2k (1) 0k 32132

222222202

11211ψψμψψμψψ 束缚态0<E <0U x

k x k x

k x k Fe Ee x k D x k C Be Ae 1

1

1

1

32221cos sin -+-++=+=+=ψψψ

)(0

)(31=?∞=?-∞E B 有限有限ψψ

因此

x

k x k Fe

Ae 1131 -==∴ψψ

由波函数的连续性,有

)

7( Fe a k 2cos D a k 2sin C ),a 2()a 2()

6( Fe k a k 2sin D k a k 2cos C k ),a 2()a 2()5( C k A k ),0()0()

4( D A ),0()0(a k 22232a k 212222322121211

1

--=+?=-=-?'='=?'='=?=ψψψψψψψψ

(7)代入(6)

a k D k k a k C k k a k D a k C 21

2

212222sin 2cos 2cos 2sin +-=+ 利用(4)、(5),得

a k 2cos k k 2a k 2sin )k k ()k k (0a k 2cos 2a k 2sin )k k k k (

A 0]a k 2cos 2a k 2sin )k k k k [(

A a k 2sin D k k

a k 2cos A a k 2cos A a k 2sin A k k 22122

12221221

2

21221

2

2121222221=---=+-∴≠=+-+-=+即得

两边乘上

#

2.8分子间的范德瓦耳斯力所产生的势能可以近似表示为

???????<≤≤-<≤<∞=,,,,

,0 ,0 , 0

,)(10

x b b x a U a x U x x U

求束缚态的能级所满足的方程。

解:势能曲线如图示,分成四个区域求解。 定态S-方程为

)()()()(22

2

2x E x x U x dx d ψψψμ=+-

对各区域的具体形式为

Ⅰ:)0( )(2111

2

<=+''-x E x U ψψψμ Ⅱ:)0( 222022

a x E U <≤=+''-ψψψμ Ⅲ:)( 23313

2

b x a E U ≤≤=-''-ψψψμ Ⅳ:)( 02442

x b E <=+''-ψψμ

对于区域Ⅰ,∞=)(x U ,粒子不可能到达此区域,故 0)(1=x ψ

而 . 0)( 22202

=--''ψμψ

E U ① 0)( 23213

=++''ψμψ E U ② 02424

=+''ψμψ

E

③ 对于束缚态来说,有0<<-E U

∴ 02212=-''ψψk 2

021)

( 2

E U k -=μ ④ 032

33=+''ψψk 2

123)( 2

E U k +=μ ⑤ 04244=+''ψψk 22

4/2 E k μ-=

各方程的解分别为

x

k x k x

k x k Fe Ee x k D x k C Be Ae 3

3

1

1

42232cos sin -+-+=+=+=ψψψ

由波函数的有限性,得 0 )(4=?∞E 有限,ψ ∴ x

k Fe 34-=ψ 由波函数及其一阶导数的连续,得

量子力学习题集及解答

量子力学习题集及解答

目录 第一章量子理论基础 (1) 第二章波函数和薛定谔方程 (5) 第三章力学量的算符表示 (28) 第四章表象理论 (48) 第五章近似方法 (60) 第六章碰撞理论 (94) 第七章自旋和角动量 (102) 第八章多体问题 (116) 第九章相对论波动方程 (128)

第一章 量子理论基础 1.设一电子为电势差V 所加速,最后打在靶上,若电子的动能转化为一个光子,求当这光子相应的光波波长分别为5000 A (可见光),1 A (x 射线)以及0.001 A (γ射线)时,加速电子所需的电势差是多少? [解] 电子在电势差V 加速下,得到的能量是eV m =22 1 υ这个能量全部转化为一个光子的能量,即 λ νυhc h eV m ===221 ) (1024.1106.11031063.64 19834 A e hc V λλλ?=?????==∴--(伏) 当 A 50001=λ时, 48.21=V (伏) A 12=λ时 421024.1?=V (伏) A 001.03=λ时 731024.1?=V (伏) 2.利用普朗克的能量分布函数证明辐射的总能量和绝对温度的四次方成正比,并求比例系数。 [解] 普朗克公式为 1 8/33-?=kT hv v e dv c hv d πνρ 单位体积辐射的总能量为 ? ?∞∞-==0 0/331 3T hv v e dv v c h dv U κπρ 令kT hv y = ,则 4 40333418T T e dy y c h k U y σπ=? ??? ??-=?∞ (★) 其中 ?∞-=033341 8y e dy y c h k πσ (★★) (★)式表明,辐射的总能量U 和绝对温度T 的四次方成正比。这个公式就是斯忒蕃——玻耳兹曼公式。其中σ是比例常数,可求出如下: 因为 )1()1(1 121 +++=-=-------y y y y y y e e e e e e

量子力学思考题及解答

1、以下说法是否正确: (1)量子力学适用于微观体系,而经典力学适用于宏观体系; (2)量子力学适用于η不能忽略的体系,而经典力学适用于η可以忽略的体系。 解答:(1)量子力学是比经典力学更为普遍的理论体系,它可以包容整个经典力学体系。 (2)对于宏观体系或η可以忽略的体系,并非量子力学不能适用,而是量子力学实际上已 经过渡到经典力学,二者相吻合了。 2、微观粒子的状态用波函数完全描述,这里“完全”的含义是什么? 解答:按着波函数的统计解释,波函数统计性的描述了体系的量子态。如已知单粒子(不考虑自旋)波函数)(r ? ψ,则不仅可以确定粒子的位置概率分布,而且如粒子的动量、能量等其他力学量的概率分布也均可通过)(r ? ψ而完全确定。由于量子理论和经典理论不同,它一般只能预言测量的统计结果,而只要已知体系的波函数,便可由它获得该体系的一切可能物理信息。从这个意义上说,有关体系的全部信息显然已包含在波函数中,所以说微观粒子的状态用波函数完全描述,并把波函数称为态函数。 3、以微观粒子的双缝干涉实验为例,说明态的叠加原理。 解答:设1ψ和2ψ是分别打开左边和右边狭缝时的波函数,当两个缝同时打开时,实验说明到达屏上粒子的波函数由1ψ和2ψ的线性叠加2211ψψψc c +=来表示,可见态的叠加不是概率相加,而是波函数的叠加,屏上粒子位置的概率分布由222112 ψψψ c c +=确定,2 ψ中 出现有1ψ和2ψ的干涉项]Re[2* 21* 21ψψc c ,1c 和2c 的模对相对相位对概率分布具有重要作用。 4、量子态的叠加原理常被表述为:“如果1ψ和2ψ是体系的可能态,则它们的线性叠加 2211ψψψc c +=也是体系的一个可能态”。 (1)是否可能出现)()()()(),(2211x t c x t c t x ψψψ+=; (2)对其中的1c 与2c 是任意与r ? 无关的复数,但可能是时间t 的函数。这种理解正确吗? 解答:(1)可能,这时)(1t c 与)(2t c 按薛定谔方程的要求随时间变化。

曾量子力学题库(网用).

曾谨言量子力学题库 一简述题: 1. (1)试述Wien 公式、Rayleigh-Jeans 公式和Planck 公式在解释黑体辐射能量密度随频率分布的问题上的差别 2. (1)试给出原子的特征长度的数量级(以m 为单位)及可见光的波长范围(以?为单位) 3. (1)试用Einstein 光量子假说解释光电效应 4. (1)试简述Bohr 的量子理论 5. (1)简述波尔-索末菲的量子化条件 6. (1)试述de Broglie 物质波假设 7. (2)写出态的叠加原理 8. (2)一个体系的状态可以用不同的几率分布函数来表示吗?试举例说明。 9. (2)按照波函数的统计解释,试给出波函数应满足的条件 10.(2)已知粒子波函数在球坐标中为),,(?θψr ,写出粒子在球壳),(dr r r +中被测到的几率以及在),(?θ方向的立体角元?θθΩd d d sin =中找到粒子的几率。 11.(2)什么是定态?它有哪些特征? 12.(2))()(x x δψ=是否定态?为什么? 13.(2)设ikr e r 1=ψ,试写成其几率密度和几率流密度 14.(2)试解释为何微观粒子的状态可以用归一化的波函数完全描述。 15.(3)简述和解释隧道效应 16.(3)说明一维方势阱体系中束缚态与共振态之间的联系与区别。 17.(4)试述量子力学中力学量与力学量算符之间的关系 18.(4)简述力学量算符的性质 19.(4)试述力学量完全集的概念 20.(4)试讨论:若两个厄米算符对易,是否在所有态下它们都同时具有确定值? 21.(4)若算符A ?、B ?均与算符C ?对易,即0]?,?[]?,?[==C B C A ,A ?、B ?、C ?是否可同时取得确定值?为什么?并举例说明。 22.(4)对于力学量A 与B ,写出二者在任何量子态下的涨落所满足的关系,并说明物理意义。 23.(4)微观粒子x 方向的动量x p ?和x 方向的角动量x L ?是否为可同时有确定值的力学量?为什么? 24.(4)试写出态和力学量的表象变换的表达式 25.(4)简述幺正变换的性质 26.(4)在坐标表象中,给出坐标算符和动量算符的矩阵表示 27.(4)粒子处在222 1)(x x V μω=的一维谐振子势场中,试写出其坐标表象和动量表象的定态Schr ?dinger 方程。 28.(4)使用狄拉克符号导出不含时间的薛定谔方程在动量表象中的形式。 29.(4)如果C B A ?,?,?均为厄米算符,下列算符是否也为厄米算符?

量子力学期末考试试卷及答案集复习过程

量子力学期末考试试卷及答案集

量子力学试题集 量子力学期末试题及答案(A) 选择题(每题3分共36分) 1.黑体辐射中的紫外灾难表明:C A. 黑体在紫外线部分辐射无限大的能量; B. 黑体在紫外线部分不辐射能量; C.经典电磁场理论不适用于黑体辐射公式; D.黑体辐射在紫外线部分才适用于经典电磁场理论。 2.关于波函数Ψ的含义,正确的是:B A. Ψ代表微观粒子的几率密度; B. Ψ归一化后,ψ ψ* 代表微观粒子出现的几率密度; C. Ψ一定是实数; D. Ψ一定不连续。 3.对于偏振光通过偏振片,量子论的解释是:D A. 偏振光子的一部分通过偏振片; B.偏振光子先改变偏振方向,再通过偏振片; C.偏振光子通过偏振片的几率是不可知的; D.每个光子以一定的几率通过偏振片。 4.对于一维的薛定谔方程,如果Ψ是该方程的一个解,则:A A. * ψ 一定也是该方程的一个解; B. * ψ 一定不是该方程的解; C. Ψ与* ψ 一定等价; D.无任何结论。 5.对于一维方势垒的穿透问题,关于粒子的运动,正确的是:C A. 粒子在势垒中有确定的轨迹; B.粒子在势垒中有负的动能; C.粒子以一定的几率穿过势垒; D粒子不能穿过势垒。 6.如果以∧ l表示角动量算符,则对易运算] , [ y x l l 为:B A. ih ∧ z l 收集于网络,如有侵权请联系管理员删除

收集于网络,如有侵权请联系管理员删除 B. ih ∧ z l C.i ∧ x l D.h ∧ x l 7.如果算符 ∧A 、∧B 对易,且∧ A ψ =A ψ,则:B A. ψ 一定不是∧ B 的本征态; B. ψ一定是 ∧ B 的本征态; C.*ψ一定是∧ B 的本征态; D. ∣Ψ∣一定是∧ B 的本征态。 8.如果一个力学量 ∧ A 与H ∧ 对易,则意味着 ∧ A :C A. 一定处于其本征态; B.一定不处于本征态; C.一定守恒; D.其本征值出现的几率会变化。 9.与空间平移对称性相对应的是:B A. 能量守恒; B.动量守恒; C.角动量守恒; D.宇称守恒。 10.如果已知氢原子的 n=2能级的能量值为-3.4ev ,则 n=5能级能量为:D A. -1.51ev; B.-0.85ev; C.-0.378ev; D. -0.544ev 11.三维各向同性谐振子,其波函数可以写为nlm ψ ,且 l=N-2n ,则在一确定的能量 (N+23 )h ω下, 简并度为:B A. )1(21 +N N ;

量子力学教程课后习题答案

量子力学习题及解答 第一章 量子理论基础 1.1 由黑体辐射公式导出维恩位移定律:能量密度极大值所对应的波长m λ与温度T 成反比,即 m λ T=b (常量); 并近似计算b 的数值,准确到二位有效数字。 解 根据普朗克的黑体辐射公式 dv e c hv d kT hv v v 1 1 833 -? =πρ, (1) 以及 c v =λ, (2) λρρd dv v v -=, (3) 有 ,1 18)()(5-?=?=?? ? ??-=-=kT hc v v e hc c d c d d dv λλλ πλλρλλ λρλρ ρ 这里的λρ的物理意义是黑体波长介于λ与λ+d λ之间的辐射能量密度。 本题关注的是λ取何值时,λρ取得极大值,因此,就得要求λρ 对λ的一阶导数为零,由此可求得相应的λ的值,记作m λ。但要注意的是,还需要验证λρ对λ的二阶导数在m λ处的取值是否小于零,如果小于零,那么前面求得的m λ就是要求的,具体如下: 011511 86 ' =???? ? ?? -?+--?= -kT hc kT hc e kT hc e hc λλλλλ πρ

? 0115=-?+ -- kT hc e kT hc λλ ? kT hc e kT hc λλ= -- )1(5 如果令x= kT hc λ ,则上述方程为 x e x =--)1(5 这是一个超越方程。首先,易知此方程有解:x=0,但经过验证,此解是平庸的;另外的一个解可以通过逐步近似法或者数值计算法获得:x=4.97,经过验证,此解正是所要求的,这样则有 xk hc T m =λ 把x 以及三个物理常量代入到上式便知 K m T m ??=-3109.2λ 这便是维恩位移定律。据此,我们知识物体温度升高的话,辐射的能量分布的峰值向较短波长方面移动,这样便会根据热物体(如遥远星体)的发光颜色来判定温度的高低。 1.2 在0K 附近,钠的价电子能量约为3eV ,求其德布罗意波长。 解 根据德布罗意波粒二象性的关系,可知 E=h v , λ h P = 如果所考虑的粒子是非相对论性的电子(2c E e μ<<动),那么 e p E μ22 = 如果我们考察的是相对性的光子,那么 E=pc 注意到本题所考虑的钠的价电子的动能仅为3eV ,远远小于电子的质量与光速平方的乘积,即eV 61051.0?,因此利用非相对论性的电子的能量——动量关系式,这样,便有 p h = λ

量子力学导论习题答案(曾谨言)

第五章 力学量随时间的变化与对称性 5.1)设力学量A 不显含t ,H 为本体系的Hamilton 量,证明 [][]H H A A dt d ,,2 2 2 =- 证.若力学量A 不显含t ,则有[]H A i dt dA ,1 =, 令[]C H A =, 则 [][]H C H C i dt C d i dt A d ,1 ,112 22 -===, [][]H H A A dt d ,, 2 2 2 =-∴ 5.2)设力学量A 不显含t ,证明束缚定态,0=dt dA 证:束缚定态为::() () t iE n n n e t -=ψψ,。 在束缚定态()t n ,ψ,有()()()t E t t i t H n n n n ,,,ψψψ=?? = 。 其复共轭为()()()t r E e r t i t r H n n t iE n n n ,,** * * ψψψ=?? -= 。 ??? ??=n n dt dA dt dA ψψ,()??? ??-??? ??-=??n n n n n n A A A dt d ψψψψψψ,,, ?? ? ??-??? ??-= n n n n H i A A H i dt dA ψψψψ 1,,1 []()()n n n n AH i HA i H A i t A ψψψψ,1 ,1,1 -++??= []()()n n HA AH i H A i ψψ--= ,1,1 [][]() 0,,1=-=A H H A i 。 5.3)(){} x x iaP x a a D -=? ?? ??? ??-=exp exp 表示沿x 方向平移距离a 算符.证明下列形式波函数(Bloch 波函数)()()x e x k ikx φψ=,()()x a x k k φφ=+ 是()a D x 的本征态,相应的本征值为ika e - 证:()()()() ()a x e a x x a D k a x ik x +=+=+φψψ ()()x e x e e ika k ikx ika ψφ=?=,证毕。

量子力学课后答案第一二章

量子力学课后习题详解 第一章 量子理论基础 1、1 由黑体辐射公式导出维恩位移定律:能量密度极大值所对应的波长m λ与温度T 成反比,即 m λ T=b(常量); 并近似计算b 的数值,准确到二位有效数字。 解 根据普朗克的黑体辐射公式 dv e c hv d kT hv v v 1 183 3 -?=πρ, (1) 以及 λνc =, (2) ||λνρρλd d v =, (3) 有 (),1 18)(| )(|| 5 2-?=?===kT hc v v e hc c d c d d dv λνλλ πλλρλ λλρλ ρρ 这里的λρ的物理意义就是黑体内波长介于λ与λ+d λ之间的辐射能量密度。 本题关注的就是λ取何值时,λρ取得极大值,因此,就得要求λρ 对λ的一阶导数为零,由此可求得相应的λ的值,记作m λ。但要注意的就是,还需要验证λρ对λ的二阶导数在m λ处的取值就是否小于零,如果小于零,那么前面求得的m λ就就是要求的,具体如下: 01151186=??? ? ? ?? -?+--?=-kT hc kT hc e kT hc e hc d d λλλλλ πλρ

? 0115=-?+ -- kT hc e kT hc λλ ? kT hc e kT hc λλ= -- )1(5 如果令x= kT hc λ ,则上述方程为 x e x =--)1(5 这就是一个超越方程。首先,易知此方程有解:x=0,但经过验证,此解就是平庸的;另外的一个解可以通过逐步近似法或者数值计算法获得:x=4、97,经过验证,此解正就是所要求的,这样则有 xk hc T m =λ 把x 以及三个物理常量代入到上式便知 K m T m ??≈-3109.2λ 这便就是维恩位移定律。据此,我们知识物体温度升高的话,辐射的能量分布的峰值向较短波长方面移动,这样便会根据热物体(如遥远星体)的发光颜色来判定温度的高低。

周世勋量子力学习题及解答

1.1 由黑体辐射公式导出维恩位移定律:能量密度极大值所对应的波长m λ与温度T 成反比,即m λ T=b (常量);并近似计算b 的数值,准确到二位有效数字。 解 根据普朗克的黑体辐射公式 dv e c hv d kT hv v v 1 1 833 -? =πρ, (1) 以及 c v =λ, (2) λρρd dv v v -=, (3) 有 ,1 18)() (5-?=?=?? ? ??-=-=kT hc v v e hc c d c d d dv λλλ πλλρλλλρλρ ρ 011511 86 '=???? ? ?? -?+--?= -kT hc kT hc e kT hc e hc λλλλλπρ ? 0115=-?+ -- kT hc e kT hc λλ ? kT hc e kT hc λλ= -- )1(5 如果令x= kT hc λ ,则上述方程为 x e x =--)1(5:x=0,取:x=4.97, xk hc T m = λ 把x 以及三个物理常量代入到上式便知 K m T m ??=-3109.2λ

1.2 在0K 附近,钠的价电子能量约为3eV ,求其德布罗意波长。 解 根据德布罗意波粒二象性的关系,可知 E=hv , λ h P = e p E μ22 = E=pc p h =λ nm m m E c hc E h e e 71.01071.031051.021024.12296 6 2=?=????= ==--μμ 在这里,利用了 m eV hc ??=-61024.1 以及 eV c e 621051.0?=μ 最后,对 E c hc e 2 2μλ=

曾量子力学题库网用

曾谨言量子力学题库 一简述题: 1. (1)试述Wien 公式、Rayleigh-Jeans 公式和Planck 公式在解释黑体辐射能量密度随频率分布的问 题上的差别 2. (1)试给出原子的特征长度的数量级(以m 为单位)及可见光的波长范围(以?为单位) 3. (1)试用Einstein 光量子假说解释光电效应 4. (1)试简述Bohr 的量子理论 5. (1)简述波尔-索末菲的量子化条件 6. (1)试述de Broglie 物质波假设 7. (2)写出态的叠加原理 8. (2)一个体系的状态可以用不同的几率分布函数来表示吗?试举例说明。 9. (2)按照波函数的统计解释,试给出波函数应满足的条件 10.(2)已知粒子波函数在球坐标中为),,(?θψr ,写出粒子在球壳),(dr r r +中被测到的几率以及在 ),(?θ方向的立体角元?θθΩd d d sin =中找到粒子的几率。 11.(2)什么是定态?它有哪些特征? 12.(2))()(x x δψ=是否定态?为什么? 13.(2)设ikr e r 1= ψ,试写成其几率密度和几率流密度 14.(2)试解释为何微观粒子的状态可以用归一化的波函数完全描述。 15.(3)简述和解释隧道效应 16.(3)说明一维方势阱体系中束缚态与共振态之间的联系与区别。 17.(4)试述量子力学中力学量与力学量算符之间的关系 18.(4)简述力学量算符的性质 19.(4)试述力学量完全集的概念 20.(4)试讨论:若两个厄米算符对易,是否在所有态下它们都同时具有确定值? 21.(4)若算符A ?、B ?均与算符C ?对易,即0]?,?[]?,?[==C B C A ,A ?、B ?、C ?是否可同时取得确定值?为什么?并举例说明。 22.(4)对于力学量A 与B ,写出二者在任何量子态下的涨落所满足的关系,并说明物理意义。 23.(4)微观粒子x 方向的动量x p ?和x 方向的角动量x L ?是否为可同时有确定值的力学量?为什么? 24.(4)试写出态和力学量的表象变换的表达式 25.(4)简述幺正变换的性质 26.(4)在坐标表象中,给出坐标算符和动量算符的矩阵表示 27.(4)粒子处在222 1 )(x x V μω= 的一维谐振子势场中,试写出其坐标表象和动量表象的定态Schr ?dinger 方程。 28.(4)使用狄拉克符号导出不含时间的薛定谔方程在动量表象中的形式。 29.(4)如果C B A ?,?,?均为厄米算符,下列算符是否也为厄米算符?

最新量子力学导论习题答案(曾谨言)(1)

第九章 力学量本征值问题的代数解法 9—1) 在8.2节式(21)中给出了自旋(2 1)与轨迹角动量(l )耦合成总角动量j 的波函数j ljm φ,这相当于2 1,21===s j l j 的耦合。试由8.2节中式(21)写出表9.1(a )中的CG 系数 jm m m j 21121 解:8.2节式(21a )(21b ): ()21),0( 21+=≠-=m m l l j j j ljm φ???? ??-+++=+11121 lm lm Y m l Y m l l () ????? ??-++---+=+=21,2121,212121,21j j m j j m j j Y m j Y m j j m j m l j (21a ) ()21-= j l j ljm φ???? ??++---=+11121 lm lm Y m l Y m l l () ????? ??+++--+++-++=≠-=21,2121,211122121),0( 21j j m j j m j j Y m j Y m j j m j m l l j (21b ) ()21++j l 此二式中的l 相当于CG 系数中的1j ,而2 12==s j ,21,~,,~21±=m m m m j 。 因此,(21a )式可重写为 jm ∑=222112 211m jm m j m j m j m j 2 12121212121212111111111--+=m j jm m j m j jm m j ??????? ? ??-???? ??++-???? ??++++=+=212112212121122111211111211121121),21(m j j m j m j j m j j l j a (21a ’) 对照CG 系数表,可知:当21121+=+=j j j j ,212=m 时 , 21111112212121??? ? ??++=+j m j jm m j 而2 12-=m 时,

量子力学习题集及答案

09光信息量子力学习题集 一、填空题 1. 设电子能量为4电子伏,其德布罗意波长为( 6.125ο A )。 2. 索末菲的量子化条件为=nh pdq ),应用这量子化条件求得一维谐振 子的能级=n E ( ηωn )。 3. 德布罗意假说的正确性,在1927年为戴维孙和革末所做的( 电 )子衍 射实验所证实,德布罗意关系(公式)为( ηω=E )和( k p ρηρ = )。 4. 三维空间自由粒子的归一化波函数为()r p ρ ρψ=( r p i e ρ ρη η?2 /3) 2(1π ), () ()=? +∞ ∞ -*'τψψd r r p p ρρρρ( )(p p ρ ρ-'δ )。 5. 动量算符的归一化本征态=)(r p ρ ρψ( r p i e ρ ρηη?2/3)2(1π ),=' ∞ ?τψψd r r p p )()(*ρρρρ( )(p p ρ ρ-'δ )。 6. t=0时体系的状态为()()()x x x 2020,ψψψ+=,其中()x n ψ为一维线性谐振子的定态波函数,则()=t x ,ψ( t i t i e x e x ωωψψ2 522 0)(2)(--+ )。 7. 按照量子力学理论,微观粒子的几率密度w =2 ),几率流密度= ( () ** 2ψ?ψ-ψ?ψμ ηi )。 8. 设)(r ρψ描写粒子的状态,2)(r ρψ是( 粒子的几率密度 ),在)(r ρψ中F ?的平均值为F =( ??dx dx F ψψψψ* *? ) 。 9. 波函数ψ和ψc 是描写( 同一 )状态,δψi e 中的δi e 称为( 相因子 ), δi e 不影响波函数ψ1=δi )。 10. 定态是指( 能量具有确定值 )的状态,束缚态是指(无穷远处波函数为 零)的状态。 11. )i exp()()i exp()(),(2211t E x t E x t x η η-+-=ψψψ是定态的条件是 ( 21E E = ),这时几率密度和( 几率密度 )都与时间无关。 12. ( 粒子在能量小于势垒高度时仍能贯穿势垒的现象 )称为隧道效应。 13. ( 无穷远处波函数为零 )的状态称为束缚态,其能量一般为( 分立 )谱。 14. 3.t=0时体系的状态为()()()x x x 300,ψψψ+=,其中()x n ψ为一维线性谐振子的定态波函数,则()=t x ,ψ( t i t i e x e x ωωψψ2 732 0)()(--+ )。 15. 粒子处在a x ≤≤0的一维无限深势阱中,第一激发态的能量为

量子力学课后习题答案

第一章 绪论 1.1.由黑体辐射公式导出维恩位移定律:C m b b T m 0 3109.2 ,??==-λ。 证明:由普朗克黑体辐射公式: ννπνρννd e c h d kT h 1 1 83 3 -= , 及λ νc = 、λλ νd c d 2 - =得 1 185 -= kT hc e hc λλλπρ, 令kT hc x λ= ,再由0=λρλd d ,得λ.所满足的超越方程为 1 5-=x x e xe 用图解法求得97.4=x ,即得 97.4=kT hc m λ,将数据代入求得C m 109.2 ,03??==-b b T m λ 1.2.在0K 附近,钠的价电子能量约为3eV,求de Broglie 波长. 解:010 A 7.09m 1009.72=?≈= =-mE h p h λ # 1.3. 氦原子的动能为kT E 2 3 = ,求K T 1=时氦原子的de Broglie 波长。 解:010 A 63.12m 1063.1232=?≈== =-mkT h mE h p h λ 其中kg 1066.1003.427-??=m ,1 23K J 1038.1--??=k # 1.4利用玻尔—索末菲量子化条件,求: (1)一维谐振子的能量。 (2)在均匀磁场中作圆周运动的电子的轨道半径。 已知外磁场T 10=B ,玻尔磁子123 T J 10 923.0--??=B μ,求动能的量子化间隔E ?,并与K 4=T 及 K 100=T 的热运动能量相比较。 解:(1)方法1:谐振子的能量2222 1 2q p E μωμ+= 可以化为 ( ) 1222 222 2=??? ? ??+ μωμE q E p 的平面运动,轨道为椭圆,两半轴分别为2 2,2μω μE b E a = =,相空间面积为 ,2,1,0,2=== = =?n nh E E ab pdq ν ω ππ 所以,能量 ,2,1,0,==n nh E ν 方法2:一维谐振子的运动方程为02 =+''q q ω,其解为 ()?ω+=t A q sin 速度为 ( )?ωω+='t A q c o s ,动量为()?ωμωμ+='=t A q p cos ,则相积分为

量子力学教程课后习题答案高等教育

量子力学习题及解答 第一章 量子理论基础 1.1 由黑体辐射公式导出维恩位移定律:能量密度极大值所对应的波长m λ与温度T 成反比,即 m λ T=b (常量) ; 并近似计算b 的数值,准确到二位有效数字。 解 根据普朗克的黑体辐射公式 dv e c hv d kT hv v v 1 1 833 -? =πρ, (1) 以及 c v =λ, (2) λρρd dv v v -=, (3) 有 ,1 18)() (5-?=?=?? ? ??-=-=kT hc v v e hc c d c d d dv λλλ πλλρλλλρλρ ρ 这里的λρ的物理意义是黑体内波长介于λ与λ+d λ之间的辐射能量密度。 本题关注的是λ取何值时,λρ取得极大值,因此,就得要求λρ 对λ的一阶导数为零,由此可求得相应的λ的值,记作m λ。但要注意的是,还需要验证λρ对λ的二阶导数在m λ处的取值是否小于零,如果小于零,那么前面求得的m λ就是要求的,具体如下: 011511 86 ' =???? ? ?? -?+--?= -kT hc kT hc e kT hc e hc λλλλλ πρ

? 0115=-?+ --kT hc e kT hc λλ ? kT hc e kT hc λλ= -- )1(5 如果令x= kT hc λ ,则上述方程为 x e x =--)1(5 这是一个超越方程。首先,易知此方程有解:x=0,但经过验证,此解是平庸的;另外的一个解可以通过逐步近似法或者数值计算法获得:x=4.97,经过验证,此解正是所要求的,这样则有 xk hc T m =λ 把x 以及三个物理常量代入到上式便知 K m T m ??=-3109.2λ 这便是维恩位移定律。据此,我们知识物体温度升高的话,辐射的能量分布的峰值向较短波长方面移动,这样便会根据热物体(如遥远星体)的发光颜色来判定温度的高低。 1.2 在0K 附近,钠的价电子能量约为3eV ,求其德布罗意波长。 解 根据德布罗意波粒二象性的关系,可知 E=hv , λh P = 如果所考虑的粒子是非相对论性的电子(2c E e μ<<动),那么 e p E μ22 = 如果我们考察的是相对性的光子,那么 E=pc 注意到本题所考虑的钠的价电子的动能仅为3eV ,远远小于电子的质量与光速平方的乘积,即eV 61051.0?,因此利用非相对论性的电子的能量——动量关系式,这样,便有 p h = λ

量子力学教程第二版答案及补充练习

第一章 量子理论基础 1.1 由黑体辐射公式导出维恩位移定律:能量密度极大值所对应的波长m λ与温度T 成反比,即 m λ T=b (常量); 并近似计算b 的数值,准确到二位有效数字。 解 根据普朗克的黑体辐射公式 dv e c hv d kT hv v v 1 183 3 -?=πρ, (1) 以及 c v =λ, (2) λρρd dv v v -=, (3) 有 ,1 18)() (5 -?=?=?? ? ??-=-=kT hc v v e hc c d c d d dv λλλ πλλρλ λλρλ ρ ρ 这里的λρ的物理意义是黑体内波长介于λ与λ+d λ之间的辐射能量密度。 本题关注的是λ取何值时,λρ取得极大值,因此,就得要求λρ 对λ的一阶导数为零,由此可求得相应的λ的值,记作m λ。但要注意的是,还需要验证λρ对λ的二阶导数在m λ处的取值是否小于零,如果小于零,那么前面求得的m λ就是要求的,具体如下: 011511 86 ' =???? ? ?? -?+--?= -kT hc kT hc e kT hc e hc λλλλλ πρ

? 0115=-?+ -- kT hc e kT hc λλ ? kT hc e kT hc λλ= -- )1(5 如果令x= kT hc λ ,则上述方程为 x e x =--)1(5 这是一个超越方程。首先,易知此方程有解:x=0,但经过验证,此解是平庸的;另外的一个解可以通过逐步近似法或者数值计算法获得:x=4.97,经过验证,此解正是所要求的,这样则有 xk hc T m =λ 把x 以及三个物理常量代入到上式便知 K m T m ??=-3109.2λ 这便是维恩位移定律。据此,我们知识物体温度升高的话,辐射的能量分布的峰值向较短波长方面移动,这样便会根据热物体(如遥远星体)的发光颜色来判定温度的高低。 1.2 在0K 附近,钠的价电子能量约为3eV ,求其德布罗意波长。 解 根据德布罗意波粒二象性的关系,可知 E=hv , λ h P = 如果所考虑的粒子是非相对论性的电子(2c E e μ<<动),那么 e p E μ22 = 如果我们考察的是相对性的光子,那么 E=pc 注意到本题所考虑的钠的价电子的动能仅为3eV ,远远小于电子的质量与光速平方的乘积,即eV 61051.0?,因此利用非相对论性的电子的能量——动量关系式,这样,便有 p h = λ

量子力学习题答案

量子力学习题答案 1.2 在0k 附近,钠的价电子能量约为3eV ,求其德布罗意波长。 解:由德布罗意波粒二象性的关系知: E h =ν; p h /=λ 由于所考虑的电子是非相对论的电子(26k e E (3eV)c (0.5110)-μ? ),故: 2e E P /(2)=μ 69 h /p h / hc / 1.2410/0.7110 m 0.71nm --λ====?=?=1.3氦原子的动能是E=1.5kT ,求T=1K 时,氦原子的德布罗意波长。 解:对于氦原子而言,当K 1=T 时,其能量为 J 10 2.07K 1K J 10 381.12 32 323 1 23 ---?=????= = kT E 于是有 一维谐振子处于2 2 /2 ()x x Ae α ψ-=状态中,其中α为实常数,求: 1.归一化系数; 2.动能平均值。 (22 x e dx /∞-α-∞ = α?) 解:1.由归一化条件可知: 22 * 2x 2 (x)(x)dx A e dx 1 A /1 ∞∞-α-∞ -∞ ψψ===α=? ? 取相因子为零,则归一化系数1/21/4A /=απ 2.

2222 2 2 22 2 2 22 22 22 22 2 * 2x /2 x /22 2 2 x /2 x /2 2 2 x /2 2x /2 2 222x 2x /2 2 2 24 2x 2T (x)T (x)dx A e (P /2)e dx d A e ()e dx 2dx d A e (xe )dx 2dx A {xe (xe )dx} 2A x e dx A 22∞∞-α-α-∞-∞ ∞-α-α-∞∞-α-α-∞ ∞ ∞-α-α-∞ -∞ ∞-α-∞ = ψψ=μ=- μ =- -αμ=- -α- -αμ = α = μμ ? ?? ? ? ? =(= = 22 2 2 2 2 4 x 22 24 x x 2 2 22 24 21()xd(e ) 21A (){xe e dx}221A ()2442∞-α-∞ ∞ ∞-α-α-∞ -∞ α- α =α- -- μααα- - μ α μ μ α ? ? 若αT 4 ω= 解法二:对于求力学量在某一体系能量本征态下的平均值问题,用F-H 定理是 非常方便的。 一维谐振子的哈密顿量为: 2 2 22 d 1H x 2dx 2 =- + μωμ 它的基态能量01E 2 = ω 选择 为参量,则: 0dE 1d 2 = ω ; 2 2 2 d H d 2d 2()T d dx 2dx =- = - = μμ d H 20 0T d = 由F-H 定理知: 0dE d H 210 T d d 2= ==ω 可得: 1T 4 = ω

量子力学教程周世勋_课后答案

量子力学课后习题详解 第一章 量子理论基础 1.1 由黑体辐射公式导出维恩位移定律:能量密度极大值所对应的波长m λ与温度T 成反比,即 m λ T=b (常量); 并近似计算b 的数值,准确到二位有效数字。 解 根据普朗克的黑体辐射公式 dv e c hv d kT hv v v 1 183 3 -?=πρ, (1) 以及 c v =λ, (2) λρρd dv v v -=, (3) 有 ,1 18)() (5 -?=?=?? ? ??-=-=kT hc v v e hc c d c d d dv λλλ πλλρλ λλρλ ρ ρ 这里的λρ的物理意义是黑体内波长介于λ与λ+d λ之间的辐射能量密度。 本题关注的是λ取何值时,λρ取得极大值,因此,就得要求λρ 对λ的一阶导数为零,由此可求得相应的λ的值,记作m λ。但要注意的是,还需要验证λρ对λ的二阶导数在m λ处的取值是否小于零,如果小于零,那么前面求得的m λ就是要求的,具体如下: 011511 86 '=???? ? ?? -?+--?= -kT hc kT hc e kT hc e hc λλλλλπρ

? 0115=-?+ -- kT hc e kT hc λλ ? kT hc e kT hc λλ= -- )1(5 如果令x= kT hc λ ,则上述方程为 x e x =--)1(5 这是一个超越方程。首先,易知此方程有解:x=0,但经过验证,此解是平庸的;另外的一个解可以通过逐步近似法或者数值计算法获得:x=,经过验证,此解正是所要求的,这样则有 xk hc T m = λ 把x 以及三个物理常量代入到上式便知 K m T m ??=-3109.2λ 这便是维恩位移定律。据此,我们知识物体温度升高的话,辐射的能量分布的峰值向较短波长方面移动,这样便会根据热物体(如遥远星体)的发光颜色来判定温度的高低。 1.2 在0K 附近,钠的价电子能量约为3eV ,求其德布罗意波长。 解 根据德布罗意波粒二象性的关系,可知 E=hv , λ h P = 如果所考虑的粒子是非相对论性的电子(2 c E e μ<<动),那么 e p E μ22 = 如果我们考察的是相对性的光子,那么 E=pc 注意到本题所考虑的钠的价电子的动能仅为3eV ,远远小于电子的质量与光速平方的乘积,即eV 6 1051.0?,因此利用非相对论性的电子的能量——动量关系式,这样,便有 p h = λ

周世勋量子力学习题及解答

量子力学习题及解答 第一章 量子理论基础 1.1 由黑体辐射公式导出维恩位移定律:能量密度极大值所对应的波长m λ与温度T 成反比,即 m λ T=b (常量); 并近似计算b 的数值,准确到二位有效数字。 解 根据普朗克的黑体辐射公式 dv e c hv d kT hv v v 1 1 833 -? =πρ, (1) 以及 c v =λ, (2) λρρd dv v v -=, (3) 有 这里的λρ的物理意义是黑体内波长介于λ与λ+d λ之间的辐射能量密度。 本题关注的是λ取何值时,λρ取得极大值,因此,就得要求λρ 对λ的一阶导数为零,由此可求得相应的λ的值,记作m λ。但要注意的是,还需要验证λρ对λ的二阶导数在m λ处的取值是否小于零,如果小于零,那么前面求得的m λ就是要求的,具体如下: 如果令x= kT hc λ ,则上述方程为 这是一个超越方程。首先,易知此方程有解:x=0,但经过验证,此解是平庸的;另外的一个解可以通过逐步近似法或者数值计算法获得:x=,经过验证,此解正是所要求的,这样则有 把x 以及三个物理常量代入到上式便知 这便是维恩位移定律。据此,我们知识物体温度升高的话,辐射的能量分布的峰值向较短波长方面移动,这样便会根据热物体(如遥远星体)的发光颜色来判定温度的高低。 1.2 在0K 附近,钠的价电子能量约为3eV ,求其德布罗意波长。 解 根据德布罗意波粒二象性的关系,可知 E=hv , 如果所考虑的粒子是非相对论性的电子(2c E e μ<<动),那么 如果我们考察的是相对性的光子,那么 E=pc 注意到本题所考虑的钠的价电子的动能仅为3eV ,远远小于电子的质量与光速平方的乘积,即eV 6 1051.0?, 因此利用非相对论性的电子的能量——动量关系式,这样,便有 在这里,利用了 以及 最后,对

陕西师范大学量子力学题库

1. 十九世纪末期,物理学理论在当时看来已经发展到相当完善的阶段,形成了三门经典学科。这三门经典学科分别是______,______,______. 2. 按经典的物质概念,物质可以分为两类,一类是____,另一类是______. 3. 二十世纪初,经典物理学遇到了无法克服的困难。这些困难分别是____,_____,______及_________. 4. 经典物理中,对实物的运动采用_____来描述,实物的运动遵守______。 5. 经典物理中,对辐射场的运动采用_____来描述,辐射场的变化遵守______。 6. 在经典概念下,实物的基本特性是_______和________. 7. 在经典概念下,辐射场的基本特性是_______和_______. 8. 在经典概念,粒子性是指_____和______. 9. 在经典概念,波动性是指_____和______. 10. 在经典概念,波动性和粒子性___(填是否可以)统一于同一物质客体. 11. 光的波动性的理论基础是________. 12. 光的波动性的实验证据是________. 13. 光的粒子性的实验证据是______,______,______. 14. 光的粒子性的理论依据是______,______. 15. 微粒的粒子性是指微观粒子的______,即_______以及______. 16. 微粒的波动性是指__________. 17. 微粒的粒子性的实验证据是______.

18. 按照爱因斯坦光子假设,光子的能量E和动量P与光波的频率ν和波长 λ的关系为 E=____,P=____. 19. 按照德布洛依假设,能量为E、动量为P的自由粒子其相应的物质波的 波长λ=__ __,频率ν=___. 20. 自由粒子的动能为E,速度远小于光速,则德布罗依波长λ=____. 21. 电子被电势差V(伏)加速,则德布罗依波长λ=____. 22. 按照德布洛依假设,粒子的能量E、动量P与相应的物质波的频率ν, 波长λ的关 系是____,______. 23. 历史上第一个肯定光除了波动性之外还具有粒子性的科学家是____. 24. 历史上第一次用实验证明实物具有波动性的科学家是________. 25. 能量为E,动量为P的自由粒子的平面波的表达式是________. 26. 玻尔的氢原子理论包含三条假设,分别是_____,_____,_____. 27. 索末菲对玻尔的轨道量子化条件推广为__________. 28. 玻尔的频率条件表示为________. 29. 任何态函数用动量本征函数展开的表达式为_____________. 30. 任何态函数在动量表象中的表达式为________________. 31. 波函数是指__________.

量子力学习题答案.

2.1 如图所示 左右 0 x 设粒子的能量为,下面就和两种情况来讨论(一)的情形 此时,粒子的波函数所满足的定态薛定谔方程为 其中 其解分别为 (1)粒子从左向右运动 右边只有透射波无反射波,所以为零 由波函数的连续性 得 得 解得 由概率流密度公式 入射 反射系数 透射系数 (2)粒子从右向左运动 左边只有透射波无反射波,所以为零 同理可得两个方程 解 反射系数 透射系数

(二)的情形 令 ,不变 此时,粒子的波函数所满足的定态薛定谔方程为 其解分别为 由在右边波函数的有界性得为零 (1)粒子从左向右运动 得 得 解得 入射 反射系数 透射系数 (2)粒子从右向左运动 左边只有透射波无反射波,所以为零 同理可得方程 由于全部透射过去,所以 反射系数 透射系数 2.2 如图所示 在有隧穿效应,粒子穿过垒厚为的方势垒的透射系数为 总透射系数

2.3 以势阱底为零势能参考点,如图所示 (1) ∞ ∞ 左中右 0 a x 显然 时只有中间有值 在中间区域所满足的定态薛定谔方程为 其解是 由波函数连续性条件得 ∴ ∴ 相应的 因为正负号不影响其幅度特性可直接写成 由波函数归一化条件得 所以波函数 (2) ∞∞ 左中右 0 x 显然 时只有中间有值 在中间区域所满足的定态薛定谔方程为 其解是 由波函数连续性条件得

当,为任意整数, 则 当,为任意整数, 则 综合得 ∴ 当时,, 波函数 归一化后 当时,, 波函数 归一化后 2.4 如图所示∞ 左 0 a 显然 在中间和右边粒子的波函数所满足的定态薛定谔方程为其中 其解为 由在右边波函数的有界性得为零 ∴ 再由连续性条件,即由 得 则 得 得 除以得 再由公式 ,注意到 令 ,

相关文档
相关文档 最新文档