文档库 最新最全的文档下载
当前位置:文档库 › 数值积分梯形算法

数值积分梯形算法

数值积分梯形算法
数值积分梯形算法

数学实验报告实验序号:课件制作(1)日期:2014年6月20日

几种定积分的数值计算方法

几种定积分的数值计算方法 摘要:本文归纳了定积分近似计算中的几种常用方法,并着重分析了各种数值方法的计 算思想,结合实例,对其优劣性作了简要说明. 关键词:数值方法;矩形法;梯形法;抛物线法;类矩形;类梯形 Several Numerical Methods for Solving Definite Integrals Abstract:Several common methods for solving definite integrals are summarized in this paper. Meantime, the idea for each method is emphatically analyzed. Afterwards, a numerical example is illustrated to show that the advantages and disadvantages of these methods. Keywords:Numerical methods, Rectangle method, Trapezoidal method, Parabolic method, Class rectangle, Class trapezoid

1. 引言 在科学研究和实际生产中,经常遇到求积分的计算问题,由积分学知识可知,若函数 )(x f 在区间],[b a 连续且原函数为)(x F ,则可用牛顿-莱布尼茨公式 ?-=b a a F b F x f ) ()()( 求得积分.这个公式不论在理论上还是在解决实际问题中都起到了很大的作用. 在科学研究和实际生产中,经常遇到求积分的计算问题,由积分学知识可知,若函数)(x f 在区间],[b a 连续且原函数为)(x F ,则可用牛顿-莱布尼茨公式 ?-=b a a F b F x f ) ()()( 求得积分.这个公式不论在理论上还是在解决实际问题中都起到了很大的作用.另外,对于求导数也有一系列的求导公式和求导法则.但是,在实际问题中遇到求积分的计算,经常会有这样的情况: (1)函数)(x f 的原函数无法用初等函数给出.例如积分 dx e x ?-1 02 , ? 1 sin dx x x 等,从而无法用牛顿-莱布尼茨公式计算出积分。 (2)函数)(x f 使用表格形式或图形给出,因而无法直接用积分公式或导数公式。 (3)函数)(x f 的原函数或导数值虽然能够求出,但形式过于复杂,不便使用. 由此可见,利用原函数求积分或利用求导法则求导数有它的局限性,所以就有了求解数值积分的很多方法,目前有牛顿—柯特斯公式法,矩形法,梯形法,抛物线法,随机投点法,平均值法,高斯型求积法,龙贝格积分法,李查逊外推算法等等,本文对其中部分方法作一个比较. 2.几何意义上的数值算法 s 在几何上表示以],[b a 为底,以曲线)(x f y =为曲边的曲边梯形的面积A ,因此,计 算s 的近似值也就是A 的近似值,如图1所示.沿着积分区间],[b a ,可以把大的曲边梯形分割成许多小的曲边梯形面积之和.常采用均匀分割,假设],[b a 上等分n 的小区间 ,x 1-i h x i +=b x a x n ==,0,其中n a b h -= 表示小区间的长度. 2.1矩形法

数值积分算法与MATLAB实现陈悦5133201讲解

东北大学秦皇岛分校 数值计算课程设计报告 数值积分算法及MATLAB实现 学院数学与统计学院 专业信息与计算科学 学号5133201 姓名陈悦 指导教师姜玉山张建波 成绩 教师评语: 指导教师签字: 2015年07月14日

1 绪论 数值分析是计算数学的一个主要部分,计算数学是数学科学的一个分支,它研究用计算机求解各种数学问题的数值检索方其理论与软件的实现.而数值分析主要研究数值计算. 现科学技术的发展与进步提出了越来越多的复杂的数值计算问题,这些问题的圆满解决已远人工手算所能胜任,必须依靠电子计算机快速准确的数据处理能力.这种用计算机处理数值问题的方法,成为科学计算.今天,科学计算的应用范围非常广泛,天气预报、工程设计、流体计算、经济规划和预测以及国防尖端的一些科研项目,如核武器的研制、导弹和火箭的发射等,始终是科学计算最为活跃的领域. 1.1 数值积分介绍 数值积分是数值分析的重要环节,实际问题当中常常需要计算积分,有些数值方法,如微分方程和积分方程的求解,也都和积分计算相联系. 求某函数的定积分时,在多数情况下,被积函数的原函数很难用初等函数表达出来,因此能够借助微积分学的牛顿-莱布尼兹公式计算定积分的机会是不多的.另外,许多实际问题中的被积函数往往是列表函数或其他形式的非连续函数,对这类函数的定积分,也不能用不定积分方法求解.由于以上原因,数值积分的理论与方法一直是计算数学研究的基本课题.对微积分学做出杰出贡献的数学大师,如I.牛顿、L.欧拉、C.F.高斯、拉格朗日等人都在数值积分这个领域作出了各自的贡献,并奠定了这个分支的理论基础. 构造数值积分公式最通常的方法是用积分区间上的n 次插值多项式代替被积函数,由此导出的求积公式称为插值型求积公式.特别在节点分布等距的情形称为牛顿-科特斯公式,例如梯形公式(Trapezoidal Approximations)与抛物线公式(Approximations Using Parabolas)就是最基本的近似公式.但它们的精度较差.龙贝格算法是在区间逐次分半过程中,对梯形公式的近似值进行加权平均获得准确程度较高的积分近似值的一种方法,它具有公式简练、计算结果准确、使用方便、稳定性好等优点,因此在等距情形宜采用龙贝格求积公式(Rhomberg Integration).当用不等距节点进行计算时,常用高斯型求积公式计算,它在节点数目相同情况下,准确程度较高,稳定性好,而且还可以计算无穷积分.数值积分还是微分方程数值解法的重要依据.许多重要公式都可以用数值积分方程导出.现探讨数值积分算法以及运用MATLAB软件的具体实现

(精选)实验二 数值方法计算积分

实验二数值方法计算积分 学号:姓名:指导教师:实验目的 1、了解并掌握matlab软件的基本编程、操作方法; 2、初步了解matlab中的部分函数,熟悉循环语句的使用; 3、通过上机进一步领悟用复合梯形、复合辛普森公式,以及用龙贝格求积 方法计算积分的原理。 一、用不同数值方法计算积分 10x ln xdx=-94. (1)取不同的步长h.分别用复合梯形及辛普森求积计算积分,给出误差中关 于h的函数,并与积分精确值比较两个公式的精度,是否存在一个最小 的h,使得精度不能再被改善? (2)用龙贝格求积计算完成问题(1)。 二、实现实验 1、流程图: 下图是龙贝格算法框图:

2、 算法: (1) 复合梯形公式:Tn=++)()([2b f a f h 2∑-=1 1 )](n k xk f ; (2) 复合辛普森公式:Sn=6h [f(a)+f(b)+2∑-=11)](n k xk f +4∑-=+1 )2/1(n k x f ]; 以上两种算法都是将a-b 之间分成多个小区间(n ),则h=(b-a)/n,x k =a+kh, x k+1/2=a+(k+1/2)h,利用梯形求积根据两公式便可。 (3) 龙贝格算法:在指定区间内将步长依次二分的过程中运用如下公式 1、Sn= 34T2n-31 Tn 2、 Cn=1516S2n-151 Sn 3、 Rn=6364C2n-631 Cn 从而实现算法。 3、 程序设计 (1)、复合梯形法: function t=natrapz(fname,a,b,n) h=(b-a)/n; fa=feval(fname,a);fb=feval(fname,b);f=feval(fname,a+h:h:b-h+0. 001*h); t=h*(0.5*(fa+fb)+sum(f)); (2)、复合辛普森法: function t=natrapz(fname,a,b,n) h=(b-a)/n; fa=feval(fname,a);fb=feval(fname,b);f1=feval(fname,a+h:h:b-h+0 .001*h); f2=feval(fname,a+h/2:h:b-h+0.001*h); t=h/6*(fa+fb+2*sum(f1)+4*sum(f2)); (3)龙贝格法: function [I,step]=Roberg(f,a,b,eps) if(nargin==3) eps=1.0e-4; end; M=1; tol=10; k=0; T=zeros(1,1); h=b-a; T(1,1)=(h/2)*(subs(sym(f),findsym(sym(f)),a)+subs(sym(f),findsym(sym(f)),

定积分的性质与计算方法

定积分的性质与计算方法 摘要: 定积分是微积分学中的一个重要组成部分,其计算方法和技巧非常 丰富。本文主要给出定积分的定义及讨论定积分的性质和计算方法,并通过一些很有代表性的例题说明了其计算方法在简化定积分计算中的强大功能。 关键词:定积分 性质 计算方法 定积分的定义 设函数f(x) 在区间[a,b]上连续,将区间[a,b]分成n 个子区间[x 0,x 1], (x 1,x 2], (x 2,x 3], …, (x n-1,x n ],其中x 0=a ,x n =b 。可知各区间的长度依次是:△x 1=x 1-x 0, △x 2=x 2-x 1, …, △x n =x n -x n-1。在每个子区间(x i-1,x i ]中任取一点i ξ(1,2,...,n ),作和式1()n i i f x ι=ξ?∑。设λ=max{△x 1, △x 2, …, △x n }(即λ是 最大的区间长度),则当λ→0时,该和式无限接近于某个常数,这个常数叫做函数f(x) 在区间[a,b]的定积分,记为: ()b a f x dx ?。 其中:a 叫做积分下限,b 叫做积分上限,区间[a, b]叫做积分区间,函数f(x)叫做被积函数,x 叫做积分变量,f(x)dx 叫做被积表达式,∫ 叫做积分号。 对于定积分,有这样一个重要问题:函数()f x 在[a,b]上满足怎样的条件, ()f x 在[a,b]上一定可积?下面给出两个充分条件: 定理1: 设()f x 在区间[a,b]上连续,则()f x 在[a,b]上可积。 定理2: 设()f x 在区间[a,b]上有界,且只有有限个间断点,则 ()f x 在[a,b]上可积。 例:利用定义计算定积分1 20x dx ?. 解:因为被积函数2()f x x =在积分区间[0,1]上连续,而连续函数是可积的,所以积分与区间[0,1]的分法及点i ξ的取法无关。因此,为了 便于计算,不妨把区间[0,1]分成n 等份,分点为i i x n = ,1,2,,1i n =?-;这样,

设计采用梯形法和辛普生法求定积分的程序

河北工业大学计算机软件技术基础(VC)课程设计报告 学院信息工程学院院班级通信101 姓名崔羽飞学号 102117 成绩 __ ____ 一、题目: 设计采用梯形法和辛普生法求定积分的程序 二、设计思路 1、总体设计 1)分析程序的功能 本题目的功能是对梯形法和辛普森法,在不同区间数下计算所得的定积分的值,进行精度比较。 2)系统总体结构: 设计程序的组成模块,简述各模块功能。 该程序共分为以下几个模块 模块一:各函数原型的声明。 模块二:主函数。 模块三:各函数的定义。 包括两个数学函数y1=1+x*x、y2=1+x+x*x+x*x*x的定义和两个函数指针double integralt(double ,double ,int ,double(*f)(double)) double integrals(double ,double ,int ,double(*f)(double)) 的定义。 2、各功能模块的设计:说明各功能模块的实现方法 模块一:对各种函数进行声明。 模块二:求梯形法和辛普森法,在不同区间数下计算所得的定积分的值。 模块三:将各函数写出来。 3、设计中的主要困难及解决方案 在这部分论述设计中遇到的主要困难及解决方案。 1)困难1:函数指针的应用。解决方案:仔细阅读课本,以及与同学之间的讨论,和向老师求助。 2)困难2:将程序分成不同的.cpp文件。解决方案:与同学讨论。 4、你所设计的程序最终完成的功能 1)说明你编制的程序能完成的功能 在数学上求一个函数与x轴在一定范围内所围的面积即求定积分,对梯形法和辛普森法求定积分的比较。 2)准备的测试数据及运行结果

第一题.矩阵法,梯形法积分

梯形法数值积分 A .算法说明: 梯形法数值积分采用的梯形公式是最简单的数值积分公式,函数()f x 在区间[a,b]上计算梯形法数值积分表达式为: ()[()()]2b a b a f x dx f a f b -≈+? 由于用梯形公式来求积分十分粗糙,误差也比较大,后来改进后提出了复合梯形公式:b a h n -=,其中,n 为积分区间划分的个数;h 为积分步长。 在MATLAB 中编程实现的复合梯形公式的函数为:Combine Traprl. 功能:复合梯形公式求函数的数值积分。 调用格式:[I,step]=CombineTraprl(f,a,b,eps). 其中,f 为函数名; a 为积分下限; b 为积分上限; eps 为积分精度; I 为积分值; Step 为积分划分的区间个数 B .流程图

C.复合梯形公式的原程序代码: function[I,step]=CombineTraprl(f,a,b,eps) % 复合梯形公式求函数f在区间[a,b]上的定积分 %函数名:f %积分下限:a %积分上限:b %积分精度:eps %积分值:I %积分划分的子区间个数:step if(nargin==3) eps=1.0e-4; %默认精度为0.0001 end n=1; h=(b-a)/2; I1=0; I2=(subs(sym(f),findsym(sym(f)),a)+subs(sym(f),findsym(sym(f)),b))/h; while abs(I2-I1)>eps n=n+1 h=(b-a)/n; I1=I2; I2=0; for i=0:n-1 %第年n次的复合梯形公式积分 x=a+h*i; %i=0 和n-1时,分别代表积分区间的左右端点 x1=x+h I2=I2+(h/2)*(subs(sym(f),findsym(sym(f)),x)+subs(sym(f),findsym(sym(f)),x1)); end end I=I2; step=n; D.应用举例 复合梯形法求数值积分应用举例,利用复合梯形法计算定积分 dx x ? - 4 221 1 流程图

定积分计算公式和性质

第二节 定积分计算公式和性质 一、变上限函数 设函数在区间上连续,并且设x 为上的任一点, 于是, 在区间 上的定积分为 这里x 既是积分上限,又是积分变量,由于定积分与积分变量无关,故可将此改为 如果上限x 在区 间上任意变动,则对 于每一个取定的x 值,定积分有一个确定值与之对应,所以定积分在 上定义了一个以x 为自变量的函数,我们把 称为函数 在区间 上 变上限函数 记为 从几何上看,也很显然。因为X 是上一个动点, 从而以线段 为底的曲边梯形的面积,必然随着底数 端点的变化而变化,所以阴影部分的面积是端点x 的函数(见图5-10) 图 5-10

定积分计算公式 利用定义计算定积分的值是十分麻烦的,有时甚至无法计算。因此,必须寻求计算定积分的简便方法。 我们知道:如果物体以速度作直线运动,那么在时间区间上所经过的路程s 为 另一方面,如果物体经过的路程s 是时间t 的函数,那么物体 从t=a 到t=b 所经过的路程应该是(见图5-11) 即 由导数的物理意义可知:即 是 一个原函数,因此,为了求出定积分,应先求出被积函数 的原函数 , 再求 在区间 上的增量 即可。 如果抛开上面物理意义,便可得出计算定积分的一般 方法: 设函数在闭区间上连续, 是 的一个原函数, 即 ,则 图 5-11

这个公式叫做牛顿-莱布尼兹公式。 为了使用方便,将公式写成 牛顿-莱布尼兹公式通常也叫做微积分基本公式。它表示一个函数定积分等于这个函数的原函数在积分上、下限处函数值之差。它揭示了定积分和不定积分的内在联系,提供了计算定积分有效而简便的方法,从而使定积分得到了广泛的应用。 例1 计算 因为是的一个原函数所以 例 2 求曲线 和直线x=0、x= 及y=0所围成图形面积A(5-12) 解 这个图形的面积为 二、定积分的性质 设 、 在相应区间上连续,利用前面学过的知识,可以 得到定积分以下几个简单性质: 图 5-12

矩形、梯形法计算定积分的黎曼和

钦州学院数学与计算机科学学院 数 学 实 验 报 告 实验完成日期 2010 年 11 月 5 日 , 第 10 周 , 星期五 成绩等级(五级分制) 评阅教师 评阅日期 年 月 日 数学实验报告填写要求:思路清晰,中间结果和最终结果真实;字迹工整,报告完整。 [实验题目及内容] 实验题目:(1)通过矩形法、梯形法分别计算定积分? ++-= b a x x x f 32.0)(2 的黎曼和; (2)通过10=n ,50=n ,200=n 时黎曼和的值分析两种方法逼近定积分的 速度。 内容:黎曼和逼近定积分值的动态过程演示,可利用几何画板制作 [问题描述](用自己组织的相关数学语言重述现实问题;注意对约定的条件作说明) 将AB 边n 等分,过这些分点作E B '的垂线,将抛物线32.0)(2 ++-=x x x f 和以AB 为边形成的图形分割为n 个直角小梯形或小矩形,求这些小梯形或小矩形面积的和,即可求出定积分? ++-= b a x x x f 32.0)(2 黎曼和即面积。当n 充分大时,直角小梯形或小矩形的 面积之和可近似代替定积分? ++-=b a x x x f 32.0)(2 黎曼和。因此可通过计算梯形或矩形 面积求出定积分? ++-= b a x x x f 32.0)(2 的黎曼和。 定积分dx x f b a ?)(在数值上等于以曲线)(x f y =和三直线0=y 、a x =、b x =所围 成的曲边梯形的面积。解决的办法是分割后再求和:设想将区间],[b a 分为n 个小区间,以每个小区间左端点对应的函数值为高,以小区间的长度为宽,构作n 个梯形或矩形,并以这些小梯形或小矩形的面积的和(即黎曼和)近似代替定积分的面积。当改变参数n 的大小时,随着n 的逐渐增大(并且每个小区间的长度逐渐缩小),黎曼和的值逐渐趋近定积分的值。 [模型建立或思路分析](建立合理,可解释的数学模型,通过公式、表格或图形直观明确地描述模型的结构;无法通过建立模型解决的,给出解题的思路及办法。) 利用几何画板作图:

数值积分 (论文)

目录 第一章数值积分计算的重述 (1) 1.1引言 (1) 1.2问题重述 (2) 第二章复化梯形公式 (3) 2.1 复化梯形公式的算法描述 (3) 2.2 复化梯形公式在C语言中的实现 (3) 2.3 测试结果 (4) 第三章复化simpson公式 (6) 3.1 复化simpson公式的算法描述 (6) 3.2 复化simpson公式在C语言中的实现 (6) 3.3 测试结果 (7) 第四章复化cotes公式 (8) 4.1 复化cotes公式的算法描述 (8) 4.2 复化cotes公式在C语言中的实现 (9) 4.3 测试结果 (10) 第五章Romberg积分法 (11) 5.1 Romberg积分法的算法描述 (11) 5.2 Romberg积分法在C中的实现 (12) 5.3 测试结果 (13) 第六章结果对比分析和体会 (144) 参考文献 (16) 附录 (16)

数值积分?-10 2 dx e x (一) 第一章 数值积分计算的重述 1.1引言 数值积分是积分计算的重要方法,是数值逼近的重要内容,是函数插值的最直接应用,也是工程技术计算中常常遇到的一个问题。在应用上,人们常要求算出具体数值,因此数值积分就成了数值分析的一个重要内容。在更为复杂的计算问题中,数值积分也常常是一个基本组成部分。 在微积分理论中,我们知道了牛顿-莱布尼茨(Newton-Leibniz)公式 ()() () b a f x d x F b F a =-? 其中()F x 是被积函数()f x 的某个原函数。但是随着学习的深入,我们发现一个问题: 对很多实际问题,上述公式却无能为力。这主要是因为:它们或是被积函数没有解析形式的原函数,或是只知道被积函数在一些点上的值,而不知道函数的形式,对此,牛顿—莱布尼茨(Newton-Leibniz)公式就无能为力了。此外,即使被积函数存在原函数,但因找原函数很复杂,人们也不愿花费太多的时间在求原函数上,这些都促使人们寻找定积分近似计算方法的研究,特别是有了计算机后,人们希望这种定积分近似计算方法能在计算机上实现,并保证计算结果的精度,具有这种特性的定积分近似计算方法称为数值积分。由定积分知识,定积分只与被积函数和积分区间有关,而在对被积函数做插值逼近时,多项式的次数越高,对被积函数的光滑程度要求也越高,且会出现Runge 现象。如7n >时,Newton-Cotes 公式就是不稳定的。因而,人们把目标转向积分区间,类似分段插值,把积分区间分割成若干小区间,在每个小区间上使用次数较低的Newton-Cotes 公式,然后把每个小区间上的结果加起来作为函数在整个区间上积分的近似,这就是复化的基本思想。本文主要

几种常用数值积分方法的比较汇总

学科分类号110.3420 州 GUIZHOU NORMAL COLLEGE 本科毕业论文 题目—几种常用数值积分方法的比较_____________ 姓名潘晓祥学号1006020540200 院(系)数学与计算机科学学院 __________________ 专业数学与应用数学年级_____________2010级 指导教师雍进军职称______________________讲师 二O—四年五月

贵州师范学院本科毕业论文(设计)诚信声明本人郑重声明:所呈交的本科毕业论文(设计),是本人在指导老师的指导下,独立进行研究工作所取得的成果,成果不存在知识产权争议,除文中已经注明引用的内容外,本论文不含任何其他个人或集体已经发表或撰写过的作品成果。对本文的研究做出重要贡献的个人和集体均已在文中以明确方式标明。本人完全意识到本声明的法律结果由本人承担。 本科毕业论文作者签名: 年月曰

贵州师范学院本科毕业论文(设计)任务书

研究方法: 本论文主要通过对相关文献和书籍的参考,合自己的见解,复化求积公式,Newton —Cotes求积公式,Romberg求积公式,高斯型求积公式进行讨论并进行上机实验,从代数精度,求积公式误差等角度对这些方法进行分析比较完成期限和采取的主要措施: 本论文计划用6个月的时间完成,阶段的任务如下: (1) 7月份查阅相关书籍和文献; (2) 8月份完成开题报告并交老师批阅; (3) 9月份完成论文初稿并交老师批阅; (4) 10月份完成论文二搞并交老师批阅; (5) 11月份完成论文三搞; (6) 12月份定稿. 主要措施:考相关书籍和文献,合自己的见解,老师的指导下和同学的帮助下完成 主要参考文献及资料名称: [1] 关治?陆金甫?数学分析基础(第二版) [M].北京:等教育出版社.2010.7 [2] 胡祖炽.林源渠.数值分析[M]北京:等教育出版社.1986.3 [3] 薛毅.数学分析与实验[M] 北京:业大学出版社2005.3 [4] 徐士良.数值分析与算法[M].北京:械工业出版社2007.1 [5] 王开荣.杨大地.应用数值分析[M]北京:等教育出版社2010.7 [6] 杨一都.数值计算方法[M].北京:等教育出版社.2008.4 [7] 韩明.王家宝.李林.数学实验(MATLAB版[M].上海:济大学出版社2012.1 [8] 圣宝建.关于数值积分若干问题的研究[J].南京信息工程大学.2009.05.01. : 42 [9] 刘绪军.几种求积公式计算精确度的比较[J].南京职业技术学院.2009. [10] 史万明.吴裕树.孙新.数值分析[M].北京理工大学出版社.2010.4. 指导教师意见: 签名: 年月日

C语言-用矩形法和梯形法求定积分

一.写一个用矩形法求定积分的函数,求sin(x)在(0,1)上的定积分。 #include #include float jifen(float a,float b) {int i,l; float n=0.001,s=0; //n表示划分的单位宽度,n越小结果越精确,n是矩形的宽 l=(b-a)/n; // l表示有多少个单位宽度 for(i=0;i #include float jifen(float a,float b) {int i,l; float n=0.001,s=0; l=(b-a)/n; for(i=0;i #include jifen(float a,float b,double (*fun)(double)) {int i,l;

定积分计算的总结论文

定积分计算的总结 闫佳丽 摘 要:本文主要考虑定积分的计算,对一些常用的方法和技巧进行了归纳和总结.在定积分的计算中,常用的计算方法有四种:(1)定义法、(2)牛顿—莱布尼茨公式、(3)定积分的分部积分法、(4)定积分的换元积分法. 关键词:定义、牛顿—莱布尼茨公式、分部积分、换元. 1前言 17世纪后期,出现了一个崭新的数学分支—数学分析.它在数学领域中占据着主导地位.这种新数学思想的特点是非常成功地运用了无限过程的运算即极限运算.而其中的微分和积分这两个过程,则构成系统微积分的核心.并奠定了全部分析学的基础.而定积分是微积分学中的一个重要组成部分. 2正文 那么,究竟什么是定积分呢?我们给定积分下一个定义:设函数()f x 在[],a b 有定义,任给[],a b 一个分法T 和一组{}k ξξ=,有积分和 1 (,)()n k k k T f x σξξ==?∑,若当()0l T →时,积分和(,)T σξ存在有限极限,设 ()0 ()0 1 lim (,)lim ()n k k l T l T k T f x I σξξ→→==?=∑,且数I 与分法T 无关,也与k ξ在[] 1,k k x x -的取法无关,即{}0,0,:(),k T l T εδδξξ?>?>?

数值积分与微分方法

数值积分与微分 摘要 本文首先列举了一些常用的数值求积方法,一是插值型求积公式,以N e w t o n C o t e s -公式为代表,并分析了复合型的Newton Cotes -公式;另一个是Gauss Ledendre -求积公式,并给出几个常用的Gauss Ledendre -求积公式。其次,本文对数值微分方法进行分析,主要是差分型数值微分和插值型数值微分,都给出了几种常用的微分方法。然后,本文比较了数值积分与微分的关系,发现数值积分与微分都与插值或拟合密不可分。 本文在每个方法时都分析了误差余项,并且在最后都给出了MATLAB 的调用程序。 关键词:插值型积分Gauss Ledendre -差分数值微分插值型数值微分 MATLAB

一、常用的积分方法 计算积分时,根据Newton Leibniz -公式, ()()()b a f x dx F b F a =-? 但如果碰到以下几种情况: 1)被积函数以一组数据形式表示; 2)被积函数过于特殊或者原函数无法用初等函数表示 3)原函数十分复杂难以计算 这些现象中,Newton Leibniz -公式很难发挥作用,只能建立积分的近似计算方法,数值积分是常用的近似计算的方法。 1.1 插值型积分公式 积分中的一个常用方法是利用插值多项式来构造数值求积公式,具体的步骤如下: 在积分区间上[,]a b 上取一组节点:01201,,,,()n n x x x x a x x x b ≤<<≤ 。已知()k x f 的函数值,作()x f 的n 次插值多项式,则 (1) ()10()()()()() (1)!n n x n n k k n k f f L x R x f x l x w x n ++==+=++∑ 其中,()k l x 为n 次插值基函数,则得 (1)+10()(()())1 =[()]()[()](1)!b b n n a a n b b n k k n a a k f x dx L x R x dx l x dx f x f x w x dx n ξ+==+++? ?∑??() 公式写成一般形式: ()()[]n b k k n a k f x dx A f x R f ==+∑? 其中, 01100110 ()()()() ()()()()()b b k k k k a a k k k k k k x x x x x x x x A l x dx dx x x x x x x x x -+-+----==----?? (1)+11 [][()](1)!b n n n a R f f x w x dx n ξ+=+?() 显然,当被积函数f 为次数小于等于n 的多项式时,其相应的插值型求积公式为准确公式,即: ()() n b k k a k f x dx A f x ==∑? 1.1.1 求积公式的代数精度 定义:求积公式对于任何次数不大于m 的代数多项式()f x 均精确成立,而对于 1()m f x x +=不精确成立,则称求积公式具有m 次代数精度。 定理:含有1n +个节点(0,1,,)k x k n = 的插值型求积公式的代数精度至少为n 。

利用复化梯形公式复化simpson 公式计算积分

实验 目 的 或 要 求1、利用复化梯形公式、复化simpson 公式计算积分 2、比较计算误差与实际误差 实 验 原 理 ( 算 法 流 程 图 或 者 含 注 释 的 源 代 码 ) 取n=2,3,…,10分别利用复化梯形公式、复化simpson 公式计算积分1 20I x dx =?,并与真值进行比较,并画出计算误差与实际误差之间的曲线。 利用复化梯形公式的程序代码如下: function f=fx(x) f=x.^2; %首先建立被积函数,以便于计算真实值。 a=0; %积分下线 b=1; %积分上线 T=[]; %用来装不同n 值所计算出的结果 for n=2:10; h=(b-a)/n; %步长 x=zeros(1,n+1); %给节点定初值 for i=1:n+1 x(i)=a+(i-1)*h; %给节点赋值 end y=x.^2; %给相应节点处的函数值赋值 t=0; for i=1:n t=t+h/2*(y(i)+y(i+1)); %利用复化梯形公式求值 end T=[T,t]; %把不同n 值所计算出的结果装入 T 中 end R=ones(1,9)*(-(b-a)/12*h.^ 2*2); %积分余项(计算误差) true=quad(@fx,0,1); %积分的真实值 A=T-true; %计算的值与真实值之差(实际误差) x=linspace(0,1,9); plot(x,A,'r',x,R,'*') %将计算误差与实际误差用图像画出来 注:由于被积函数是x.^2,它的二阶倒数为2,所以积分余项为:(-(b-a)/12*h.^ 2*2)

实 验 原 理 ( 算 法 流 程 图 或 者 含 注 释 的 源 代 码)利用复化simpson 公式的程序代码如下: 同样首先建立被积函数的函数文件: function f=fx1(x) f=x.^4; a=0; %积分下线 b=1; %积分上线 T=[]; %用来装不同n值所计算出的结果 for n=2:10 h=(b-a)/(2*n); %步长 x=zeros(1,2*n+1); %给节点定初值 for i=1:2*n+1 x(i)=a+(i-1)*h; %给节点赋值 end y=x.^4; %给相应节点处的函数值赋值 t=0; for i=1:n t=t+h/3*(y(2*i-1)+4*y(2*i)+y(2*i+1)); %利用复化simpson公式求值end T=[T,t] ; %把不同n值所计算出的结果装入T中 end R=ones(1,9)*(-(b-a)/180*((b-a)/2).^4*24) ; %积分余项(计算误差) true=quad(@fx1,0,1); %积分的真实值 A=T-true; %计算的值与真实值之差(实际误差) x=linspace(0,1,9); plot(x,A,'r',x,R,'*')

不定积分的基本公式和运算法则直接积分法

?复习1 原函数的定义。2 不定积分的定义。3 不定积分的性质。4 不定积分的几何意义。 ?引入在不定积分的定义、性质以及基本公式的基础上,我们进一步来讨论不定积分的计算 问题,不定积分的计算方法主要有三种:直接积分法、换元积分法和分部积分法。 ?讲授新课 第二节不定积分的基本公式和运算直接积分法 一基本积分公式 由于求不定积分的运算是求导运算的逆运算,所以有导数的基本公式相应地可以得到积分的基本公式如下:

以函 数的的形式。 求函数的不定积分的方法叫积分法。 例1?求下列不定积分.(1) AdX ( 2) XdX _ 1 丄+ 彳 解:(1 ) . 2 dx = x'dx C=-1C X -2 1 X 3 2 5 (2 ).XXdX = χ2 dx = 2 X 2 C J 5 此例表明,对某些分式或根式函数求不定积分时,可先把它们化为 数的积分公式求积分。 不定积分的基本运算法则 X 〉的形式,然后应用幕函

法则1 两个函数代数和的积分,等于各函数积分的代数和,即 [f (X) — g (x)]dx = f (x)dx — g (x)dx 法则1对于有限多个函数的和也成立的. 法则2 被积函数中不为零的常数因子可提到积分号外,即 kf (x)dx = k f (x)dx ( k = O ) 3 X 例 2 求(2x 1 -e )dx 解 (2x 3 1-e" )d )=2 x 3dx + dx - e x dx 1 4 X =X X —e C 。 2 注 其中每一项的不定积分虽然都应当有一个积分常数, 但是这里并不需要在每一项后面加上 一个积分常数,因为任意常数之和还是任意常数,所以这里只把它的和 C 写在末尾,以后仿此。 注 检验解放的结果是否正确,只把结果求导,看它的导数是否等于被积函数就行了。如上例 由于(-X 4 ^e X C) = 2X 3 ^e X ,所以结果是正确的。 2 三直接积分法 在求积分的问题中,可以直接按基本积分公式和两个基本性质求出结果(如上例)但有时,被 积函数常需要经过适当的恒等变形(包括代数和三角的恒等变形)再利用积分的性质和公式求出结 果,这样的积分方法叫直接积分法。 例3 求下列不定积分 解: (1)首先把被积函数^x - I 1 化为和式,然后再逐项积分得 VX 1 √X (1)J (V Σ+1)( X -^^=)dx (2)J x 2 dx )dx

工程中的计算方法课件6 数值积分

6 数值积分 如果函数)(x f 在区间],[b a 上连续,且原函数为)(x F ,则可用牛 顿―莱布尼兹公式:)()()(a F b F dx x f b a -=?计算定积分。然而很多函数 无法用牛顿―莱布尼兹公式求定积分。 一个简单被积函数,例如错误!未找到引用源。dx cx bx a ?++2,其不定积分可能很复杂,见下面的MA TLAB 实例: >> syms a b c x >> int(sqrt(a+b*x+c*x*x),x) ans=1/4*(2*c*x+b)/c*(a+b*x+c*x^2)^(1/2)+1/2/c^(1/2)*log((1/2*b+c*x )/c^(1/2)+(a+b*x+c*x^2)^(1/2))*a-1/8/c^(3/2)*log((1/2*b+c*x)/c^(1/2)+(a+b*x+c*x^2)^(1/2))*b^2 所以有必要研究简单、高效的计算定积分的方法(即数值积分方法)。数值积分的基本思想是构造一个简单函数)(x P n 来近似代替被积分函数)(x f ,然后通过求?b a n dx x P )(得?b a dx x f )(的近似值。 6.1 插值型求积公式 设?=b a dx x f I )(* ,插值型求积公式就是构造插值多项式)(x P n ,使 ?=≈b a n dx x P I I )(*。 构造以a ,b 为结点的线性插值多项式)()()(1b f a b a x a f b a b x x P --+--= ,[])()()(21)()()(1b f a f a b dx b f a b a x a f b a b x dx x P T b a b a +-=?? ? ???--+--==??称为梯形公式。

数值分析与算法变步长梯形求积法计算定积分

变步长梯形求积法计算定积分 1.原理: 变步长求积法的主要思想是利用若干小梯形的面积代替原方程的积分,当精度达不到要求时,可以通过增加点数对已有的区间再次划分,达到所需精度时即可;其中由于新的式子中有原来n点中的部分项,故可以省略一些计算,符合了计算机计算存储的思想。 主要公式:T2n=T n/2+(h/2)*Σf(x k+; 2.C++语言实现方式: 通过每次的T n值和新增的函数值点计算T2n,再通过判断|T n-T2n|的大小来判断是否达到精度要求。 3.源程序如下: #include"" #include"" double f(double x)//预先输入的待积分函数 { double s; s=log(x*x); return(s); } double ffts(double a,double b,double eps) { int n,k; double fa,fb,h,t1,p,s,x,t; fa=f(a);

fb=f(b); n=1; h=b-a; t1=h*(fa+fb)/2; p=eps+1; while(p>=eps) { s=0; for(k=0;k<=n-1;k++) { x=a+(k+*h; s=s+f(x); } t=t1/2+h*s/2; p=fabs(t1-t); cout<<"步长n为:"<

定积分计算公式和性质

定积分计算公式和性质第二节 一、变上限函数 上的任一点,于是,x在区间设函数为在区间上连续,并且设 上的定积分为 这里x既是积分上限,又是积分变量,由于定积分与积分变量无关,故可将此改为 在区x如果上限间上任意变动,则对于每一个取定的 上定义了一个以xx为自变量的函值,定积分有一个确定值与之对应,所以定积分在 上变上限函数在区间数,我们把称为函数 记为图 5-10

上一个动点,从而以线段为底的曲边梯是从几何上看,也很显然。因为X形的面积,必然随着底数端点的变化而变化,所以阴影部分的面积是端点x的函数(见图5-10) 定积分计算公式利用定义计算定积分的值是十分麻烦的,有时甚至无法计算。因此,必须寻求计算定积分的简便方法。 作直线运动,那么在时间区间我们知道:如果物体以速度上所经过的 s为路程5-11 图 的函数,那么物体从t=at到t=b另一方面,如果物体经过的路程s是时间 5-11)所经过的路程应该是(见图 即 为了求出定积分即是由导数的物理意义可知:一个原函数,因此,

上的增量,再求应先求出被积函数在区间的原函数,即可。 的一般方法:如果抛开上面物理意义,便可得出计算定积分 ,在闭区间上连续,是的一个原函数,即设函数则 这个公式叫做牛顿-莱布尼兹公式。为了使用方便,将公式写成 莱布尼兹公式通常也叫做微积分基本公式。它表示一个函数定积分等于这个函牛顿-提供它揭示了定积分和不定积分的内在联系,数的原函数在积分上、下限处函数值之差。了计算定积分有效而简便的方法,从而使定积分得到了广泛的应用。 例1 计算 的一个原函数所以因为是

所围成y=0及x=、x=0和直线求曲线2 例 A(5-12)

数值积分-计算方法

数值积分 第1章 理论依据 逼近论——构造一个简单函数p(x)近似表示f(x),然后对 p(x)求积分得到 f(x)的积分的近似值。基于插值原理,推导出数值积分的基本公式。 §1插值求积公式 为了用数值方法求 b a I(f)=f(x)dx ? ,对被积函数f(x)在给定的n+1个节点 上作Lagrange 插值,用插值函数Pn(x)代替f(x),就可用I (Pn(x))构造求积公式,近似地计算定积分I(f(x))。 §2Newton —Cotes 公式 §2.1Newton —Cotes 公式的推导 当§1.1插值求积公式的插值节点为等距节点时,就得到Newton —Cotes 公式。 将区间[a,b]n 等分, b a h n -= ,n+1个节点为 x k =a+kh (k=0,1,…,n) 在节点上对f(x)的Lagrange 插值多项式是: 0()()() n n j n k k j k j j k x x p x f x x x ==≠-=-∑∏ 用P n (x)代替f(x)构造求积公式: 0()()()n n b b j n n k a a k j k j j k x x I p x dx f x dx x x ==≠-==-∑∏?? 记,(k=0,1,…,n) 作代换x=a+th 带入上式,变为: () 00()n n n n k k j j k b a t j A dt b a C n k j =≠? --==--∏?

其中: (k=0,1,…,n) (1-1) 这个积分是有理多项式积分,它与被积函数f(x)和区间[a,b]无关。只要确定n 就能计算出系数。 于是得到称为Newton —Cotes 公式的求积公式: ()0 ()n n n k k k I b a C y ==-∑ (1-2) 其中称为Newton —Cotes 系数。如表1所示。 §2.2Newton —Cotes 公式误差和稳定性 在积分公式中用插值多项式Pn(x)代替f(x)的插值误差是 (1)0 ()()()()()(1)!n n n n k k f R x f x p x x x n ξ+==-=-+∏ 因此,Newton —Cotes 公式的截断误差是 (1)0 ()()()(1)!n n b k a k f R f x x dx n ξ+==-+∏? (1-3) 讨论舍入误差对计算结果产生的影响,设(1-2)式近似计算()b a f x dx ? 其中计算函数值f(xn)有误差值(k=0,1,2, …,n )。在(1-2)式中令 ? 设计算无误差,舍入误差也忽略,则,由(1-2)式 计算时引式的误差为 () ()()() 0000()[()(())()(...) n n n n n n n k k k k n n n k k e b a C f x C f x b a C C εεε===--+=--++∑∑ 如果皆为正,并设,则 ,故 有

相关文档
相关文档 最新文档