文档库 最新最全的文档下载
当前位置:文档库 › 几种定积分的数值计算方法

几种定积分的数值计算方法

几种定积分的数值计算方法
几种定积分的数值计算方法

几种定积分的数值计算方法

摘要:本文归纳了定积分近似计算中的几种常用方法,并着重分析了各种数值方法的计算思想,结合实例,对其优劣性作了简要说明.

关键词:数值方法;矩形法;梯形法;抛物线法;类矩形;类梯形

Several Numerical Methods for Solving Definite Integrals Abstract:Several common methods for solving definite integrals are summarized in this paper. Meantime, the idea for each method is emphatically analyzed. Afterwards, a numerical example is illustrated to show that the advantages and disadvantages of these methods.

Keywords:Numerical methods, Rectangle method, Trapezoidal method, Parabolic method, Class rectangle, Class trapezoid

1. 引言

在科学研究和实际生产中,经常遇到求积分的计算问题,由积分学知识可知,若函数

)(x f 在区间],[b a 连续且原函数为)(x F ,则可用牛顿-莱布尼茨公式

求得积分.这个公式不论在理论上还是在解决实际问题中都起到了很大的作用. 在科学研究和实际生产中,经常遇到求积分的计算问题,由积分学知识可知,若函数)(x f 在区间],[b a 连续且原函数为)(x F ,则可用牛顿-莱布尼茨公式

求得积分.这个公式不论在理论上还是在解决实际问题中都起到了很大的作用.另外,对于求导数也有一系列的求导公式和求导法则.但是,在实际问题中遇到求积分的计算,经常会有这样的情况:

(1)函数)(x f 的原函数无法用初等函数给出.例如积分 dx e x ?-1

02

, ?

1

0sin dx x

x

等,从而无法用牛顿-莱布尼茨公式计算出积分。

(2)函数)(x f 使用表格形式或图形给出,因而无法直接用积分公式或导数公式。 (3)函数)(x f 的原函数或导数值虽然能够求出,但形式过于复杂,不便使用. 由此可见,利用原函数求积分或利用求导法则求导数有它的局限性,所以就有了求解数值积分的很多方法,目前有牛顿—柯特斯公式法,矩形法,梯形法,抛物线法,随机投点法,平均值法,高斯型求积法,龙贝格积分法,李查逊外推算法等等,本文对其中部分方法作一个比较.

2.几何意义上的数值算法

s 在几何上表示以],[b a 为底,以曲线)(x f y =为曲边的曲边梯形的面积A ,因此,计

算s 的近似值也就是A 的近似值,如图1所示.沿着积分区间],[b a ,可以把大的曲边梯形分割成许多小的曲边梯形面积之和.常采用均匀分割,假设],[b a 上等分n 的小区间

,x 1-i h x i +=b x a x n ==,0,其中n

a

b h -=

表示小区间的长度. 2.1矩形法

矩形法就是用小矩形面积近似代替各个小曲边梯形面积,从面积得到S 的近似值.若

取小区间左端点的函数值为小矩形的高,如图1中所示,则∑=-=n

i i x f n a b A 1

).(

图1 分割曲边矩形近似积分

2.2 梯形法

梯形法则用小直边梯形的面积近似代替小曲边梯形面积,见图2,从而得到S 的近似

值,即??

?

???++-=∑-=11)(2)()(n i i x f b f a f n a b A .

图2 分割曲边梯形近似积分

2.3抛物线法

抛物线法以抛物线为曲边梯形的曲边,曲边梯形的面积近似代替小曲边梯形的面积,如图3所示.

图3 抛物线积分

210,,x x x 对应的曲线上的点210,,P P P 可以唯一地确定一条抛物线c bx ax y ++=2,这

条抛物线将作将代替从0x 至2x 的曲线段,此时积分可以转化为对抛物线积分,而抛物线的积分可以利用牛顿—莱布尼兹公式.第1、2个小区边梯形的面积:

上面利用了条件210,,P P P 是抛物线上的点以及等式1022x x x =+.同理可证: ……

所以,})(2)(4)]()({[1

2/1

22/1

1232/21∑∑-==--+++=

+++≈n i i n i i n

a

b n x f x f b f a f A A A S

3.概率意义上的数值算法

概率算法是定积分问题数值求解的一类常用方法,其设计思想简单,易于实现 .尽管算法要耗费较多计算时间,但是往往能得到问题的近似解,并且近似程度能随计算时间的增加而不断提高.概率算法可用于计算定积分的近似值.

3.1平均值法

考虑定积分?=b

a dx x f I )(的近似计算,其中)(x f 在[]

b a ,内可积,用平均值法计算该积

分,首先随机产生n 个独立的随机变量,且服从在[]b a ,上均匀分布,即),2,1(n i i =ξ;其次,

计算I 的近似值I ,∑=-=n

i i f n a b I 1

)(ξ.

由中心极限定理知,若{}),2,1(n i i =ξ相互独立、同分布,且数学期望及标准差0>σ存在,则当n 充分大时,随机变量n

I

I Y σ

-=

渐近服从正态分布)1,0(N ,即对任意的0>αt ,

这表明,用平均值法计算定积分的收敛速度较慢,在概率意义下的误差阶仅为

)1(

n O .

3.2“类矩形”Monte-Carlo 方法

由于平均值法计算定积分的收敛速度较慢,且在概率意义下的误差阶仅为)1(

n O ,

就有对平均值法的改进,“类矩形” Monte-Carlo 方法,改进过程为:先将积分区间

[]b a ,n 等分, 随机产生n 个相互独立且服从[]1,0上均匀分布的随机变量序列

),2,1(},{n i i =ξ;然后由这n 个随机点类似于矩形公式构造计算公式,即作变换

将}{i ξ映射到子区间

最后,计算I 的近似值I ~,∑=-=n

i i f n a b I 1

)(~η. 下面用两个命题证明“类矩阵”方法的可行性. 命题1 设[][]

[]有记,,,)(max ,,)(0,1b a x x f M b a C x f b a x ∈?'=∈∈

证明:由Lagrange 中值定理得 上式两边在[]b a ,积分,得 由)(x f '得连续性,得 命题2 设[],,,)(1n

a b h b a C x f -=

∈ I ~与I 如上,则I ~与I 的误差满足)1(~

n

O I I =-.

证明: ?

∑=--=-b

a

n

i i f n a b dx x f I I 1

)()(~

η

由命题1得, 于是 即

)1(~

n

O I I =-.

3.3“类梯形”Monte-Carlo 方法

再给出平均值法的另一种改进.首先将[]b a ,n 等分,再在每个子区间上随机产生n 2个相互独立且服从]1,0[上均匀分布的随机变量序列,并两两分组,得

),,3,2,1(},,{212n i i i =-ξξ;做变换

将12-i ξ,i 2ξ分别映射到子区间

然后在每个等分子区间上)](),(1[a b n

i

a a

b n i a -+--+利用i i 212,ηη-两点类似于梯形公式构造“类梯形”公式 近类似

?

+-+ih a h

i a dx x f )1()(.

最后计算I 的近似值I ~~,∑=-+-=n i i i f f n a b I 12122

)

()(~~ηη. 下面证明“类梯形”方法可行性的两个命题:

命题3 设()[]2,f x a b ∈C ,记[]

(),max ''x a b f x ∈M=,则()1212,x x a x x ?≤≤,有

()()()()3

12212

b

a

b a b a

f x dx f x f x M ---+≤????

?

. 证明: 过()()()()1122,,,x f x x f x 两点的直线方程为 所以 ()(),1,2.i i P x f x i ==令

12()()()()()()R x f x P x k x x x x x =-=-- (1)

将x 看成[],a b 上的一个定点,构造辅助函数

由于12()()()0x x x φφφ===,由Rolle 中值定理,'()t φ在(),a b 内至少有两个零点,对

'()t φ再用Rolle 中值定理,知''()t φ在(),a b 内至少有一个零点,即存在(),a b ξ∈,使''()''()2()0f k x φξξ=-=,所以''()

()2

f k x ξ=.将它代入(1)式,并两段同时从a 到b 积分,得 记

不妨设12a x x b <<<,则将12(,)L x x 分别对求偏导数,得 解得唯一驻点:

故当12a x x b ≤<≤时, 结论成立.

命题4 [],,)(2b a C x f ∈设

I 与I ~~如上,则I 与I ~~ 的误差满足:)1(~~

2n

O I I =-.

证明: 由命题3,得 于是 即

)1(~~

2n

O I I =-.

4.例题

对于积分dx 14

1

02

?

+x ,该积分精确值为3.1416.下面分别给出本文所涉及计算方法对它的计算结果:

4.1用三种基于几何意义的算法:矩形算法,梯形法,抛物线法作比较,结果如表1:

表1 几何意义算法的比较

分割数

算法 近似值

误差

矩形

梯形 3.1399398 抛物线 3.1415569

矩形

3.1415528 梯形 3.1416496

抛物线

4.2用平均值法,及其改进“类矩形”Monte-Carlo 方法, “类梯形”Monte-Carlo 方法计算结果如表2:

表2 概率意义算法的比较

节点数

算法 近似值

误差

平均值法

5.结语

本文介绍的几种求

积公式各有特点:梯形求积公式和抛物线法求积公式是低精度公式,但对于光滑性较差的被积函数有时比用高精度方法能得到更好的效果,尤其是梯形求积公式.当被积函数为周期函数时,效果更为突出.由表1分析,一般情形下,三种基于几何的算法中矩形算法的误差最大,梯形法次之,抛物线法最高.抛物线法的积分精度远远高于另外两种方法,特别是在积分区间分割份数较小的情况下,仍然保持较高的近似程度.

“类矩形”Monte-Carlo 方法; “类梯形”Monte-Carlo 方法是平均值法的改进,提高了平均值法的精确度.通过表2可以看出,直接用平均值法计算定积分,410节点的计算已经很可观了,但计算结果只有2位有效数字,而选取同样的节点数,计算量几乎不变,类矩阵法就达到了4位有效数字,类梯形法则达到了8位有效数字,恰好与上述定理中误差阶的估计是一致的,从而也验证了“类矩形”Monte-Carlo 方法和”类梯

形”Monte-Carlo 方法的高效性.从表2中也可以看出随着节点数的增大,积分精度会不断提高,当然计算复杂度就会增加.

参考文献

[1] 费祥历,刘奋,马铭福.高等数学(第2版上册)[M].山东:石油大学出版社,2008: 211-287. [2] 徐萃薇,孙绳武.计算方法引论(第三版).北京:高等教育出版社,2007. [3] 王晓东.计算机算法分析与设计[M].北京:电子工业出版社,2001:197-228. [4] 徐钟济.蒙特卡罗方法[M].上海:上海科学技术出版社,1985. [5] 张平文,李铁军,数值分析[M].北京:北京大学出版社,2007.

[6] 阮宗利.计算一元定积分的若干数值算法及其比较[J].中国石油大学学报(科技教育),2010:182-184. [7] 朱长青. 计算方法及其应用.北京:科学出版社,2006.

[8] 张威,刘志军,李艳红.数值分析与科学计算.北京:清华大学出版社,200,5 [9] 明万元,郑华盛.求解数值积分的两类新的Monte-Carlo 方法[J].南昌航空大学学

报,2010,40(10):180-186.

[10]刘长虹,关永亮等.蒙特卡洛在数值积分上的应用[J].上海工程技术大学学报,2010,24(1):43-46. [11]王岩.Monte-Carlo 方法应用研究[J].云南大学学报(自然科学版),2006,28(SI):23-26.

类矩形法 3.1416903

类梯形法

定积分的简单应用求体积

定积分的简单应用求体 积 Document number:BGCG-0857-BTDO-0089-2022

定积分的简单应用(二) 复习: (1) 求曲边梯形面积的方法是什么 (2) 定积分的几何意义是什么 (3) 微积分基本定理是什么 引入: 我们前面学习了定积分的简单应用——求面积。求体积问题也是定积分的一个重要应用。下面我们介绍一些简单旋转几何体体积的求法。 1. 简单几何体的体积计算 问题:设由连续曲线()y f x =和直线x a =,x b =及x 轴围成的平面图形(如图甲) 绕x 轴旋转一周所得旋转体的体积为V ,如何求V 分析: 在区间[,]a b 内插入1n -个分点,使0121n n a x x x x x b -=<<<<<=,把曲线()y f x =(a x b ≤≤)分割成n 个垂直于x 轴的“小长条”,如图甲所示。设第i 个“小长条”的宽是1i i i x x x -?=-,1,2,,i n =。这个“小长条”绕x 轴旋转一周就得到一个厚度是i x ?的小圆片,如图乙所示。当i x ?很小时,第i 个小圆片近似于底面半径为()i i y f x =的小圆柱。因此,第i 个小圆台的体积i V 近似为2()i i i V f x x π=? 该几何体的体积V 等于所有小圆柱的体积和:

2221122[()()()]n n V f x x f x x f x x π≈?+?+ +? 这个问题就是积分问题,则有: 22()()b b a a V f x dx f x dx ππ==?? 归纳: 设旋转体是由连续曲线()y f x =和直线x a =,x b =及x 轴围成的曲边梯形绕x 轴旋转而成,则所得到的几何体的体积为2()b a V f x dx π=? 2. 利用定积分求旋转体的体积 (1) 找准被旋转的平面图形,它的边界曲线直接决定被积函数 (2) 分清端点 (3) 确定几何体的构造 (4) 利用定积分进行体积计算 3. 一个以y 轴为中心轴的旋转体的体积 若求绕y 轴旋转得到的旋转体的体积,则积分变量变为y ,其公式为 2()b a V g y dy π=? 类型一:求简单几何体的体积 例1:给定一个边长为a 的正方形,绕其一边旋转一周,得到一个几何体,求它的体积 思路: 由旋转体体积的求法知,先建立平面直角坐标系,写出正方形旋转轴对边的方程,确定积分上、下限,确定被积函数即可求出体积。 解:以正方形的一个顶点为原点,两边所在的直线为,x y 轴建立如图所示的平面直角 坐标系,如图:BC y a =。则该旋转体即为圆柱的体积为: 22300|a a V a dx a x a πππ=?==?

几种定积分的数值计算方法

几种定积分的数值计算方法 摘要:本文归纳了定积分近似计算中的几种常用方法,并着重分析了各种数值方法的计 算思想,结合实例,对其优劣性作了简要说明. 关键词:数值方法;矩形法;梯形法;抛物线法;类矩形;类梯形 Several Numerical Methods for Solving Definite Integrals Abstract:Several common methods for solving definite integrals are summarized in this paper. Meantime, the idea for each method is emphatically analyzed. Afterwards, a numerical example is illustrated to show that the advantages and disadvantages of these methods. Keywords:Numerical methods, Rectangle method, Trapezoidal method, Parabolic method, Class rectangle, Class trapezoid

1. 引言 在科学研究和实际生产中,经常遇到求积分的计算问题,由积分学知识可知,若函数 )(x f 在区间],[b a 连续且原函数为)(x F ,则可用牛顿-莱布尼茨公式 ?-=b a a F b F x f ) ()()( 求得积分.这个公式不论在理论上还是在解决实际问题中都起到了很大的作用. 在科学研究和实际生产中,经常遇到求积分的计算问题,由积分学知识可知,若函数)(x f 在区间],[b a 连续且原函数为)(x F ,则可用牛顿-莱布尼茨公式 ?-=b a a F b F x f ) ()()( 求得积分.这个公式不论在理论上还是在解决实际问题中都起到了很大的作用.另外,对于求导数也有一系列的求导公式和求导法则.但是,在实际问题中遇到求积分的计算,经常会有这样的情况: (1)函数)(x f 的原函数无法用初等函数给出.例如积分 dx e x ?-1 02 , ? 1 sin dx x x 等,从而无法用牛顿-莱布尼茨公式计算出积分。 (2)函数)(x f 使用表格形式或图形给出,因而无法直接用积分公式或导数公式。 (3)函数)(x f 的原函数或导数值虽然能够求出,但形式过于复杂,不便使用. 由此可见,利用原函数求积分或利用求导法则求导数有它的局限性,所以就有了求解数值积分的很多方法,目前有牛顿—柯特斯公式法,矩形法,梯形法,抛物线法,随机投点法,平均值法,高斯型求积法,龙贝格积分法,李查逊外推算法等等,本文对其中部分方法作一个比较. 2.几何意义上的数值算法 s 在几何上表示以],[b a 为底,以曲线)(x f y =为曲边的曲边梯形的面积A ,因此,计 算s 的近似值也就是A 的近似值,如图1所示.沿着积分区间],[b a ,可以把大的曲边梯形分割成许多小的曲边梯形面积之和.常采用均匀分割,假设],[b a 上等分n 的小区间 ,x 1-i h x i +=b x a x n ==,0,其中n a b h -= 表示小区间的长度. 2.1矩形法

数值计算方法课程设计

重庆邮电大学 数学与应用数学 专业 《数值计算方法》课程设计 姓名: 李金徽 王莹 刘姝楠 班级: 1131001 1131002 1131002 学号: 2010213542 2010213570 2010213571 设计时间: 2012-6-4 指导教师: 朱伟

一、课程设计目的 在科学计算与工程设计中,我们常会遇到求解线性方程组的问题,对于系数矩阵为低阶稠密矩阵的线性方程组,可以用直接法进行消元,而对于系数矩阵为大型稀疏矩阵的情况,直接法就显得比较繁琐,而迭代法比较适用。比较常用的迭代法有Jacobi 迭代与Gauss - seidel 迭代。本文基于两种方法设计算法,并比较他们的优劣。 二、课程设计内容 给出Jacobi 迭代法和Gauss-Seidel 迭代法求解线性方程组的算法思想和MATLAB 程序实现,并对比分析这两种算法的优劣。 三、问题的分析(含涉及的理论知识、算法等) Jacobi 迭代法 方程组迭代法的基本思想和求根的迭代法思想类似,即对于线性 方程组Ax = b( 其中n n n R b R R A ∈?∈,),即方程组 )1(2211222221211 1212111?? ???? ?=+?++??=+?++=+?++n n nn n n n n n n b x a x a x a b x a x a x a b x a x a x a 将系数矩阵A 写为 )2(000000 21122 12122 11U L D a a a a a a a a a A n n n n nn --≡??? ?? ? ? ??---- ??????? ??----??????? ??= 若选取D M =,则U L A M N +=-=,方程组)1(转化为等价方程组 b x U L Dx ++=)(

浅谈定积分的应用

浅谈定积分的应用 **** **** (天津商业大学经济学院,中国天津 300134) 摘要:定积分在我们日常生活和学习中有很多的用处,本文阐述了定积分的定义和几何意义,并通过举例分析了定积分在高等数学、物理学、经济学等领域的应用条件及其应用场合,通过分析可以看出利用定积分求解一些实际问题是非常方便及其准确的。 关键词 定积分 定积分的应用 求旋转体体积 变力做功 The Application of Definite Integral **** **** (Tianjin University of Commerce ,Tianjin ,300134,China) Abstract:Definite integral in our daily life and learning have a lot of use, this paper expounds the definitio n of definite integral and geometric meaning, and through the example analysis of the definite integral in t he higher mathematics, physics, economics, and other fields of application condition and its applications, t hrough the analysis can be seen that the use of definite integral to solve some practical problems is very co nvenient and accurate. Keywords: definite integral, the application of definite integral, strives for the body of revolution, volume change forces work 0、前言 众所周知,微积分的两大部分是微分与积分。一元函数情况下,求微分实际上是求一个已知函数的导数,而积分是已知一个函数的导数,求原函数,所以,微分与积分互为逆运算。在我们日常生活当中,定积分的应用是十分广泛的。定积分作为人类智慧最伟大的成就之一,既可以作为基础学科来研究,也可以作为一个解决问题的方法来使用。 微积分是与应用联系着并发展起来的。定积分渗透到我们生活中的方方面面,推动了天文学、物理学、化学、生物学、工程学、经济学等自然科学、社会科学及应用科学各个分支的发展。并在这些学科中有越来越广泛的应用,微积分是一门历史悠久而又不断发展进步的学科,历史上许多著名的数学家把毕生的心血投入到微积分的研究中,从生产实际的角度上看,应用又是重中之重,随着数学的不断前进,微积分的应用也呈现前所未有的发展[1-5]。本文将举例介绍定积分在的我们日常学习和生活当中的应用。 1定积分的基本定理和几何意义 1.1、定积分的定义 定积分就是求函数)(x f 在区间[]b a ,中图线下包围的面积。即由0=y ,a x =, b x =,()x f y =所围成图形的面积。 定积分与不定积分看起来风马牛不相及,但是由于一个数学上重要的理论的支撑,使得它们有了本质的密切关系。把一个图形无限细分再累加,这似乎是不可能的事情,但是由于这个理论,可以转化为计算积分。这个重要理论就是大名鼎鼎的牛顿-莱布尼兹公式,它的容是: 如果)(x f 是[]b a ,上的连续函数,并且有())(' x f X F =,那么

§1.7定积分的简单应用

定积分的简单应用 一:教学目标 知识与技能目标 1、 进一步让学生深刻体会“分割、以直代曲、求和、逼近”求曲边梯形的思想方法; 2、 让学生深刻理解定积分的几何意义以及微积分的基本定理; 3、 初步掌握利用定积分求曲边梯形的几种常见题型及方法; 4、 体会定积分在物理中应用(变速直线运动的路程、变力沿直线做功)。 过程与方法 情感态度与价值观 二:教学重难点 重点 曲边梯形面积的求法 难点 定积分求体积以及在物理中应用 三:教学过程: 1、复习 1、求曲边梯形的思想方法是什么? 2、定积分的几何意义是什么? 3、微积分基本定理是什么? 2、定积分的应用 (一)利用定积分求平面图形的面积 例1.计算由两条抛物线2 y x =和2 y x =所围成的图形的面积. 【分析】两条抛物线所围成的图形的面积,可以由以两条曲线所对应的曲边梯形的面积的差得到。 解:2 01y x x x y x ?=??==? =??及,所以两曲线的交点为 (0,0)、(1,1),面积S=1 1 20 xdx x dx = -? ?,所以 ?1 2 0S =(x -x )dx 321 3 023 3x x ??=-????=13 【点评】在直角坐标系下平面图形的面积的四个步骤: 1.作图象;2.求交点;3.用定积分表示所求的面积;4.微积分基本定理求定积分。 2 x y =y x A B C D O

巩固练习 计算由曲线36y x x =-和2 y x =所围成的图形的面积. 例2.计算由直线4y x =-,曲线2y x = 以及x 轴所围图形的面积S. 分析:首先画出草图(图1.7 一2 ) ,并设法把所求图形的面积问题转化为求曲边梯 形的面积问题.与例 1 不同的是,还需把所求图形的面积分成两部分S 1和S 2.为了确定出被积函数和积分的上、下限,需要求出直线4y x =-与曲线2y x =的交点的横坐标, 直线4y x =-与 x 轴的交点. 解:作出直线4y x =-,曲线2y x =的草图,所求面积为图1. 7一2 阴影部分的 面积. 解方程组2, 4 y x y x ?=?? =-?? 得直线4y x =-与曲线2y x = 的交点的坐标为(8,4) . 直线4y x =-与x 轴的交点为(4,0). 因此,所求图形的面积为S=S 1+S 2 4 8 8 4 4 2[2(4)]xdx xdx x dx =+--? ? ? 334 82822044 2222140||(4)|23 x x x =+-=. 由上面的例题可以发现,在利用定积分求平面图形的面积时,一般要先画出它的草图, 再借助图形直观确定出被积函数以及积分的上、下限. 例3.求曲线], [sin 320π∈=x x y 与直线,,3 20π==x x x 轴所围成的图形面积。

数值计算方法课程报告

课程报告 课程名称______《数值计算》 __ 学生学院_____机电工程学院___ 专业班级_____微电子(1)班____ 学号________ 学生姓名_______________ 指导教师_____ ________ XXXX年XX月XX日

姓 名: 线 学 号 : 订 装专 业:学院: 广东工业大学考试试卷( A ) 课程名称: 数值计算试卷满分100 分考试时间: 2015 年 12 月 26 日(第 17 周星期六) 题号一二三四五六七八九十总分 评卷得分 评卷签名 复核得分 复核签名 “数值计算”考试要求 “数值计算”考试以开卷形式进行。在“数值计算”课程考试日(2015 年12 月 19 日,第 12 周星期五)考试时间,在考试教室领取试题,在 2015 年12 月 26 日(第 17 周星期六)进行答辩。不参加答辩者将取消考试成绩。 “数值计算”考试结果要求独立在计算机上完成,可使用Matlab或 C 程序编程实现。考试结果将以报告书形式提交,内容包括对问题描述、计算程序以及算例、计算结果、分析组成。计算程序要求具有通用性,能够处理异常情况,可以输入问题、算法参数、算例及初始值,在计算过程中显示当前计算状态、计算完成后显示计算结果。上述内容将作为试卷成绩的主要评定依据。特别提醒,不得使用教师在讲课和实验时的范例作为考试结果。报告书具体格式参考毕业设计手册。 以考生学号命名的文件夹存放程序及报告书电子版,以班级为单位刻录在一张光盘中,与打印版报告书一起由班长和学习委员一起上交任课教师。 数值计算课程总成绩将由试卷成绩(70%)、平时成绩(30%)组成。

定积分的简单应用(6)

§1.7 定积分的简单应用(一) 一:教学目标 1、 进一步让学生深刻体会“分割、以直代曲、求和、逼近”求曲边梯形的思想方法; 2、 让学生深刻理解定积分的几何意义以及微积分的基本定理; 3、 初步掌握利用定积分求曲边梯形的几种常见题型及方法; 4、 体会定积分在物理中应用(变速直线运动的路程、变力沿直线做功)。 二:教学重难点 重点 曲边梯形面积的求法 难点 定积分求体积以及在物理中应用 三:教学过程: 定积分的应用 (一)利用定积分求平面图形的面积 例1.计算由两条抛物线2 y x =和2 y x =所围成的图形的面积. 解:201y x x x y x ?=??==?=??及,所以两曲线的交点为(0,0)、(1,1),面积 S=1 1 20 xdx x dx = -? ?,所以 ?1 20S =(x -x )dx 32 1 3023 3x x ??=-????=13 例2.计算由直线4y x =-,曲线2y x =以及x 轴所围图形的面积S. 解:作出直线4y x =-,曲线2y x =的草图,所求面积为图阴影部分的面积. 解方程组2, 4 y x y x ?=?? =-?? 得直线4y x =-与曲线2y x = 的交点的坐标为(8,4) . 直线4y x =-与x 轴的交点为(4,0). 因此,所求图形的面积为S=S 1+S 2 4 8 8 4 4 2[2(4)]xdx xdx x dx =+--? ? ? 33482822044 2222140||(4)|3323 x x x =+-=. 例3.求曲线],[sin 3 20π ∈=x x y 与直线,,3 20π ==x x x 轴所围成的图形面积。 答案: 2 33 2320 = -=? ππo x xdx S |cos sin = 练习 1、求直线32+=x y 与抛物线2x y =所围成的图形面积。 答案:3 32 33323132 23 1= -+=--? |))x x x dx x x S (-+(= 2、求由抛物线342-+-=x x y 及其在点M (0,-3) 2 x y =y x = A B C D O

太原理工大学数值计算方法实验报告

本科实验报告 课程名称:计算机数值方法 实验项目:方程求根、线性方程组的直接解 法、线性方程组的迭代解法、代数插值和最 小二乘拟合多项式 实验地点:行勉楼 专业班级: ******** 学号: ********* 学生姓名: ******** 指导教师:李誌,崔冬华 2016年 4 月 8 日

y = x*x*x + 4 * x*x - 10; return y; } float Calculate(float a,float b) { c = (a + b) / 2; n++; if (GetY(c) == 0 || ((b - a) / 2) < 0.000005) { cout << c <<"为方程的解"<< endl; return 0; } if (GetY(a)*GetY(c) < 0) { return Calculate(a,c); } if (GetY(c)*GetY(b)< 0) { return Calculate(c,b); } } }; int main() { cout << "方程组为:f(x)=x^3+4x^2-10=0" << endl; float a, b; Text text; text.Getab(); a = text.a; b = text.b; text.Calculate(a, b); return 0; } 2.割线法: // 方程求根(割线法).cpp : 定义控制台应用程序的入口点。// #include "stdafx.h" #include"iostream"

心得体会 使用不同的方法,可以不同程度的求得方程的解,通过二分法计算的程序实现更加了解二分法的特点,二分法过程简单,程序容易实现,但该方法收敛比较慢一般用于求根的初始近似值,不同的方法速度不同。面对一个复杂的问题,要学会简化处理步骤,分步骤一点一点的循序处理,只有这样,才能高效的解决一个复杂问题。

数值计算方法学习心得

数值计算方法学习心得 ------一个代码的方法是很重要,一个算法的思想也很重要,但 在我看来,更重要的是解决问题的方法,就像爱因斯坦说的内容比 思维本身更重要。 我上去讲的那次其实做了挺充分的准备,程序的运行,pdf文档,算法公式的推导,程序伪代码,不过有一点缺陷的地方,很多细节 没有讲的很清楚吧,下来之后也是更清楚了这个问题。 然后一学期下来,总的来说,看其他同学的分享,我也学习到 许多东西,并非只是代码的方法,更多的是章胜同学的口才,攀忠 的排版,小冯的深入挖掘…都是对我而言比算法更加值得珍惜的东西,又骄傲地回想一下,曾同为一个项目组的我们也更加感到做项 目对自己发展的巨大帮助了。 同时从这些次的实验中我发现以前学到的很多知识都非常有用。 比如说,以前做项目的时候,项目导师一直要求对于要上传的 文件尽量用pdf格式,不管是ppt还是文档,这便算是对产权的一种 保护。 再比如代码分享,最基础的要求便是——其他人拿到你的代码 也能运行出来,其次是代码分享的规范性,像我们可以用轻量级Ubuntu Pastebin,以前做过一小段时间acm,集训队里对于代码的分享都是推荐用这个,像数值计算实验我觉得用这个也差不多了,其 次项目级代码还是推荐github(被微软收购了),它的又是可能更 多在于个人代码平台的搭建,当然像readme文档及必要的一些数据 集放在上面都更方便一些。

然后在实验中,发现debug能力的重要性,对于代码错误点的 正确分析,以及一些与他人交流的“正规”途径,讨论算法可能出 错的地方以及要注意的细节等,比如acm比赛都是以三人为一小组,讨论过后,讲了一遍会发现自己对算法理解更加深刻。 然后学习算法,做项目做算法一般的正常流程是看论文,尽量 看英文文献,一般就是第一手资料,然后根据论文对算法的描述, 就是如同课上的流程一样,对算法进一步理解,然后进行复现,最 后就是尝试自己改进。比如知网查询牛顿法相关论文,会找到大量 可以参考的文献。 最后的最后,想说一下,计算机专业的同学看这个数值分析, 不一定行云流水,但肯定不至于看不懂写不出来,所以我们还是要 提高自己的核心竞争力,就是利用我们的优势,对于这种算法方面 的编程,至少比他们用的更加熟练,至少面对一个问题,我们能思 考出对应问题的最佳算法是哪一个更合适解决问题。 附记: 对课程的一些小建议: 1. debug的能力不容忽视,比如给一个关于代码实现已知错误的代码给同学们,让同学们自己思考一下,然后分享各自的debug方法,一步一步的去修改代码,最后集全班的力量完成代码的debug,这往往更能提升同学们的代码能力。 2. 课堂上的效率其实是有点低的,可能会给学生带来一些负反馈,降低学习热情。 3. 总的来说还是从这门课程中学到许多东西。 数值分析学习心得体会

求定积分的四种方法

定积分的四种求法 定积分是新课标的新增内容,其中定积分的计算是重点考查的考点之一,下面例题分析定积分计算的几种常用方法. 一、定义法 例1 用定义法求 2 30 x dx ? 的值. 分析:用定义法求积分可分四步:分割,以曲代直,作和,求极限. 解:(1)分割:把区间[0,2] 分成n 等分,则△x = 2 n . (2)近似代替:△3 2()i i i S f x x n ξ?? =?=? ??? (3)求和:3 3 111222n n n i i i i i i S x n n n ===?????? ?≈?=? ? ? ????? ??∑∑∑. (4)取极限:S=333 2242lim n n n n n n →∞?? ?????? +++?? ? ? ? ???? ?????? L =4433322 44221lim 12lim[(1)]4n n n n n n n →∞→∞??+++=?+??L =22 4(21) lim n n n n →∞++==4. ∴ 2 30 x dx ? =4.. 评注:本题运用微积分的基本定理法来求非常简单.一般地,其它方法计算定积分比较困难时,用定义法,应注意其四个步骤中的关键环节是求和,体现的思想方法是先分后合,以直代曲. 二、微积分基本定理法

例2 求定积分 2 21 (21)x x dx ++? 的值. 分析:可先求出原函数,再利用微积分基本定理求解. 解:函数y =2 21x x ++的一个原函数是y =3 23 x x x ++. 所以.2 2 1 (21)x x dx ++? =322 1()|3x x x ++=81421133????++-++ ? ????? =193. 评注:运用微积分基本定理计算定积分的关键是找到被积函数的原函数. 三、几何意义法 例3 求定积 分 1 1 dx -? 的值. 分析:利用定积分的意义是指曲边梯形的面积,只要作出图形就可求出. 解 :1 1dx -?表示圆x 2+y 2=1在第一、 二象限的上半圆的面积. 因为2 S π =半圆,又在x 轴上方. 所 以 1 1 dx -? = 2 π . 评注:利用定积分的几何意义解题,被积函数图形易画,面积较易求出. 四、性质法 例4 求下列定积分: ⑴ 44 tan xdx π π-?;⑵22 sin 1 x x dx x π π - +?. 分析:对于⑴用微积分的基本定理可以解决,而⑵的原函数很 难

定积分的几个简单应用

定积分的几个简单应用 一、定积分在经济生活中的应用 在经济管理中,由边际函数求总函数,一般采用不定积分来解决,或者求一个变上限的定积分;如果求总函数在某个范围的改变量,则采用定积分来解决. 例1 某商场某品牌衬衫的需求函数是q p 15.065-=,如果价格定在每件50元,试计算消费者剩余. 解 由p 50=,q p 15.065-=,得10000=q ,于是 dq q )5015.065(10000 0--? 10000023 ) 1.015(q q -= 50000=, 所求消费者剩余为50000元. 例2 已知某产品总产量的变化率为t t Q 1240)(+='(件/天),求从第5天到第10天产品的总产量. 解 所求的总产量为 ??+='=10 5105)1240()(dt t dt t Q Q 1052) 640(t t +=650=(件). 二、用定积分求极限 例1 求极限 ∑=∞→n k n n k 123 lim . 解 n n n n n n n n k n k 12111123 +++=∑= )21(1n n n n n +++= . 上式是函数[]1,0)(在x x f =的特殊积分和.它是把[]1,0分成n 等分,i ξ取?? ????-n i n i ,1的右端点构成的积分和.因为函数[]1,0)(在x x f =可积,由定积分定义,有

∑=∞→n k n n k 12 3lim ??????+++=∞→)21(1lim n n n n n n 3210==?dx x . 例2 求极限 2213lim k n n k n k n -∑ =∞→. 解 212213)(11n k n k n k n n k n k n k -?=-∑∑==. 上式是函数[]1,01)(2在x x x f -=的特殊积分和.它是把区间[]1,0分成n 等分,i ξ取?? ????-n i n i ,1的右端点构成的积分和.因为函数21)(x x x f -=在[]1,0可积,由定积分定义,有 2213lim k n n k n k n -∑=∞→3 1)1(311102321 02=??????--=-=?x dx x x . 三、用定积分证明不等式 定积分在不等式的证明中有着重要的应用.在不等式的证明中,可根据函数的特点,利用定积分的性质来证明. 例1 设)(x f 是闭区间[]b a ,上的连续函数,且单调增加,求证: ?? +≥b a b a dx x f b a dx x xf )(2)(. 证明 作辅助函数 dt t f x a dt t tf x x a x a ??+-=)(2)()(?, 显然0)(=a ?,且 )(2 )(21)()(x f x a dt t f x xf x x a ?+--='? )(2 ))((21)(2x f a a x f x f x ---=ξ [])()(2 ξf x f a x --=, 其中[]x a ,∈ξ.因为)(x f 在[]b a ,上单调增加,所以0)(≥'x ?,从而)(x ?在闭区间[]b a ,上单调增加,所以 0)()(=≥a x ??,

定积分的简单应用

定积分的简单应用 海口实验中学陈晓玲 一、教材分析 “定积分的简单应用”是人教A版《普通高中课程标准实验教科书数学》选修2-2第一章1.7的内容。从题目中可以看出,这一节教学的要求就是让学生在充分认识导数与积分的概念,计算,几何意义的基础上,掌握用积分手段解决实际问题的基本思想和方法,在学习过程中了解导数与积分的工具性作用,从而进一步认识到数学知识的实用价值以及数学在实际应用中的强大生命力。在整个高中数学体系中,这部分内容也是学生在高等学校进一步学习数学的基础。 二、教学目标(以教材为背景,根据课标要求,设计了本节课的教学目标) 1、知识与技能目标: (1)应用定积分解决平面图形的面积、变速直线运动的路程问题; (2)学会将实际问题化归为定积分的问题。 2、过程与方法目标: 通过体验解决问题的过程,体现定积分的使用价值,加强观察能力和归纳能力,强化数形结合和化归思想的思维意识,达到将数学和其他学科进行转化融合的目的。 3、情感态度与价值观目标: 通过教学过程中的观察、思考、总结,养成自主学习的良好学习习惯,培养数学知识运用于生活的意识。 三、教学重点与难点 1、重点:应用定积分解决平面图形的面积和变速直线运动的路程问题,在解决问题的过程中体验定积分的价值。 2、难点:将实际问题化归为定积分的问题。 四、教学用具:多媒体 五、教学设计

教学环节教学设计师生 互动 设计意图 一、 创设情境 引出新课1、生活实例: 实例1:国家大剧院的主题构造 类似半球的构造,如何计算建造时中间玻璃段的使用面积? 边缘的玻璃形状属于曲边梯形,要计算使用面积可以通过计算 曲边梯形的面积实现。 实例2:一辆做变速直线运动的汽车,我们如何计算它行驶的 路程? 2、复习回顾: 如何计算曲边梯形的面积? 3、引入课题: 定积分的简单应用 学生:观 察。 教师:启 发,引导 学生:思 考,回 忆。 学生:疑 惑,思 考,感 受。 教师:启 发,引 导。 学生:复 习,回忆 老师:引 入课题 数学源于生活,又服 务于生活。 通过对国家大剧院的 观察,创设问题情境,体 验数学在现实生活中的 无处不在,激发学生的学 习热情,引导他们积极主 动的参与到学习中来。 启发学生把物理问题 与数学知识联系起来,训 练学生对学科间的思维 转换和综合思维能力。 学生感受定积分的工 具性作用与应用价值。 在生活实例的启发 下,引导学生把所学知识 与实际问题联系起来,回 忆如何计算曲边梯形面 积。 这是这节课的知识基 础。 引入本节课的课题。 哎呀,里程表坏了,你 能帮我算算我走了多 少路程吗? x y o y f(x) = a b A ?=b a dx x f A) (

MATLAB与数值分析课程总结

MATLAB与数值分析课程总结 姓名:董建伟 学号:2015020904027 一:MATLAB部分 1.处理矩阵-容易 矩阵的创建 (1)直接创建注意 a中括号里可以用空格或者逗号将矩阵元素分开 b矩阵元素可以是任何MATLAB表达式,如实数复数等 c可以调用赋值过的任何变量,变量名不要重复,否则会被覆盖 (2)用MATLAB函数创建矩阵如:a空阵[] b rand/randn——随机矩阵 c eye——单位矩阵 d zeros ——0矩阵 e ones——1矩阵 f magic——产生n阶幻方矩阵等 向量的生成 (1)用冒号生成向量 (2)使用linspace和logspace分别生成线性等分向量和对 数等分向量 矩阵的标识和引用 (1)向量标识 (2)“0 1”逻辑向量或矩阵标识 (3)全下标,单下标,逻辑矩阵方式引用 字符串数组 (1)字符串按行向量进行储存 (2)所有字符串用单引号括起来 (3)直接进行创建 矩阵运算 (1)注意与数组点乘,除与直接乘除的区别,数组为乘方对应元素的幂

(2)左右除时斜杠底部靠近谁谁是分母 (3)其他运算如,inv矩阵求逆,det行列式的值, eig特征值,diag 对角矩阵 2.绘图-轻松 plot-绘制二维曲线 (1)plot(x)绘制以x为纵坐标的二维曲线 plot(x,y) 绘制以x为横坐标,y为纵坐标的二维曲线 x,y为向量或矩阵 (2)plot(x1,y1,x2,y2,。。。。。。)绘制多条曲线,不同字母代替不同颜色:b蓝色,y黄色,r红色,g绿色 (3)hold on后面的pl ot图像叠加在一起 hold off解除hold on命令,plot将先冲去窗口已有图形(4)在hold后面加上figure,可以绘制多幅图形 (5)subplot在同一窗口画多个子图 三维图形的绘制 (1)plot3(x,y,z,’s’) s是指定线型,色彩,数据点形的字 符串 (2)[X,Y]=meshgrid(x,y)生成平面网格点 (3)mesh(x,y,z,c)生成三维网格点,c为颜色矩阵 (4)三维表面处理mesh命令对网格着色,surf对网格片着色 (5)contour绘制二维等高线 (6)axis([x1,xu,y1,yu])定义x,y的显示范围 3.编程-简洁 (1)变量命名时可以由字母,数字,下划线,但是不得包含空格和标点 (2)最常用的数据类型只有双精度型和字符型,其他数据类型只在特殊条件下使用 (3)为得到高效代码,尽量提高代码的向量化程度,避免使用循环结构

知识讲解_定积分的简单应用(基础)

定积分的简单应用 【学习目标】 1.会用定积分求平面图形的面积。 2.会用定积分求变速直线运动的路程 3.会用定积分求变力作功问题。 【要点梳理】 要点一、应用定积分求曲边梯形的面积 1. 如图,由三条直线x a =,x b =()a b <,x 轴(即直线()0y g x ==)及一条曲线()y f x =(()0f x ≥)围成的曲边梯形的面积: ()[()()]b b a a S f x dx f x g x dx ==-?? 2.如图,由三条直线x a =,x b =()a b <,x 轴(即直线()0y g x ==)及一条曲线 ()y f x =(0)(≤x f )围成的曲边梯形的面积: ()()[()()]b b b a a a S f x dx f x dx g x f x dx = =-=-? ?? 3.由三条直线,(),x a x b a c b x ==<<轴及一条曲线()y f x =(不妨设在区间[,]a c 上 ()0f x ≤,在区间[,]c b 上()0f x ≥)围成的图形的面积: ()c a S f x dx = + ? ()b c f x dx ? =()c a f x dx -?+()b c f x dx ?. 4. 如图,由曲线11()y f x =22()y f x =12()()f x f x ≥及直线x a =,x b =()a b <围

成图形的面积: 1212[()()]()()b b b a a a S f x f x dx f x dx f x dx =-=-??? 要点诠释: 研究定积分在平面几何中的应用,其实质就是全面理解定积分的几何意义: ① 当平面图形的曲边在x 轴上方时,容易转化为定积分求其面积; ② 当平面图形的一部分在x 轴下方时,其在x 轴下的部分对应的定积分为负值,应取其相反数(或绝对值); 要点二、求由两条曲线围成的平面图形的面积的解题步骤 (1)画出图形; (2)确定图形范围,通过解方程组求出交点的横坐标,定出积分上、下限; (3)确定被积函数,特别要注意分清被积函数的上、下位置; (4)写出平面图形面积的定积分表达式; (5)运用微积分基本定理计算定积分,求出平面图形的面积。 要点三、定积分在物理中的应用 ① 速直线运动的路程 作变速直线运动的物体所经过的路程S ,等于其速度函数()(()0)v v t v t =≥在时间区间 [,]a b 上的定积分,即()b a S v t dt =?. ②变力作功 物体在变力()F x 的作用下做直线运动,并且物体沿着与()F x 相同的方向从x a =移动到x b =()a b <,那么变力()F x 所作的功W = ()b a F x dx ? . 要点诠释: 1. 利用定积分解决运动路程问题,分清运动过程中的变化情 况是解决问题的关键。应注意的是加速度的定积分是速度,速度的定积分是路程。 2. 求变力作功问题,要注意找准积分变量与积分区间。 【典型例题】 类型一、求平面图形的面积 【高清课堂:定积分的简单应用 385155 例1】 例1.计算由两条抛物线2 y x =和2 y x =所围成的图形的面积. 【思路点拨】两条抛物线所围成的图形的面积,可以由以两条曲线所对应的曲边梯形的面积的差得到。

导数的数值计算方法[文献综述]

毕业论文文献综述 信息与计算科学 导数的数值计算方法 一、 前言部分 导数概念的产生有着直觉的起源,与曲线的切线和运动质点的速度有密切的关系.导数用于描述函数变化率,刻画函数的因变量随自变量变化的快慢程度.比如说,物理上考虑功随时间的变化率(称为功率),化学上考虑反应物的量对时间的变化率(称为反应速度),经济学上考虑生产某种产品的成本随产量的变化率(称为边际成本)等等,这些变化率在数学上都可用导数表示. 导数由于其应用的广泛性,为我们解决所学过的有关函数问题提供了一般性的方法,导数是研究函数的切线、单调性、极值与最值等问题的有力工具;运用它可以简捷地解决一些实际问题,导数的概念是用来研究函数在一点及其附近的局部性质的精确工具,而对于函数在某点附近的性质还可以应用另一种方法来研究,就是通过最为简单的线性函数来逼近,这就是微分的方法.微分学是数学分析的重要组成部分,微分中值定理作为微分学的核心,是沟通导数和函数值之间的桥梁, Rolle 中值定理, Lagrange 中值定理, Cauchy 中值定理, Taylor 公式是微分学的基本定理, 统称为微分学的中值定理,这四个定理作为微分学的基本定理,是研究函数形态的有力工具 ] 1[.在微分学中,函数的导数是通过极限定义的,但 当函数用表格给出时,就不可用定义来求其导数,只能用近似方法求数值导数] 2[.最简单 的数值微分公式是用差商近似地代替微商,常见的有 [3] . ()()() 'f x h f x f x h +-≈ , ()()() 'f x f x h f x h --≈, ()()() '2f x h f x h f x h +--≈ . 需要注意的是微分是非常敏感的问题,数据的微小扰动会使结果产生很大的变化] 4[.

数值分析心得体会

数值分析心得体会 篇一:学习数值分析的经验 数值分析实验的经验、感受、收获、建议班级:计算131 学号:XX014302 姓名:曾欢欢 数值分析实验主要就是学习MATLAB的使用以及对数值分析类容的应用,可以使学生更加理解和记忆数值分析学得类容,也巩固了MATLAB的学习,有利于以后这个软件我们的使用。在做实验中,我们需要具备较好的编程能力、明白MATLAB软件的使用以及掌握数值分析的思想,才能让我们独立自主的完成该作业,如果是上述能力有限的同学,需要借助MATLAB的书以及网络来完成实验。数值分析实验对于我来说还是有一定难度,所以我课下先复习了MATLAB的使用方法以及编写程序的基本类容,借助互联网和同学老师资源完成了数值分析得实验的内容。在实验书写中,我复习了各种知识,所以我认为这门课程是有必要且是有用处的,特别是需要处理大量实验数据的人员,很有必要深入了解学习它,这样在以后的工作学习里面就减少了很多计算问题也提高了实验结果的精确度。 学习数值分析的经验、感受、收获、建议数值分析的内容包括插值与逼近,数值微分与数值积分,非线性方程与线性方程组的数值解法,矩阵的特征值与特征向量计算,常微分方程数值解等。

首先我们必须明白数值分析的用途。通常所学的其他数学类学科都是由公式定理开始,从研究他们的定义,性质再到证明与应用。但实际上,尤其是工程,物理,化学等其它具体的学科。往往我们拿到 手的只是通过实验得到的数据。如果是验证性试验,需要代回到公式 进行分析,验证。但往往更多面对的是研究性或试探性试验,无具体 公式定理可代。那就必须通过插值,拟合等计算方法进行数据处理以得到一个相对可用的一般公式。还有许多计算公式理论上非常复杂,在工程中不实用,所以必须根据实际情况把它转化成多项式近似表 示。学习数值分析,不应盲目记公式,因为公事通常很长且很乏味。其次,应从公式所面临的问题以及用途出发。比如插值方法,就 是就是把实验所得的数据看成是公式的解,由这些解反推出一个近似公式,可以具有局部一般性。再比如说拟合,在插值的基础上考虑实 验误差,通过拟合能将误差尽可能缩小,之后目的也是得到一个具有 一定条件下的一般性的公式。。建议学习本门课程要结合知识与实际,比如在物理实验里面很多

概述定积分的发展及应用

概述定积分的发展与应用 摘要:概述了定积分发展的三个历史阶段,讨论了定积分在各个学科中的具体应用. 关键词:分割近似; 定积分; 流数法; 应用 微积分创立是数学史上一个具有划时代意义的创举,也是人类文明的一个伟大成果.正如恩格斯评价的那样:"在一切理论成就中,未必再有什么象17世纪下半叶微积分的发明那样被当作人类精神的最高胜利了." 它是科学技术以及自然科学的各个分支中被广泛应用的最重要的数学工具; 如数学研究, 求数列极限, 证明不等式等. 而在物理方面的应用,能够说是定积分最重要的应用之一,正是因为定积分的产生和发展,才使得物理学中精确的测量计算成为可能, 如:气象,弹道的计算,运动状态的分析等都要用的到微积分. 定积分的发展大致能够分为三个阶段:古希腊数学的准备阶段,17世纪的创立阶段以及19世纪的完成阶段. 1准备阶段 主要包括17世纪中叶以前定积分思想的萌芽和先驱者们大量的探索、积累工作.这个时期随着古希腊灿烂文化的发展,数学也开始散发出它不可抵挡的魅力.整个16世纪,积分思想一直围绕着"求积问题"发展,它包括两个方面:一个是求平面图形的面积和由曲面包围的体积,一个是静力学中计算物体重心和液体压力.德国天文学家、数学家开普勒在他的名著《测量酒桶体积的新科学》一书中,认为给定的几何图形都是由无穷多个同维数的无穷小图形构成的,用某种特定的方法把这些小图形的面积或体积相加就能得到所求的面积或体积,他是第一个在求积中使用无穷小方法的数学家.17世纪中叶,法国数学家费尔玛、帕斯卡均利用了"分割求和"及无穷小的性质的观点求积.可见,利用"分割求和"及无穷小的方法,已被当时的数学家普遍采用. 2 创立阶段 主要包括17世纪下半叶牛顿、莱布尼兹的积分概念的创立和18世纪积分概念的发展.牛顿和莱布尼兹几乎同时且互相独立地进入了微积分的大门. 牛顿从1664年开始研究微积分,早期的微积分常称为"无穷小分析",其原因在于微积分建立在无穷小的概念上.当时所谓的"无穷小"并不是我们现在说的"以零为极限的变量",而是含糊不清的,从牛顿的"流数法"中可见一斑,"流数法"的主要思想是把连续变动的量称为"流量",流量的微小改变称为"瞬"即"无穷小量",将这些变量的变化率称为"流数".用小点来

相关文档
相关文档 最新文档