文档库 最新最全的文档下载
当前位置:文档库 › 军用发动机

军用发动机

军用发动机
军用发动机

罗尔斯·罗伊斯公司『RR』 TF41 系列

TF41

牌号TF41

用途军用涡扇发动机

类型涡轮风扇发动机

国家美国

厂商罗尔斯·罗伊斯公司/艾利逊发动机公司

生产现状停产

装机对象单发攻击机A-7D(空军型)、A-7E(海军型)、A-7H及其教练型TA-7H

研制情况

TF41是美国艾利逊公司和英国罗尔斯·罗伊斯公司联合研制和生产的涡轮风扇发动机。该发动机是英国罗尔斯·罗伊斯公司斯贝RB168-25的一种改型,用来装A-7攻击机。1966年美空军与这两家公司签订合同,艾利逊公司负责研制和生产TF41发动机特有的零部件,罗尔斯·罗伊斯公司提供技术合作和与斯贝发动机通用的零部件。TF41-A-1发动机于1967年10月首次试车,1968年6月通过试飞前规定试验。1969年6月正式完成定型试验。在研制过程中,发动机积累了3600h以上的试验。经过多年的修改设计,使发动机翻修寿命达到1500h。

主要改型有TF41-A-1、TF41-A-2和TF41-A-100/-A-400。

结构和系统

(TF41-A-1)

进气口整体钢机匣。无进口导流叶片。

风扇及外涵3级轴流式。水平对开机匣。全外涵。

低压压气机2级轴流式,与风扇同轴。

高压压气机11级轴流式。

燃烧室环管形。有10个火焰筒和10个双油路喷嘴。

高压涡轮2级轴流式。2级导向器叶片和第1级转子叶片气冷。

低压涡轮2级轴流式。

尾喷管内、外涵气流经简单混合在喷管排气段内混合后排出。

控制系统机械液压式。转速和加速自动控制,应急时人工超控。

技术数据

(TF41-A-2)

起飞推力(daN) 6679

最大起飞耗油率[kg/(daN·h)] 0.66

推重比 4.97

空气流量(kg/s) 119.3

涵道比 0.74

总增压比 21.4

涡轮进口温度(℃) 1155

直径(mm) 1004

长度(mm) 2900

质量(kg) 1370

RTM322

RTM322系发动机结构

牌号RTM322

用途军用涡轴发动机

类型涡轮轴发动机

国家法国

厂商罗尔斯·罗伊斯公司/透博梅卡

生产现状研制完毕,准备投入批生产

装机对象RTM322-01 EH-101、AS322/AS.532、NH90、AH-64A、S-70C、UH-60A/B、SH-60B、WS-30、A129、卡-62R。

研制情况

RTM322是英国罗尔斯·罗伊斯公司与法国透博梅卡公司共同研制的新一代涡轴发动机。1980年英、法、意三国的发动机制造商组成联合公司,制定了共同研制新一代涡轴发动机的计划。后来意大利退出,计划就由英国的罗尔斯·罗伊斯和法国的透博梅卡公司执行。研制工作包括1300h地面台架试验、400h飞行试验及一项合格鉴定试验。研制工作从1984年开始。同年12月燃气发生器开始台架运转。1985年1月发动机首次运转。1987年RTM322装在SH-60H上完成首次飞行试验。1990年装UK-101的RTM322取得合格证。1993年7月装备RTM322

的EH-101首次飞行。预计1994年晚些时候该发动机将交付英国皇家海军使用。预计1995年中期装卡-62R的RTM322将取得合格证,同年晚些时候装RTM322的NH90将首次飞行。

RTM322发动机的研制目的是与美国通用电气公司的T700和普拉特·惠特尼加拿大公司的PW100竞争,以占领本世纪末一万多台发动机的销售市场。RTM322的研制分工是:透博梅卡公司负责研制组合式压气机、功率输出轴、体内减速器及附件齿轮箱。罗尔斯·罗伊斯公司负责研制进气装置、进口粒子分离器、回流环形燃烧室、燃气发生器涡轮和自由涡轮。

RTM322具有很高的安全循环寿命,各部件基本循环次数是:轴流压气机转子为15000次。离心压气机转子为10000次,燃气发生器涡轮为10000次,自由涡轮为15000次。

RTM322采用单转子燃气发生器、单元体结构、大容积燃烧系统和全权数字式电子控制系统。可以任意选择前传或后传传动轴。RTM322还采用了进口粒子分离器和红外抑制器,军用型的RTM322在战斗中经得住各种战斗机动动作的考验,用作海洋油气平台/舰船载机的动力装置时,还具有良好的抗腐蚀能力。发动机维护方便。附件都装在发动机上部,装拆方便,可达性好,孔探仪可伸入主要部件进行检查,并采用视情维修和状态监控,安全可靠。发动机与飞机的界面少,外部管路少,发动机可以左右安装。

RTM322的核心机适于1342~2237kW级的发动机,压比可由15提高到23。为满足未来军、民用直升机和中、小型固定翼飞机市场日益扩大的需要,透博梅卡公司和罗尔斯·罗伊斯公司将在RTM322-01的基础上将功率提高到1939~2088kW作为未来的直升机动力装置;将功率提高到1790~2237kW作为未来的涡轮螺桨飞机的发动机;还可将自由涡轮改成带风扇的燃气涡轮,派生出涡轮风扇发动机。所以RTM322发动机系列将有涡轴型、涡桨型和风扇型。主要型别如下:RTM321 RTM322的原型机。

RTM322-01RTM322的第一个型别。1984年底首次运转,1986年6月装在S-70C上作首次飞行试验。

RTM322-03RTM322-01的功率增大型。通过增加空气流量和涡轮进口温度来提高其功率。

RTM322-05RTM322的功率缩小型。采用非冷却涡轮、空气流量比RTM322-01减少7%。将作为民用直升机的动力装置。

RTM322-11由RTM322-01派生的涡轮螺桨型发动机。

RTM322-20由RTM322-01派生的涡轮风扇发动机。

结构和系统

进气装置由内、外锥体和轴对称进口粒子分离器组成。内、外锥之间有径向支板。进口粒子分离器无涡流叶片和移动部件。外机匣上装有附件和前安装节。压气机3级轴流加1级离心组合式。压比15,将来再增加1级轴流压气机时,压比可达到17.7,空气流量将增加30%。前两级进口导流叶片可调。叶片与盘皆为钛合金整体铸造,经机械加工而成。机匣带有缝、孔和槽,可改变附面层,抑制叶片失速,扩大喘振边界。

燃烧室回流环形。可燃烧劣质燃油,排放物少,易起动。采用蒸发式喷嘴。高能点火电嘴。

燃气发生器涡轮2级轴流式。第1级转子叶片和第1、2级导向器叶片采用气

冷。非气冷转子叶片用单晶材料制成。

自由涡轮2级轴流式。叶片带冠,功率输出轴速为20400r/min。

排气装置固定面积喷口。

控制系统全权数字式电子控制系统。手动油门杆作为备份系统。

起动系统起动-发电机。

支承系统燃气发生器由两个轴承支承。轴流压气机前为滚珠轴承。燃气发生器涡轮后为滚棒轴承。自由涡轮由2个滚棒轴承支承,都位于自由涡轮前端。功率输出轴向前穿过燃气发生器转子,前端用一滚珠轴承支承。

技术数据

起飞功率(kW)

RTM322-01 1566

-03 1715~1789

-05 1342

-11 1790

最大应急功率(kW)

RTM322-01 1724

最大连续功率(kW)

RTM322-01 1411

巡航功率(kW)

RTM322-01 940

-05 805

-11 1514

最大连续耗油率[kg/(kW·h)]

RTM322-01 0.270

巡航耗油率[kg/(kW·h)]

RTM322-01 0.293

-05 0.308

-11 0.255

功重比(kW/daN)

RTM322-01 6.65

总增压比

RTM322-01 15

涡轮进口温度(℃)

RTM322-01 1327

最大直径(mm) 604

长度(mm) 1171

宽度(mm) 647

高度(mm) 609

质量(kg)

RTM322-01 240(含燃油系统、滑油系统、扭矩计、进口粒子分离器、导管和导线)

斯贝RB168

(Spey-RB-168)

加力型斯贝RB168-25R涡扇发动机结构

牌号斯贝RB168

用途军用涡扇发动机

类型涡轮风扇发动机

国家英国

厂商罗尔斯·罗伊斯公司

生产现状罗尔斯·罗伊斯公司已不再生产,但某些型号仍在由它的合作厂商生产。

装机对象Mk101 “掠夺者”NA.39攻击机。

Mk202/203 F-4M/K战斗机。

Mk250/251 “猎迷”HS.801反潜机。

Mk807 AMX教练机/攻击机。

研制情况

军用斯贝RB168是民用斯贝改型发展出来的。1963年装在英国皇家空军的“掠夺者”攻击机上进行首次飞行的军用斯贝是Mk101。它是一种非加力型军用斯贝,由民用斯贝Mk505改型而得。1964年为满足作战时要求更大的推力,又以民用斯贝Mk511和Mk512为基础发展出加力型军用斯贝Mk202。70年代卖给中国的军用斯贝就是这种加力型Mk202。罗尔斯·罗伊斯公司发展的军用斯贝有以下几个型别。

RB168-1A Mk101 最早发展的军用斯贝。

RB168-20 Mk250/251 它是以民用斯贝Mk512为基础发展的,是一种海军用航空发动机,因此采用了一些抗腐蚀零件。这种型别现已不再生产。

RB168-25R Mk202/203 1964年初开始设计,1965年4月首次运转,1968年正式投产使用。该型别为加力型,加力燃烧室有4条燃油总管和3圈V形火焰稳定器。主喷管全程可调,副喷管不可调。压气机设有供飞机附面层控制系统用的补气系统。这种型别现已不再生产。

RB168 Mk807 以Mk101和Mk555为基础改型发展而得。1983年意大利获得生产专利。现在由意大利和巴西共同生产。

RB168 Mk821 Mk807的推力增大型。1989年4月开始研制,1989年11月首次运转。

TF41 美国艾利逊公司与罗尔斯·罗伊斯公司联合研制和生产的一种军用

斯贝。它是RB168-25的改型。1966年,美国空军与艾利逊公司和罗尔斯·罗伊斯公司签订一项价值2.27亿美元的合同。由这两家公司联合进行研制和生产。艾利逊公司负责研制和生产TF41的特有的零件,罗尔斯·罗伊斯公司提供技术合作和与斯贝发动机通用的零件。

首台TF41-A-1于1967年10月首次运转,1968年7月交付生产,但发动机定型工作拖得较晚,一直到1969年3月才正式定型。

与RB168-25相比,TF41采用全新的风扇和低压压气机,将原来的5级风扇改为3级风扇和2级低压压气机,风扇直径由826mm增加到950mm,使空气流量和压比都有所增大,取消进口导流叶片,高压压气机由12级改为11级,涡轮导向器叶片和转子叶片的安装角作了修改,由于这些修改,使发动机推力提高17%。艾利逊公司还曾提出过设计一种推力为10230daN的加力型TF41 912-B52用于

A-7的改型计划。这项计划后来被取消。

自1968年开始生产到1988年结束,共生产1419台TF41,其中仍有850~950台列在装备序列。

结构和系统

(Mk202)

进气口整体钢板焊接机匣,19个固定进口导流叶片(TF41无进口导流叶片)。热空气防冰。

风扇镁合金对开机匣。5级轴流式(TF41为3级风扇加2级低压压气机),压比2.86(TF41-A-1为2.45;-A-2为2.49),转速8760r/min(TF41-A-1为8950r/min;-A-2为9150r/min)。

高压压气机12级轴流式(TF41为11级)。进口导流叶片可调,设有放气活门。水平对开不锈钢机匣。转速12514r/min(TF41-A-1为12770r/min;-A-2为13000r/min),压比6.9。

燃烧室环管形。10个火焰筒,10个双油路燃油喷嘴。钢制对开机匣。

高压涡轮2级轴流式。第1级转子叶片和第1、第2级导向器叶片采用空气冷却。整体钢制机匣。

低压涡轮2级轴流式。叶片均不冷却。

加力燃烧室内外涵气流混合后在加力燃烧室补燃。采用V形火焰稳定器和催化点火器。加力比调节范围为1.10~1.65(TF41无加力燃烧室)。

尾喷管主喷口面积可调,副喷口为不可调的引射喷口。全程可调的主喷口由6个液压作动筒操纵。

控制系统机械液压式控制系统(TF41从1980年起采用史密斯工业公司的电子控制系统)。

燃油系统普莱赛公司BP240/Mk9低压燃油泵,卢卡斯公司P1001高压燃油泵和CASC 310燃油流量调节器,道蒂公司Eng 810 Mk14加力燃油调节器,卢卡斯公司NPC 302加力喷口控制泵。燃油规格为DERD 2486、2498、2453和2454。(TF41采用卢卡斯公司的GTD-400燃油泵,出口压力为6865kPa。燃油规格为

MIL-T-5624,JP4或JP5)。

滑油系统回路系统。压力245kPa(TF41为343kPa)。滑油规格为DERD 2487、2493 (TF41-A-1为MIL-L-7808,-A-2为MIL-L-23699,滑油消耗量为0.45kg/h)。起动系统普莱赛公司的Solent Mk200燃气涡轮起动机(TF41-A-1为航空研究公司的JFS100-13A燃气涡轮起动机,-A-2为本迪克斯公司36G-118空气涡轮起

点火系统卢卡斯公司的C105TS/101高能点火系统,2个YA-30-45AR114/1高能电嘴(TF41采用本迪克斯公司的双电容放电点火系统)。

支承系统5支点支承(TF41为7支点支承)。

技术数据

起飞推力(daN)

Mk101 4900

Mk250/251 5330

Mk202/203 5440(中间)

9120(加力)

Mk807 4900

TF41-A-1 6453

TF41-A-2 6679

起飞耗油率[kg/(daN·h)]

Mk202 2.218(加力)

0.693(中间)

TF41-A-1 0.676

TF41-A-2 0.659

涡轮进口温度(℃)

Mk202 1167

TF41-A-1 1155

TF41-A-2 1155

推重比

Mk202 5.05

Mk807 4.72

TF41-A-1 4.86

TF41-A-2 4.97

空气流量(kg/s)

Mk202 92.5

TF41-A-1 117

TF41-A-2 119.3

涵道比

Mk202 0.62

TF41-A-1 0.76

TF41-A-2 0.74

总增压比

Mk202 20

TF41-A-1 20.1

TF41-A-2 21.4

最大直径(mm)

Mk202 1093

TF41-A-1 1004

TF41-A-2 1004

Mk202 5205

TF41-A-1 2900

TF41-A-2 2900

质量(kg)

Mk202 1842(不含起动机)

TF41-A-1 1353

TF41-A-2 1370

“飞马”

(Pegasus,F402)

“飞马”涡轮风扇发动机剖视图

牌号“飞马”

用途军用涡扇发动机

类型涡轮风扇发动机

国家英国

厂商罗尔斯·罗伊斯公司

生产现状生产

装机对象“飞马”11-21(Mk 103) “鹞”GR. Mk3(英皇家空军)。

“飞马”11-21(Mk 104) “海鹞”(英皇家海军)。

“飞马”11-21(Mk 150) AV-8S(西班牙海军)。

“飞马”11-21(Mk 105) “鹞”GR. Mk5(英皇家空军)。 F402-RR-4061-406A AV-8B。

“飞马”11-61(F402-RR-408) AV-8B等。

研制情况

“飞马”是英国罗尔斯·罗伊斯公司为“鹞”式垂直/短距起落战斗/攻击机研制的转喷口涡扇发动机。

发动机原始方案于1954年提出,1957年6月英国前布里斯托尔·西德利公司(现罗·罗公司军用航空发动机公司)开始设计,1959年9月第1台试验型发动机首次运转,并定名为“飞马”1。1960年2月,试飞用的“飞马”2首次运转,1960年10月开始“飞马”发动机的首次试飞。此后进行了一系列的改进,1964年底,为实用型改进的“飞马”6首次运转,经过改进于1967年10月完成150小时定型试验,1968年1月开始交付,此为“飞马”系列发动机的第一个生产型。后来几经改型,至1990年初,最新的“飞马”11-61定型。

针对垂直/短距起落的特殊要求,发动机的主要设计特点是采用了排气喷管可旋转的推力换向方案,可用一台发动机既提供升力又提供推力,结构简单、紧凑、短距起落性能好。由于在垂直/短距起落、悬停和过渡飞行时,飞机无气动力,其操纵性和稳定性完全由喷气反作用操纵系统控制,所以在燃烧室外套和火焰筒之间设有放气环腔。

“飞马”是首先采用两个转子反向旋转的双转子发动机,它消除了陀螺力矩,改善了悬停和过渡飞行时的稳定性。

目前,“飞马”仍在进行新的改进,“飞马”/F402系列得到了美国和英国政府的大力支持,罗尔斯·罗伊斯公司和普拉特·惠特尼公司已经完成了推力为10580daN的“飞马”11-61发动机的研制。未来推力将达到13770daN,以满足新的垂直/短距起落战斗机的要求。

“飞马”发动机的主要改型情况如下:

“飞马”6 Mk101,“飞马”10 Mk102早期生产型发动机,推力分别为8451daN和9118daN,装备早期的“鹞”战斗机。

“飞马”11-21(Mk103)(美军方编号F402-RR-402) 供英空军、美海军陆战队和出口用。

“飞马”11-21(Mk104) Mk103的海军型,防腐设计。1979年9月投入使用。性能和结构与Mk103相同,但风扇机匣和中介机匣材料由钛合金改为锻造铝合金。

“飞马”11-21(Mk105) 用作“鹞”GR.Mk5的动力。

“飞马”11-03 PCB 采用了外涵加力(PCB),全加力推力可达12009daN。1983年6月开始试验。用于超音速垂直起落飞机。PCB最终可提供17792daN的推力,按英国先进核心军用发动机计划(ACME),罗·罗公司和国家燃气轮机研究院正为此而努力。

“飞马”11-21D/E/F D和E型(美军方编号为F402-RR-404)采用了内封严环,使高压涡轮的冷却空气温度降低60℃。F型(美军方编号为F402-RR-406)高压压气机装有改进的“鹅颈”形中介机匣改善了核心空气流量。通过F型将验证可靠性、耐久性和发动机寿命的改善。寿命目标是冷端达到1000h,热端达到500h(目前的寿命为800/400h)。

“飞马”11F-35 主要改进有:重新设计低压压气机的叶片和轴、新的排气喷管和无切口喷管等。其不加力推力可达12454daN。

“飞马”11-61(F402-RR-408) 矢量推力动力装置。由ACME计划资助,也称为XG-15。它采用了新的较高压比的风扇(2.7)、先进燃烧室和单晶高压涡轮

叶片等。1985年10月此验证机首次运转。1988年5月发动机首次试车,1990年初定型,同年7月投入使用。

“飞马”19罗尔斯·罗伊斯公司自筹资金的发展项目,目标是将推力提高到12010~12450daN。主要途径是提高涡轮进口温度和风扇压比,可能要增加第4级低压压气机。

“飞马”涡轮风扇发动机结构

结构和系统

风扇3级轴流式,第1级26个叶片有中间凸台。风扇气流分开,主要部分换向至前喷管。直径为1220mm,压比为2.3,风扇叶片材料为铝合金。

压气机8级轴流式。压气机转子与风扇转子反转。叶片材料为钛合金。

燃烧室环形。18个低压燃油蒸发管,2个高能点火器。

高压涡轮2级轴流式。第1和第2级转子叶片材料分别为IN100和Rene 95,第1和第2级导向器叶片材料分别为X-40钴基合金和PD21镍基合金。1991年初以后使用了单晶叶片。

低压涡轮2级轴流式。转子叶片材料为IN100,第1和第2级盘材料分别为IN100和Rene 95,第2级导向器叶片材料C-1023镍基合金。

尾喷管4个可换向喷管,由余度空气马达和轴/链式驱动机构驱动。

控制系统全权数字式电子控制系统。

燃油系统液压机械燃油系统,具有离心式增压泵和齿轮压力泵。

滑油系统独立系统。以压力和重力两种方式供油。

起动系统燃气涡轮起动机。

技术数据

最大起飞推力(daN)

“飞马”11-21(Mk103/104/150/151-32/106) 9560

“飞马”11-21(Mk105/152-42) 9780

F402-RR-406/-406A 9780

“飞马”11-61(F402-RR-408) 10580

“飞马”11F-35 11120

“飞马”19 12010~12450

额定耗油率[kg/(daN·h)]

“飞马”11-21(Mk103/104) 0.612

推重比

“飞马”11-21(Mk103) 7.01

“飞马”11-21(Mk104) 6.83

空气流量(kg/s)

“飞马”11-21(Mk103/104) 196

涵道比 1.4

总增压比

“飞马”11-21(Mk103/104) 14.8

涡轮进口温度(℃)

“飞马”11-21(Mk103/104) 1210

最大直径(mm) 1220(风扇机匣) 长度(mm) 2510(不计尾喷管)

3480(带尾喷管)

质量(kg)

“飞马”11-21 Mk103 1404(不计尾喷管) “飞马”11-21 Mk104 1429(不计尾喷管) “飞马”11-61 1615(不计尾喷管)

涡扇发动机简介

有关涡扇发动机的介绍 引子: 涡扇发动机是喷气发动机的一个分枝,从血原关系上来说涡扇发动机应该算得上是涡喷发动的小弟弟。从结构上看,涡扇发动机只不过是在涡喷发动机之前(之后)加装了风扇而已。然而正是这区区的几页风扇把涡喷发动机与涡扇发动机严格的区分开来。涡扇发动机这个“小弟弟”仗着自已身上的几页风扇也青出与蓝。 现代的军用战斗机要求越来越高的机动性能,较高的推重比能赋予战斗机很高的垂直机动能力和优异的水平加速性能。而且在战时,如果本方机场遭到了对方破坏,战斗机还可以利用大推力来减少飞机的起飞着陆距离。比如装备了F-100-PW-100的F-15A当已方机机的跑道遭到部分破坏时,F-15可以开全加力以不到300米的起飞滑跑距离起飞。在降落时可以用60度的迎角作低速平飞,在不用减速伞和反推力的情况下,只要500米的跑道就可以安全降落。

更高的推重比是每一个战斗机飞行员所梦寐以求的。但战斗机的推重比在很大和度上是受发动机所限--如果飞机发动机的推重比小于6一级的话,其飞机的空战推重比就很难达到1,如果强行提高飞机的推重比的话所设计的飞机将在航程、武器挂载、机体强度上付出相当大的代价。比如前苏联设计的苏-11战斗机使用了推重比为 4.085的АЛ-7Ф-1-100涡喷发动机。为了使飞机的推重比达到1,苏-11的动力装置重量占了飞机起飞重量的26.1%。相应的代价是飞机的作战半径只有300公里左右。 而在民用客机、运输机和军用的轰炸机、运输机方面。随着新材料的运用飞机的机身结构作的越来越大,起飞重量也就越来越大,对发动机的推力要求也越来越高。在高函道比大推力的涡扇发动机出现之前,人们只能采用让大型飞机挂更多的发动机的方法来解决发动机的推力不足问题。比如B-52G轰炸机的翼下就挂了八台J-57-P-43W涡喷发动机。该发动机的单台最大起飞推力仅为6237公斤(喷水)。如果B-52晚几年出生的话它完全可以不挂那么多的发动机。在现在如果不考虑动力系统的可*性,像B-52之类的飞机只装一台发动机也未尝不可。 而涡扇发动机的诞生就是为了顺应人们对航空发动机越来越高的推力要求而诞生的。因为提高喷气发动机的推力最简单的办法就是提高发动机的空气流量。 一,历史 在五十年代未、六十年代初,作为航空动力的涡喷发动机以经相当

(完整版)航空发动机试验测试技术

航空发动机试验测试技术 航空发动机是当代最精密的机械产品之一,由于航空发动机涉及气动、热工、结构与 强度、控制、测试、计算机、制造技术和材料等多种学科,一台发动机内有十几个部件和 系统以及数以万计的零件,其应力、温度、转速、压力、振动、间隙等工作条件远比飞机 其它分系统复杂和苛刻,而且对性能、重量、适用性、可靠性、耐久性和环境特性又有很 高的要求,因此发动机的研制过程是一个设计、制造、试验、修改设计的多次迭代性过程。在有良好技术储备的基础上,研制一种新的发动机尚要做一万小时的整机试验和十万小时 的部件及系统试验,需要庞大而精密的试验设备。试验测试技术是发展先进航空发动机的 关键技术之一,试验测试结果既是验证和修改发动机设计的重要依据,也是评价发动机部 件和整机性能的重要判定条件。因此“航空发动机是试出来的”已成为行业共识。 从航空发动机各组成部分的试验来分类,可分为部件试验和全台发动机的整机试验, 一般也将全台发动机的试验称为试车。部件试验主要有:进气道试验、压气机试验、平面 叶栅试验、燃烧室试验、涡轮试验、加力燃烧室试验、尾喷管试验、附件试验以及零、组 件的强度、振动试验等。整机试验有:整机地面试验、高空模拟试验、环境试验和飞行试 验等。下面详细介绍几种试验。 1进气道试验 研究飞行器进气道性能的风洞试验。一般先进行小缩比尺寸模型的风洞试验,主 要是验证和修改初步设计的进气道静特性。然后还需在较大的风洞上进行l/6或l/5的 缩尺模型试验,以便验证进气道全部设计要求。进气道与发动机是共同工作的,在不同状 态下都要求进气道与发动机的流量匹配和流场匹配,相容性要好。实现相容目前主要依靠 进气道与发动机联合试验。 2,压气机试验 对压气机性能进行的试验。压气机性能试验主要是在不同的转速下,测取压气机特性 参数(空气流量、增压比、效率和喘振点等),以便验证设计、计算是否正确、合理,找出 不足之处,便于修改、完善设计。压气机试验可分为: (1)压气机模型试验:用满足几何相似的缩小或放大的压气机模型件,在压气机试验台上按任务要求进行的试验。 (2)全尺寸压气机试验:用全尺寸的压气机试验件在压气机试验台上测取压气机特性,确定稳定工作边界,研究流动损失及检查压气机调节系统可靠性等所进行的试验。 (3)在发动机上进行的全尺寸压气机试验:在发动机上试验压气机,主要包括部件间的匹配和进行一些特种试验,如侧风试验、叶片应力测量试验和压气机防喘系统试验等。 3,燃烧室试验 在专门的燃烧室试验设备上,模拟发动机燃烧室的进口气流条件(压力、温度、流量) 所进行的各种试验。主要试验内容有:燃烧效率、流体阻力、稳定工作范围、加速性、出 口温度分布、火焰筒壁温与寿命、喷嘴积炭、排气污染、点火范围等。 由于燃烧室中发生的物理化学过程十分复杂,目前还没有一套精确的设计计算方法。因此,燃烧室的研制和发展主要靠大量试验来完成。根据试验目的,在不同试验器上,采 用不同的模拟准则,进行多次反复试验并进行修改调整,以满足设计要求,因此燃烧室试 验对新机研制或改进改型是必不可少的关键性试验。

周四_35_张笑瑜_美国军用标准化发展概况

美国军用标准化发展概况 张笑瑜 (周四;编号:35;学号:201202025017) 摘要:美军明确提出“军用标准化是未来战略思想的核心要素之一”,“未来战争要成功,靠标准”。世界各主要军事强国均把标准化战略作为实现其军事战略的重要组成部分。我军在军用标准化方面还有所欠缺,美国军用标准化的发展阶段进程值得我军学习借鉴。 关键词:美军军用标准化;发展概况;军用标准化 十八大报告提出“走中国特色军民融合式发展路子,坚持富国和强军相统一”, 明确了建设巩固国防和强大军队是我国现代化建设的战略任务。国防和军队现代化建设离不开军用标准的体系建设,美军作为世界上公认的最为现代化的军队,其军用标准化的发展值得我军学习借鉴。 美军军用标准化体系是伴随着美国科技发展和国家战略需求而逐步演化和完善的,从美军的军用标准化发展可以看出美国军用标准是当前世界公认的先进技术标准,具有体系完整、内容丰富、结构严谨、技术先进等特点,长期以来一直被认为是美国的宝贵财富。通过我的调研发现,美国军用标准化发展大致可分为三个阶段。 一、起步阶段 第二次世界大战中,美国需要向欧洲运送大量的军用物资。由于当时美国的标准化程度不高,给军用物资的运输、存储、维护和使用,以及后勤供应等工作带来了极大的困难,直接影响了部队的战斗力。第二次世界大战后,为满足装备采办的需求,美国于1951面发布了《军用标准化备忘录》,1952年7月1日,美国国会通过了《国防编目和标准化法》,该法规定“在国防部范围内展开单一的统一的标准化活动”。随后,美国国防部根据公法、联邦法和条例建立了一整套有关军用标准化的指令、指示和细则,对军用标准化工作实施了科学管理和全程控制。从此,美国国防部一直依据法律集中、统一地展开军用标准化建设,在“国防部标准化计划”的指导下,美国军用标准数量快速增长,从20世纪50年代到20世纪80年代初的30年间,总数达到43580项。该阶段,美国军用标准化的发展具有两个特点:保障军用标准发展的各项制度法规全面建立;军用标准数量呈急剧增长状态。 二、调整阶段 20世纪80年代起,美军标准化工作的指导性文件——DOD4120系列文件和

航空发动机发展的瓶颈

中国航空发动机发展的瓶颈 发表日期:2012-11-3 16:32:03 航空发动机一直就是中国的软肋。 从周恩来总理在世时评论中国飞机的“心脏病”开始,到现在50多年了。中国的发动机依然是兵器工业最大的软肋。 不仅仅是你提到的歼击机和大运的涡扇发动机,就是直升飞机的涡轴发动机,中型运输机的涡浆发动机,大型舰船的燃气轮机,中小型舰船和坦克的柴油发动机……无一例外,都是中国的软肋。航空发动机,更是软肋中的软肋。 与美国至少差距30年,什么意思,差一代到一代半吧。这个是事实,没有争议的。 但是另外两个问题就有争议了。一个是这样落后的原因是什么。另一个是,我们究竟什么时候能赶上去。其实这两个问题有内在关系的,搞清楚原因是什么,就更好判断什么时候赶上去。简要提供一些个人的看法,不一定正确。 落后的原因 一:底子太差 新中国建国时,工业基础太差。别说航空发动机,像样的工具钢都没有。要不是朝鲜战争,中国人用大量年轻士兵的无价鲜血去消耗美国的廉价钢铁,换来苏联人把涡轮喷射发动机的制造技术给我们,中国是不可能在1957年就能生产涡喷-5发动机的。 二:航空发动机工业的涉及面太广 虽然同样底子差,同样有文革的挫折,同样有改革开放的机遇,为什么航空发动机就是赶不上来? 对比之下,中国造电冰箱、电视,甚至造手机、雷达、火箭、飞船都慢慢赶上来了:洛阳光电展上曝光的歼击机最新航电系统直追F22,美国人看了也吃一惊;中国空空导弹专家悠然的说,我们距离美国人,也就10年吧,一脸的骄傲自满;美国官方认为,中国的空警2000,在技术体制先进性上超过了美国现有装备一代。真的,兵器上,我们很多东西距离美国的差距就是10年。什么意思,就是至少没有代差。 而航空发动机呢,差一代到一代半。原因在于,航空发动机工业涉及的面太

军用发动机

罗尔斯·罗伊斯公司『RR』 TF41 系列 TF41 牌号TF41 用途军用涡扇发动机 类型涡轮风扇发动机 国家美国 厂商罗尔斯·罗伊斯公司/艾利逊发动机公司 生产现状停产 装机对象单发攻击机A-7D(空军型)、A-7E(海军型)、A-7H及其教练型TA-7H 研制情况 TF41是美国艾利逊公司和英国罗尔斯·罗伊斯公司联合研制和生产的涡轮风扇发动机。该发动机是英国罗尔斯·罗伊斯公司斯贝RB168-25的一种改型,用来装A-7攻击机。1966年美空军与这两家公司签订合同,艾利逊公司负责研制和生产TF41发动机特有的零部件,罗尔斯·罗伊斯公司提供技术合作和与斯贝发动机通用的零部件。TF41-A-1发动机于1967年10月首次试车,1968年6月通过试飞前规定试验。1969年6月正式完成定型试验。在研制过程中,发动机积累了3600h以上的试验。经过多年的修改设计,使发动机翻修寿命达到1500h。 主要改型有TF41-A-1、TF41-A-2和TF41-A-100/-A-400。 结构和系统 (TF41-A-1) 进气口整体钢机匣。无进口导流叶片。 风扇及外涵3级轴流式。水平对开机匣。全外涵。 低压压气机2级轴流式,与风扇同轴。 高压压气机11级轴流式。 燃烧室环管形。有10个火焰筒和10个双油路喷嘴。 高压涡轮2级轴流式。2级导向器叶片和第1级转子叶片气冷。 低压涡轮2级轴流式。 尾喷管内、外涵气流经简单混合在喷管排气段内混合后排出。 控制系统机械液压式。转速和加速自动控制,应急时人工超控。 技术数据 (TF41-A-2) 起飞推力(daN) 6679 最大起飞耗油率[kg/(daN·h)] 0.66 推重比 4.97 空气流量(kg/s) 119.3 涵道比 0.74

先进航空发动机关键制造技术研究

ARTICLES 学术论文 引言 航空发动机的设计、材料与制造技术对于航空工业的发展起着关键性的作用,先进的航空动力是体现一个国家科技水平、军事实力和综合国力的重要标志之一。随着航空科技的迅速发展,面对不断提高的国防建设要求,航空发动机必须满足超高速、高空、长航时、超远航程的新一代飞机的需求。 近年来,航空工业发达国家都在研制高性能航空发动机上投入了大量的资金和人力,实施一系列技术开发和验证计划,如“先进战术战斗机发动机计划(ATFE )”、“综合高性能涡轮发动机技术(IHPTET )计划”及后续的VAATE 计划、英法合作军用发动机技术计划(AMET )等。在这些计划的支持下,美国的F119、欧洲的 EJ200、法国的M88和俄罗斯的AL-41F 等推重比10 一级发动机陆续问世。 为了提高发动机的可靠性和推力,先进高性能发动机采用了大量新材料,且结构越来越复杂,加工精度要求越来越高,对制造工艺提出了更高的要求。而且,在新一代航空发动机性能的提高中,制造技术与材料的贡献率为 50%~70%,在发动机减重方面,制造技术和材料的贡献率占70%~80%,这也充分表明先进的材料和工艺是航空发动机实现减重、增效、改善性能的关键。 1 航空发动机的材料、结构及工艺特点 在提高发动机可靠性和维护性的同时,为了提高发动机的推力和推重比,航空发动机普遍采用轻量化、整体化结构,如整体叶盘、叶环结构。钛合金、镍基高温合金,以及比强度高、比模量大、抗疲劳性能好的树脂基复合材 先进航空发动机关键制造技术研究 黄维,黄春峰,王永明,陈建民 (中国燃气涡轮研究院,四川 江油 621703) Key manufacturing technology research of advanced aero-engine HUANG Wei ,HUANG Chun-feng ,WANG Yong-ming ,CHEN Jian-min (China Gas Turbine Establishment ,Jiangyou 621703,China ) Abstract :This paper describes the features of aero-engine material ,structure and technology ,and then ,development status and trend of key manufacturing technology for advanced aero-engine was analyzed. Finally ,the development of advanced aero-engine manufacturing technology in China is introduced and some proposals are put forward. Key Words : aero-engine ,manufacturing ,summarization 作者简介: 黄维(1982—),男,四川仁寿人,中国燃气涡轮研究院助理工程师,主要从事工艺技术研究。E-mail :huangwei611@https://www.wendangku.net/doc/8c898242.html,

《军用标准》光学标准-美国军标正文(性能标准)

美國軍用標准 (MIL-PRF-13830B) 性能標准 軍火控制設備用光學元件;監控生產、裝配、檢測的通用標准 所有國防部門和代理部門可允許使用此標准。 1.范圍 1.1范圍。此標准包括精加工光學光學元件的生產、裝配、檢測,諸如用於軍火控制設備上的球面鏡、稜鏡、平面鏡、分劃板、觀景窗以及光楔等。 2.應用文件 2.1概要 本章列出的文件需要參閱本標准3、4、5章的要求。本章不包括本標准其他章節的文件或其他信息推存的文件。為了保証本目錄的完整性,文件使用者必須注意文件須滿足本標准3、4、5章列出的文件要求,無論這些內容是否在本章中列出。 發行申明:此為公用版本,發行不受限制。 2.2其他政府文件,圖紙及出版物 下列政府其他文件、圖紙和出版物組成本文件內容的一部分,擴大本文的范圍。除非另有規定,這些文件、圖紙和出版物是征求引用的。 圖面資料 美國軍事裝備研究發展工程技術中心 C7641866---光學元件表面質量標准 (立約人要求的其他政府文件、圖紙、出版復印件及具體的功能應該從簽約事宜或簽約指示得到) 2.3優先順序 本標准內容與其引出的參考有沖突時,以本標准內容為准。本標准未述內容,可行法律法規代行除非有具體的免除通知。(看附加優先標准合同條令) 3.要求: 3.1所有的光學元件,配件以及系統產品都必須符合這一標准的要求,除非具體的儀器標准或合同之可行圖紙另有要求與定義。 3.2所用的材料必須與所適用的仕樣書或圖紙相一致 3.2.1光學玻璃光學玻璃的種類和等級必須在圖紙中規定,允許使用規定的其它玻璃材料時,應提供給合同管理人員相關的玻璃光學特性及設計數據完整的信息。3.2.1.1 放射性材料 本文中要求的光學材料應不含釷或其他加入的超過0.05%重量的放射性材料。 3.2.2粘接劑除非合同和定單中有規定,光學粘合劑必須同附錄A的要求相一致。

第四代军用航空发动机(F119和EJ2000)

第四代军用航空发动机(F119和EJ2000) 资料来源:西北工业大学 F119 : 结构形式:双转子加力式涡轮风扇发动机 推力范围:加力 15568daN中间 9786daN 用途: F22 结构与系统: 风扇:3级轴流式,无进口导流叶片,宽弦设计 高压压气机:6级轴流式,整体叶盘结构 燃烧室:环型,浮壁结构 高压涡轮:单级轴流式,采用第三代单晶涡轮叶片材料,隔热涂层和先进冷却结构低压涡轮:单级轴流式,与高压涡轮对转 加力燃烧室:整体式,内外涵各设单圈喷油环 矢量喷管:二元矢量收敛-扩张喷管,俯仰方向可作-20度到 +20度的偏转 控制系统:第三代双余度FADEC 装备F119的F22

研制概况: F119 是普惠公司为美国第四代战斗机研制的先进双转子加力式涡轮风扇发动机.其设计目标是:不加力超音速巡航,非常规机动和短距起落能力,隐身性能,寿命费用降低至 25% ,零件数减少 40%~60% ,推重比提高 20%, 耐久性提高两倍,零件寿命延长 50% .F119 上采用的先进技术有:三维粘性叶轮机设计方法,整体叶盘结构,高紊流度强旋流主燃烧室头部,浮壁式燃烧室结构,高低压涡轮旋向相反,整体加力式燃烧室设计,二元矢量喷管和第三代双余度 FADEC 等 . 试车台上的F119

收敛-扩张型尾喷管

EJ2000 : 结构形式:双转子加力式涡轮风扇发动机 推力范围:中间6000daN加力9000daN 用途:欧洲战斗机EF2000 结构与系统: 风扇:3级轴流式,采用三维跨音速宽弦叶片,无进口导流叶片.压比约为4.0 高压压气机:5级轴流式 燃烧室:环型,蒸发式喷油嘴 涡轮:单级轴流式低压涡轮+单级轴流式高压涡轮 加力燃烧室:燃烧和混合型,采用多根径向火焰稳定器 尾喷管:全程可调收敛-扩张式 控制系统:FADEC,具有故障诊断和状态监视能力 装配EJ2000发动机的EF2000战斗机

航空发动机发展史

航空发动机发展史 摘要:航空发动机的历史大致可分为两个时期。第一个时期从首次动力开始到第二次世界大战结束。在这个时期,活塞式发动机统治了40年左右。第二个时期从第二次世界大战至今。60多年来,航空燃气涡轮发动机取代了活塞式发动机,开创了喷气时代。 关键词:活塞式喷气式 航空发动机诞生一百多年来,主要经过了两个阶段。 前40年(1903~1945),为活塞式发动机的统治时期。 后60年(1939~至今),为喷气式发动机时代。在此期间,航空上广泛应用的是燃气涡轮发动机,先后发展了直接产生推力的涡轮喷气发动机和涡轮风扇发动机。亦派生发展了输出轴功率的涡轮螺旋桨发动机和涡轮轴发动机。 一、活塞式发动机统治时期 很早以前,我们的祖先就幻想像鸟一样在天空中自由飞翔,也曾作过各种尝试,但是多半因为动力源问题未获得解决而归于失败。最初曾有人把专门设计的蒸汽机装到飞机上去试,但因为发动机太重,都没有成功。到19世纪末,在内燃机开始用于汽车的同时,人们即联想到把内燃机用到飞机上去作为飞机飞行的动力源,并着手这方面的试验。 1903年,莱特兄弟把一台4缸、水平直列式水冷发动机改装之后,成功地用到他们的"飞行者一号"飞机上进行飞行试验。这台发动机只发出8.95 kW的功率,重量却有81 kg,功重比为0.11kW/daN。发动机通过两根自行车上那样的链条,带动两个直径为2.6m的木制螺旋桨。首次飞行的留空时间只有12s,飞行距离为36.6m。但它是人类历史上第一次有动力、载人、持续、稳定、可操作的重于空气飞行器的成功飞行。 在两次世界大战的推动下,活塞式发动机不断改进完善,得到迅速发展,第二次世界大战结束前后达到其技术的顶峰。发动机功率从近10kW提高到2500kW 左右,功率重量比(发动机功率与发动机质量的重力之比,简称功重比,计量单位是kW/daN)从0.11kW/daN提高到1.5kW/daN,飞行高度达15000m,飞行速度从16km/h提高到近800km/h,接近了螺旋桨飞机的速度极限。 20世纪30~40年代是活塞式发动机的全盛时期。活塞式发动机加上螺旋桨,

美军标及国际防护标准简介

液体渗透防护 侵入防护 固体微粒防护 海能达DMR对讲机可以耐受各种恶劣环境,比如极端的温度条件、跌落 于仓库混凝土楼板,或需要防尘防湿的情况。无论环境如何,海能达对讲机都可让您保持工作顺利进行,是您的最佳选择。, 所有海能达对讲机均采用美国军用标准 (MIL-STD) 及 IP 代码进行认证, 您可以据此了解每种型号的坚固程度和防护等级。那么,这些认证是什么?分别代表什么含义呢? MIL-STD-810 美国 MIL-STD-810 是为美国军方设计的一系列环境工程考量和实验室测试,用于测试设备在寿命期内各种预期使用条件下的环境设计及限制情况。该标准还制定了模拟设备所受环境影响的测试方法。MIL-STD-810 不禁 旨在根据装备系统性能要求,提供切实可行的装备设计和测试方法。 虽然该标准最初用于军事应用,但现在也常常用于商业产品。MIL-STD-810 已为商业对讲机行业广泛采用,为客户提供易于理解的评级系统,并使用独立的测试方法,确保可靠的对讲机环境性能和耐用性。 MIL-STD-810 标准指南和测试方法旨在:

● 确定环境应力顺序、耐受度和设备寿命等级 ● 用于制定适合设备及其环境寿命的分析和测试标准 ● 评估环境应力寿命周期下的设备性能 ● 发现设备设计、材料、制造工艺、包装技术和维护方法的缺陷和不足 ● 体现产品的合规性。 MIL-STD-810 涵盖各种环境条件,包括:低压高度测试;高温、低温及 热震试验(工作及存储);雨雪环境试验(包括大风和冻雨情况);湿度、霉菌、盐雾防锈测试;沙尘暴露;爆炸性气体环境;泄漏;加速度;冲击和运输冲击;炮振;以及随机振动。在对讲机行业内,MIL-STD-810 常 用于测试和指示对讲机对温度、跌落、冲击和振动的耐受程度。 IP 等级 IP 代码(国际防护或异物防护)由国际电工委员会 (IEC) 制定,“划分了 机械和电子设备对异物入侵(如手和手指等身体部位)、灰尘、意外接触和液体渗入的防护程度”。与IEC 60529 相对应的欧洲标准是EN 60529。 IP 代码由字母“IP”加两位数字组成,有时还包含选择性字母。IP 代表异 物防护(Ingress Protection)。第一个数字表示电气外壳的固体防护水平,包括手和手指等身体部位、灰尘的侵入及意外接触;第二个数字表示电气外壳的液体防护水平。目的是为用户提供更清晰的指导,而不仅仅是“防水”这样的模糊术语。 以下定义是 DMR 对讲机及其相关基础设施的普遍 IP 等级。例如: 第一位数字:固体防护 ● 5:防尘——不能完全防止灰尘进入,但灰尘的侵入量不足以影响设备 的正常运作;完全防止接触。

我国涡扇10航空发动机内幕

我国涡扇10航空发动机内幕 八十年代初期,中国航空研究院606所(中国航空工业第一集团公司沈阳发动机设计研究所)因七十年代上马的歼九、歼十三、强六、大型运输机等项目的纷纷下马,与之配套的研发长达二十年的涡扇六系列发动机也因无装配对象被迫下马,令人扼腕,而此时中国在航空动力方面与世界发达国家的差距拉到二十年之上。面对中国航空界的严峻局面,国家于八十年代中期决定发展新一代大推力涡扇发动机,这就是涡扇10系列发动机。依据装配对象的不同,涡扇10系列有涡扇10、涡扇10A、涡扇10B、涡扇10C、涡扇10D等型号,其中涡扇10A是专门为中国为赶超世界先进水平而上马的新歼配套的。中国为加快发展涡扇10系列发动机,采取两条腿走路方针。一是引进国外成熟的核心机技术。中美关系改善的八十年代,中国从美国进口了与F100同级的航改陆用燃汽轮机,这是涡扇10A核心机的重要技术来源之一;二是自研改进。中国充分运用当时正在进行的高推预研部分成果(如92年试车成功的624所中推核心机技术,性能要求全面超过F404),对引进的核心机加以改进,使核心机技术与美国原型机发生了较大变化,性能大为增强。这里说句题外话,网上有人说涡扇10是在F404 基础上放大而成,性能直逼F414,似乎也不无道理,因为核心机技术来源较多,不能单纯说由那一家发展而来

结构: 涡扇10/10A是一种采用三级风扇,九级整流,一级高压,一级低压共十二级,单级高效高功高低压涡轮,即所谓的3+9+1+1结构结构的大推力高推重比低涵道比先进发动机。黎明在研制该发动机机时成功地采用了跨音速风扇;气冷高温叶片,电子束焊整体风扇转子,钛合金精铸中介机匣;,挤压油膜轴承,刷式密封,高能点火电嘴,气芯式加力燃油泵,带

先进航空发动机设计与制造技术综述

先进航空发动机设计与制造技术综述 进入21世纪,世界航空发动机技术取得了巨大进步,并呈现加速发展的趋势。美国推重比10一级涡扇发动机F119作为第四代战斗机F22的动力装备部队,是当今航空动力技术最具标志性的成就。在此基础上,美国持续实施了多个技术研究计划,正在推动世界航空发动机技术继续向前发展。本文从未来高性能航空发动机采用的高级负荷压缩系统、高温升燃烧室、高效冷却涡轮叶片、推力矢量等方面,对其先进设计和制造技术的发展方向和趋势进行初步的分析研究。 高级负荷压缩系统 高压压气机技术发展的目标是单级压比高、级数少、推重比高、飞行性能好。对高级负荷的压缩系统,低展弦比设计、气动前掠设计、 整体叶盘、整体叶环、压气机稳定性主动控 制等技术是其中具有代表性的新技术。 1低展弦比叶片设计及制造 低展弦比叶片即宽弦叶片,它与窄弦叶 片相比,增宽了弦长,使压气机的长度缩短, 抗外物损伤能力、抗疲劳特性和失速裕度有 所提高。还可使压气机零件数减少,降低生 产和制造费用成本(图表1)。 90年代以来,英国罗·罗(R·R)公司、 美国普惠公司和GE 公司、法国SNECMA公 司不断研制和改进高压压气机钛合金宽弦叶片的气动和结构性能,广

泛应用于大涵道比涡扇发动机和高推重比小涵道涡扇发动机上。GE 公司TECH56技术计划的验证机和F119发动机、EJ200发动机都采用了这种宽弦叶片。 叶片的低展弦比设计,结合整体叶盘技术使得高压压气机在减少级数和提高叶片强度的同时,具有更好的气动稳定性。低展弦比叶片需要解决的关键技术问题是因重量增加而导致的轮盘与叶根结合处和轮盘本身的离心力增大问题。IHPTET计划在大型涡扇和涡喷发动机验证机上验证了该技术,该技术还将在F135和F136发动机上采用。 目前,低展弦比叶片已成为先进航空发动机压缩系统的关键技术,与3D气动掠形、空心结构、整体叶盘结构和更轻的钛金属基复合材料技术相结合,是未来的发展重点。 2大小叶片设计及制造 大小叶片就是在全弦长叶片后 增加一排小叶片,具有大大提高轴 流压气机叶片排增压比和减少气流 引起的振动等特点,是使轴流压气 机级增压比达到3或3以上的具有 发展潜力的技术(图表2)。90年 代,美国的霍尼韦尔(Honeywell) 和GE公司联合研制和验证了分流 小叶片。试验结果表明,采用大小

军用航空发动机可靠性和寿命管理

2003年1月第5卷第1期 中国工程科学Engineering Science Jan.2003Vol 15No 11 研究报告 [收稿日期] 2002-06-20;修回日期 2002-09-18 [作者简介] 徐可君(1963-),男,山东莱州市人,海军航空工程学院青岛分院副教授,博士生 军用航空发动机可靠性和寿命管理 徐可君,江龙平 (海军航空工程学院青岛分院航空机械系,山东青岛 266041) [摘要] 以西方军用航空发动机可靠性和寿命管理为蓝本,阐述了可靠性和寿命管理的基本要素,并结合我 国航空发动机可靠性和寿命管理的现状,讨论了我国航空发动机可靠性和寿命管理工作存在的差距和误区,指出了我国航空发动机可靠性寿命管理工作落后的根源在于管理观念落后、管理体制不健全、基础工作薄弱、标准不完善。参照西方国家的管理理念,构建和完善我国航空发动机可靠性和寿命管理是必要的,但完全照搬西方标准并不可取。正确做法是结合我国的现状,走出一条合乎国情的道路。[关键词]  航空发动机;可靠性;寿命;管理[中图分类号]V235 [文献标识码]A [文章编号]1009-1742(2003)01-0082-07 1 引言 20世纪70年代中期,发达国家在追求高性能 军用航空发动机的研制思想指导下,突出推重比、 高涡轮前燃气温度和高增压比。如美国,15年间涡轮前燃气温度提高了430℃,推重比增加了1倍,耗油率降低了15%,与此相适应,涡轮部件的周向应力提高了92%。引发的突出矛盾是,一方面高增压比、高涡轮前燃气温度使得构件所承受的气动负荷、热负荷和离心负荷大幅度增加,另一方面高推重比又要求减轻零件的质量,提高构件的工作应力,其结果使得发动机的结构故障显著增加。据统计,在1963—1978年的15年间,美空军战斗机由发动机引起的飞行事故有1664起,占全部飞行事故的4315%,而其中因结构强度和疲劳寿命问题导致的事故占90%以上。具有代表性的F100发动机,装备部队后故障频频,致使1979年F100发动机曾短缺90~100台,1980年亦有90架F -15、F -16战斗机无发动机可装,战备完好率下降。美军方在总结单纯追求高性能,忽视可靠性和耐久性的惨痛教训基础上,提出了设计发动机 时必须从规定发动机的最高性能转向制定更高耐久 性,于1984年11月30日发布了M IL -STD -1783《发动机结构完整性大纲》(ENSIP )。ENSIP 是一项对发动机设计、分析、研制、生产及寿命管理的有组织、有步骤的改进措施,其目的在于通过显著减少发动机在使用期间发生的结构耐久性问题,确保发动机结构安全,延长使用期限,降低寿命期成本。结构完整性的内容有:结构耐久性准则,耐久性设计要求,维修性准则,材料与处理特性计划,环境说明,地面广泛检验,使用与跟踪政策。F404发动机的研制遵循了结构完整性要求,采取了作战适用性、可靠性、维护性、费用、性能和重量的优先顺序,取得了良好的效果。 国产发动机在使用中亦曾多次发生结构故障,并造成事故。如WP -6发动机涡轮轴折断、九级盘镉脆、五级盘破裂,WP -7发动机四级盘爆破,其他各型发动机转子与静子叶片损伤、折断等。这些故障均属结构完整性问题。有资料表明,国产发动机结构完整性故障约占故障总量的6215%。为此,国内从1984年起相应开展了结构完整性研究工作。但由于基础工作薄弱,认识不统一,致使可

航空发动机发展史

摘要:航空发动机的历史大致可分为两个时期。第一个时期从首次动力开始到第二次世界大战结束。在这个时期,活塞式发动机统治了40年左右。第二个时期从第二次世界大战至今。60多年来,航空燃气涡轮发动机取代了活塞式发动机,开创了喷气时代。 关键词:活塞式喷气式 航空发动机诞生一百多年来,主要经过了两个阶段。 前40年(1903~1945),为活塞式发动机的统治时期。 后60年(1939~至今),为喷气式发动机时代。在此期间,航空上广泛应用的是燃气涡轮发动机,先后发展了直接产生推力的涡轮喷气发动机和涡轮风扇发动机。亦派生发展了输出轴功率的涡轮螺旋桨发动机和涡轮轴发动机。 一、活塞式发动机统治时期 很早以前,我们的祖先就幻想像鸟一样在天空中自由飞翔,也曾作过各种尝试,但是多半因为动力源问题未获得解决而归于失败。最初曾有人把专门设计的蒸汽机装到飞机上去试,但因为发动机太重,都没有成功。到19世纪末,在内燃机开始用于汽车的同时,人们即联想到把内燃机用到飞机上去作为飞机飞行的动力源,并着手这方面的试验。 1903年,莱特兄弟把一台4缸、水平直列式水冷发动机改装之后,成功地用到他们的"飞行者一号"飞机上进行飞行试验。这台发动机只发出 kW的功率,重量却有81 kg,功重比为daN。发动机通过两根自行车上那样的链条,带动两个直径为的木制螺旋桨。首次飞行的留空时间只有12s,飞行距离为。但它是人类历史上第一次有动力、载人、持续、稳定、可操作的重于空气飞行器的成功飞行。 在两次世界大战的推动下,活塞式发动机不断改进完善,得到迅速发展,第二次世界大战结束前后达到其技术的顶峰。发动机功率从近10kW提高到2500kW 左右,功率重量比(发动机功率与发动机质量的重力之比,简称功重比,计量单位是kW/daN)从daN提高到daN,飞行高度达15000m,飞行速度从16km/h提高到近800km/h,接近了螺旋桨飞机的速度极限。 20世纪30~40年代是活塞式发动机的全盛时期。活塞式发动机加上螺旋桨,构成了所有战斗机、轰炸机、运输机和侦察机的动力装置;活塞式发动机加上旋

航空发动机整机的性能方案设计

航空发动机整机的性能方案设计 对于一款民用航空发动机来说,最重要的是什么?安全!省油!安!全!省!油!重要的话说三遍!正如有国外专家说的那样:民用发动机必须足够安全、足够省油,否则就是白给航空公司,人家也不要。 “丈母娘择婿指南” 那么大家说了,你就造个最安全、最省油的,很难吗?我们先不涉及制造、装配,仅谈一谈整机的性能设计问题。一款民用航空发动机要想和心目中的飞机搭伙过日子,就得首先被航空公司挑中。与中国大妈挑女婿的标准类似,能被选中的发动机也要满足以下几点要求:力气大(高推力)、吃得少(省油)、不要动不动就撂挑子(安全性高),最好全年无休(可靠性高),有病不去医院吃个药片就能好(维修成本低),同时还要足够沉稳内敛(低噪声)、讲究卫生(污染物排放少)。下面,就让我们一起走近民用航空发动机,看看它是怎样从整机性能上勤修内功征服丈母娘的吧。

事情是这样的,在我们周围的空气里面,住着无数调皮的空气分子。根据脾气秉性的不同,又分为氮气分子、氧气分子、水分子等各种类型。这些分子就像被一杆子打散的桌球,时时刻刻处于不停的运动和相互碰撞中。当它们前进的方向上有东西挡路时,就狠狠地撞上去。遇上其它空气分子还好,大不了大家都改个方向继续往前跑。若遇到列队迎敌的固体分子们,那就是一个被立刻反射回来的下场。当然,此时铜墙铁壁的固体分子也被狠狠地撞了一下腰。 分子们个体太小,碰撞一下的力量当然也是不值一提的。但架不住数量太多,每时每刻都有数以亿亿亿计的分子撞上来。所以宏观来看,空气中的任何物体都会持续受到一个压力的作用,即气压P。“咦?我就算初中毕业也知道这个P 应该叫压强吧?!”没错,说起这个名称,那还真有个原因:发动机内部各个部件的表面积和各流道截面的面积一般是固定不变的,如果每次计算压力都用压强乘以面积那也太傻了,所以直接扔掉面积不管,压力就是压强了! 显然,这个压力的大小与单位时间内撞上来的分子个数成正比。同样数量的空气分子被塞到大小不同的箱子中,它们对箱壁的压力也会不同。箱子越大,分子们越稀疏,撞到同一块地方的分子就越少,压力也就越小。具体说来就是,压力P

对航空发动机研究和发展规律的认识

收稿日期:2001-07- 18 对航空发动机研究和发展规律的认识 江和甫 蔡 毅 斯永华 (中国燃气涡轮研究院 成都#610500) 摘要:探讨了世界上航空发达国家航空发动机技术加速发展的态势。分析了我国航空动力技术预先研究的现状及存在的问题。加深了对航空发动机发展规律的认识。对如何振兴航空、动力先行,把我国航空发动机搞上去,走自主创新的发展道路提出了建议。关键词:航空发动机;研究;发展 Understanding the Law of aero -engine Research and Development JIANG He -fu &CAI Yi &SI Yong -hua (China Gas Turbine Establishment,Chengdu 610500)Abstract:T his paper discusses the accelerated developing trend of aero -eng ine technolog ies in developed countries.The present situation and existing problems in China aero -propulsion technology research have been introduced.A deeper understanding of the law of aero -engine development has been made.Also,suggestions to v italize China aviation industry w ith putting propulsion in the first place in a manner of /creating and acting on our ow n 0is put forward. Key words:aero -engine;research;development 1 引言 航空发动机研制涉及众多专业的前沿技术成果,是一种属于多学科综合技术的/高科技产品0。世界上能研制飞机的国家很多,真正能独立研制先进航空发动机的只有美国、英国、法国、俄罗斯等四个国家。因此,它是一个国家科学技术水平和综合 技术能力的标志,甚至是综合国力的象征。 2 现状分析 世界上航空发达国家诸如美国等都十分重视航 空动力技术的发展,倾注了巨大的人力、物力、财力,执行了一系列旨在促进航空动力技术进步的研究计划。如:美军方从20世纪50年代开始实施的航空推进技术探索发展计划以及70年代实施的先进战术战斗机发动机计划(ATFE );先进涡轮发动机燃气发生器计划(AT EGG)和飞机推进分系统综合计划。此外,NASA 在70年代末还实施了发动机部件改进计划,高效节能发动机计划(E 3),先进螺旋桨计划和发动机热端部件技术计划(HOST )。这些计划为各种先进军民用发动机提供了坚实的技术基础,并使美国达到了当今世界领先的水平,推出了一代又一代先进军民用发动机,跨上了一个又一个技术

国内外军用电子元器件质量等级及对应情况

国外军用电子元器件质量等级与国内对应情况 为了保证元器件的质量,我国制定了一系列的元器件标准。在上世纪70年代末期制定了“七专”7905技术协议和80年代初制定了“七专”8406技术协议,已具备了军用器件标准的雏形,但标准是在改革开放之前制定的,有很多局限性,很难与国际接轨。从80年代开始,我国标准化部门参照了美国军用标准(MIL)体系建立了GJB体系,元器件的标准有规范、标准、指导性文件等三种形式。 1.国内军用元器件质量分级 2.美国军标质量等级体系: (1)B-2级:不完全符合MIL-STD-883的1.2.1节的要求,并按照政府批准文件,包括卖方等效的B级要求进行采购。 (2)B-1级:完全符合MIL-STD-883(微电子器件试验方法和程序)的1.2.1节所要求,并按照标准军用图样(SMD – Standard Microcicuit Drawing),国防电子供应中心(DESC – Defence Electronic Supply Center)图样或政府批准的其它文件进行采购。即通常称883级,器件上有5962 – xxx号。 (3)S-1级:完全按照MIL-STD-975(NASA标准的电子电气和机电源器件目录)或MIL-STD-1547(航天飞行器和运载火箭用元器件、材料和工艺技术要求)进行采购,并有采购机关的规范批准。 MIL-PRF-38534D 混合集成电路规范(依次低→高等级)

电阻、电容、电感元件 MIL 标准中有可靠性指标的元件失效等级分五级 3.欧空局元器件 半导体分立器件: ESA/SCC(Europe Space Agency/Space Componet Cooperation)5000标准 试验等级:B级、C级(从高到低) 批接收等级:1级、2级、3级(从高到低) 微电路: ESA/SCC(Europe Space Agency/Space Componet Cooperation)9000标准 试验等级:B级、C级(从高到低) 批接收等级:1级、2级、3级(从高到低) 电阻、电容、电感器件: ESA/SCC(Europe Space Agency/Space Componet Cooperation)3000和4000标准试验等级:B级、C级(从高到低) 批接收等级:1级、2级、3级(从高到低) 4.国外军用元器件与我国军用元器件质量等级对应关系 微电路质量对应等级

光学外观标准美军标MIL-PRT-13830B(中文版)新

美国军用标准 (MIL-PRF-13830B) 性能标准 军火控制设备用光学元件;监控生产、装配、检测的通用标准 所有防御和代理部门可允许使用此种标准。 1.范围 1.1 范围。此标准包括精加工光学元件的生产、装配、检测,诸如:透镜,棱镜,面镜、光栅、窗口以及用于防火仪器或设备。 2.应用文件 2.1本章列出的文件需要满足本标准3、4、5章的要求。本章不包括本标准其他章节的文件或其他信息推荐的文件。为了保证本目录的完整性,文件使用者必须注意文件须满足本标准3、4、5章列出的文件要求,无论这些内容是否在本章中列出。 2.2 其他政府文件,图纸及出版 下列政府其他文件、图纸和出版组成本文件内容的一部分,扩大本文的范围。除非另有规定,这些文件、图纸和出版是征求引用的。 图纸C7641866---光学元件表面质量标准 (立约人要求的其他政府文件、图纸、出版复印件及具体的功能应该从签约事宜或签约指示得到。) 2.3 优先顺序 本标准内容与其引出的参考有冲突时,以本标准内容为准。本标准未述内容,可行法律法规代行除非有具体的免除通知。(看附加有限标准合同条令)

3.要求: 3.1所有的光学元件,配件以及系统产品都必须符合这一标准的要求,除非具体的仪器标准或合同之可行图纸另有要求与定义。 3.2所用的材料也必须与图纸的说明以及使用文件的标准相一致 3.2.1玻璃光学元件在规格,以及级别必须与图纸要求相一致。允许使用玻璃材料时,应提供给合同管理人员相关的玻璃光学特性及设计数据完整的信息。 3.2.1.1 放射性材料 本文中要求的光学材料应不含钍或其他加入的超过0.05%重量的放射性材料。 3.2.2 粘着力除非合同和定单中有特殊说明,光学粘合剂必须同附录A的要求相一致。 3.2.3 粘连材料对于玻璃同金属相粘连,必须与附录D的要求相一致 3.2.4密封材料用于密封的材料必须与附录E的要求相一致 3.2.5 增透膜用于光学表面镀膜的增透膜必须与附录C的要求相一致 3.2.5.1 反射表面铝化反射面必须与附录B的要求相一致 3.3机械尺寸大小 光学元件必须与合同以及图纸的要求的尺寸和光学数据相一致 3.3.1边 所有光学元件都应当倒边在(0.020-0.005英寸在45度+/-15度),沿面宽进行测量,除非有特殊指定。如果边于在135度或者更大角度处交汇,则不需要倒边,除非图纸对此有特殊的要求。

相关文档
相关文档 最新文档