文档库 最新最全的文档下载
当前位置:文档库 › 伺服压机设备说明书

伺服压机设备说明书

伺服压机设备说明书
伺服压机设备说明书

伺服压机设备说明书

第一部分:安全

1-1安全注意事项:

生产过程中始终遵守安全注意事项可以防止意外事故及潜在危险的发生!

请指定专业人员培训上岗维护,操作设备。

发现问题及时解决,不要使设备带病作业。

压力气泵、真空泵等外协设备工作时,请确保安全可靠。

作业前有必要请您戴好劳保防护用具,确保人身安全与健康。

必须单独使用可靠的接地线,否则有被漏电,静电击打的危险。

各工位运转时严禁调整触摸,否则有卷入切断的危险。

保持气路通排气畅通,否则有放炮爆破的危险。

1-2 安全装置的位置:

第二部分:操作规程

2-1设备概观:

2-2开机前检查:

2-2-1确定主电源与设备需求相一致,单相交流220V。

2-2-2检查气源气压设定是否适当。

2-2-3清理设备上所有工具、污垢、外围材料。

2-3启动/运行/停止:

2-3-1闭合断路器,打开主电源开关,打开气源开关。

2-3-2电源指示灯亮,触摸屏显示正常。根据实际工作情况设定技术参数。

2-3-3双手按启动按钮,直至升降门完全打开。

2-3-4将待压工装放置于工装底座,双手按启动按钮,直至升降门完全关闭。

2-3-5升降门完全关闭后,伺服电缸开始下压动作。

2-3-6压装结束,伺服电缸归位停止后,升降门打开,取出工装,依照2-3-3的流程进行下一次压装。

2-3-7工作过程中,如需临时停止动作,或发生紧急状况,可快速随手按下急停按钮,动作暂停;解除急停后,按复位按钮,可继续工作。

2-4关机:

2-4-1关机时,请先关闭主电源再关闭气源。

2-4-2气源关闭时间过长时,升降门会缓慢下降属正常现象。

第三部分:维护与保养

3-1每班作业前

检查设备所有电路,气路部件有无漏电漏气;各运动部件是否损坏,卡滞,错位并即时修复纠正。

检查各运动部件的螺栓、螺母

检查滑动轴承。

3-2每班作业后

请切断气路,解除压力,使各工作部件处于放松状态,延长汽缸使用寿命。

氧压机说明书

共10 页第 1 页 YY5201. SM ZW-84/30型氧气压缩机 使用说明书 YY5201 SM 开封黄河空分集团有限公司 二〇〇八年元月

本机各气缸均为铸铁气缸,由缸体、缸头、阀罩和阀盖等零件组成。气阀配制在缸体侧面,缸体和缸头上有冷却水套,冷却气缸、气阀和填函。 4.7活塞 本机各级活塞体均由铝合金制成。活塞杆材料为不锈钢,表面经高频淬火,具有高耐磨性能,活塞杆与十字头螺纹联接,转动活塞杆即可调整活塞上下死隙。 导向环和活塞环材料均为填充聚四氟乙烯,具有良好的自润滑及耐磨性能。导向环整体热套在活塞体上,克服了缺口环承受背压的缺点,并能保证在正常运转中不松动,从而控制了环与气缸间合适的工作间隙,因而大大延长了导向环和活塞环的使用寿命,同时还提高了压缩机的容积效率和绝热效率。活塞环采用斜切口,漏损较小,安装时注意各环开口应错开一定角度。 由于聚四氟乙烯塑料热膨胀系数大,装配时应特别注意活塞环与环槽之间的间隙应在图纸规定的范围之内,过小的侧隙会使活塞环在运动时受热膨胀而卡死在槽内,从而迅速发热损坏。 4.8填函 各级填函结构相同,由七盒组成。每盒均由不锈钢密封盒、装在盒内的三、六瓣密封圈、阻流圈和紧箍在密封圈外缘的弹簧组成。各填料盒、填函座和填料压盖用两个M8的螺钉联接在一起,然后再整体固定到气缸上,这样便于安装和拆卸。 安装填函时应该注意: a.彻底除净各密封圈毛刺,并用四氯化碳清洗干净。 b. 将密封圈套在Φ73h6圆柱上(或活塞杆上)作轴向漏光检查,除切口处外,各贴合面均不应漏光,否则不予采用(允许小修)。 c. 同一密封盒内,三瓣密封圈应装在靠近气缸一侧。 4.9刮油器 刮油器主要由刮油器体、刮油环、弹簧、压盖等零件组成。刮油环用弹簧箍住,从而使之抱紧活塞杆。使用前,刮油环需进行刮研,保证与活塞杆很好贴合,以刮净活塞杆上沾附的润滑油,防止润滑油进入填函和气缸中。 装拆刮油环时应注意: a. 刮油环应彻底清除毛刺,但刃口应保持尖锐,装拆时应注意切勿碰伤,以免影响刮油效果。 b. 刮油环在安装前必须套在Φ73h6圆柱上(或活塞杆上)作轴向漏光检查,除切口处外,各贴合面皆不应漏光,否则不应采用(允许小修)。 c. 同一刮油环上的厚度差不应大于0.03mm。 d. 各环轴向间隙应保持在图纸要求范围之内。 4.10气阀 本机采用不锈钢缓冲型网状气阀。一、二气缸上下压缩腔各配置有两个进气阀和两个排气阀,三级气缸上下压缩腔各配置有一个进气阀和一个排气阀。

伺服电机工作原理及和步进电机的区别

伺服电机工作原理及和步进电机的区别 伺服电机内部的转子是永磁铁,驱动器控制的U/V/W三相电形成电磁场,转子在此磁场的作用下转动,同时电机自带的编码器反馈信号给驱动器,驱动器根据反馈值与目标值进行比较,调整转子转动的角度。伺服电机的精度决定于编码器的精度(线数)。 什么是伺服电机?有几种类型?工作特点是什么? 答:伺服电动机又称执行电动机,在自动控制系统中,用作执行元件,把所收到的电信号转换成电动机轴上的角位移或角速度输出。分为直流和交流伺服电动机两大类,其主要特点是,当信号电压为零时无自转现象,转速随着转矩的增加而匀速下降.。 请问交流伺服电机和无刷直流伺服电机在功能上有什么区别? 答:交流伺服要好一些,因为是正弦波控制滚珠丝杆,转矩脉动小。直流伺服是梯形波。但直流伺服比较简单,便宜。永磁交流伺服电动机20世纪80年代以来,随着集成电路、电力电子技术和交流可变速驱动技术的发展,永磁交流伺服驱动技术有了突出的发展,各国著名电气厂商相继推出各自的交流伺服电动机和伺服驱动器系列产品并不断完善和更新。交流伺服系统已成为当代高性能伺服系统的主要发展方向,使原来的直流伺服面临被淘汰的危机。90年代以后,世界各国已经商品化了的交流伺服系统是采用全数字控制的正弦波电动机伺服驱动。交流伺服驱动装置在传动领域的发展日新月异。 永磁交流伺服电动机同直流伺服电动机比较,主要优点有:⑴无电刷和换向器,因此工作可靠,对维护和保养要求低。⑵定子绕组散热比较方便。⑶惯量小,易于提高系统的快速性波纹管联轴器。⑷适应于高速大力矩工作状态。 ⑸同功率下有较小的体积和重量。 伺服和步进电机 伺服主要靠脉冲来定位,基本上可以这样理解,伺服电机接收到1个脉冲,就会旋转1个脉冲对应的角度,从而实现位移,因为,伺服电机本身具备发出脉冲的功能,所以伺服电机每旋转一个角度,都会发出对应数量的脉冲,这样,和伺服电机接受的脉冲形成了呼应,或者叫闭环,如此一来,系统就会知道发了多少脉冲给伺服电机,同时又收了多少脉冲回来,这样,就能够很精确的控制电机的转动,从而实现精确的定位,可以达到0.001mm。 步进电机是一种离散运动的装置,它和现代数字控制技术有着本质的联系。在目前国内的数字控制系统中,步进电机的应用十分广泛。随着全数字式交流伺服系统的出现,交流伺服电机也越来越多地应用于数字控制系统中。为了适应数字控制的发展趋势,运动控制系统中大多采用步进电机或全数字式交流伺服电机作为执行电动机。虽然两者在控制方式上相似(脉冲串和方向信号)弹性联轴器,但在使用性能和应用场合上存在着较大的差异。现就二者的使用性能作一比较。 一、控制精度不同 两相混合式步进电机步距角一般为3.6°、1.8°,五相混合式步进电机步距角一般为0.72 °、0.36°。也有一些高性能的步进电机步距角更小。如四通公司生产的一种用于慢走丝机床的步进电机,其步距角为0.09°;德国百格拉公司(BERGER LAHR)生产的三相混合式步进电机其步距角可通过拨码开关设置为1.8°、0.9°、0.72°、0.36°、0.18°、0.09°、0.072°、0.036°,兼容了两相和五相混合式步进电机的步距角。 交流伺服电机的控制精度由电机轴后端的旋转编码器保证。以松下全数字式交流伺服电机为例,对于带标准2500线编码器的电机而言,由于驱动器内部采用了四倍频技术,其脉冲当量为360°/10000=0.036°。对于带17位编码器的电机而言,驱动器每接收217=131072个脉冲电机转一圈,即其脉冲当量为360°/131072=9.89秒。是步距角为1.8°的步进电机的脉冲当量的1/655。 二、低频特性不同 步进电机在低速时易出现低频振动现象。振动频率与负载情况和驱动器性能有关,一般认为振动频率为电机空载起跳频率的一半。这种由步进电机的工作原理所决定的低频振动现象对于机器的正常运转非常不利。当步进电机工作在低速时,一般应采用阻尼技术来克服低频振动现象,比如在电机上加阻尼器,或驱动器上采用细分技术等。 交流伺服电机运转非常平稳膜片联轴器,即使在低速时也不会出现振动现象。交流伺服系统具有共振抑制功能,可涵盖机械的刚性不足,并且系统内部具有频率解析机能(FFT),可检测出机械的共振点,便于系统调整。 三、矩频特性不同

空压机使用说明书

精选文档 空压机使用说明书 目录 1.概述 (90) 2.启动和运行程序 (93) 3.控制和仪表 (95) 4.润滑油、冷却器和油细分离器 (105) 5.空气滤清器 (106) 6.故障排除 (107)

1.概述 压缩机:原装进口的螺杆压缩机主机是一靠啮合的螺旋形转子进行压缩的单级容积式回转机械。两转子都靠安装在压缩腔外的高额定负载转子轴承支承,单一宽度的圆柱滚子轴承装在吸气端承受径向载荷。装在排气端的圆锥滚子轴承对转子进行轴向定位并承受所有轴向载荷和剩余的径向载荷。 压缩原理(图1-1):压缩是通过主辅转子在一气缸内同时啮合来完成的。主转子有四个互成90°分布的螺旋形凸齿,辅转子有五个互成60°分布的螺旋形凹槽与主转子凸齿啮合。 空气入口位于压缩机气缸顶部靠近驱动轴侧。排气口在气缸底部相反的一侧。图1—1是为了表示吸、排气口的反向视图,当转子在吸气口尚未啮合时,空气流入主转子凸齿和辅转子凹槽的空腔内,此时压缩循环开始。(见图A)当转子与吸气口脱开时,空气被封闭在主辅转子构成的空腔内,并随啮合的转子轴向移动,(见图B)当继续啮合,更多的主转子凸齿进入辅转子的凹槽,容积减少,压力升高。 喷入气缸的油用以带走压缩产生的热量和密封内部间隙。容积减少,压力升

高一直持续到封闭在转子内腔中的油气混和物通过排气孔口排入油气桶内的时候。为

了生成一个连续平稳无冲击的压缩空气流,转子上的每一容积都以极高的连续性遵循同样的“吸气——压缩——排气”循环。 压缩机系统的空气流程(图4—1):空气进入空气滤清器,流经吸气卸荷阀进入压缩机,经压缩后,油气混合物进入油气桶内,在那里,大多数带走的油通过速度变化和撞击从空气中分离出来,并落入油气桶内。空气和残留的油进入分离器,在那里油被分离并通过分离器壳体与压缩机之间的连接管道流回压缩机。空气流经压力维持阀,排气止回阀和冷却器,然后进入车间空气管线。 润滑、冷却和密封:油气桶内的空气压力驱使润滑油流过油冷、热控阀和油过滤器,排入压缩机主油路。一部分油通过内部通道注入轴承,齿轮和轴封。其余的油直接喷入压缩腔,带走压缩热,密封内部间隙和润滑转子。 旋转阀:旋转阀是位于气缸排气侧靠近吸气端的一回转螺旋阀。此阀打开和关闭气缸上与吸气通道连通的孔口,这改变压缩机转子的容积来匹配空气的需求,从而达到节能的目的。

滚压成型机操作规程

滚压成型机操作规程集团公司文件内部编码:(TTT-UUTT-MMYB-URTTY-ITTLTY-

滚压成型机操作规程 1、操作人员必须熟悉本机性能及操作程序。 2、开机前要检查机器本身及周围无任何杂物,障碍物。检查各仪表,按钮是否正常。 3、每次工作前先开动设备进行试运转10分钟,试运转时间打开黄油润滑泵,使各个 润滑点充分润滑。严禁带负荷启动。 4、在正常的操作过程中每隔30分钟加润滑油一次,以保证设备安全运行。 5、设备工作时设备上方禁止上人。 6、运转过程中发现有异常振动,液压油泄露和噪声立即停车检查。 7、禁止非操作人员进入工作区,应与设备保持2米以上距离。 8、坚守工作岗位,工作时禁止擅自离开。因事离开设备时要停机,并把设备情况向班 长交待清楚。 9、设备系统压力为20Mp,严禁超压工作。 10、工作结束后,设备拉闸停电,周围卫生打扫干净。 滚压机操作工岗位责任制 1.严格执行本岗位操作规程,负责维护设备的安全运转。 2.服从领导指挥,坚守工作岗位,做到不迟到,不早退,不得带病或带思想情绪上岗。 3.严格现场交接班制度,接班后应迅速检查设备的性能、状况,检查设备有无异常、异 状,检查有关仪表是否完整、灵敏、可靠,问清上一班设备的运转情况及存在的问题,交代清楚并认真填写记录。凡因交代不清而发生事故,应有接班人负责。开机前,各加油点应加油。

4.设备在运转中,操作工应加强检查,发现问题,及时处理。当时确实解决不了的,应 立即向有关部门或领导反映,并积极协助处理。 5.经常性的探讨设备性能与运转规律,提高操作技术水平,提高维护质量。 6.负责本辖区卫生,保持整洁干净、无油污。 液压校直机操作规程 1、操作人员必须熟悉本机性能及操作程序。 2、开机前要检查机器本身及周围无任何杂物,障碍物。 3、每次工作前先开动设备进行试运转10分钟,严禁带负荷启动。 4、操作时,操作阀手柄位置及时回零。运转过程中发现有异常振动,液压油泄露和噪 声立即停车检查。 5、油泵停车时应先卸荷,后停车,停车后,应将操纵阀手柄往复推拉数次,卸掉系统 压力。 6、禁止非操作人员进入工作区,应与设备保持2米以上距离。 7、坚守工作岗位,工作时禁止擅自离开。因事离开设备时要停机,并把设备情况向班 长交待清楚。 8、本机使用范围,应按规定参数使用,不得超压使用。 9、工作结束后,设备拉闸停电,周围卫生打扫干净。 校直机操作工岗位责任制 1.严格执行本岗位操作规程,负责维护本设备的安全运转。 2.服从领导指挥,坚守工作岗位,做到不迟到,不早退,不得带病或带思想情绪上岗。

制氧站设备维护保养

站房设备维护保养要求 1、应经常检查控制器、电器件、氧分析仪是否正常,否则,应及时修理或更换。 2、空压机、空气纯化干燥机、制氧主机、过滤器、氧压机等应按其说明书定期维护。 3、应定期检查分子筛制氧机上的各个阀门(如气动截止阀、电磁阀、单向阀、调压阀等)及自动压紧系统等,若易损件、密封件等损坏应及时更换。 4、氧分析仪详见其说明书。 5、经常检查PLC控制器及二位五通电磁阀接电、接气部位是否正常以免出现故障。 6、容器、仪表、压缩机、管道、阀门及过滤器等系统原件应定期检查其油脂残留量及锈蚀情况,如不合格必须及时处理。 7、定期检查自动压紧填充装置进气管路中的止回阀的功能(如止回阀失效,则压紧系统将会上下窜动,失去压紧功能)。 8、维护前必须将设备中的氧气排空,并用无油干燥空气或氮气进行置换,使设备中的氧含量符合规定要求。 9、当排放容器管道的氧气时,应将氧气导放至安全区。 10、维修用的工具应清洗无油,维修完毕须全部清点无误方可,维修工的衣着及场地也应清洁无油。 11、管道及其组成件安装结束后宜分段逐步进行吹除,特别要注意将阀、流量计、过滤器及容器上流侧管端作为分段吹除的出口(排至系统外),以防止吹扫出来的杂物入阀、容器等部件的死角或损坏零件,吹除气体应为无油干燥空气或氮气,吹除应彻底,直至无尘埃及其它杂物为止。吹除速度应大于20m/s。 12、氧气管道、阀门等与氧气接触的一切部件在停用后再投入使用前必须进行严格除锈,必要时还需进行脱脂。 13、清洗剂建议用四氯化碳(CCL)清洗剂清洗,可用浸泡或擦洗的方法进行,43。表面油脂含量≤125mg/m14、为保证吸附筒内的分子筛始终处以无空隙,压紧的状态,形成良好的吸附压紧系统使用说12详见(床,本设备在吸附筒上部设置了分子筛缺量报警系统 明),当吸附筒内的分子筛下降到一定量时,系统就自动报警。须补充装填吸附筒内的分子筛。补充分子筛时,首先排空气罐内的气体,然后打开上盖和活塞,即可补充分子筛。 15、配电室2台补偿电容柜每月检查紧固一次螺丝。 16、空压机定期更换空滤、油滤、油分芯,并更换超级冷却油和加电机润滑脂。 17、保证设备外壳及设备内部干净、干燥,保证厂房环境干净整齐。 18、制氧机正常参数表 序号确认事项正常运转检查(测定)备注 MPa 0.50 设备进气压力1 ~0.6MPa MPa 0.3~2 氧气出口压力 0.4MPa % 氧气纯度3 95% 90~33/h /h Nm5Nm4 氧气流量℃以下5 进气温度45℃以下35环境温度℃6 ℃19、日常检修(按规范操作设备下,需检修的项目)

空压机的使用及维护说明书

空压机的使用及维护说明书 工作原理及主要功能件介绍: 概述:LU90-180系列螺杆式空气压缩机是喷油单级螺杆压缩机,采用联轴器直连传动,带动主机转动进行空气压缩,通过喷油对主机内的压缩空气进行冷却,主机排出的空气+ 油混合气体经过粗、精两道分离,将压缩 空气中的油分离出来,压缩空气中的水分在气水分离器中被分离出来,最后得到洁净的压缩空气。冷却器用于冷却压缩空气和油。 工作原理:螺杆压缩机是容积式压缩机中的一种,空气的压缩是靠装置于机壳内互相平行啮合的阴阳转子的齿槽之容积变化而达到。转子副在与它精官配合的机壳内转动使转子齿槽之间的气体不断地产生周期性的容积变化而沿着转子轴线,由吸入侧推向排出侧,完成吸入、压缩、排气三个工作过程。 空气流程: 空气一空气过滤器1-减荷阀2一主机3一油气分离器4、5一最小压力阀6-冷却器7一气水分离器16- 出口(供气)。 气水分离器17分离出来的冷凝水经过排污电磁阀放掉。 润滑油流程: 润滑油-分离油罐4-温控阀9-冷却器7 (或旁路)-油过滤器10-主机3。 空气+油混合气体在分离油罐内经过改变方向、旋转,大部分的油被分离出来,剩余的小部分油再经过油精分离器5被分离出来,这部分油被插入油精分离器内的管子抽出,经节流单向阀流入主机的低压部分,节流单向阀的节流作用是使被分离出来的油全部被及时抽走,而又不放走太多的压缩空气,如果节流孔被堵,油精分离器内将积满油,会严重影响分离效果;节流单向阀的另一个作用是防止停机时,主机内的润滑油倒流入油精分离器内。 分离油罐内的热油流入温控阀,温控阀根据流入油的温度控制流到冷却器和旁通油量的比例,以控制排气温度不至于过低,过低的排气温度会使空气中的水分在分离油罐内析出,并使油乳化而不能继续使用,最后油经过油过滤器后喷入主机。 润滑油循环由分离油罐与主机低压腔之间的压差维持,为了在机器运行过程中保持油的循环,必须保证分 离油罐内始终有0.2?0.3MPa的压力,最小压力阀6就是起到这一作用的。 空气过滤器:空气过滤器主要由纸质滤芯与壳体组成。空气经过纸质滤芯的微孔,使灰尘等固体杂质过滤在滤芯的外表面,不进入压缩机主机内,以防止相对运行件的磨损和润滑油加速氧化。因此,应根据使用环境和使用时间,及时予以清洁或更换纸质滤芯。其清洁方法为将滤芯取出轻轻敲其上下端面,即可清洗滤芯上的灰尘污物。切忌用油或水刷洗。如发现滤纸破损或尘污多堵塞严重而清除不净时,则须更换新件。 减荷阀:减荷阀主要由阀体、阀门、活塞、气缸、弹簧、密封圈等组成,其端面设有集成控制块,上面有放气阀及控制电磁阀,集成了通断调节和停机放空等功能。当压缩机起动时,减荷阀阀门处于关闭位置,以减少压缩机的起动负荷;当压力超过额定排气压力时,微电脑控制器发出信号使用电磁阀失电,减荷阀阀门关闭,使压缩机处于空载状态,直到压力降低到规定值时,阀门打开,压缩机又进入正常运转,此过程谓通断调节。减荷时有小部分的气体通过阀内的小孔放掉,以平衡减荷阀小孔的吸入气量,使分离油罐内的压力保持在0.2?0.3MPa,维持正常的润滑油循环;减荷阀的开启关闭动作是由调节系统的电子控制器和装在减荷阀端面的电磁阀自动控制的,减荷阀的开启关闭动作是否灵活,对压缩机的可靠性是很重要的,因此,减荷阀应定期保养,以维持良好的工作状态,保养时,须将零件拆下,检查各磨擦表面的磨损情况,特别需注意检查橡胶密封圈表面,如有损坏或裂缝,则须更换新件,在重新安装时,各零件应清洗干净,金属零件的磨擦表面应涂上润滑油。油气分离器:油分离部分主要由分离油罐4和油精分离器5组成,来自主机排气口的油气混合物进入分离油罐体空间,经过改变方向、转折作用,大部分油聚集于罐体的下部,含有少量润滑油的压缩空气经过油精分离器5使润滑油获得充分的因收,油精分离器收集到的润滑油被插入油精分离器内的管子抽出,经节流单向阀8流入主机的低压部分。在油分离油罐上部装有安全阀,当容器内压力过高,通过该安全阀释放空气,确保压缩机的安全使用,分离油罐的下部设有加油口和油位指示器,开机后油面必须保持在油位指示器的中间位置。压差发讯器19用于检测油精分离器的堵塞情况,当油精分离器堵塞严重时,压差发讯器动作,油精分离器堵指示灯亮,应及时更换。压缩机工作一段时间停机后,空气中的水分会冷凝沉积的分离油罐的底部,所以应经常通过装在分离油罐底部的放油阀15排出水份,延长润滑油的使用寿命。在使用过程中,如出现排气含油量大,就应检查抽油管及节流单向阀8是否畅通。如确认无问题则拆出油精分离器检查,如有损坏造成过滤短路或堵塞严重,必须更换新品。 最小压力阀:最小压力阀由阀体、阀芯、弹簧、密封圈、调整螺钉等组成,装在油精分离器的出口,它的作用是保持油分离罐内的压力不致于降到0.3MPa以下,这样能使含油的压缩空气在分离器内得到较好的分离,减

压力容器安装、使用说明

3.3 压力容器 3.3.1压力容器的分类 3.3.1.1按压力容器设计压力分类: 可分为:低压容器、中压容器、高压容器。 低压(L):0.1MPa≤p<1.6 MPa 中压(M):1.6MPa≤p<10 MPa 高压(H):10MPa≤p<100 Mpa 3.3.1.2按压力容器在生产工艺过程中的作用原理分类: 可分为:换热容器、分离容器、储存容器、反应容器。 换热容器:主要是用于完成介质的热量交换。 分离容器:主要是用于完成介质的流体压力平衡缓冲和气体净化分离的压力容器。 储存容器:主要用于储存、盛装气体、液体、液化气体等介质。 反应容器:主要是用于完成介质的物理、化学反应的压力容器。

3.3.2压力容器工作原理、结构形式 3.3.2.1气体冷却器 主要完成冷热流体的热量交换,降低压缩机人口处气体的温度,提高压缩机组的整体性能。 3.3.2.1.1浮头式气体冷却器 主要由壳体、管束、管箱、壳盖等部件组成。 其特点是管束可以抽出,便于清洗管间和管内;管束膨胀不受壳体约束,不会产生温差应力;管程可分成多程;能在较高的温度和压力条件下工作。适用与壳体与管束间壁温差较大或壳程介质易结垢的场合。结构见附图 2.1.1所示。 3.3.2.1.2U形管式气体冷却器 主要由壳体、管束、管箱等组成。其特点是管束可以自由伸缩,避免造成温差应力,管束可以抽出清洗管间;适用于管内走清洁而不易结垢的高温、高压、腐蚀性大的物料。适用压力范围大。结构见附图2.1.2所示。 3.3.2.1.3固定管板式气体冷却器 主要由壳体、管束、管箱等组成。其特点是结构简单、紧凑;管束不能抽出清洗和检查。适用于壳程介质清洁、不易结垢、温差不大的场

交流伺服电机内部结构图及原理

一、交流伺服电机结构图 二、原理 交流伺服电机在定子上装有两个位置互差90°的绕组,一个是励磁绕组Rf,它始终接在交流电压Uf上;另一个是控制绕组L,联接控制信号电压Uc。所以交流伺服电动机又称两个伺服电动机。

交流伺服电动机的转子通常做成鼠笼式,但为了使伺服电动机具有较宽的调速范围、线性的机械特性,无"自转"现象和快速响应的性能,它与普通电动机相比,应具有转子电阻大和转动惯量小这两个特点。目前应用较多的转子结构有两种形式:一种是采用高电阻率的导电材料做成的高电阻率导条的鼠笼转子,为了减小转子的转动惯量,转子做得细长;另一种是采用铝合金制成的空心杯形转子,杯壁很薄,仅0.2-0.3mm,为了减小磁路的磁阻,要在空心杯形转子内放置固定的内定子.空心杯形转子的转动惯量很小,反应迅速,而且运转平稳,因此被广泛采用。 交流伺服电动机在没有控制电压时,定子内只有励磁绕组产生的脉动磁场,转子静止不动。当有控制电压时,定子内便产生一个旋转磁场,转子沿旋转磁场的方向旋转,在负载恒定的情况下,电动机的转速随控制电压的大小而变化,当控制电压的相位相反时,伺服电动机将反转。 交流伺服电动机的工作原理与分相式单相异步电动机虽然相似,但前者的转子电阻比后者大得多,所以伺服电动机与单机异步电动机相比,有三个显著特点: 1、起动转矩大, 由于转子电阻大,其转矩特性曲线如图3中曲线1所示,与普通异步电动机的转矩特性曲线2相比,有明显的区别。它可使临界转差率S0>1,这样不仅使转矩特性(机械特性)更接近于线性,而且具有较大的起动转矩。因此,当定子一有控制电压,转子立即转动,即具有起动快、灵敏度高的特点。 2、运行范围较广. 3、无自转现象) 正常运转的伺服电动机,只要失去控制电压,电机立即停止运转。当伺服电动机失去控制电压后,它处于单相运行状态,由于转子电阻大,定子中两个相反方向旋转的旋转磁场与转子作用所产生的两个转矩特性(T1-S1、T2-S2曲线)以及合成转矩特性(T-S曲线)交流伺服电动机的输出功率一般是0.1-100W。当电源频率为50Hz,电压有36V、110V、220、380V;当电源频率为400Hz,电压有20V、26V、36V、115V等多种。 交流伺服电动机运行平稳、噪音小。但控制特性是非线性,并且由于转子电阻大,损耗大,效率低,因此与同容量直流伺服电动机相比,体积大、重量重,所以只适用于0.5-100W 的小功率控制系统。

空压机使用说明书

空压机使用说明书 目录 1.概述 (90) 2.启动和运行程序 (93) 3.控制和仪表 (95) 4.润滑油、冷却器和油细分离器 (104) 5.空气滤清器 (105) 6.故障排除 (106)

1.概述 压缩机:原装进口的螺杆压缩机主机是一靠啮合的螺旋形转子进行压缩的单级容积式回转机械。两转子都靠安装在压缩腔外的高额定负载转子轴承支承,单一宽度的圆柱滚子轴承装在吸气端承受径向载荷。装在排气端的圆锥滚子轴承对转子进行轴向定位并承受所有轴向载荷和剩余的径向载荷。 压缩原理(图1-1):压缩是通过主辅转子在一气缸内同时啮合来完成的。主转子有四个互成90°分布的螺旋形凸齿,辅转子有五个互成60°分布的螺旋形凹槽与主转子凸齿啮合。 空气入口位于压缩机气缸顶部靠近驱动轴侧。排气口在气缸底部相反的一侧。图1—1是为了表示吸、排气口的反向视图,当转子在吸气口尚未啮合时,空气流入主转子凸齿和辅转子凹槽的空腔内,此时压缩循环开始。(见图A)当转子与吸气口脱开时,空气被封闭在主辅转子构成的空腔内,并随啮合的转子轴向移动,(见图B)当继续啮合,更多的主转子凸齿进入辅转子的凹槽,容积减少,压力升高。 喷入气缸的油用以带走压缩产生的热量和密封内部间隙。容积减少,压力升高一直持续到封闭在转子内腔中的油气混和物通过排气孔口排入油气桶内的时候。为了生成一个连续平稳无冲击的压缩空气流,转子上的每一容积都以极高的连续性遵循同样的“吸气——压缩——排气”循环。 压缩机系统的空气流程(图4—1):空气进入空气滤清器,流经吸气卸荷阀进入压缩机,经压缩后,油气混合物进入油气桶内,在那里,大多数带走的油通过

氧压机使用说明书

目录 1、一般安全要求: (2) 2、主要技术规格 (4) 3、结构概述、工作原理及用途 (5) 4、主要部件的结构说明 (6) 5、存放与保管 (7) 6、安装 (8) 7、启封和组装 (9) 8、运转前的准备工作 (11) 9、压缩机的日常操作 (13) 10、日常维护和检修 (14) 11、封存 (16) 资料来源编制 校对 标准化 提出部门审定 标记处数更改文件号签名日期批准文号批准

1、一般安全要求: 1.1 通用安全要求 压缩机的操作人员必须经过正式培训,在熟知压缩机的结构、原理和说明书以及正确掌握操作方法和安全防范措施的基础上方能上岗操作。 在没有认真进行安全检查的情况下,不可轻易启动压缩机。 任何违反安全规程的操作都可能导致设备的损坏或危及人身安全。 在改动压缩机系统的任何部位前,应事先与制造厂家的设计部门取得联系。 1.2 受压部件安全要求 压缩机气路系统中的缓冲罐、中间冷却器、气液分离器及贮气罐等均为受压部件,凡属压力容器的,用户在安装之前,应与当地劳动部门取得联系,并接受监察。 安全阀及安全附件应妥善维护和定期校验。 严禁压缩机系统超温、超压运行。 当压缩机处于运行中或系统内存有压力时,不得紧固螺栓或拆卸受压零部件(包括曲轴箱堵、盖) 1.3 防火与防爆要求 对于压缩易燃易爆或有毒气体的压缩机,其安装、使用和操作应符合有关规定。 在通入易燃易爆气体之前必须先用氮气或惰性气体将压缩机系统中的空气置换干净。 站房内应有防止有害气体泄漏后聚积的措施。气路系统中对外排放口(安全阀的释放口、冷却器的排污口等)应加接导管,引到室外的安全地带放空或集气回收。 电器设备应符合压缩介质所需的防爆等级要求。 1.4 润滑油要求 压缩机应使用制造厂家指定的牌号的润滑油,其质量要求应符合标准规定,不同型号的润滑油不得混用。 润滑油应定期更换。 1.5 冷却水要求 冷却水应保持清洁,以防水道结垢。 冷却水的水质要求为: 1.5.1 有机的和机械的杂质和悬浮物应小于100mg/L,含油量小于5mg/L; 1.5.2 接近于中性,即PH值6.5~9; 1.5.3具有热稳定性,暂时硬度小于10°(注:硬度1°相当于1L水中,含有10mg 的CaO或19mg的MgO) 若水质未达到上述要求,应进行过滤和净化。 允许城市饮用自来水做冷却水使用。 1.6 人身防护 压缩机运转中,人身或衣物不得接触传动皮带、链条、联轴器扇叶片等运动部件。 不要触摸气缸壁或排气管道,以免烫伤。 1.7 电气要求 压缩机电气设备的安装与维护应符合电气安全的有关规定。 操作者必须持有相应的电工操作合格证书,并在电气技术人员指导下进行工作。 维修电气之前,应先切断电源,并设专人监护和警告标志。 1.8 吊装安全要求 吊装设备及吊具的承载能力应满足所吊设备的要求,吊装过程中,应注意人身及设备安全。包装箱一般用菱镁砼制作,起吊按图1–1所示。

伺服电机的工作原理图

伺服电机的工作原理图? 伺服电机工作原理——伺服电机内部的转子是永磁铁,驱动器控制的U/V/W三相电形成电磁场,转子在此磁场的作用下转动,同时电机自带的编码器反馈信号给驱动器,驱动器根据反馈值与目标值进行比较,调整转子转动的角度。 永磁交流伺服系统具有以下等优点:(1)电动机无电刷和换向器,工作可靠,维护和保养简单;(2)定子绕组散热快;(3)惯量小,易提高系统的快速性;(4)适应于高速大力矩工作状态;(5)相同功率下,体积和重量较小,广泛的应用于机床、机械设备、搬运机构、印刷设备、装配机器人、加工机械、高速卷绕机、纺织机械等场合,满足了传动领域的发展需求。 永磁交流伺服系统的驱动器经历了模拟式、模式混合式的发展后,目前已经进入了全数字的时代。全数字伺服驱动器不仅克服了模拟式伺服的分散性大、零漂、低可靠性等确定,还充分发挥了数字控制在控制精度上的优势和控制方法的灵活,使伺服驱动器不仅结构简单,而且性能更加的可靠。现在,高性能的伺服系统,大多数采用永磁交流伺服系统其中包括永磁同步交流伺服电动机和全数字交流永磁同步伺服驱动器两部分。伺服驱动器有两部分组成:驱动器硬件和控制算法。控制算法是决定交流伺服系统性能好坏的关键技术之一,是国外交流伺服技术封锁的主要部分,也是在技术垄断的核心。 2 交流永磁伺服系统的基本结构 交流永磁同步伺服驱动器主要有伺服控制单元、功率驱动单元、通讯接口单元、伺服电动机及相应的反馈检测器件组成,其结构组成如图1所示。其中伺服控制单元包括位置控制器、速度控制器、转矩和电流控制器等等。我们的交流永磁同步驱动器其集先进的控制技术和控制策略为一体,使其非常适用于高精度、高性能要求的伺服驱动领域,还体现了强大的智能化、柔性化是传统的驱动系统所不可比拟的。 目前主流的伺服驱动器均采用数字信号处理器(DSP)作为控制核心,其优点是可以实现比较复杂的控制算法,事项数字化、网络化和智能化。功率器件普遍采用以智能功率模块(IPM)为核心设计的驱动电路,IPM内部集成了驱动电路,同时具有过电压、过电流、过热、欠压等故障检测保护电路,在主回路中还加入软启动电路,以减小启动过程对驱动器的冲击。

无油空压机使用说明书2016汇总

T32系列无油润滑空气压缩机 T32 SERIES NON—LUBRICATED AIR COMPRESSOR 使用说明书 INSTRUCTION MANUAL SM001-03

一、概述 恒达系列无油润滑压缩机为两级、风冷、单作用式。造型美观,结构紧凑,运转平稳,排出气体品质优良。作为主要或辅助的气源,普遍应用在不宜采用含油的压缩气体作气源的场合。因此,无油润滑压缩机广泛用于机械、电子、石油、化工、医疗、卫生、食品、轻纺等各个行业或部门。 恒达系列无油润滑压缩机中的(WW、VW)两种压缩机机组,配有风冷后冷却器,采用气调的自动调节的方式供货。若顾客需用压力开关来实现压缩机自动停止和起动的控制(即电调产品),须在订货时注明。 当压缩机运转时,空气通过进气消声滤清器,从吸气阀进入一级气缸。在压缩行程中,缩小了原有的气体体积,提高了气体的压力。在排气过程中,压缩气体通过排气阀进入级间冷却器。在二级活塞的吸气行程中,经过级间冷却器冷却的气体通过二级吸气阀进入二级气缸。在二级活塞的压缩行程时,使压缩气体达到规定的排气压力。通过二级排气阀进入储气罐(或通过后冷却器进入储气罐)。 为防止润滑油(或油雾)串入压缩气体,压缩机的设计突破了传统方式,使压缩机的中体部分,产生一个抑制润滑油上串的压力。从而达到保证压缩气体纯净的目的。 恒达系列无油润滑压缩机排出气体品质优良,设计标准含油量≤0.01ppm。 产品设有起动卸荷装置。起动卸荷是通过压缩机内部的离心卸荷器和控制阀的动作来完成的。即压缩机停机时,离心卸荷器和控制阀工作。将二级缸内的高压气体排出,从而达到再次起动时,无负荷或少负荷的目的。提高了产品的可靠性。 压缩机机组在不停机的状态下,自行调节气量,控制压力不继续上升,称为气调产品或称恒速卸荷产品。 气调装置是安装在气缸盖上的卸荷器与安装在储气罐上的调节阀联动工作,而达到调节气量的目的。当储气罐内的压力超过额定值时,调压阀打开,储气罐内压力进入气缸盖上的卸荷器,该压力迫使卸荷器的活塞和底板克服卸荷器活塞弹簧的阻力而下降,底板上的连接杆顶开吸气阀片,使进入气缸的气体又从吸气阀的开口出去,因而不能产生压缩气体。当储气罐内压力低于调压阀确定的压差值时,调压阀关闭,卸荷器活塞和底板复位,吸气阀恢复正常工作,压缩机重新负载。调压阀有卸荷压力调节和压差调节。卸荷压力是使压缩机卸荷的压力;压差是卸荷压力与压缩机重新负载时压力的差值。

滚压机设计说明书

YX15-225-900波纹瓦成型工艺及专机设计 摘要纹瓦是一种应用于建筑领域的钢材,它质量可靠, 造型美观。体积小,有良好的抗热性和热传导性,在应用方面,它装拆方便、可靠、实用。在建筑领域有着光明的前景。本设计是针对波纹瓦的特点,用滚压成型设备把钢料成型为波纹形。板料的滚压成形是将长的金属带料于前后排的数组成形滚轮中心通过,随着辊轮的回转,在将料送进的同时又顺次进行弯曲加工以成形出所需断面形状的加工方法。滚压成形方法是一种性能优越并具有较大使用价值的一种新型的加工方法。本设计从理论入手,用简单的滚压成型技术,设计出质量可靠,设备简单的成型机。设计重点是滚压成形工艺和辊轮的设计。在设计的过程中,我们用成形方法设计出所需的滚轮数和其参数。该设计是在参考已有的型号类似的滚压机的基础上设计而成的。 关键词波纹瓦;滚压;成型;辊轮

The Rolling Craft and Machine Design of YX15-225-900 Ripples Tile ABSTRACT The ripples tile is a kind of material that used in the building area, its quantity credibility, shape beauty, volume small, and good anti- heat and hot conductibility. At the applied aspect, it fits out convenience, credibility and practical, and has a bright foreground in the building area. This design is using the roller equipment to model the material into ripples form through the feature of the ripples tile. While the roller is turning around, make the material pass through the center of the roller, then the shape of demanding will be formed. Roll forming is a new kind of to take shape method is a kind of process method which has a superior function and using value. The aim of this design is to design a credible and simplify equipment by using the roll forming commenced from the theories. the point of the design is the designing of rollers and the craft of roll forming. In the process of the design, we calculated the number of the rollers and its parameters through the use of the forming method. During the design I have consulted the similar machine that has already been made. KEY WORDS ripples tile;rolling;roll forming ;roller

KDON550-1200空分说明书

KDON-550/1200型 空气分离设备使用说明书 杭州迪沃普气体设备有限公司 二零一三年九月

目录 第一章 KDON-550/1200型空气分离设备概况第一节、工作原理 第二节、主要技术数据 第三节、空分设备组成 第四节、空分设备流程说明 第二章分馏塔内结构说明 第一节、上塔 第二节、主冷凝蒸发器 第三节、下塔 第四节、热交换器 第五节、液空液氮过冷器 第三章空分设备的操作 第一节、开车前的准备 第二节、起动液化与调整 第三节、正常工作中的操作 第四节、工作中的停车 第五节、紧急停车后之恢复操作 第六节、分馏塔的加温和吹除 第四章使用中的维护 第一节、机器、设备定期检查与正常维护 第二节、空分设备的封存和启封 第三节、安全技术

第一章 KDON-550/1200型空气分离设备概况 第一节、工作原理 KDON-550/1200型空气分离设备是一套从空气中同时提取氧气、氮气的空分设备,采用全低压带有透平膨胀机的新型的工艺流程。 进下塔的纯净干饱和空气由于继续冷却便成为液体空气。利用氧、氮沸点不同在分馏塔内进行精馏获得纯氧、纯氮。精馏的过程就是多次部分蒸发和多次部分冷凝的过程。下分馏塔的作用是制取富氧液空和液氮。主冷凝蒸发器的作用是使低压下不同压力的液氧蒸发和气氮冷凝,上分馏塔的作用是获得产品氧气和氮气。 第二节、主要技术数据 1、型号: KDON-550/1200型 2、加工空气量: 3960 m3/h 3、产品气量:氧气O2:含氧量≥99.6% 550±5% m3/h 氮气N2:含氧量≥99.9% 1200±5% m3/h 4、加工空气压力:启动压力≤0.7MPa、正常运行压力 0.55~0.65MPa 5、出塔压力:氧气O 2 0.042 MPa 氮气N 2 0.035 MPa 6、氧电耗(仅指空压机)~0.67 KW.h/ m3 O 2 氮电耗(仅指空压机)~0.26 KW.h/ m3 N 2 7、冷却水消耗: 45 t/h 8、热交换器热端温差:~2 ℃ 9、工作周期:≥15 个月 10、起动时间:(24~30)小时

伺服电机工作原理

伺服电机的工作原理图 伺服电机工作原理——伺服电机内部的转子是永磁铁,驱动器控制的U/V/W 三相电形成电磁场,转子在此磁场的作用下转动,同时电机自带的编码器反馈信号给驱动器,驱动器根据反馈值与目标值进行比较,调整转子转动的角度。 1、永磁交流伺服系统具有以下等优点: (1)电动机无电刷和换向器,工作可靠,维护和保养简单; (2)定子绕组散热快; (3)惯量小,易提高系统的快速性; (4)适应于高速大力矩工作状态; (5)相同功率下,体积和重量较小,广泛的应用于机床、机械设备、搬运机构、印刷设备、装配机器人、加工机械、高速卷绕机、纺织机械等场合,满足了传动领域的发展需求。 永磁交流伺服系统的驱动器经历了模拟式、模式混合式的发展后,目前已经进入了全数字的时代。全数字伺服驱动器不仅克服了模拟式伺服的分散性大、零漂、低可靠性等确定,还充分发挥了数字控制在控制精度上的优势和控制方法的灵活,使伺服驱动器不仅结构简单,而且性能更加的可靠。现在,高性能的伺服系统,大多数采用永磁交流伺服系统其中包括永磁同步交流伺服电动机和全数字交流永磁同步伺服驱动器两部分。伺服驱动器有两部分组成:驱动器硬件和控制算法。控制算法是决定交流伺服系统性能好坏的关键技术之一,是国外交流伺服技术封锁的主要部分,也是在技术垄断的核心。 2、交流永磁伺服系统的基本结构 交流永磁同步伺服驱动器主要有伺服控制单元、功率驱动单元、通讯接口单元、伺服电动机及相应的反馈检测器件组成,其结构组成如图1所示。其中伺服控制单元包括位置控制器、速度控制器、转矩和电流控制器等等。我们的交流永磁同步驱动器其集先进的控制技术和控制策略为一体,使其非常适用于高精度、高性能要求的伺服驱动领域,还体现了强大的智能化、柔性化是传统的驱动系统所不可比拟的。 目前主流的伺服驱动器均采用数字信号处理器(DSP)作为控制核心,其优点是可以实现比较复杂的控制算法,事项数字化、网络化和智能化。功率器件普遍采用以智能功率模块(IPM)为核心设计的驱动电路,IPM内部集成了驱动电路,同时具有过电压、过电流、过热、欠压等故障检测保护电路,在主回路中还加入软启动电路,以减小启动过程对驱动器的冲击。

氧压机使用说明书

目录 1、引言 1.1高纯度氧气的特征 1.2高纯氧气压缩机着火的原因 1.3设计高纯度氧气压缩机时采取的防火措施2、结构 2.1结构概述 2.1.1氧压机的特殊位置 2.1.2结构 2.2压缩机 2.2.1机壳 2.2.2转子 2.2.3叶轮 2.2.4隔板 2.2.5径向轴承 2.2.6止推轴承 2.2.7迷宫密封 2.2.8联轴器

2.2.9底座 2.2.10进口导叶调节装置 2.3气体冷却器 2.4润滑系统 2.5增速机 2.6其他辅助设备 2.6.1轴封装置 2.6.2流量调节系统及防喘振系统 2.6.3氧气过滤器 3、机组的的操作与控制 3.1概述 3.2运转、操作及控制 3.2.1起动联锁 3.2.2起动操作 3.3运转中的正常调节 3.3.1入口导叶控制 3.3.2高压旁通阀控制 3.3.3放空阀的控制 3.4正常停车操作 3.5重故障停车或紧急停车时的动作 3.6机壳及密封气温度异常上升时的动作3.7程序优先级的说明

4维修和检修规程 4.1日常维护 4.2检修 4.2.1机组的对中复查 4.2.2轴承间隙的测量歩骤 4.2.3轴承压盖压紧量测量歩骤 4.2.4止推轴承轴向间隙测量歩骤 4.2.5迷宫密封间隙的测量歩骤 4.2.6轴承和迷宫密封的容许间隙及轴承压盖预紧力 4.2.7IS0公制粗牙螺纹扭矩 5、解体及重新组装 5.1解体 5.1.1概述 5.1.2膜片式联轴器 5.1.3径向轴承的拆卸歩骤 5.1.4止推轴承的拆卸歩骤 5.1.5机壳的拆卸 5.2重新组装 5.2.1概述 5.2.2机壳装复 5.2.3径向轴承的装配 5.2.4膜片式联轴器

交流伺服电机的工作原理

交流伺服电机的工作原理 伺服电机内部的转子是永磁铁,驱动器控制的U/V/W三相电形成电磁场,转子在此磁场的作用下转动,同时电机自带的编码器反馈信号给驱动器,驱动器根据反馈值与目标值进行比较,调整转子转动的角度。伺服电机的精度决定于编码器的精度(线数)。 4. 什么是伺服电机?有几种类型?工作特点是什么? 答:伺服电动机又称执行电动机,在自动控制系统中,用作执行元件,把所收到的电信号转换成电动机轴上的角位移或角速度输出。分为直流和交流伺服电动机两大类,其主要特点是,当信号电压为零时无自转现象,转速随着转矩的增加而匀速下降, 请问交流伺服电机和无刷直流伺服电机在功能上有什么区别? 答:交流伺服要好一些,因为是正弦波控制,转矩脉动小。直流伺服是梯形波。但直流伺服比较简单,便宜。 永磁交流伺服电动机 20世纪80年代以来,随着集成电路、电力电子技术和交流可变速驱动技术的发展,永磁交流伺服驱动技术有了突出的发展,各国著名电气厂商相继推出各自的交流伺服电动机和伺服驱动器系列产品并不断完善和更新。交流伺服系统已成为当代高性能伺服系统的主要发展方向,使原来的直流伺服面临被淘汰的危机。90年代以后,世界各国已经商品化了的交流伺服系统是采用全数字控制的正弦波电动机伺服驱动。交流伺服驱动装置在传动领域的发展日新月异。永磁交流伺服电动机同直流伺服电动机比较,主要优点有: ⑴无电刷和换向器,因此工作可靠,对维护和保养要求低。 ⑵定子绕组散热比较方便。 ⑶惯量小,易于提高系统的快速性。 ⑷适应于高速大力矩工作状态。 ⑸同功率下有较小的体积和重量。 自从德国MANNESMANN的Rexroth公司的Indramat分部在1978年汉诺威贸易博览会上正式推出MAC永磁交流伺服电动机和驱动系统,这标志着此种新一代交流伺服技术已进入实用化阶段。到20世纪80年代中后期,各公司都已有完整的系列产品。整个伺服装置市场都转向了交流系统。早期的模拟系统在诸如零漂、抗干扰、可靠性、精度和柔性等方面存在不足,尚不能完全满足运动控制的要求,近年来随着微处理器、新型数字信号处理器(DSP 到目前为止,高性能的电伺服系统大多采用永磁同步型交流伺服电动机,控制驱动器多采用快速、准确定位的全数字位置伺服系统。典型生产厂家如德国西门子、美国科尔摩根和日本松下及安川等公司。 日本安川电机制作所推出的小型交流伺服电动机和驱动器,其中D系列适用于数控机床(最高转速为1000 r/min,力矩为0.25~2.8N.m),R系列适用于机器人(最高转速为3000r/min,力矩为0.016~0.16N.m)。之后又推出M、F、S、H、C、G 六个系列。20世纪90年代先后推出了新的D系列和R系列。由旧系列矩形波驱动、8051单片机控制改为正弦波驱动、80C、154CPU和门阵列芯片控制,力矩波动由24%降低到7%,并提高了可靠性。这样,只用了几年时间形成了八个系列(功率范围为0.05~6kW)较完整的体系,满足

相关文档