文档库 最新最全的文档下载
当前位置:文档库 › 第27讲.二次型的规范形与实二次型的正定性

第27讲.二次型的规范形与实二次型的正定性

第(16)次作业答案——二次型.

班级学号姓名第五章相似矩阵及二次型,作业第(16)次 第五节二次型及其标准形 第七节正定二次型 1 写出二次型的矩阵A,并求二次型的秩 f(x2 1,x2,x3)=x21-5x3+2x1x2+6x1x3 ?解:二次型的矩阵A= 113? 100? ? ?30-5? ??113??10A= 100? 0?? ?~ 013? ?30-5???00-5? ? 故二次型的矩阵的秩为R(A)=3 2若二次型f(x=2x222 1,x2,x3)1+2x2-6x1x2+x3, (1)写出二次型的矩阵A;(2)写出一个正交矩阵P,化矩阵A为对角阵; (3) 求一个正交变换x=Qy,化二次型为标准形. ?2-30? 解:(1)A= -320? ? ?001?? (2)由A-λE=0可得λ1=1,λ2=-1,λ3=5解(A-λE)x=0,可得λ1=1,p1=(0,0,1)T , λT2=-1,p2=(1,1,0),λ3=5,p3=(-1,1,0)T 取 ? ?0 Λ= 1? -1?, P= , ? 0??5??

? 10 0??? ?? P-1AP=Λ (3) ? 0 取Q=P= 0??,则Q为正交阵, 10 0? ???? 满足 Q-1AQ=Λ=QTAQ。令x=Qy,则 f(T1x,2x,xxAx)=y T yΛy=2 y2 2-5y。+3 3 已知二次型 f=5x2+5x2x2 12-21x2+cx3+6x1x3-6x2x3 的秩为2. (1)求参数c及此二次型矩阵的特征值; (1)指出方程f=1表示何种二次曲面. ?5-13??-15-解:(1)A= -15-3??~ 3? 02 -1? ?3-3c??,??00c-3?

二次型的标准型

§2 标准形 一、二次型的标准型 二次型中最简单的一种是只包含平方项的二次型 2 222211n n x d x d x d +++ . (1) 定理1 数域P 上任意一个二次型都可以经过非化线性替换变成平方和(1)的形式. 易知,二次型(1)的矩阵是对角矩阵, ().000000 ,,,212 1212 222211?????? ? ????????? ??=+++n n n n n x x x d d d x x x x d x d x d 反过来,矩阵为对角形的二次型就只包含平方项.按上一节的讨论,经过非退化的线性替换,二次型的矩阵变到一个合同的矩阵,因此用矩阵的语言,定理1可以叙述为: 定理2 在数域P 上,任意一个对称矩阵都合同于一对角矩阵. 定理2也就是说,对于任意一个对称矩阵A 都可以找到一个可逆矩阵C 使 AC C ' 成对角矩阵. 二次型),,,(21n x x x f 经过非退化线性替换所变成的平方和称为 ),,,(21n x x x f 的标准形. 例 化二次型 32312121622),,,(x x x x x x x x x f n -+= 为标准形. 二、配方法 1.,011≠a 这时的变量替换为

????? ????==-=∑=-. , , 222 11 1111n n n j j j y x y x y a a y x 令 ??? ? ? ? ? ? ?--=--100010 111 11121111 n a a a a C , 则上述变量替换相应于合同变换 11AC C A ' → 为计算11AC C ',可令 ()??? ? ? ??==nn n n n a a a a A a a 22221112,,,α. 于是A 和1C 可写成分块矩阵 ??? ? ??-=???? ? ?' =--11 1111111,n E O a C A a A ααα, 这里α'为α的转置,1-n E 为1-n 级单位矩阵.这样 .111 1 1111111 11 11111111 1111111 1111??? ? ??'-=???? ??-???? ? ?'-=???? ??-???? ??'? ??? ??'-=' --------αααααααααa A O O a E O a a A O a E O a A a E a O AC C n n n 矩阵αα'--1 111a A 是一个)1()1(-?-n n 对称矩阵,由归纳法假定,有 )1()1(-?-n n 可逆矩阵G 使 D G a A G ='-'-)(1 111αα 为对角形,令 ??? ? ??=G O O C 12,

二次型的正定性及其应用

毕业论文题目:二次型的正定性及其应用 学生姓名:孙云云 学生学号:0805010236 系别:数学与计算科学系 专业:数学与应用数学 届别:2012 届 指导教师:李远华

目录 摘要 (1) 前言 (2) 1 二次型的概念 (2) 1.1 二次型的矩阵形式 (2) 1.2 正定二次型与正定矩阵的概念 (2) 2 二次型的正定性一些判别方法及其性质 (3) 3 二次型的应用 (8) 3.1 多元函数极值 (8) 3.2 线性最小二乘法 (13) 3.3 证明不等式 (15) 3.4 二次曲线 (18) 结论 (18) 致谢 (19) 参考文献 (19)

二次型的正定性及其应用 学生:孙云云 指导老师:李远华 淮南师范学院数学与计算科学系 摘要:二次型与其矩阵具有一一对应关系,本文主要通过研究矩阵的正定性来研究二次型的正定性及其应用。通过研究二次型的性质并利用正(负)定矩阵判断多元函数的极值、证明不等式,由矩阵的特征值求多元函数的最值,再借助于非退化线性替换判断二次曲线的形状。 关键词:二次型;矩阵;正定性;应用 The second type of positive definite matrix and its applications Student: Sun YunYun Instructor: Li YuanHua Department of mathematics and Computational Science, Huainan Normal University Abstract:Quadratic and its matrix is exactly corresponding relation, this paper mainly through the study of the matrix is qualitative to study the second type is qualitative and its application. Through the study of the nature of the second type and use the positive (negative) set judgment matrix function of many extreme value, to testify inequality, the characteristic value of the matrix for the most value of a function of many, then the degradation by linear replace judgment of the shape of the quadratic curves. Key words: Quadratic; Quadratic matrix; Qualitative; Application

化二次型为实用标准形地几种方法

化二次型为标准形的几种方法 摘要 二次型是代数学要研究的重要容,我们在研究二次型问题时,为了方便,通常将二次型化为标准形.这既是一个重点又是一个难点,本文介绍了一些化二次型为标准形的方法:正交变换法,配方法,初等变换法,雅可比方法,偏导数法.正文详细介绍了几种方法的定义以及具体步骤,并举出合适的例题加以说明.其中,偏导数法与配方法又相似,只是前者具有固定的步骤,而配方法需要观察去配方. 关键词:正交变换法配方法初等变换法雅可比方法偏导数法

reduce the quadratic forms to the standard forms Abstract:Quadratic is the important content should study algebra, in our studies of quadratic problem, for convenience, will usually be quadratic into standard form. This is both a key is a difficulty, this paper introduces some HuaEr times for the standard form of orthogonal transform method, method: match method, elementary transformation, jacobian method, partial derivative method. The text introduces several methods defined and concrete step, simultaneously gives appropriate examples to illustrate. Among them, the partial derivative method and match method and similar, but the former has the fixed steps, and match method need to observed to formula. Keywords:orthogonal transform method match method elementary transformation jacobian method partial derivative method

二次型的正定性在函数极值判定中的

二次型的正定性在函数极值判定中的应用 函数的极值在微分学的理论与应用中是极为重要的。关于一元函数与二元函数极值的判定比较容易,但是,对于两个以上自变量的多元函数的极值的判定就比较困难了,并且在《微积分》与《高等数学》的教科书上也没有一般的结论。虽然用正定二次型的理论判定多元函数极值存在的充分条件是很方便的,由于教学中线性代数的内容安排在微积分之后,因此求多元函数极值的问题始终不能通过课堂教学得到解决。这里从二元函数的极值入手,利用正定二次型的结论,给出一般多元函数极值判定的一个充分条件。 二元函数极值判别的一个的充分条件为: ),(y x f z =设函数在点的某邻域内连续、存在二阶连续偏导数,且 ),(y x f z =),00y x (0),(),(0000=′=′y x f y x f y x 记,,),(00y x f A xx ′′=),(00y x f B xy ′′=),(00y x f C yy ′′= (1)若且0(或),则为极小值;若且(或),则为极大值。 02A 0>C ),(00y x f 02?AC B ),(00y x f (3)若,则是否为极值,需进一步讨论才能确定。 02=?AC B ),(00y x f 若记,我们可以用二次型的正定性将这个结论叙述为: ????????′′′′′′′′=),(),(),(),(),(0000000000y x f y x f y x f y x f y x H yy xy xy xx ??????? ?=C B B A (1)如果为正定矩阵(且或) ,则为极小值;如果为负定矩阵(且),00y x H (02A 0>C ),(00y x f ),00y x H (02

化二次型为实用标准型的方法

化二次型为标准型的方法 二、 二次型及其矩阵表示 在解析几何中,我们看到,当坐标原点与中心重合时,一个有心二次曲线的一般方程是 2 2 ax 2bxy cy f ++=. (1) 为了便于研究这个二次曲线的几何性质,我们可以选择适当的角度θ,作转轴(反时针方 向转轴) '' '' x x cos y sin y x sin y cos θθ θθ ?=-??=+?? (2) 把方程(1)化成标准方程。在二次曲面的研究中也有类似的情况。 (1)的左端是一个二次齐次多项式。从代数的观点看,所谓化标准方程就是用变量的线性替换(2)化简一个二次齐次多项式,使它只含平方项。二次齐次多项式不但在几何中出现,而且数学的其他分支以及物理、力学中也常会碰到。现在就来介绍它的一些最基本的性质。 设P 是一数域,一个系数在数域P 上的12n x ,x ,...,x 的二次齐次多项式 22212n 11112121n 1n 2222n 2n nn n f (x ,x ,...,x )a x 2a x x ...2a x x a x ...2a x x ...a x =++++++++ 称为数域P 上的一个n 元二次型,或者在不致引起混淆时简称二次型。 设12n x ,x ,...,x ;12n y ,y ,...,y 是两组文字,系数在数域P 中的一组关系式 11111221n n 22112222n n 33113223n n n n12n22nn n x c y c y ...c y x c y c y ...c y x c y c y ...c y ...........x c y c y ...c y =++??=++?? =++???=++?? (4) 称为由12n x ,x ,...,x 到12n y ,y ,...,y 的一个线性替换,。如果ij c 0≠,那么线性替换(4)就称为非退化的。 在讨论二次型时,矩阵是一个有力的工具,因此把二次型与线性替换用矩阵来表示。另 ij ji a =a ,i

二次型化为标准形的几种方法

2015届本科毕业论文 题目:二次型化为标准型方法 所在学院:数学科学学院 专业班级:数学与应用数学11-2班 学生姓名:赵江南 指导教师:艾合买提 答辩日期:2015年5月5日

目录 1 引言.............................................. 错误!未定义书签。 2 关于二次型定义 ................................... 错误!未定义书签。 3 二次型化为标准型的方法 ........................... 错误!未定义书签。 正交变换法 ...................................... 错误!未定义书签。 . 配方法 ......................................... 错误!未定义书签。 . 初等变换法 ..................................... 错误!未定义书签。 . 雅可比方法 ..................................... 错误!未定义书签。 . 偏导数法 ....................................... 错误!未定义书签。 4. 小结 ............................................ 错误!未定义书签。参考文献 .......................................... 错误!未定义书签。致谢 .............................................. 错误!未定义书签。

化二次型为标准型

化二次型为标准型公司内部档案编码:[OPPTR-OPPT28-OPPTL98-OPPNN08]

第二节 化二次型为标准形 若二次型),,,(21n x x x f 经可逆线性变换化为只含平方项的形式 ,2 222211n n y b y b y b +++ 则称之为二次型),,,(21n x x x f 的标准形. 由上节讨论知,二次型AX X x x x f T n =),,,(21 在线性变换CY X =下,可化为.)(Y AC C Y T T 如果AC C T 为对角矩阵 ? ?????????? ?=n b b b B 21 则),,,(21n x x x f 就可化为标准形,2222211n n y b y b y b +++ 其标准形中的系数恰好为 对角阵B 的对角线上的元素,因此上面的问题归结为A 能否合同于一个对角矩阵. 内容分布图示 ★ 二次型的标准性 ★ 用配方法化二次型为标准形 ★ 例1 ★ 例2 ★ 例3 ★ 例4 ★ 用初等变换化二次型为标准形 ★ 例5 ★ 例6 ★ 定理3 ?4 ★ 用正交变换化二次型为标准形 ★ 例7 ★ 例8 ★ 二次型与对称矩阵的规范形 ★ 例9 ★ 例10 ★ 内容小结 ★ 课堂练习 ★ 习题5-2 ★ 返回 内容要点: 一、用配方法化二次型为标准形. 定理1 任一二次型都可以通过可逆线性变换化为标准形. 拉格朗日配方法的步骤: (1) 若二次型含有i x 的平方项,则先把含有i x 的乘积项集中,然后配方,再对其余的变量进行同样过程直到所有变量都配成平方项为止, 经过可逆线性变换, 就得到标准形;

第二节 化二次型为标准型

第二节 化二次型为标准形 若二次型),,,(21n x x x f 经可逆线性变换化为只含平方项的形式 ,2 222211n n y b y b y b 则称之为二次型),,,(21n x x x f 的标准形. 由上节讨论知,二次型AX X x x x f T n ),,,(21 在线性变换CY X 下,可化为.)(Y AC C Y T T 如果AC C T 为对角矩阵 n b b b B 21 则),,,(21n x x x f 就可化为标准形,222 2211n n y b y b y b 其标准形中的系数恰好为对角阵B 的对角线上的元素,因此上面的问题归结为A 能否合同于一个对角矩阵. 内容分布图示 ★ 二次型的标准性 ★ 用配方法化二次型为标准形 ★ 例1 ★ 例2 ★ 例3 ★ 例4 ★ 用初等变换化二次型为标准形 ★ 例5 ★ 例6 ★ 定理 3 4 ★ 用正交变换化二次型为标准形 ★ 例7 ★ 例8 ★ 二次型与对称矩阵的规范形 ★ 例9 ★ 例10 ★ 内容小结 ★ 课堂练习 ★ 习题5-2 ★ 返回 内容要点: 一、用配方法化二次型为标准形. 定理1 任一二次型都可以通过可逆线性变换化为标准形. 拉格朗日配方法的步骤: (1) 若二次型含有i x 的平方项,则先把含有i x 的乘积项集中,然后配方,再对其余的变量进行同样过程直到所有变量都配成平方项为止, 经过可逆线性变换, 就得到标准形; (2) 若二次型中不含有平方项, 但是)(0j i a ij ,则先作可逆变换 ),,,2,1(j i k n k y x y y x y y x k k j i j j i i 且 化二次型为含有平方项的二次型, 然后再按(ⅰ)中方法配方. 注:配方法是一种可逆线性变换, 但平方项的系数与A 的特征值无关. 因为二次型f 与它的对称矩阵A 有一一对应的关系,由定理1即得: 定理2 对任一实对称矩阵A ,存在非奇异矩阵C ,使 B AC C T 为对角矩阵. 即任一 实对称矩阵都与一个对角矩阵合同. 二、用初等变换化二次为标准型 设有可逆线性变换为CY X ,它把二次型AX X T 化为标准型BY Y T ,则 B AC C T . 已

化二次型为标准型的方法样本

化二次型为标准型的方法 一、 绪论 高等代数是数学专业的一门重要基础课。该课程以线性空间为背景, 以线性变换为方法, 以矩阵为工具, 着重研究线性代数的问题。二次型式多元二次函数, 其内容本应属于函数讨论的范围, 然而二次型用矩阵表示之后, 用矩阵方法讨论函数问题使得二次型的问题变得更加简洁明确, 二次型的内容也更加丰富多彩。本文的中心问题是如何化二次型为标准形, 也就是用矩阵方法把对称矩阵合同与对角矩阵。 二次型是高等代数的重要内容之一, 二次型的基本问题是要寻找一个线性替换把它变成平方项, 即二次型的标准型。二次型的理论来源于解析几何中二次曲线、 二次曲面的化简问题, 其理论也在网络、 分析、 热力学等问题中有广泛的应用。将二次型化为标准型往往是困惑学生的一大难点问题, 而且它在物理学、 工程学、 经济学等领域有非常重要的应用, 因此探索将实二次型化为标准型的简单方法有重要的理论与应用价值。 我们知道, 任一二次型和某一对称矩阵是相互唯一确定, 而任一实对称矩阵都能够化成一对角矩阵, 相应的任一实二次型都能够化为标准型。在高等代数课本中介绍了将实二次型化为标准型的两种方法: 配方法和正交变换法; 另外, 由于任意矩阵能够利用初等变换化为对角矩阵, 因此也可用初等变换法将二次型化为标准型。 经过典型例题, 更能体会在处理二次型问题时的多样性和灵活性, 我们应熟练掌握各种方法。 以下就是几种方法的简单介绍, 而且又提出了一种新的方法: 雅可比喻法。我们在解决二次型问题时可对它们灵活应用。 二、 二次型及其矩阵表示 在解析几何中, 我们看到, 当坐标原点与中心重合时, 一个有心二次曲线 的一般方程是 22ax 2bxy cy f ++=.

6.3二次型与对称矩阵正定性(全)

§3 二次型与对称矩阵的正定性

定义6.3.1具有对称矩阵A 的二次型 f (X )=X T AX , 如果对于任何X =(x 1, x 2, ¨, x n )T ≠0,都有 X T AX >0,(或< 0) 成立,则称f (X )=X T AX 为正定(负定)二次型,矩阵A 称为正定矩阵(负定矩阵)。 如果对于任何X =(x 1, x 2, ¨, x n )T ,都有X T AX ≥0,(或≤ 0)则称f (X )=X T AX 为半正定(负定)二次型,矩阵A 称为半正定(半负定)矩阵。 且有,使, ()000012,,,0T n X x x x =≠000T X AX =二次型正定(负定),半正定(半负定),则它对应的矩阵为正定(负定),半正定(半负定);反之亦然。

例6.3.1对二次型 ,当时,显然,所以这个二次型是正定的,其矩阵E n 是正定矩阵。()222121 2 ,, ,n n f x x x x x x =+++()12,,,0T n X x x x =≠()12,,,0 n f x x x >例6.3.2二次型 ,可写成,当时,,因此是半负定二次型,其对应的 矩阵是半负定矩阵。()22 21231 12132 233 ,,2444f x x x x x x x x x x x x =--+-+-()()2 123123,,20f x x x x x x =-+-≤12320 x x x +-=()123,,0f x x x =()123,,f x x x 112112224--?? ? -- ? ?-?? 例6.3.3是不定二次型,因为其符号有时正有时负。 () 22 1212,2f x x x x =-

化二次型为标准形的方法

化二次型为标准形的方法 内容摘要:高等代数作为我们数学专业的一门重要的基础课。它以线性空间为背景,以线 性变换为方法,以矩阵为工具,着重研究线性代数的问题。二次型式多元二次函数,其内容本属于函数的讨论范围,然而二次型用矩阵表示之后,用矩阵方法讨论函数问题,使得二次型的问题变得更加简洁明确,二次函数的内容也更加丰富多彩。而我们要讨论的是如何化二次型为标准形,也就是用矩阵方法把对称矩阵合同与对角矩阵。二次型是高等代数的重要内容之一,二次型的基本问题是要寻找一个线性替换把它变成平方项,即二次型的标准形。下面介绍了一些化二次型为标准形的方法:配方法,交变换法,初等变换法,雅可比方法,偏导数法 关键词:二次型 线性替换 矩阵 标准形 导言:二次型的理论来源于解析几何中二次曲线、二次曲面的化简问题。二次型是学中的 一个极其重要的问题,这个问题不仅在数学上,而且在物理学,工程学,经济学领域都有广泛的应用。在研究时为了研究的方便,我们经常要化二次型为标准形。我们知道,任一二次型和某一对称矩阵是相互唯一确定的,而任一实对称矩阵都可以化为一对角矩阵,相应的以实二次型都可以化为标准形,以下就是化二次型为标准形的几种方法,通过典型例题,体会二次型问题时的多样性和灵活性。 化二次型为标准形的方法 一. 配方法 配方法是解决这类问题时另一个常用方法,通过观察对各项进行配方,其实质就是运用非退化的线性替换。使用配方法化二次型为标准形时,最重要的是要消去像()i j x x i j ≠这样的交叉项,其方法是利用两数的平方和公式和两数的平方差公式逐步的消去非平方项并构造新的平方项。 定理:数域P 上任意一个二次型都可以经过非退化的线性替换变成平方和 222 1122...n n d x d x d x +++的形。 1.如果二次型含有i x 的平方项,那么先把含有i x 的乘积项集中,然后再配方,再对其 余的项同样进行,直到都配成平方项为止,写出前面过程所经过的所有非退化的线性替换,就将二次型化为标准形了。 例 1.上述所给出的方法化二次型23(,,)f x x x =22 1122 23224x x x x x x +++为标准形,写出所用的变换矩阵。 解:原二次型中含有i x 的平方项,先将含有1x 的项集中,利用平方和公式消去12x x , 然后对2x 配平方,消去23x x 项。此过程为

正定二次型的性质及应用

摘要............................................. 错误!未定义书签。关键词............................................. 错误!未定义书签。Abstract.......................................... 错误!未定义书签。Keywords.......................................... 错误!未定义书签。前言............................................... 错误!未定义书签。1预备知识........................................ 错误!未定义书签。二次型定义........................................ 错误!未定义书签。正定二次型定义.................................... 错误!未定义书签。 2 正定二次型的性质............................... 错误!未定义书签。 3 正定二次型的应用 (7) 正定二次型在解决极值问题中的应用 (7) 正定二次型在分块矩阵中的应用...................... 错误!未定义书签。正定二次型在解决多项式根的有关问题中的应用 (9) 正定二次型在解决二次曲线和二次曲面方程中的应用 (10) 正定二次型在线形最小二乘法问题的解中的应用........ 错误!未定义书签。正定二次型在欧氏空间中的应用(欧氏空间的内积与正定矩阵)错误!未定义书签。 正定二次型在解线性方程组中的应用.................. 错误!未定义书签。正定二次型在物理力学问题中的应用.................. 错误!未定义书签。结束语.. (13) 参考文献.......................................... 错误!未定义书签。

化二次型为标准型的方法

化二次型为标准型的方法 一、绪论 高等代数是数学专业的一门重要基础课。该课程以线性空间为背景,以线性变换为方法,以矩阵为工具,着重研究线性代数的问题。二次型式多元二次函数,其内容本应属于函数讨论的范围,然而二次型用矩阵表示之后,用矩阵方法讨论函数问题使得二次型的问题变得更加简洁明确,二次型的内容也更加丰富多彩。本文的中心问题是如何化二次型为标准形,也就是用矩阵方法把对称矩阵合同与对角矩阵。 二次型是高等代数的重要内容之一,二次型的基本问题是要寻找一个线性替换把它变成平方项,即二次型的标准型。二次型的理论来源于解析几何中二次曲线、二次曲面的化简问题,其理论也在网络、分析、热力学等问题中有广泛的应用。将二次型化为标准型往往是困惑学生的一大难点问题,而且它在物理学、工程学、经济学等领域有非常重要的应用,因此探索将实二次型化为标准型的简单方法有重要的理论与应用价值。 我们知道,任一二次型和某一对称矩阵是相互唯一确定,而任一实对称矩阵都可以化成一对角矩阵,相应的任一实二次型都可以化为标准型。在高等代数课本中介绍了将实二次型化为标准型的两种方法:配方法和正交变换法;此外,由于任意矩阵可以利用初等变换化为对角矩阵,因此也可用初等变换法将二次型化为标准型。 通过典型例题,更能体会在处理二次型问题时的多样性和灵活性,我们应熟练掌握各种方法。 以下就是几种方法的简单介绍,并且又提出了一种新的方法:雅可比方法。我们在解决二次型问题时可对它们灵活应用。 二、 二次型及其矩阵表示 在解析几何中,我们看到,当坐标原点与中心重合时,一个有心二次曲线的一般方程是 2 2 ax 2bxy cy f ++=. (1) 为了便于研究这个二次曲线的几何性质,我们可以选择适当的角度θ,作转轴(反时针方 向转轴) '' '' x x cos y sin y x sin y cos θθ θθ ?=-??=+?? (2) 把方程(1)化成标准方程。在二次曲面的研究中也有类似的情况。 (1)的左端是一个二次齐次多项式。从代数的观点看,所谓化标准方程就是用变量的线性替换(2)化简一个二次齐次多项式,使它只含平方项。二次齐次多项式不但在几何中出现,而且数学的其他分支以及物理、力学中也常会碰到。现在就来介绍它的一些最基本的性质。 设P 是一数域,一个系数在数域P 上的12n x ,x ,...,x 的 二次齐次多项式22212n 11112121n 1n 2222n 2n nn n f (x ,x ,...,x )a x 2a x x ...2a x x a x ...2a x x ...a x =++++++++ 称为数域P 上的一个n 元二次型,或者在不致引起混淆时简称二次型。 设12n x ,x ,...,x ;12n y ,y ,...,y 是两组文字,系数在数域P 中的一组关系式

正定二次型

5..4 正定二次型 一、定义:假设12(,)(),T n f x x x f X X AX == 为实二次型,T A A =,12(,)T n X x x x O =≠ ,则 1、如果12(,)()0T n f x x x f X X AX ==> ,则称二次型12(,)()n f x x x f X = 为正定二次型,矩阵A 称为正定矩阵。 2、如果12(,)()0T n f x x x f X X AX ==< ,则称二次型12(,)()n f x x x f X = 为负定二次型,矩阵A 称为负定矩阵。 3、如果12(,)()0T n f x x x f X X AX ==≥ ,则称二次型12(,)()n f x x x f X = 为半正定二次型,矩阵A 称为半正定矩阵。 4、如果12(,)()0T n f x x x f X X AX ==≤ ,则称二次型12(,)()n f x x x f X = 为半负定二次型,矩阵A 称为半负定矩阵。 二、判定定理: 1、二次型12(,)n f x x x 正定A ?为正定矩阵12(,)()0T n f x x x f X X AX ?==> 12(,)n f x x x ? 的标准型222 1122n n d y d y d y +++ 中的系数0,1,2i d i n >= 12(,)n f x x x ? 的正惯性指数等于n 12(,)n f x x x ? 的规范性为222 12n y y y +++ A ?合同于单位矩阵E ?存在可逆矩阵C 使得T A C C =A ?的顺序主子式全大于零12(,)n f x x x ?- 负定。 证明:(1)二次型222 1122n n d x d x d x +++ 正定0,1,2i d i n ?>= 事实上,如果0,1,2i d i n >= ,则对任意的12(,)n x x x O ≠ , 22211220n n d x d x d x +++> ,即222 1122n n d x d x d x +++ 正定。 反之,如果222 1122n n d x d x d x +++ 正定,则对于向量12(1,00),(0,10)(0,01)n εεε=== 有()0,1,2i i f d i n ε=>= (2)非退化现行替换不改变二次型的正定性

二次型的正定性及其应用

毕业论文 题目:二次型的正定性及其应用 学生姓名:孙云云 学生学号: 0805010236 系别:数学与计算科学系 专业:数学与应用数学 届别: 2012 届 指导教师:李远华

目录 摘要 (1) 前言 (1) 1 二次型的概念 (2) 1.1 二次型的矩阵形式 (2) 1.2 正定二次型与正定矩阵的概念 (2) 2 二次型的正定性一些判别方法及其性质 (3) 3 二次型的应用 (8) 3.1 多元函数极值 (8) 3.2 线性最小二乘法 (12) 3.3 证明不等式 (14) 3.4 二次曲线 (16) 结论 (17) 致谢 (17) 参考文献 (17)

淮南师范学院2012届本科毕业论文1 二次型的正定性及其应用 学生:孙云云 指导老师:李远华 淮南师范学院数学与计算科学系 摘要:二次型与其矩阵具有一一对应关系,本文主要通过研究矩阵的正定性来研究二次型的正定性及其应用。通过研究二次型的性质并利用正(负)定矩阵判断多元函数的极值、证明不等式,由矩阵的特征值求多元函数的最值,再借助于非退化线性替换判断二次曲线的形状。 关键词:二次型;矩阵;正定性;应用 The second type of positive definite matrix and its applications Student: Sun YunYun Instructor: Li YuanHua Department of mathematics and Computational Science, Huainan Normal University Abstract: Quadratic and its matrix is exactly corresponding relation, this paper mainly through the study of the matrix is qualitative to study the second type is qualitative and its application. Through the study of the nature of the second type and use the positive (negative) set judgment matrix function of many extreme value, to testify inequality, the characteristic value of the matrix for the most value of a function of many, then the degradation by linear replace judgment of the shape of the quadratic curves. Key words: Quadratic; Quadratic matrix; Qualitative; Application 前言 二次型常常出现在许多实际应用和理论研究中,有很大的实际使用价值。它不仅在数学的许多分支中用到,而且在物理学中也会经常用到,其中实二次型中的正定二次型占用特殊的位置. 二次型的有定性与其矩阵的有定性之间具有一一对应关系.因此,二次型的正定性判别可转化为对称矩阵的正定性判别,因此,对正定矩阵的讨论有重要的意义.

相关文档
相关文档 最新文档