文档库 最新最全的文档下载
当前位置:文档库 › 7.稀薄燃烧技术

7.稀薄燃烧技术

7.稀薄燃烧技术
7.稀薄燃烧技术

6.缸内直喷、稀薄燃烧技术(HCC)

为了降低油耗和减少排放,日本的三菱公司和德国的大众公司都设计出了缸内直喷和稀薄燃烧的汽油发动机,日本三菱的叫GDI技术,德国大众的叫FSI技术。

正常的燃油和空气的混合比是14.7:1,当混合气体的浓度比超过理论空燃比,假设达到了25:1,这时油的浓度很低,不但会很难点燃,造成发动机断火,而且燃烧缓慢,造成发动机犯热、无力。虽然依靠加大点火能量能够有所缓解,但不能从根本上解决问题,所以,单靠提高点火能量不是解决问题的办法。

分层燃烧可以实现稀混合气的点燃,但必须设计成缸内直喷才能实现。对于缸外喷射的发动机,是无法实现分层燃烧的,这是因为缸外喷射时混合气浓度是一致的,要浓都浓费油,要稀都稀点不着,所以无法分层燃烧。但缸内直喷就不同了:它可以在进气冲程先喷一点油,形成25:1的稀混合气,等压缩终了接近上止点时,再向火花塞处喷一点油,在火花塞电极处形成一团14:1的功率混合气,这团较浓的混合气是很容易被点燃的。而如果用这个较浓的混合气去点燃其他的混合气,显然也是很容易的,这就是分层燃烧。如果采用分层燃烧,就可以实现在很低的燃油浓度下,实现发动机的正常运转。而从上面的分析我们可以看出,实现分层燃烧的前提就是气缸内的混合气体不均匀化,只在靠近火花塞电极的区域内使用稍浓混合气。

日本三菱的GDI是最早的缸内直喷汽油发动机,其实无论是GDI 还是FSI,或者其他的缸内直喷稀燃发动机,它们的设计理念就是想借鉴柴油发动机节油的先天优势,来实现对汽油机的优化,所以他们在结构上有一定的相似点。柴油机是缸内喷射,这些发动机也是,柴油机的压缩比很高,这些发动机的压缩比也比一般的汽油发动机高,一般都在12:1左右,但是,在这种压缩比下,还是不可能实现压燃,而且,汽油这种燃料的稳定性要比柴油差很远,注定不能压燃,还是要依靠火花塞来点燃。所以稀燃技术就成为这类直喷发动机的独门秘笈,以提高燃烧效率来实现节油环保的目的。

那么这两者技术是如何实现混合气在气缸内分层的呢?GDI采

用的是真正的直接喷射,设计师将喷油嘴布置在气缸顶部离火花塞和进气门都很近的地方,在发动机进气行程中,它也会喷油,但是喷油量非常的少,在活塞向下运动到底部再向上进行压缩时,气缸内的空气已经得到完全混合,这就如同缸外喷射的道理。但这时的混合气是不能被点燃的,因为浓度实在是太低了,预先达到这种浓度,只是为第二次喷油点燃缸内气体,并充分燃烧做准备;当然,这种稀混合气还有一个好处,就是可以提高压缩比而不会产生爆燃。当活塞即将到达上顶点,喷油嘴开始第二次喷油,因为喷出的燃油是漏斗形,越是靠近喷油嘴的地方,浓度就越高,而火花塞离喷油嘴很近,显然,此时在火花塞跳火间隙附近的燃油浓度是很高的,比其他部位的混合气要高,从而实现了不同区域出现不同浓度的混合气,也就是所谓分层。

现在就好办了,火花塞附近的混合气较浓,很容易被点燃,这部分点燃的气体会继续引燃剩余的混合气,从而达到分层点火燃烧的目的。缸内直喷技术(GDI)

缸内直喷技术(GDI)是燃油以细微滴状的薄雾方式进入汽缸,而不是以蒸汽的方式。这也就意味着当燃油雾滴吸收热量变为可燃蒸汽时,实际上对发动机的汽缸起到了冷却的作用。这种冷却作用降低了发动机对辛烷的需要,所以其压缩比可以有所增加。而且正如柴油一样,采用较高的压缩比可以提高燃料的效率。采用GDI技术的另一个优点是它能够加快油气混合气体的燃烧速度,这使得GDI发动机和传统的化油器喷射发动机相比,可以很好地适应废气再循环工艺。

采用计算机来模拟进出燃烧室的燃料和空气流的情况是一项突破性的技术。燃烧室和活塞的形状、喷油脉冲的能量和方向、活塞和发动机热量的运动情况都会影响油气混合物的位置。这项技术采用了燃油分层喷射。燃油分层喷射技术是发动机稀燃技术的一种。什么叫稀燃?顾名思义就是发动机混合气中的汽油含量低,汽油与空气之比可达1:25以上。

大众FSI发动机利用一个高压泵,使汽油通过一个分流轨道(共轨)到达电磁控制的高压喷射阀门。它的特点是在进气道中已经产生可变涡流,使进气流形成最佳的涡流形态进入燃烧室内,以分层填充的方式推动,使混合气体集中在位于燃烧室中央的火花塞周围。如果稀燃技术的混合比达到25:1以上,按照常规是无法点燃的,因此必须采用由浓至稀的分层燃烧方式。通过缸内空气的运动在火花塞周围

形成易于点火的浓混合气,混合比达到12:1左右,外层逐渐稀薄。浓混合气点燃后,燃烧迅速波及外层。

FSI特点是:能够降低泵吸损失,在低负荷时确保低油耗,但需要增加特殊催化转换器以有效净化处理排放的氧化氮气体。

FSI发动机按照发动机负荷工况,基本上可以自动选择2种运行模式。在低负荷时为分层稀薄燃烧,在高负荷时则为均质理论空燃比(14.6-14.7)燃烧。在这两种运行模式中,燃料的喷射时间有所不同,真空驱动的开关阀进行开启和关闭。在高负荷中所进行的均质理论空燃比燃烧中,燃油则是在进气冲程中喷射。理论空燃比的均质混合气易于燃烧,不必借助涡流作用,因此,由于进气阻力减少,开关阀打开。而在全负荷以外,进行废气再循环,限制泵吸损失,由于直喷化而使压缩比提高到12比1,即使在均质理论空燃烧比混合气燃烧中,仍能降低燃油耗。进一步说,在FSI发动机中,在低负荷与高负荷之间,作为第三运行模式而设定均质稀薄燃烧,在这种运行模式中,燃油在进气冲程喷射,并且由于产生加速稀薄混合气燃烧的纵涡流,开关阀被关闭。这时,阻碍燃烧的废气再循环(EGR)暂不进行。与均质理论空燃比燃烧不同的是,吸入空气量超过燃油的喷射量.所以实际上FSI发动机有三种工作模式在不同工况下运行:分层稀薄燃烧,均质稀薄燃烧,均质理论空燃比燃烧。

如果说三菱的GDI喷油很直接,那大众的FSI喷油是间接式的。大众的FSI把喷油嘴安放在进气门附近上,同样是两次喷油,但喷油方向是对准活塞,而且在活塞上有个U型槽,燃油喷射出来后,会

随着凹槽转变方向,目的地也是火花塞附近。因此也实现了在火花塞附近形成较浓的混合气,达到燃油分层的目的。大众的目的似乎很单纯,就是想要节油,活塞上的U型槽,有助于产生更多的缸内涡流,使混合更充分。但如果转速过高,这种涡流反而会影响进排气效率,降低燃烧效率,所以这就如同柴油机,不能将转速做得过高。转速低,燃烧充分,想不省油都难!但是回过头来看三菱的GDI,日本人务实,GDI的这种设计只要能做到对喷油的精确控制,高低转速都能兼顾,不会有瓶颈的制约,所以更适合于各种工况。

别看分层燃烧说起来很容易,其实很多部件都是科技含量很高的,像油泵、油嘴、活塞等等,没有过硬的技术,分层燃烧是根本不可能实现的。另外,使用分层燃烧技术的发动机压缩比都较高,所需的燃油清洁度也要求较高,在目前普及起来还有一定的阻碍,配备三菱的GDI发动机的车型,到现在还没有一款在国内正式销售,而大众的FSI则同样让人感觉高高在上,国内南北两家合资的大众公司宁可拿2气阀这种老旧的发动机来应付市场,也不敢把它在德国几乎已经普及了的FSI发动机拿来,主要是这些技术尚不适合目前的国情,中国的汽油清洁度较差,使用这种燃油会造成这种发动机的早期损坏。

全氧燃烧技术

全氧燃烧技术 我们日常生活中,随处可见药用玻璃瓶的身影。无论是饮料、药品,还是化妆品等等,药用玻璃瓶都是它们的好伙伴。这些玻璃包装的容器,因其透明的美感,化学稳定性好,对内容物无污染,可以高温加热,旧瓶可回收再生利用等优点,一直被认为是最好的包装材料。尽管如此,为了与金属罐、塑料瓶等包装材料竞争,药用玻璃瓶也在不断地提高其生产技术, 使产品质量更好、外观更美、成本更低。 在蓄热式玻璃窑的建造技术之后,玻璃熔化技术迎来了第二次革命,这就是全氧燃烧技术。在过去十年里,世界各国在玻璃熔窑上进行该技术改造的实践表明,全氧燃烧技术具有低投资、低能耗、低污染物排放等显著的优越性。在美国、欧洲,轻量化的瓶罐已是玻璃瓶罐的主导产品,小口压吹技术(NNPB)、瓶罐的冷热端喷涂技术等,都是轻量化生产的先进技术。德国公司已能生产出1公升的浓缩果汁瓶,仅重295克,瓶壁表面涂覆了有机树脂,可提高瓶子压力强度20%。在现代工厂里,生产玻璃瓶可不是容易的事,有很多的科学难题需要解决。 全氧燃烧技术在玻璃熔炉的应用 一、概论: 改革开放以来, 国民经济迅速发展举世瞩目。玻璃工业(平板玻璃、电子玻璃、玻璃纤维、日用玻璃、光学玻璃等)相应得到迅速发展,仅以浮法玻璃为例,截止2004年底,已建成投产126条浮法线(总产量已达到3亿重量箱,日熔量52930T),还有51条线在建、拟建。熔化玻璃采用煤、煤焦油、重油、烊黄 ⒒虻?少量)作燃料。目前我国熔化一公斤玻璃液(平板玻璃)平均指标在1500-1800大卡。按此单位能耗测算,玻璃工业无疑是重要能耗大户之一。当今世界石油价格上涨,我国进口石油逐年增加(中国生产力发展研究报告研究表明;中国石油进口率测算到2010、2015和2020年进口率下限将分别达到55.4%、57.4%、59.7%。大大超过30%理论上控制指标,按国际能源组织今年预测2030年中国石油对外依存度将达到74%的进口率)。玻璃熔窑大部分采用重油做燃料,因此,对于玻璃工业的总量控制,尤其是高能耗玻璃熔窑的能耗限制,从节能、成本考虑采用新燃烧技术已是当务之急。2005年2月16日“京都协议书”生效、2005年7月27日美国、澳大利亚、中国、印度、韩国在万象签订了亚太地区清洁能源开发及气候变化研究伙伴关系的协议“万象协议”,都在呼吁保护全球环境。目前中国的温室气体排放量已高居世界第二,并预计将会超过美国升至第一(美国纽约时报10月30日文章:中国下一个剧增的可能是污染空气)。根据粗略统计,中国有1/3的地区受到酸雨侵蚀。中国政府现在必须认识到,在环境方面,它既有国内责任,也有国际责任。党和国家提出的“十一五”规划纲要,已将节能、环保列为“十一五”规划着重解决的课题。严格控制大气污染、降低温室气体排放的新法规、新技术已是既定方针。随着玻璃工业的发展,人们对产品质量要求的不断提高,燃料成本的不断增加,使得科技工作者对玻璃生产的核心

发动机稀燃技术

发动机稀燃技术 稀燃是稀薄燃烧的简称, 指发动机在实际空燃比大于理论空燃比的情况下的燃烧,空燃比可达25:1,甚至更高。 稀薄燃烧不仅使燃料的燃烧更加完全,而且也减少了换气损失,同时辅以相应的排放控制措施,大大降低了汽油机的有害排放物,因此具有良好的经济性和排放性能。 稀薄燃烧可以提高发动机燃料经济性的主要原因是,由于稀混合气中的汽油分子有更多的机会与空气中氧分子接触,燃烧完全。采用稀混合气,由于气缸内压力低、温度低,不易发生爆燃,则可以提高热效率。 燃用稀混合气,由于其燃烧后最高温度降低,一方面使通过汽缸壁的传热损失较小,另一方面燃烧产物的离解损失减少,使热效率得以提高。且当采用稀薄混合气燃烧时,由于进入缸内空气的量增加,减小了泵吸损失,这对汽油机部分负荷经济性的改善非常有利。另外,稀薄燃烧时燃烧室内的主要成分O2和N2的比热容较小,多变指数K 较高,因为发动机的热效率高,燃油经济性好。从理论上讲,混合气越稀,热效率越高。但就普通发动机来说,当过量空气系数α >1.05~1.15后,油耗反而增加。这是由于混合气过稀时,发动机混合气分配的均匀性变得更加敏感,循环变动率增加,个别缸失火的概率增加;等等,如果不解决这些问题,盲目地调稀混合气,不但不能发挥稀混合气理论上的优势,反而会费油。

燃用混合气的技术途径 1) 使汽油充分雾化,对均质燃烧要保证混合气均匀及各缸混合气分配均匀。消除局部区域混合气偏稀的现象,避免电喷发动机调整时的有意加浓;同时,使缸内混合气的实际含量有所增加,失火及不稳定现象就会大大减少,发动机便可以在较稀混合气含量的条件下工作。要是汽油充分雾化,可以在预热、增加进气流的速度、增强进气流的扰动、增加汽油的乳化度以及使汽油分子磁化等方面采取措施。 2) 采用结构紧凑的燃烧室。使压缩时形成挤流,以提高燃烧速度,从而提高燃烧效率,减少热损失。一般采用火花塞放在正中的半球形或蓬顶形燃烧室,或其他紧凑型的燃烧室。 3) 加快燃烧速度。这是稀燃技术的必要条件和实施的基础。提高燃烧速度的主要措施是组织缸内的气体运动和调高压缩比。 4) 提高点火能量,延长点火的持续时间。对于常规含量的混合气而言,普通点火系所提供的点火能量已经足够,但燃用稀混合气就应当设法提高点火能量。高能点火和宽间隙火花塞有利于火核形成,火焰传播距离缩短,燃烧速度提高,稀燃极限大。有些稀燃发动机采用双火花塞或者多级火花塞装置来达到上述目的。

汽车发动机原理第4章 练习题

第4章练习题 一、解释术语 1、不规则燃烧 2、点火提前角 3、空燃比 二、选择题 1.提高汽油机的压缩比,要相应提高所使用汽油的() A、热值 B、点火能量 C、辛烷值 D、馏程 2.汽油机的燃烧过程是() A、温度传播过程 B、压力传播过程 C、热量传播过程 D、火焰传播过程 3、汽油机混合气形成过程中,燃料()、燃料蒸汽与空气之间的扩散同步进行。 A、喷射 B、雾化 C、蒸发 D、混合 4、下面列出的()属于汽油机的燃烧特点。 A、空气过量 B、有时缺氧 C、扩散燃烧 D、混合气不均匀 5、汽油机爆震燃烧的根本原因是远端混合气() A、自燃 B、被火花塞点燃 C、火焰传播不到 D、被压缩 6、汽油机的火焰速度是() A、燃烧速度 B、火焰锋面移动速度 C、扩散速度 D、气流运动速度 7、提高压缩比使汽油机的爆震倾向加大,为此,可采取()的措施。 A、减小喷油提前角 B、减小点火提前角 C、加大喷油提前角 D、加大点火提前角 三、填空题 1、根据汽油机燃烧过程中气缸压力变化的特点,可以将汽油机燃烧过程分为、和三个阶段。 2、汽油机混合气的形成方式可以分为和两种。 3、压缩比是发动机热效率的重要因素。但高压缩比会给汽油机增加的趋 势。

4、对液态燃料,其混合气形成过程包括两个基本阶段: 和。 5、燃油的雾化是指燃油喷入_________________后被粉碎分散为细小液滴的过程。 6、发动机转速增加时,应该相应地____________点火提前角。 7、在汽油机上调节负荷是通过改变节气门开度来调节进入气缸_______________的多 少。 四、简答题 1、P—φ图上画出汽油机正常燃烧,爆震燃烧和早燃的示功图,并简要说明它们的区别? 2. 用示功图说明汽油机点火提前角过大、过小,对燃烧过程和发动机性能的影响。 3. 汽油机燃烧室组织适当的紊流运动的作用有哪些?

稀燃发动机的发展历程

稀燃发动机的发展历程 稀燃就是发动机混合气中的汽油含量低,汽油与空气之比可达1:25以上。其实,在20多年前就已经有人在研究稀燃技术。面对20世纪70年代初欧美国家的排放规定以及石油危机引起的降低油耗的需求,人们探索了由稀混合气运行,用氧化催化剂净化排气的方法,采用了一种带副燃烧室的发动机。这种由丰田及本田公司发明的燃烧方式由于从副燃烧室喷出火焰会造成热能损失,因此当时稀混合气发动机降低油耗的效果并不明显。 从那以后,随着进气口的改进,气缸内旋涡生成技术的进步,由通用、福特、丰田、本田、日产等汽车公司先后研制成功的开口式燃烧室可以形成比带副燃烧室还好的稀薄混合气燃烧,并且随着进气口燃料喷射技术的发展和稀混合气传感器技术的开发,精密控制空燃比已成为可能。进入20世纪90年代,三菱汽车公司研制出来的缸内直喷技术使稀燃技术又进了一步。目前,各大公司都拥有自己的稀燃技术,其共同点都是利用缸内涡流运动,使聚集在火花塞附近的混合气最浓,先被点燃后迅速向外层推进燃烧,并有较高的压缩比。 汽车汽油发动机实现稀燃的关键技术归纳起来有以下三个主要方面: 一、提高压缩比。采用紧凑型燃烧室,通过进气口位置改进使缸内形成较强的空气运动旋流,提高气流速度;将火花塞置于燃烧室中央,缩短点火距离;提高压缩比至13:1左右,促使燃烧速度加快。 二、分层燃烧。如果稀燃技术的混合比达到25:1以上,按照常规是无法点燃的,因此必须采用由浓至稀的分层燃烧方式。 三、高能点火。高能点火和宽间隙火花塞有利于火核形成,火焰传播距离缩短,燃烧速度增快,稀燃极限大。有些稀燃发动机采用双火花塞或者多极火花塞装置来达到上述目的。《华夏时报》2001.11.29 文/钟强

无锡汽车零部件关键技术高新技术洽谈会技术需求信演示教学

无锡《汽车零部件关键技术高新技术洽谈会》技术需求信息 企业名称:无锡市谢虹机械厂 需求内容:生产工艺的改进 所属区域:惠山区 企业名称:无锡市锡联柴油机制造有限公司 需求内容:环境保护与节约能源是我们国家经济发展中尤为重视的二个问题。作为内燃机制造企业,我们在开发制造发动机的同时,理应十分注意整机的排放污染物控制与燃料消耗的控制,而天然气发动机是近期改善排放与节能的有效手段。我公司有意在此方向作探索和研究,但常规的柴油机改型为天然气发动机,目前国内的技术与产品并不成熟和理想。我们热切希望与有诚意的专家联手开发,以满足市场需求,为建设节能型、环保型的和谐社会作出贡献。 所属区域:惠山区 企业名称:无锡市新高汽车机电厂 需求内容:需找柴油机厂主机及汽车空调厂配套及出口业务。 所属区域:惠山区 企业名称:无锡市苏立成汽车空调压缩机有限公司 需求内容:我公司在开发双向斜盘式空调压缩机,现公司面临压缩机

斜盘的材料问题。所用铝合金材料特别要求耐磨性强,因为它的工作原理是零部件跟金属表面直接摩擦,希望能得到各位的帮助。 所属区域:惠山区 企业名称:无锡市康达汽车橡胶配件厂 需求内容:异型胶管、橡胶密封条方面的生产、加工技术。 所属区域:惠山区 企业名称:无锡市凯龙汽车设备制造有限公司 需求内容:汽车尾气供暖智能化、消声器自动除碳装置。 所属区域:惠山区 企业名称:无锡奔达密封件有限公司 需求内容:金属复合和金属表面涂层的密封技术。 所属区域:惠山区 企业名称:无锡市长安减震器材厂 需求内容:内燃机硅油减震器的制造工艺。 所属区域:惠山区 企业名称:无锡金阳汽车电器有限公司 需求内容:汽车起动机、起动机电枢、定子、线圈、电磁开关等。需

全氧燃烧、纯氧助燃及富氧燃烧节能技术比较

全氧燃烧、纯氧助燃及富氧燃烧节能技术比较 玻璃熔窑的节能降耗一直是业内关注的重大课题,在能源危机日益加重的今天,玻璃熔窑对高品质能源的过度依赖已经制约了玻璃行业的发展。玻璃熔窑燃烧过程中,空气成分中占78%的氮气不参加燃烧反应,大量的氮气被无谓地加热,在高温下排入大气,造成大量的热量损失,氮气在高温下还与氧气反应生成NOx,NOx气体排入大气层极易形成酸雨造成环境污染。另一方面随着高科技和经济社会的发展,要求制造各种低成本、高质量的玻璃,而全氧燃烧技术正是解决节能、环保和高熔化质量这几大问题的有效手段,被誉为玻璃熔制技术的第二次革命。纯氧燃烧技术最早主要被应用于增产、延长窑炉使用寿命以及减少NOx排放,但随着制氧技术的发展以及电力成本的相对稳定,纯氧燃烧技术正在成为取代常规空气助燃的更好选择,这得益于纯氧燃烧技术在节能、环保、质量、投资等方面的优势。 氧气燃烧的应用分为整个熔化部使用纯氧燃烧的全氧燃烧技术、纯氧辅助燃烧技术以及局部增氧富氧燃烧技术等几种方式。 1、全氧燃烧技术的优点 1)玻璃熔化质量好。全氧燃烧时玻璃粘度降低,火焰稳定,无换向,燃烧气体在窑内停留时间长,窑内压力稳定,有利于玻璃的熔化、澄清,减少玻璃的气泡及条纹。 2)节能降耗。全氧燃烧时废气带走的热量和窑体散热同时下降。研究和实践表明,熔制普通钠钙硅平板玻璃熔窑可节能约30%以上。3)减少NOx排放。全氧燃烧时熔窑废气中NOx排放量从2200mg/Nm3降低到500mg/Nm3以下,粉尘排放减少约80%,SO2排放量减少30%。 4)改善了燃烧,提高了熔窑熔化能力,可使熔窑产量得以提高。玻璃熔窑采用全氧燃烧时,燃料燃烧完全,火焰温度高,配合料熔融速度加快,可提高熔化率10%以上。 5)熔窑建设费用低。全氧燃烧窑结构近似于单元窑,无金属换热器及小炉、蓄热室。窑体呈一个熔化部单体结构,占地小,建窑投资费用低。

汽车超稀薄燃烧技术研究论文

目录 1 绪论 (2) 2 超稀薄燃烧技术的概念 (3) 3 缸外喷射稀燃系统(PFI) (5) 4 直接喷射稀燃系统(GDI) (7) 5.1 GDI发动机的燃油喷射系统 (8) 5.2 GDI发动机与PFI发动机燃油喷射系统的对比 (9) 5.3 GDI发动机的缸内流场 (9) 4.4 GDI发动机的超稀薄燃烧系统 (10) 4.5 GDI发动机的特点 (12) 5 均质混合气压燃系统(HCCI) (15) 5.1 HCCI概念 (15) 5.2 HCCI的燃烧特性 (16) 5.3 HCCI发动机对电控系统的要求 (20) 5.4 HCCI技术的应用 (20) 6 国内外超稀薄燃烧技术发展趋势 (22) 6.1 我国超稀薄燃烧技术发展趋势 (22) 6.2 国外超稀薄燃烧技术发展趋势 (22) 结论 (24) 致谢 (25) 参考文献 (26)

1 绪论 由于全球经济的发展,汽车拥有量迅速增加,成为非常严重的大气污染源。全球机动车保有量的增长比人口增长快得多。有关资料表明,1950年,全世界只有5000万辆汽车;到1995年,全球汽车总量已经超过6.5亿辆,平均每100人拥有10辆汽车;2010年全世界机动车数量达到8.2亿辆(不包括两轮和三轮机动车)。目前世界上大部分汽车集中在发达国家和地区,如ECD (Organizationfor Economic ooperation and Development )成员国拥有世界汽车的70%,人均拥有汽车数很高,而且这些国家的汽车保有量仍在缓慢上升。如图1-1所示,我国汽车的生产量从1978年的14.9万辆增加到2010年的1826万辆,增加了近123倍,年增加率为19%。轿车年产量从1978年的4千辆增加到1997年的48.1万辆。到2003年底,中国汽车总保有量已超过了2400万辆,2010年底已超过7523万辆。 汽车保有量的持续快速增长加剧了城市环境的污染程度,在发达国家的城市中,汽车排放成为CO 2、CO 、NOx 、SO 2或者微粒等超过标准的大气环境中,每天约有800人因呼吸污染空气而死亡,患肺空气污染的最主要来源,成为人类健康和城市环境的 507 571 728 888 961 1379 1826 2742 3160 4985 5697 6467 7619 8616 1365 2365 2925 3534 4173 5218 7523 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 2004年 2005年 2006年 2007年 2008年 2009年 2010年 单位(万辆) 汽车生产量 民用汽车保有量 私人汽车 图1-1 我国汽车的年产量和汽车保有量 最大威胁。世界城市约有一半的人生活在癌的人的比例逐年增加,控制汽车发动机的 有害排放已刻不容缓。从上世纪70年代开始,各个国家相继对车辆和发动机的尾气

意大利汽车零部件企业

意大利汽车零配件生产企业简介 根据意大利投资促进署提供的材料,以下企业在意大利汽车配件行业中占据重要地位。 布鲁果拉OEB工业股份公司 成立于1926年的布鲁果拉OEB工业股份公司(BrugolaOEBIndustrialeSpA),是世界上最大的汽车工业固定件生产企业之一。它具有业界领先的产品开发、生产技术,业已成为高技术固定元件生产的参照企业之一。 目前,它的出口量占其生产总量的98%。全世界每年组装的一千一百多万发动机,用的螺丝都是Brugola公司研制开发的。 布鲁果拉公司营业额远远超过意大利企业的平均额,公司每年都投入巨资进行研发。 Bitron公司 Bitron公司位于都灵,成立于1994年。它经营范围包括汽车,摩托车,机械设备等。公司主要为整车企业提供汽车用电器和电子器具,开关,手柄,按扭,车身零件,刮雨器等产品。 目前,该公司拥有3000名员工,营业额达2.42亿欧元,67%的产品销给世界大型汽车生产商。 Brembo公司 Brembo集团是意大利生产刹车制动系统的领头企业。是很多着名汽车厂商产品的第一供货商,如保时捷Porsche,法拉利Ferrari,马赛拉蒂Maserati,兰博基尼Lamborghini等。它同时也提供超过1000多种的汽车备用件。 2004年Brembo公司与DaimlerAG共同成立了陶瓷刹车系统生产企业BremboCeramicBrakeSystems合资股份公司。 它卓越市场表现的开始得益于它在赛车运动中界的优良传统。1975年,法拉利开始在它的Fl赛车上装备Brembo的制动系统,而从那时开始其他的一些大名鼎鼎的运动车辆品牌——阿斯顿·马丁、雪佛兰、玛莎拉蒂和保时捷——都开始在它们的跑车上装备Brembo制动系统。 BREMBO出品的制动系统有一个很大的特点,就是较为渐进的制动反应,对悬挂要求不会过分强硬,即使一些稍微改装过套装避震系统的车型也不会在制动时出现太大点头状况。 制动特色 采用Brembo制动系统的车型 保时捷Panamera、Panamera4、PanameraS和4S车型均配备Brembo制动系统,包括6活塞固定铝质单体前制动钳和4活塞固定铝质单体后制动钳。Panamera 和Panamera4的制动钳为黑色,PanameraS和Panamera4S为银白色,而PanameraTurbo则为红色。单体制动钳由单个铸铝坯料制成,可提供高制动性能并可减小制动距离。 法拉利California的Brembo制动系统包括带碳纤维陶瓷制动盘的前后布雷博模组。前部390毫米碳纤维陶瓷制动盘与带150平方厘米制动片的6活塞单体制动钳结合,而后部360毫米碳纤维陶瓷制动盘与带77平方厘米制动片的4活塞单体制动钳相结合。

全氧燃烧及节能减排

玻璃行业的全氧燃烧与污染减排 国际性油价逼近每桶100美元,无疑对工业能耗大户面临着巨大的压力。节能是当务之急,而减少废气污染的排放,确保环境空气的净化,是各工业企业的重中之重。作为一种高能耗产业的玻璃工业朝着高效率、高质量、低成本、环保化的发展。玻璃熔窑由传统的空气助燃改造(或新增)为全氧助燃就成为其主要的发展方向。 一.全氧助燃与空气助燃的区别: 空气助燃燃烧反应: CH4+2O2+ 8 N2→CO2 + 2 H2O+8 N2 全氧助燃燃烧反应: CH4+2O2→CO2 + 2 H2O 全氧助燃由于氮气的大量减少,在玻璃液上方的燃烧产物中主要是水与二氧化碳,燃烧后的烟气体积比空气助燃烟气减少70-80%,使得熔窑在结构上大大简化。全氧燃烧是玻璃行业节能减排的最佳选择。近年来PSA VPSA新技术的应用大大降低了制氧成本。这是我国玻璃行业未来实现节能减排的最经济、最有效的措施。 二.获取氧气的方法 作为工业气体的氧,主要产品来源于大气,经过空气分离的手段获得。上海空气之星工业气体设备有限公司是专业制氧、制氮设备的厂商。在多年V/PSA制氧设备生产的基础上、引进国外先进的制氧技术、采用cms-p1.3型、vop进口分子筛、进口切换阀门、配以先进的制氧循环流程、在常温的条件下,加压吸附、减压解吸的循环工艺、从大气中提取90-93的氧气。 V/PSA系列制氧机参数

从变压吸附中提取的氧气在玻璃熔窑上进行全氧燃烧其优点是: 1.改造燃烧效率节能25-40%。 2.污染减排显著,NOx排放量降低80%以上,粉尘排放量减少70-80%。 3.投资成本低,窑炉结构简短,筑炉时间短,占地小,维修量少,不需要蓄热室、格子砖、减少了维修费用。

发动机燃烧新技术

发动机燃烧新技术——Hcci 发动机均质充量压缩着火HCCI(homogeneous charge compression ignition)燃烧是一种全新的燃烧方式。是将燃料、空气及再循环燃烧产物所形成的预混合气被活塞压缩,自燃、着火、做功的过程。 一、HCCI燃烧方式概述 HCCI是均匀的可燃混合气在气缸内被压缩直至自行着火燃烧的方式。随着压缩过程的进行,气缸内的温度和压力不断升高,已混合均匀或基本混合均匀的可燃混合气多点同时达到自燃条件,使燃烧在多点同时发生,而且没有明显的火焰前锋,燃烧反应迅速,燃烧温度低且分布较均匀,因而,只生成极少的NOx和微粒(PM),在低负荷时具有很高的热效率。HCCI发动机主要具有以下几个特点: 1.超低的NOx和PM排放。 2.燃烧热效率高。HCCI发动机的热效率甚至超过了直喷式柴油机。 3.HCCI燃烧过程主要受燃烧化学动力学控制。 4.HCCI发动机运行范围较窄,HCCI发动机燃烧受到失火(混合气过稀)和爆燃(混合气过浓)的限制,使发动机运行范围变窄。对于高十六烷值燃料,由于HCCI发动机燃烧非常迅速,在高负荷工况下(混合气浓度大)易发生爆

震;对于高辛烷值的燃料,由于HCCI燃烧为稀薄燃烧,发动机在小负荷工况下容易失火。 5.HCCI发动机HC、CO排放偏高。这主要是由于HCCI 燃烧通常采用较稀的混合气和较强的EGR,因缸内温度较低造成的。 二、柴油机HCCI燃烧的特点 实现柴油机HCCI燃烧要面临两方面的困难:一是柴油粘度大,挥发性差,难以形成均质混合气;二是柴油作为高十六烷值燃料,容易发生低温自燃反应,均质混合气的燃烧速度控制困难,易造成粗暴燃烧。 柴油HCCI的燃烧放热表现出特别的两个阶段。第一阶段(放热曲线上较小的峰值)与低温化学动力学有关(冷焰或蓝焰);第二阶段(放热曲线上较大的峰值)是主燃烧期;第一阶段是第二阶段的焰前反应,焰前反应放出的热量加热了余下的充量,同时余下的充量继续被压缩,经历短时间的延迟后,余下的充量达到着火条件,几乎同时着火,使放热率迅速升高,表现在放热曲线上出现大的峰值。 因此,HCCI燃烧速度较快,燃烧始点和放热率对压缩过程中充量的温度、压力等很敏感,控制起来很困难。如果HCCI燃烧控制得较好,则可在拓宽的大空燃比范围内进行高效稳定的燃烧,循环波动压力小,工作柔和。

2020年(发展战略)我国汽车零部件业新发展世态的策略分析

(发展战略)我国汽车零部件业新发展世态的策略分析

我国汽车零部件业新发展世态的策略分析 汽车零部件作为汽车的重要组成部分,是汽车产业发展的基础。于经济全球化的背景下,伴随着汽车产业新的变化,世界汽车零部件产业也呈现出新的发展态势。首先,自20世纪80年代末尤其是90年代以来,于经济全球化推动下,世界汽车工业加快了资产重组的步伐。全球有实力的企业从1980年的30家减至目前的12家,整车企业的兼且重组打破了原有的全球配套体系,也促进了零部件企业的重组整合。有专家预测,为有效降低成本,实现规模经济,到2010年,全球汽车工业壹级零部件供应商的数目,将从目前的六百余家减5525-30家;世界二级汽车零部件供应商也将由当下的壹万多家减55600-800家。 其次,汽车零部件企业逐步从整车生产企业中剥离出来。为降低成本,集中精力搞好整车产品的设计和研发,提高产品于全球市场的竞争力,以美国三大汽车XX 公司(通用、福特、克莱斯勒)为首的整车制造商逐步将自己所属的零部件企业予以分离,且按质量、服务、价格和技术的要求于全球范围内比较选择所用零部件。而零部件企业为有效进行专业化生产,增强产品的开发能力,扩大配套范围,减少对整车企业的依赖,更好地吸收外部资本和技术,也主动从整车厂家脱离出来。例如,1998年5月,德尔福汽车系统XX公司从通用汽车XX公司中分离出来,从壹个单纯为壹家XX公司供货的零部件厂商变为面向全球的零部件XX公司。另外,随着经济全球化进程加快,汽车产业日益国际化,汽车整车厂逐渐于全球范围内以性价比比较选择采购零部件。于汽车零部件生产过程中,劳动力成本是

汽车零部件成本的重要组成部分,发展中国家低廉的劳动力成本(差不多只相当于美国劳动力成本的10%,甚至更低)对全球各大汽车整车企业来讲是极富诱惑力的。采用发展中国家生产的汽车零部件,建立新的全球供应链,所能节省的成本是相当可观的。因而,目前大多数跨国XX公司已将零部件产业中的劳动密集型产业向低工资成本国家和地区大量转移。德尔福XX公司自1994年进入中国,到当下已经于中国投资4.5亿美元,拥有14家企业、壹个技术中心和壹个培训中心。 再有,汽车零部件技术向通用化、智能化和环保化方向发展。为给更多整车车型提供配套服务,汽车零部件企业开始把汽车构成中不变的总成、模块、零部件整合为壹个平台,匹配各种可变的总成、模块和零部件,极大地提高了零部件的通用化。随着电子智能技术水平的不断提高,国际上汽车工业发达国家纷纷将汽车电子智能技术用于汽车零部件,电子智能化零部件比重越来越高,据统计,电子智能产品占整车价值的比例已由80年代末期的5%上升到目前的25%。为适应环境保护和可持续发展的需要,汽车零部件企业开始开发新型替代材料,使汽车零部件轻质化,减少燃料的消耗,减少污染,保护环境。 之上这些均直接或间接地影响着我国汽车零部件产业的发展。无论从应对全球采购挑战仍是从壮大我国汽车产业本身来见,零部件产业均应该得到更快的发展,行业水平应得到更大的提高,应先于整车产业实现国际化,积极融入全球采购体系。值得高兴的是,随着汽车产业的迅速发展,近几年我国汽车零部件产业增长

国内外浮法玻璃全氧燃烧调研报告

全氧燃烧技术在浮法玻璃生产中应用的调研报告 国内浮法玻璃行业能耗过高、污染排放量大等问题正随着国家对低碳节能要求的增加而日益受到重视。技术革新正在成为本行业继续健康发展的强劲动力。为了改善浮法玻璃行业能源消耗过高的现状,也为了提升本院的科学技术水平提高自身竞争力,我院于2010年10月成立了全氧燃烧课题研究小组。目前,研究小组已经完成了为期三个月的前期调研工作。调研目的在于收集国内外关于玻璃熔窑全氧燃烧的应用情况的相关资料,并整理资料提取有用信息,为全氧燃烧课题研究小组提供全氧窑方案设计依据。调研期间,研究小组检索查阅了近十年来国内核心玻璃期刊上有关全氧玻璃熔窑应用的大部分学术论文及优秀硕士毕业论文,并咨询了巨石集团、秦皇岛玻璃研究设计院、蚌埠玻璃工业设计研究院、杭州杭氧集团、美国普莱克斯公司等相关企业。为了丰富信息资料,研究小组还与多位玻璃行业的技术专家进行了交流,并出席了由中国硅酸盐学会玻璃分会主办的2010全国玻璃技术交流研讨会,从中获得了许多有价值的信息。为使接下去的研究工作能够更顺利的进行,现就本次调研工作做一个详细的总结。 一、玻璃熔窑全氧燃烧技术的必要性 我国玻璃工业产能已经高居世界首位,到2009年末,全国已建成投产的浮法玻璃生产线208条,平均熔化能力约540t/d。在2009年投产的19条浮法玻璃生产线熔化能力都在500t/d以上。与上世纪相比,我国平板玻璃熔窑的大型化水平和单位产品能耗有了显著的提高,一定程度上降低了污染物和二氧化碳的排放水平,并且大大提高了玻璃行业的产品质量。尽管如此,我国的平板玻璃行业依然存在着能耗大、成品率低(85%左右)、NO x排放量高等问题,和国外先进水平仍有一定的差距。而且随着重油价格的走高,燃料在玻璃制造成本中所占的比例也越来越大,严重影响了行业的经济效益。因此,节约能耗缓解能源短缺、提高成品率以及降低污染物排放依然是平板玻璃行业需要继续努力的课题。 长久以来,玻璃熔窑一直使用空气作为助燃介质。由于空气中氧气含量只有21%,其余约占4/5的氮气被无谓的加热,并在高温下排出窑体,造成了很大的能源浪费。这部分的热量损失约占能耗的30%左右。同时,氮气在高温下还与氧

稀薄燃烧

什么叫稀燃?顾名思义就是发动机混合气中的汽油含量低,汽油与空 气之比可达1:25以上。 要了解稀薄燃烧,就先要了解发动机的空燃比。所谓空燃比是指在发 动机进气冲程中吸入气缸的空气与燃油(汽油)重量之比,也就是说,混 合气中的空气与燃油的比例称为空燃比。汽油与空气混合燃烧时,空气量过多或者过少都不能有效进行燃烧。汽油完全燃烧所必需的空气比例,可 以根据理论计算得到,并称之为理论空燃比。具体地讲,一份汽油对14.7 份空气。因此理论空燃比为14.7。必须根据发动机的工况改变空燃比。 在带有三效催化转化器的发动机中,发动机必须调整到理论空燃比,14.7∶1。在部分带节气门开启时,一般发动机以较稀薄的混合气,即空燃比在15-16∶1范围内运转,但在稀薄燃烧发动机中,将以更为稀薄的混 合气,即空燃比大于18。 稀薄燃烧技术的最大特点就是燃烧效率高,经济、环保,同时还可以 提升发动机的功率输出。因为在稀薄燃烧的条件下,由于混合气点火比理 论空燃比条件下困难,暴燃也就更不容易发生,因此可以采用较高的压缩 比设计提高热能转换效率,再加上汽油能在过量的空气里充分燃烧,所以 在这些条件的支持下能榨取每滴汽油的所有能量。 比较著名的三菱缸内喷注汽油机(GDI),可令混合比达到40:1。它采用立式吸气口方式,从气缸盖的上方吸气的独特方式产生强大的下沉气流。这种下沉气流在弯曲顶面活塞附近得到加强并在气缸内形成纵向涡旋转流。在高压旋转喷注器的作用下,压缩过程后期被直接喷注进气缸内的燃料形 成浓密的喷雾,喷雾在弯曲顶面活塞的顶面空间中不是扩散而是气化。 这种混和气被纵向涡旋转流带到火花塞附近,在火花塞四周形成较浓 的层状混和状态。这种混合状态虽从燃烧室整体来看十分稀薄,但由于呈 现从浓厚到稀薄的层状分布,因此能保证点火并实现稳定燃烧。 大众的直喷汽油发动机(FSI),则是采用了一个高压泵,汽油通过一个分流轨道(共轨)到达电磁控制的高压喷射气门。它的特点是在进气道 中已经产生可变涡流,使进气流形成最佳的涡流形态进入燃烧室内,以分 层填充的方式推动,使混合气体集中在位于燃烧室中央的火花塞周围。 本田最新的VTEC发动机也将采用稀燃技术。这款取名为VTEC-i 2.0 升发动机将比一般本田发动机省油20%,其特点是将VTEC技术与稀燃技术 相结合,也是当低转速时令其中一组进气门关闭,在燃烧室内形成一道稀 薄的混合气体涡流,层状分布集结在火花塞周围作点燃引爆,从而起到稀 薄燃烧作用。 编辑本段稀薄燃烧发动机的技术

汽车新零部件开发的主要阶段和程序

汽车新零部件开发的主要阶段和程序 一、决策阶段 是对市场需求、技术发展、生产能力、经济效益等进行可行性研究及必要的先行试验,作出开发决策的工作阶段。是新产品研究开发的初期工作,对新产品研究开发的成败起着重要作用,这一阶段包含下列程序。 (一)市场调查和预测。 内容包括国外市场有无同类产品及相关产品; 1、国内外同类产品及相关产品的性能指标、技术水平对比; 2、同类产品及相关产品的市场占有率,价格及市场竞争能力等; 3、顾客对同类产品及相关产品的使用意见和对新产品的要求; 4、提出新产品市场预测报告。 (二)技术调查 内容包括: 1. 国内外技术方针策略; 2. 过内外现有的技术现状,产品水平和发展趋势; 3. 专利情况及有关最新科研成果采用情况; 4. 功能分析; 5. 经济效果初步分析; 6. 对同类产品质量信息的分析、归纳; 7. 同类企业与本企业的现有技术条件,生产管理,质量管理特点; 8. 新产品的设想,包括产品性能(如环境条件、使用条件、有关标准、法规、可靠性、外观 等),安装布局应执行的标准或法规等; 9. 研制过程中的技术关键,根据需要提出攻关课题及检验大纲。 (三)先行试验 根据先行试验大纲进行先行试验,并写出先行试验报告。 (四)可行性分析 进行产品设计、生产的可行性分析,并写出可行性分析报告,其内容: 1. 分析确定产品的总体方案; 2. 分析产品的主要技术参数含功能参数; 3. 提出攻关项目并分析其实现的可能性; 4. 技术可行性(包括先行试验情况,技术先进性,结构,零部件的继承性分析); 5. 产品经济寿命期分析; 6. 分析提出产品设计周期和生产周期; 7. 企业生产能力分析; 8. 经济效果分析: (1)产品成本预测; (2)产品利润预测。 (五)开发决策 1. 对可行性分析报告等技术文件进行评审,提出评审报告及开发项目建议书一类文件。 开发项目建议书内容: (1)新产品开发项目(顾客需要、目标预期效果);

7.稀薄燃烧技术

6.缸内直喷、稀薄燃烧技术(HCC) 为了降低油耗和减少排放,日本的三菱公司和德国的大众公司都设计出了缸内直喷和稀薄燃烧的汽油发动机,日本三菱的叫GDI技术,德国大众的叫FSI技术。 正常的燃油和空气的混合比是14.7:1,当混合气体的浓度比超过理论空燃比,假设达到了25:1,这时油的浓度很低,不但会很难点燃,造成发动机断火,而且燃烧缓慢,造成发动机犯热、无力。虽然依靠加大点火能量能够有所缓解,但不能从根本上解决问题,所以,单靠提高点火能量不是解决问题的办法。 分层燃烧可以实现稀混合气的点燃,但必须设计成缸内直喷才能实现。对于缸外喷射的发动机,是无法实现分层燃烧的,这是因为缸外喷射时混合气浓度是一致的,要浓都浓费油,要稀都稀点不着,所以无法分层燃烧。但缸内直喷就不同了:它可以在进气冲程先喷一点油,形成25:1的稀混合气,等压缩终了接近上止点时,再向火花塞处喷一点油,在火花塞电极处形成一团14:1的功率混合气,这团较浓的混合气是很容易被点燃的。而如果用这个较浓的混合气去点燃其他的混合气,显然也是很容易的,这就是分层燃烧。如果采用分层燃烧,就可以实现在很低的燃油浓度下,实现发动机的正常运转。而从上面的分析我们可以看出,实现分层燃烧的前提就是气缸内的混合气体不均匀化,只在靠近火花塞电极的区域内使用稍浓混合气。

日本三菱的GDI是最早的缸内直喷汽油发动机,其实无论是GDI 还是FSI,或者其他的缸内直喷稀燃发动机,它们的设计理念就是想借鉴柴油发动机节油的先天优势,来实现对汽油机的优化,所以他们在结构上有一定的相似点。柴油机是缸内喷射,这些发动机也是,柴油机的压缩比很高,这些发动机的压缩比也比一般的汽油发动机高,一般都在12:1左右,但是,在这种压缩比下,还是不可能实现压燃,而且,汽油这种燃料的稳定性要比柴油差很远,注定不能压燃,还是要依靠火花塞来点燃。所以稀燃技术就成为这类直喷发动机的独门秘笈,以提高燃烧效率来实现节油环保的目的。 那么这两者技术是如何实现混合气在气缸内分层的呢?GDI采 用的是真正的直接喷射,设计师将喷油嘴布置在气缸顶部离火花塞和进气门都很近的地方,在发动机进气行程中,它也会喷油,但是喷油量非常的少,在活塞向下运动到底部再向上进行压缩时,气缸内的空气已经得到完全混合,这就如同缸外喷射的道理。但这时的混合气是不能被点燃的,因为浓度实在是太低了,预先达到这种浓度,只是为第二次喷油点燃缸内气体,并充分燃烧做准备;当然,这种稀混合气还有一个好处,就是可以提高压缩比而不会产生爆燃。当活塞即将到达上顶点,喷油嘴开始第二次喷油,因为喷出的燃油是漏斗形,越是靠近喷油嘴的地方,浓度就越高,而火花塞离喷油嘴很近,显然,此时在火花塞跳火间隙附近的燃油浓度是很高的,比其他部位的混合气要高,从而实现了不同区域出现不同浓度的混合气,也就是所谓分层。

全氧燃烧

玻璃行业的全氧燃烧与污染减排 上海节能信息网2008-1-7 1:42:10 信息来源:上海空气之星工业气体设备有限公司评论: 玻璃行业的全氧燃烧与污染减排 宋永琪徐飞吴国钧 国际性油价逼近每桶100美元,无疑对工业能耗大户面临着巨大的压力。节能是当务之急,而减少废气污染的排放,确保环境空气的净化,是各工业企业的重中之重。作为一种高能耗产业的玻璃工业朝着高效率、高质量、低成本、环保化的发展。玻璃熔窑由传统的空气助燃改造(或新增)为全氧助燃就成为其主要的发展方向。 一.全氧助燃与空气助燃的区别: 空气助燃燃烧反应: CH4+2O2+ 8 N2→CO2 + 2 H2O+8 N2 全氧助燃燃烧反应: CH4+2O2→CO2 + 2 H2O 全氧助燃由于氮气的大量减少,在玻璃液上方的燃烧产物中主要是水与二氧化碳,燃烧后的烟气体积比空气助燃烟气减少70-80%,使得熔窑在结构上大大简化。全氧燃烧是玻璃行业节能减排的最佳选择。近年来PSA VPSA新技术的应用大大降低了制氧成本。这是我国玻璃行业未来实现节能减排的最经济、最有效的措施。 二.获取氧气的方法

作为工业气体的氧,主要产品来源于大气,经过空气分离的手段获得。上海空气之星工业气体设备有限公司是专业制氧、制氮设备的厂商。在多年V/PSA制氧设备生产的基础上、引进国外先进的制氧技术、采用cms-p1.3型、vop进口分子筛、进口切换阀门、配以先进的制氧循环流程、在常温的条件下,加压吸附、减压解吸的循环工艺、从大气中提取90-93的氧气。 V/PSA系列制氧机参数

从变压吸附中提取的氧气在玻璃熔窑上进行全氧燃烧其优点是: 1.改造燃烧效率节能25-40%。 2.污染减排显著,NOx 排放量降低80%以上,粉尘排放量减少70-80%。 3.投资成本低,窑炉结构简短,筑炉时间短,占地小,维修量少,不需要蓄热室、格子砖、减少了维修费用。 4.可以提高火焰底部温度,提高玻璃熔化量,燃烧无换向,窑炉废气的减少,使烟道系统规模大大缩小,NOx 排量大大降低,其清除系统规模也缩小,消除了熔炉换向带来的对炉 压及玻璃液面的不稳定,使温度和氧气分布更加重要稳定。有助于减少条纹和小气泡,改善玻璃质量。 5.降低碹顶温度,延长熔炉寿命。由于采用全氧燃烧,燃烧相对完全,火焰长度相对缩短,火焰上部温度降低,降低了碹顶的热负荷,既减轻对其的侵蚀,熔窑寿命相应延长。 6.节约能源,提高热效率。空气中含氧量约21%,而氮气的含量为78%,氦、氩、氢等为1%。采用空气助燃的燃烧过程中,只有氧气参加燃烧的反应,大量的氮气吸收了大量的燃烧反应放出的热,并从烟道排走,造成极大的浪费。采用全氧助燃后的排烟量仅是空气助燃的1/3-1/4,排出炉外的热量大为降低,同时火焰温度高,辉度高,辐射传热强。 玻璃行业的全氧燃烧与污染减排 上海节能信息网 2008-1-7 1:42:10 信息来源:上海空气之星工业气体设备有限公司 评论:

宝马3系决定弃用稀薄燃烧发动机

宝马3系决定弃用稀薄燃烧发动机 来源:盖世汽车社区https://www.wendangku.net/doc/8313413049.html, 德国宝马正在更新小型车。在日本市场,除“1系”外,“3系”也推出了新车型。3系投入并联式混合动力车成为热门话题,其实普通车型的发动机也有很大变化。 以前1系及3系以自然吸气的稀薄燃烧(Lean Burn)发动机为主。稀薄燃烧发动机不同于将燃烧室内的混合油气与空气的比例设定为理论空燃比的普通发动机,而是通过燃烧稀薄的混合油气来提高燃效。该发动机在日本从2010年秋季开始采用,从排量2.0L的3系轿车来看,使10·15模式燃效提高了27%。 然而,新款1系及3系均退出了稀薄燃烧发动机的行列。1系改为了1.6L、3系改为了2.0L的带涡轮增压器的理论空燃比发动机。对宝马来说,直列6缸发动机凭借顺滑的旋转已然成为一块招牌,但如今该公司却将该6缸发动机中设定的稀薄燃烧发动机换成了4缸涡轮发动机。也就是说,宝马在使用稀薄燃烧发动机才仅数年的情况下就转变了方针。 2005年笔者对宝马动力传动系统战略进行采访时,该公司表示其目标是推进自然吸气发动机的直喷稀薄燃烧化,采用理论空燃比的直喷涡轮,最终实现稀薄燃烧的直喷涡轮发动机。宝马停止使用稀薄燃烧发动机的真正原因不得而知,据估计,可能是因为随着尾气中的NOx(氮氧化物)增加而专门配备的NOx吸附还原催化剂很难满足严格的尾气排放规定的要求。另外,还有一种解释是,在必须符合世界各地不同尾气规定的情况下,统一成理论空燃比的发动机更容易达标。 在稀薄燃烧发动机方面,三菱汽车等曾凭借直喷技术实现实用化。该发动机虽然在燃效方面具有优势,但却存在燃烧室容易积碳以及尾气处理难度大的问题,因此应用案例在慢慢减少。虽然宝马及戴姆勒曾凭借压电式喷油嘴以及称为喷雾引导方式的新型成层化技术再次向稀薄燃烧方式发起挑战,但最后宝马还是将方向转到了通过使用理论空燃比的涡轮来实施小型化(Downsizing)的方向上来。 现在,推进“SKYACTIV”技术向自然吸气及高压缩化发展的马自达又将最终目标锁定了隔热的稀薄燃烧发动机。据马自达介绍,只要大幅提高空气过剩率,NOx便会减少,从而无需做尾气处理。不过,这种空气过剩的混合油气在火花塞无法点燃,因此还需要导入像HCCI(均质预混合燃烧)那样的新燃烧形态。在发动机领域,兼顾燃效和尾气始终是一项难题,这一情况今后或许还将继续下去。亮相后又消失的稀薄燃烧发动机能否再次出场,接下来就要看马自达的了。(盖世汽车社区编译自《日经汽车技术》)

发动机燃烧技术

一、概述 内燃机的发展已经有一百多年的历史,自从1876年奥托发明的第一台火花点火式发动机和1892年迪塞尔发明第一台压燃式发动机以来,由于具有较高的热效率、比功率和可靠性,内燃机成为了最主要、最理想的船用、工程机械以及车用动力。美国机械协会认为汽车是20世纪唯一的也是最重要的工程界的成就。在可以预见的未来,发动机仍然是汽车、机车、轮船、农用机械和工程机械等移动装置的动力源。 然而随着世界经济的高速发展,促使内燃机的保有量迅速增加,这样能源消耗以及环境污染问题就日益严重,相应地对内燃机提出了新的技术要求。其中提高内燃机燃油经济性一直是该领域研究工作者所追求的。 同时保护环境的呼声日益提高,如何降低内燃机的有害排放物,是大家共同关心重视的课题。一方面,通过机内净化技术,如柴油机采用电控高压共轨喷射技术,并结合燃烧系统、进排气系统的优化改进,使得整机的排放性能得到极大的改善;另一方面,机外净化技术,将各种污染物的排放量控制在非常低的水平。而内燃机的燃烧技术是改善内燃机动力特性、经济性和排放性的本质和关键技术,当很多研究者对内燃机的燃烧技术进行了研究,为提供内燃机动力特性,降低排放量提供了技术支持。 二、内燃机燃烧技术介绍 首先是压燃式柴油机燃烧技术,柴油机是典型的压燃式发动机,通过缸内压缩混合气体到一定压力与温度,使得混合气体自燃,其中预混燃烧量越多,初始放热率峰值越高,相应地燃烧最高温度就越高,氮氧化物的排放量就增加,其后接着进行扩散燃烧,燃油与空气边混合边燃烧。因此,传统柴油机需要较高的喷射压力,以及适当的空气涡流强度,保证扩散燃烧充分完成,以便降低排气烟度。这种燃烧方式的有点是很明显的,首先是热效率高、燃油经济性好,由于可以采用较高的压缩比,因此热效率比较高,经济性好。但是其缺点也是很明确的,首先是其振动噪声大,由于在上止点前的第一阶段非均质预混合燃烧会引起较高的压力升高率,因此该种燃烧方式的振动噪音比汽油机的要大,其次,其氮氧化物的排放量变高,预混合燃烧会引起较高的燃烧温度,且燃烧室的空气比较富裕,因此,氮氧化物的排放会较高,而且由于扩散燃烧的存在可能使得混合气燃烧不完全,从而使得引起的颗粒物排放比汽油机要高。 其次,是点燃式发动机,这种形式的发动机主要应用于汽油机上,这种燃烧方式与柴油机相比,汽油机属于典型的预混燃烧,这种燃烧方式有很多的优点,比如说,工作运转平稳,其在进气行程中燃油就喷入进气管,遮掩燃油与空气有足够的时间在着火前进行充分地混合,形成基本均匀的可燃混合气,因此汽油机工作比柴油机要来的平稳,并且其振动噪声也要比柴油机小很多。更值得一提的是,在如今环境保护的大趋势与政策下,汽油机的燃烧方式中氮氧化物与颗粒物的排放比柴油机低很多,因为基本均匀的预混燃烧,颗粒物的排放比较低。由于较低的燃烧温度,使得氮氧化物的排放也是比柴油机要低很多的。 三、内燃机燃烧技术的发展

相关文档