文档库 最新最全的文档下载
当前位置:文档库 › TMS320F2812的时钟问题

TMS320F2812的时钟问题

TMS320F2812的时钟问题
TMS320F2812的时钟问题

终于弄明白了困惑我几个月的DSP时钟问题

对于TMS320F2812的时钟问题,从我刚开始接触到现在终于明白了它内部的时钟是如何区分的,F2812上有多个部件需要时钟:CPU,看门狗电路,ADC,事件管理器等片上外

设.F2812的CPU时钟电路如下图所示:

电路板中用30MHz外部晶体给F2812提供时钟,并使能F2812片上PLL电路.PLL倍频系数由PLL控制寄存器PLLCR的低4位控制,可有软件动态地修改,外部复位信号(XRS)将此4位控制位被清为0(CCS中的复位命令将不对此4位控制位作清0操作),F2812的CPU 最高可工作在150MHz主频下,也即对30MHz输入频率进行5倍频.PLLCR控制位与倍频系

数的关系如下图所示:

PLL锁相环的配置模式:

需要时钟信号的片上外设有:看门狗电路WatchDog,CPU定时器(3个32位定时器),eCAN 总线控制器;SCI(2个异步串行通信控制器),SPI(1个4线制同步串口),McBSP(1个多通道缓冲型同步串口);EV(2个事件管理器,每个事件管理器包括:2个通用定时器,3个全

比较器/PWM单元,3个事件捕捉单元,QEP正交编码脉冲,外部时钟输入,外部比较输入和

外部触发输入),ADC(16通道),12位,12.5MSPS,0~3V输入范围.片上外设按输入时钟分为4个组:SYSOUTCLK组:CPU定时器,eCAN总线OSCCLK组:看门狗电路低速组(HSPCLK):SCI,SPI,McBSP,它们的输入时钟信号由SYSOUTCLK经低速外设分频器分频得

到高速组(LSPCLK):EVA/B,ADC,它们的输入时钟信号由SYSOUTCLK经高速外设分频器分

频得到.

***************************************************************************

重要点:SYSOUTCLK与DSP片上管脚XCLKOUT(119)的关系:XINTF模块有两种时钟模式,

如下图给出了SYSOUTCLK时钟同XINTF时钟之间的关系。所有的外部扩展访问都是以内

部XINTF的时钟XTIMCLK为参考的,因此在配置XINTF时,首先要通过XINTFCNF2寄存器

配置XTIMCLK。XTIMCLK可以配置为SYSOUTCLK,也可以配置为SYSOUTCLK/2,XTIMCLK默

认的值是SYSOUTCLK/2。外部接口还提供一个时钟输出XCLKOUT,所有外部接口的访问都

是在XCLKOUT的上升沿开始。可以通过XINTFCNF2寄存器的CLKMODE位配置XCLKOUT的

频率.

XCLKOUT的功能是:

TOP

中断原理应用程序设计

第六章中断原理应用程序设计 6.1 中断系统的基本概念 CPU在处理某一事件A时,发生了另一事件B请求CPU迅速去处理(中断发生);CPU暂时中断当前的工作,转去处理事件B(中断响应和中断服务);待CPU将事件B处理完毕后,再回到原来事件A被中断的地方继续处理事件A(中断返回),这一过程称为中断。 中断源 引起CPU中断的根源,称为中断源。中断源向CPU提出的中断请求。CPU暂时中断原来的事务A,转去处理事件B。对事件B处理完毕后,再回到原来被中断的地方(即断点),称为中断返回。实现上述中断功能的部件称为中断系统(中断机构)。 MCS-51单片机提供了5个中断源,其中两个为外部中断请求源(P3.2)和(P3.3),两个片内定时器/计数器T0和T1的溢出请求中断源TF0(TCON的第5位)和TF1(TCON的第7位),1个片内串口发送或接收中断请求源TI(SCON的第1位)和RI(SCON的第0位)。 中断优先级 同一优先级中的中断申请不止一个时,则有中断优先权排队问题。同一优先级的中断优先权排队,由中断系统硬件确定的自然优先级形成,其排列如所示: 表6-4 MCS-51单片机中断源的自然优先级及入口地址

需要说明的是,为了便于用C语言编写单片机中断程序,C51编译器也支持51单片机的中断服务程序,而且用C语言编写中断服务程序,比用汇编语言方便的多。C语言编写中断服务函数的格式如下: 函数类型函数名(形式参数列表)[interrupt n] [using m] 其中,interrupt后面的n是中断编号,取值范围0~4,;using中的m表示使用的工作寄存器组号(如不声明,则默认用第0组)。 例如,定时器T0的中断函数可用如下方法编写: void Timer(void) interrupt 1 using 0 //定时器T0的中断服务函数,T0的中断编号为1,使用第0组工作寄存器 { ........//中断服务程序 } 6.2 中断系统的控制 定时器/计数器控制寄存器TCON TCON的功能是接收外部中断源(、)和定时器(T0、T1)送来的中断请求信号。字节地址为88H,可以进行位操作。表5-5列出了TCON的格式。 8FH 8EH 8DH 8CH 8BH 8AH 89H 88H TF1 TR1 TF0 TR0 IT0 IT1 IE0 IT0 表6-5 定时器/计数器控制寄存器TCON的格式

中断异常处理流程

计算机体系结构中,异常或者中断是处理系统中突发事件的一种机制,几乎所有的处理器都提供这种机制。异常主要是从处理器被动接受的角度出发的一种描述,指意外操作引起的异常。而中断则带有向处理器主动申请的意味。但这两种情况具有一定的共性,都是请求处理器打断正常的程序执行流程,进入特定程序的一种机制。若无特别说明,对“异常”和“中断”都不作严格的区分。本文结合经过实际验证的代码对ARM9中断处理流程进行分析,并设计出基于S3C2410芯片的外部中断处理程序。 1.异常中断响应和返回 系统运行时,异常可能会随时发生。当一个异常出现以后,ARM微处理器会执行以下几步操作: 1) 将下一条指令的地址存入相应连接寄存器LR,以便程序在处理异常返回时能从正确的位置重新开始执行。 2)将CPSR复制到相应的SPSR中。 3)根据异常类型,强制设置CPSR的运行模式位。 4) 强制PC从相关的异常向量地址取下一条指令执行,从而跳转到相应的异常处理程序处。 这些工作是由ARM内核完成的,不需要用户程序参与。异常处理完毕之后,ARM微处理器会执行以下几步操作从异常返回: 1)将连接寄存器LR的值减去相应的偏移量后送到PC中。 2)将SPSR复制回CPSR中。 3) 若在进入异常处理时设置了中断禁止位,要在此清除。 这些工作必须由用户在中断处理函数中实现。为保证在ARM处理器发生异常时不至于处于未知状态,在应用程序的设计中,首先要进行异常处理。采用的方式是在异常向量表中的特定位置放置一条跳转指令,跳转到异常处理程序。当ARM处理器发生异常时,程序计数器PC会被强制设置为对应的异常向量,从而跳转到异常处理程序。当异常处理完成以后,返回到主程序继续执行。可以认为应用程序总是从复位异常处理程序开始执行的,因此复位异常处理程序不需要返回。 2.异常处理程序设计 2.1 异常响应流程

单片机_C语言函数_中断函数(中断服务程序)

单片机_C语言函数_中断函数(中断服务程序) 在开始写中断函数之前,我们来一起回顾一下,单片机的中断系统。 中断的意思(学习过微机原理与接口技术的同学,没学过单片机,也应该知道),我们在这里就不讲了,首先来回忆下中断系统涉及到哪些问题。 (1)中断源:中断请求信号的来源。(8051有3个内部中断源T0,T1,串行口,2个外部中断源INT0,INT1(这两个低电平有效,上面的那个横杠不知道怎么加上去))(2)中断响应与返回:CPU采集到中断请求信号,怎样转向特定的中断服务子程序,并在执行完之后返回被中断程序继续执行。期间涉及到CPU响应中断的条件,现场保护,现场恢复。 (3)优先级控制:中断优先级的控制就形成了中断嵌套(8051允许有两级的中断嵌套,优先权顺序为INT0,T0,INT1,T1,串行口),同一个优先级的中断,还存在优先权的高低。优先级是可以编程的,而优先权是固定的。 80C51的原则是①同优先级,先响应高优先权②低优先级能被高优先级中断③正在进行的中断不能被同一级的中断请求或低优先级的中断请求中断。 80C51的中断系统涉及到的中断控制有中断请求,中断允许,中断优先级控制 (1)3个内部中断源T0,T1,串行口,2个外部中断源INT0,INT1 (2)中断控制寄存器:定时和外中断控制寄存器TCON(包括T0、T1,INT0、INT1),串行控制寄存器SCON,中断允许寄存器IE,中断优先级寄存器IP 具体的是什么,包括哪些标志位,在这里不讲了,所有书上面都会讲。 在这里我们讲下注意的事项 (1)CPU响应中断后,TF0(T0中断标志位)和TF1由硬件自动清0。 (2)CPU响应中断后,在边沿触发方式下,IE0(外部中断INT0请求标志位)和IE1由硬件自动清零;在电平触发方式下,不能自动清楚IE0和IE1。所以在中断返回前必须撤出INT0和INT1引脚的低电平,否则就会出现一次中断被CPU多次响应。 (3)串口中断中,CPU响应中断后,TI(串行口发送中断请求标志位)和RI(接收中断请求标志位)必须由软件清零。 (4)单片机复位后,TCON,SCON给位清零。 C51语言允许用户自己写中断服务子程序(中断函数) 首先来了解程序的格式: void 函数名() interrupt m [using n] {} 关键字 interrupt m [using n] 表示这是一个中断函数 m为中断源的编号,有五个中断源,取值为0,1,2,3,4,中断编号会告诉编译器中断程序的入口地址,执行该程序时,这个地址会传个程序计数器PC,于是CPU开始从这里一条一条的执行程序指令。 n为单片机工作寄存器组(又称通用寄存器组)编号,共四组,取值为0,1,2,3 中断号中断源 0 外部中断0 1 定时器0 2 外部中断1 3 定时器1中断 4 串行口中断 (在上一篇文章中讲到的ROM前43个存储单元就是他们,这5个中断源的中断入口地址为: 这40个地址用来存放中断处理程序的地址单元,每一个类中断的存储单元只有8B,显然不

异常处理机制

异常的基本概念 异常是导致程序终止运行的一种指令流,如果不对异常进行正确的处理,则可能导致程序的中断执行,造成不必要的损失。 在没有异常处理的语言中如果要回避异常,就必须使用大量的判断语句,配合所想到的错误状况来捕捉程序中所有可能发生的错误。 Java异常处理机制具有易于使用、可自行定义异常类、处理抛出的异常同时又不会降低程序运行的速度等优点。因而在java程序设计时应充分地利用java的异常处理机制,以增进程序的稳定性及效率。 当程序中加入了异常处理代码,所以当有异常发生后,整个程序并不会因为异常的产生而中断执行。而是在catch中处理完毕之后,程序正常的结束。 在整个java异常的结构中,实际上有两个最常用的类,分别为Exception和Error 这两个类全都是Throwable的子类。 Exception:一般表示的是程序中出现的问题,可以直接使用try……catch处理。 Error:一般值JVM错误,程序中无法处理。 Java异常处理机制。 在整个java的异常处理中,实际上也是按照面向对象的方式进行处理,处理的步骤如下: 1)一旦产生异常,则首先会产生一个异常类的实例化对象。 2)在try语句中对此异常对象进行捕捉。 3)产生的异常对象与catch语句中的各个异常类型进行匹配,如果匹配成功则执行catch语句中的代码。 异常处理 在定义一个方法时可以使用throws关键字声明,表示此方法不处理异常,而交给方法的调用处进行处理,在方法调用处不管是否有问题,都要使用try……catch块进行异常的捕获与处理。 如果在主方法中使用throws关键字,则程序出现问题后肯定交由jvm处理,将导致程序中断。 与throws关键字不同的是,throw关键字人为的抛出一个异常,抛出时直接抛出异常类的实例化对象即可。 Exception在程序中必须使用try……catch进行处理。RuntimeException可以不使用try……catch进行处理,但是如果有异常产生,则异常将由JVM进行处理。(建议RuntimeException的子类也使用try……catch进行处理,否则产生的异常交给jvm处理会导致程序中断。) 继承关系: Exception》RuntimeException》lllegalArgumentException》NumberFormatException; 异常类必须继承于Exception 建议:继承Exception一般要添加全部父类型一样的构造器! class NameOrPwdException extends Exception { public NameOrPwdException() {

扩频通信的基本原理

扩频通信的理论基础 1.1扩频通信的基本概念 通信理论和通信技术的研究,是围绕着通信系统的有效性和可靠性这两个基本问题展开的,所以有效性和可靠性是设计和评价一个通信系统的主要性能指标。 通信系统的有效性,是指通信系统传输信息效率的高低。这个问题是讨论怎样以最合理、最经济的方法传输最大数量的信息。在模拟通信系统中,多路复用技术可提高系统的有效性。显然,信道复用程度越高,系统传输信息的有效性就越好。在数字通信系统中,由于传输的是数字信号,因此传输的有效性是用传输速率来衡量的。 通信系统的可靠性,是指通信系统可靠地传输信息。由于信息在传输过程中受到干扰,收到的信息与发出的信息并不完全相同。可靠性就是用来衡量收到信息与发出信息的符合程度。因此,可靠性决定于系统抵抗干扰的性能,也就是说,通信系统的可靠性决定于通信系统的抗干扰性能。在模拟通信系统中,传输的可靠性是用整个系统的输出信噪比来衡量的。在数字通信系统中,传输的可靠性是用信息传输的差错率来描述的。 扩展频谱通信由于具有很强的抗干扰能力,首先在军用通信系统中得到了应用。近年来,扩展频谱通信技术的理论和应用发展非常迅速,在民用通信系统中也得到了广泛的应用。 扩频通信是扩展频谱通信的简称。我们知道,频谱是电信号的频域描述。承载各种信息(如语音、图象、数据等)的信号一般都是以时域来表示的,即信息信号可表示为一个时间的函数)(t f 。信号的时域表示式)(t f 可以用傅立叶变换得到其频域表示式)(f F 。频域和时域的关系由式(1-1)确定: ? ∞∞--=t e t f f F ft j d )()(π2 ?∞ ∞-=f e f F t f ft j d )()(π2 (1-1) 函数)(t f 的傅立叶变换存在的充分条件是)(t f 满足狄里赫莱(Dirichlet)条件,或在区间(-∞,+∞)绝对可积,即t t f d )(?∞ ∞-必须为有限值。 扩展频谱通信系统是指待传输信息信号的频谱用某个特定的扩频函数(与待传输的信息信号)(t f 无关)扩展后成为宽频带信号,然后送入信道中传输;在接收端再利用相应的技术或手段将其扩展了的频谱压缩,恢复为原来待传输信息信号的带宽,从而到达传输信息目的的通信系统。也就是说在传输同样信息信号时所需要的射频带宽,远远超过被传输信息信号所必需的最小的带宽。扩展频谱后射频信号的带宽至少是信息信号带宽的几百倍、几千倍甚至几万倍。信息已不再是决定射频信号带宽的一个重要因素,射频信号的带宽主要由扩频函数来决定。 由此可见,扩频通信系统有以下两个特点: (1) 传输信号的带宽远远大于被传输的原始信息信号的带宽; (2) 传输信号的带宽主要由扩频函数决定,此扩频函数通常是伪随机(伪噪声)编码信号。 以上两个特点有时也称为判断扩频通信系统的准则。

中断服务程序流程图

第一讲: 第六章I/O接口原理-接口、端口、编址 回顾:微机系统的层次结构,CPU、主机、接口电路及外部设备之间的结构关联,输入/输出的一般概念。 重点和纲要:微机系统主机与外部设备之间的数据传送,包括I/O端口的寻址方式,输入/输出的传送控制方式。 讲授内容: 6. 1 输入/输出数据的传输控制方式 一、输入/输出的一般概念 1.引言 输入/输出是微机系统与外部设备进行信息交换的过程。输入/输出设备称为外部设备,与存储器相比,外部设备有其本身的特点,存储器较为标准,而外部设备则比较复杂,性能的离散性比较大,不同的外部设备,其结构方式不同,有机械式、电动式、电子式等;输入/输出的信号类型也不相同,有数字信号,也有模拟信号;有电信号,也有非电信号;输入/输出信息的速率也相差很大。因此,CPU与外部设备之间的信息交换技术比较复杂。 CPU与外设之间的信息交换,是通过它们之间接口电路中的I/O端口来进行的,由于同一个外部设备与CPU之间所要传送的信息类型不同,方向不同,作用也不一样(例如数据信息、状态信息、控制信息、输入/输出等),所以接口电路中可以设置多个端口来分别处理这些不同的信息。 2.输入/输出端口的寻址方式 微机系统采用总线结构形式,即通过一组总线来连接组成系统的各个功能部件(包括CPU、内存、I/O端口),CPU、内存、I/O端口之间的信息交换都是通过总线来进行的,如何区分不同的内存单元和I/O端口,是输入/输出寻址方式所要讨论解决的问题。

根据微机系统的不同,输入/输出的寻址方式通常有两种形式:(1).存储器对应的输入、输出寻址方式 这种方式又称为存储器统一编址寻址方式或存储器映象寻址方式。 方法:把外设的一个端口与存储器的一个单元作同等对待,每一个I/O端口都有一个确定的端口地址,CPU与I/O端口之间的信息交换,与存储单元的读写过程一样,内存单元与I/O端口的不同,只在于它们具有不同的的地址。优点: ①CPU对I/O端口的读/写操作可以使用全部存储器的读/写操作指令,也可 以用对存储器的不同寻址方式来对I/O端口中的信息,直接进行算术、逻辑运算及循环、移位等操作。 ②内存与外设地址的分配,可以用统一的分布图。 ③不需要专门的输入、输出操作指令。 缺点: ①内存与I/O端口统一编址时,在地址总线根数一定的情况下,使系统中 实际可以直 接寻址的内存单元数减少。 ②一般情况下,系统中I/O端口数远小于内存单元数,所以在用直接寻址方 式来寻址这些端口时,要表示一个端口地址,必须用与表示内存单元地址相同的字节数,使得指令代码较长,相应地读/写执行时间也较长,这对提高系统的运行速度是不利的。 Mortorola公司的M6800CPU等均采用这种寻址I/O端口的方式。 3. CPU与外设之间所传送的信息类型 CPU与I/O端口之间所交换的信息,可以有下列几种类型: ①数据信息:包括数字量、模拟量、开关量等,可以输入、也可以输出 ②状态信息:这是I/O端口送给CPU的有关本端口所对应的外设当前状态 的信息。供CPU进行分析、判断、决策。 ③控制信息:这是CPU送给I/O端口的控制命令,使相应的外部设备完成 特定的操作。 数据信息、状态信息和控制信息是不同类型的信息,它们所起的作用也不一样。但在8086/8088微机系统中,这三种不同类型的信息的输入、输出过程是相同的。为了加以区分,可以使它们具有不同的端口地址,在端口地址相同的情况下,可以规定操作的顺序,或者在输入/输出的数据中设置特征位。

异常情况处理制度及流程

山西煤炭运销集团 蒲县昊锦塬煤业有限公司异常情况处理制度为认真贯彻落实国家、省、市关于集中开展安全生产大检查的工作安排要求,加强我矿信息监控系统管理水平,做好矿井生产过程中井下环境参数的有效监控,保障矿井安全生产,加强煤矿安全生产管理水平及抗灾能力,特制定本矿异常情况处理制度如下: 一、值班人员按《中心岗位责任制》规定,浏览查询煤矿安全信息,发现异常情况及时处理,并认真填写《异常情况报告处理表》,传真至县监控中心。 二、监控室值班人员发现系统发出异常报警后,值班人员必须立即通知监控室主任、分管领导,同时立即通知矿井调度部门,由监控室主任或分管领导组织相关人员对本次异常报警进行原因分析,并按规定程序及时报上一级网络中心。处理结果应记录备案。调度值班人员接到报警、断电信息后,应立即向矿值班领导汇报,矿值班领导按规定指挥现场人员停止工作,断电时撤出人员。处理过程应记录备案。当系统显示井下某一区域瓦斯超限并有可能波及其他区域时,矿井有关人员应按瓦斯事故应急预案手动遥控切断瓦斯可能波及区域的电源。值班人员接到网络中心发出的报警处理指令后,要立即处理落实,并将处理结果向网络中心反馈。 当工作面瓦斯浓度达到报警浓度时,值班人员应立即通知矿值班领导及监控室主任,并填写异常情况处理报告表传真上报至

县监控中心

;由分管领导或监控室主任安排相关人员进行原因分析,按照瓦斯超限分析原则:①按人工检测值与甲烷传感器对比分析; ②按报警地点的历史曲线对比分析;③按报警地点上风侧检测值对比分析。根据分析结果立即将处理措施下达至矿调度中心按处理措施严格执行。报警期间要采取安全措施,报警消除后将报警的起止时间、分析报告、采取措施和处理结果上报县监控室并存档备案。 三、当煤矿通讯中断、无数据显示时,值班人员要通过传真(或电话)向县监控中心报告,并查明原因,恢复通讯。情况紧急的,由值班人员立即向矿领导汇报,对因故造成通讯中断未及时上报的,要通过电话联系移动公司或长途线务局进行抢修。

Windows 中断程序设计(一)

Windows 中断程序设计(一) 摘要该文探讨Windows3.1的中断机制,并结合DPMI接口给出一种中断程序设计方法,以越过系统和应用程序的消息队列,处理外部实时事件。 一、前言 Windows提供强大的功能以及友好的图形用户界面(GUI),使得它不仅广泛的用作管理事务型工作的支持平台,也被工业领域的工程人员所关注。但Windows3.1并非基于优先级来调度任务,无法立即响应外部事件中断,也就不能满足工业应用环境中实时事件处理和实时控制应用的要求。因此,如何在Windows环境中处理外部实时事件一直是技术人员尤其是实时领域工程人员所关注的问题。目前已有的方法大都采用内挂实时多任务内核的方式,如Windows下的实时控制软件包FLX等,而iRMX实时操作系统则把Windows3.1当作它的一个任务来运行。对于大型的工程项目,开发人员可采用购买实时软件然后集成方式。 对中小项目,从投资上考虑就不很经济。如何寻找一种简明的方法来处理外部实时事件依然显得很必要。 本文首先阐述Windwos的消息机制及中断机制,然后结合DPMI接口,给出一种保护模式下中断程序的设计方法,以处理外部实时事件。经实际运行结果表明,该方法具有简洁、实用、可靠的特点,并同样可运行于Win95。 二、Windows的消息机制 Windows是一消息驱动式系统,见图1。Windows消息提供了应用程序

与应用程序之间、应用程序与Windows系统之间进行通讯的手段。应用程序要实现的功能由消息来触发,并靠对消息的响应和处理来完成。Windows系统中有两种消息队列,一种是系统消息队列,另一种是应用程序消息队列。计算机的所有输入设备由Windows监控,当一个事件发生时,Windows先将输入的消息放入系统消息队列中,然后再将输入的消息拷贝到相应的应用程序队列中。应用程序中的消息循环从它的消息队列中检索每一个消息并发送给相应的窗口函数中。一个事件的发生,到达处理它的窗口函数必需经历上述过程。值得注意的是消息的非抢先性,即不论事件的急与缓,总是按到达的先后排队(一些系统消息除外),这就使得一些外部实时事件可能得不到及时的处理。 图1 三、Windows的保护模式及中断机制 1.Windows的保护模式 保护模式指的是线性地址由一个选择符间接生成的,该选择符指向描述表中的某一项;而实模式中则通过一个段/偏移量对来直接寻址。80386(486)CPU提供的保护模式能力包括一个64K的虚拟地址空间和一个4G的段尺寸。Windows3.1实现时有所差别,它支持标准模式和增强模式。标准模式针对286机器,不属本文探讨范围。增强模式是对386以上CPU而言,Windows正是使用保护模式来打破1M的屏障并且执行简单的内存保护。它使用选择器、描述器和描述器表控制访问指定内存的位置和段。描述器表包括全局描述器表、局部描述器表、中断描

Linux中断处理流程

Linux中断处理流程 先从函数注册引出问题吧。 一、中断注册方法 在linux内核中用于申请中断的函数是request_irq(),函数原型在Kernel/irq/manage.c中定义: int request_irq(unsigned int irq, irq_handler_t handler, unsigned long irqflags, const char *devname, void *dev_id) irq是要申请的硬件中断号。 handler是向系统注册的中断处理函数,是一个回调函数,中断发生时,系统调用这个函数,dev_id参数将被传递给它。 irqflags是中断处理的属性,若设置了IRQF_DISABLED (老版本中的SA_INTERRUPT,本版zhon已经不支持了),则表示中断处理程序是快速处理程序,快速处理程序被调用时屏蔽所有中断,慢速处理程 序不屏蔽;若设置了IRQF_SHARED (老版本中的SA_SHIRQ),则表示多个设备共享中断,若设置了IRQF_SAMPLE_RANDOM(老版本中的 SA_SAMPLE_RANDOM),表示对系统熵有贡献,对系统获取随机数有好处。(这几个flag是可以通过或的方式同时使用的) dev_id在中断共享时会用到,一般设置为这个设备的设备结构体或者NULL。devname设置中断名称,在cat /proc/interrupts中可以看到此名称。 request_irq()返回0表示成功,返回-INVAL表示中断号无效或处理函数指针为NULL,返回-EBUSY表示中断已经被占用且不能共享。 关于中断注册的例子,大家可在内核中搜索下request_irq。 在编写驱动的过程中,比较容易产生疑惑的地方是: 1、中断向量表在什么位置?是如何建立的? 2、从中断开始,系统是怎样执行到我自己注册的函数的? 3、中断号是如何确定的?对于硬件上有子中断的中断号如何确定? 4、中断共享是怎么回事,dev_id的作用是? 本文以2.6.26内核和S3C2410处理器为例,为大家讲解这几个问题。 二、异常向量表的建立 在ARM V4及V4T以后的大部分处理器中,中断向量表的位置可以有两个位置:一个是0,另一个是0xffff0000。可以通过CP15协处理器c1寄存器中V位(bit[13])控制。V和中断向量表的对应关系如下: V=0 ~ 0x00000000~0x0000001C V=1 ~ 0xffff0000~0xffff001C arch/arm/mm/proc-arm920.S中 .section ".text.init", #alloc, #execinstr __arm920_setup: ...... orr r0, r0, #0x2100 @ ..1. ...1 ..11 (1) //bit13=1 中断向量表基址为0xFFFF0000。R0的值将被付给CP15的C1.

中断处理程序设计

课程实验报告 课程名称:汇编语言程序设计 实验名称:实验四 实验时间: 2015-6-16,14:30-17:30 实验地点:南一楼804室 指导教师:李专 专业班级:学号: 姓名: 同组学生: 报告日期: 成绩: 计算机科学与技术学院

一、原创性声明 本人郑重声明:本报告的内容由本人独立完成,有关观点、方法、数据和文献等的引用已经在文中指出。除文中已经注明引用的内容外,本报告不包含任何其他个人或集体已经公开发表的作品或成果,不存在剽窃、抄袭行为。 特此声明! 学生签字: 日期: 二、评语与成绩评定 1.指导老师评语 2.实验成绩评定 实验完成质量得分(70分)(实验步骤清晰详细深入,实验记录真实完整等)报告撰写质量得分(30分) (报告规范、完整、通顺、 详实等) 总成绩(100分) 指导教师签字: 日期:

目录 1.实验目的 (1) 2.实验内容 (1) 2.1任务一 (1) 2.2任务二 (1) 2.3任务三 (2) 2.4任务四 (2) 3实验过程 (2) 3.1任务一 (2) 3.1.1实验要求 (2) 3.1.2实验结果 (2) 3.2任务二 (4) 3.2.1设计思想及存储分配 (4) 3.2.2程序框图 (5) 3.2.3源程序代码 (6) 3.2.4实验结果 (7) 3.3任务三 (7) 3.3.1源程序代码 (7) 3.3.2实验结果 (11) 3.4任务四 (12) 3.4.1源程序代码 (12) 3.4.2实验结果 (16) 4.实验体会 (16)

1.实验目的 (1) 掌握中断矢量表的概念 (2)掌握中断处理程序设计的技巧 (3)掌握简化段定义、函数调用伪指令 (4)了解Win32程序的编程方法及编译、链接方法 2.实验内容 2.1任务一 用三种方式获取中断类型码10H对应的中断处理程序的入口地址。 要求:(1) 直接运行调试工具(TD.EXE),观察中断矢量表中的信息; (2) 编写程序,用 DOS功能调用方式获取,观察相应的出口参数与(1) 中看到的结果是否相同(使用TD观看即可) (3) 编写程序,直接读取相应内存单元,观察读到的数据与(1)看到的结 果是否相同(使用TD观看即可)。 2.2任务二 编写一个中断服务程序并驻留内存,要求在程序返回DOS操作系统后,键盘的按键A变成了按键B、按键B变成了按键A。 提示:(1) 对于任何DOS程序,不管其采用什么方法获取按键,最后都是通过执行16H号软中断的0号和10H号功能调用来实现的。所以,你只需接 管16H号软中断的0号和10号功能调用并进行相应的处理; (2) 获得一个按键扫描码的方法:在TD中执行16H中断的0号和10H号 功能调用,按相应的键,观察AH中的内容。 资料:16H中断的0号和10H号功能 功能描述:从键盘读入字符 入口参数:AH = 00H——读键盘 = 10H——读扩展键盘 出口参数:AH =键盘的扫描码 AL =字符的ASCII码

Windows异常处理流程

Windows异常处理流程 作者:SoBeIt 出处:https://www.wendangku.net/doc/824207511.html,/articles/200412/761.html 日期:2005-01-06 先来说说异常和中断的区别。中断可在任何时候发生,与CPU正在执行什么指令无关,中断主要由I/O设备、处理器时钟或定时器等硬件引发,可以被允许或取消。而异常是由于CPU执行了某些指令引起的,可以包括存储器存取违规、除0或者特定调试指令等,内核也将系统服务视为异常。中断和异常更底层的区别是当广义上的中断(包括异常和硬件中断)发生时如果没有设置在服务寄存器(用命令号0xb向8259-1中断控制器0x20端口读出在服务寄存器1,用0xb向8259-2中断控制器的0xa0端口读出在服务寄存器2)相关的在服务位(每个在服务寄存器有8位,共对应IRQ 0-15)则为CPU的异常,否则为硬件中断。 下面是WINDOWS2000根据INTEL x86处理器的定义,将IDT中的前几项注册为对应的异常处理程序(不同的操作系统对此的实现标准是不一样的,这里给出的和其它一些资料不一样是因为这是windows的具体实现): 中断号名字原因 0x0 除法错误1、DIV和IDIV指令除0 2、除法结果溢出 0x1 调试陷阱1、EFLAG的TF位置位 2、执行到调试寄存器(DR0-DR4)设置的断点 3、执行INT 1指令 0x2 NMI中断将CPU的NMI输入引脚置位(该异常为硬件发生非屏蔽中断而保留) 0x3 断点执行INT 3指令 0x4 整数溢出执行INTO指令且OF位置位 0x5 BOUND边界检查错误BOUND指令比较的值在给定范围外 0x6 无效操作码指令无法识别 0x7 协处理器不可用1、CR0的EM位置位时执行任何协处理器指令 2、协处理器工作时执行了环境切换 0x8 双重异常处理异常时发生另一个异常 0x9 协处理器段超限浮点指令引用内存超过段尾 0xA 无效任务段任务段包含的描述符无效(windows不 使用TSS进行环境切换,所以发生该异常说明有其它问题) 0xB 段不存在被引用的段被换出内存 0xC 堆栈错误1、被引用内存超出堆栈段限制 2、加载入SS寄存器的描述符的present位置0 0xD 一般保护性错误所有其它异常处理例程无法处理的异常 0xE 页面错误1、访问的地址未被换入内存 2、访问操作违反页保护规则 0x10 协处理器出错CR0的EM位置位时执行W AIT或ESCape指令 0x11 对齐检查错误对齐检查开启时(EFLAG对齐位置位)访问未对齐数据

扩频通信的基本原理

扩频通信的基本原理 所谓扩展频谱通信,可简单表述如下:“扩频通信技术是一种信息传输方式,其信号所占有的频带宽度远大于所传信息必需的最小带宽;频带的扩展是通过一个独立的码序列来完成,用编码及调制的方法来实现的,与所传信息数据无关;在接收端则用同样的码进行相关同步接收、解扩及恢复所传信息数据”。 扩频通信的基本特点,是传输信号所占用的频带宽度(W)远大于原始信息本身实际所需的最小带宽(B),其比值称为处理增益(Gp): 总之,我们用扩展频谱的宽带信号来传输信息,就是为了提高通信的抗干扰能力,即在强干扰条件下保证可靠安全地通信。这就是扩展频谱通信的基本思想和理论依据。 一、扩频通信系统的主要优点 ●易于重复使用频率,提高了无线频谱利用率 ●抗干扰性强,误码率低。扩频通信在空间传输时所占有的带宽相对较宽,而接收端又采用相关检测的办法来解扩,使有用宽带信息信号恢复成窄带信号,而把非所需信号扩展成宽带信号,然后通过窄带滤波技术提取有用的信号。这祥,对于各种干扰信号,因其在收端的非相关性,解扩后窄带信号中只有很微弱的成份,信噪比很高,因此抗干扰性强。 ●保密性好,对各种窄带通信系统的干扰很小。由于扩频信号在相对较宽的频带上被扩展了,单位频带内的功率很小,信号湮没在噪声里,一般不容易被发现,而想进一步检测信号的参数(如伪随机编码序列)就更加困难,因此说其保密性好。 ●可以实现码分多址。扩频通信提高了抗干扰性能,代价是占用频带宽。但是如果许多用户共用这一宽频带,则可提高频带的利用率。由于在扩频通信中存在扩频码序列的扩频调制,充分利用各种不同码型的扩频码序列之间优良的自相关特性和互相关特性,在接收端利用相关检测技术进行解扩,则在分配给不同用户码型的情况下可以区分不同用户的信号,提取出有用信号。这样在这一频带上许多对用户可以同时通话而互不干扰。 ●抗多径干扰。在无线通信中,长期以来,多径干扰始终是一个难以解决的问题之一。在扩频通信中利用扩频码的自相关特性,在接收端从多径信号中提取和分离出最强的有用信号,或把多个路径来的同一码序列的波形相加合成,都可以起到抗多径干扰的作用。 按照扩展频谱的方式不同,现有的扩频通信系统可以分为以下几种:

扩频原理

1.1 扩频通信系统发展概述 扩频通信(spread spectrum communication)是近几年内迅速发展起来的一种通信技术。在早期研究这种技术的主要目的是为提高军事通信的保密和抗干扰的性能,因此这种技术的开发和应用一直是处于保密状态。美国在20世纪50 年代中期,就开始了对扩频通信的研究,当时主要侧重在空间探测、卫星侦察和军用通信等方面。以后,随着民用通信的频带拥挤日益严重,又由于近代微电子技术、信号处理技术、大规模集成电路和计算机技术的快速发展,与扩频通信有关的器件的成本大大地降低,从而进一步推动了扩频通信在民用领域的发展金额应用,而且也使扩频通信的理论和技术也得到了进一步的发展。目前在军事上,它已经广泛应用于各种战略和战术通信的系统中,成为电子战中反干扰的一种重要的手段。扩频技术在军事应用上的最成功的范例可以以美国和俄国的全球卫星定位系统(GPS和GLONASS)以及美军的联合战术分布系统(JTIDS)为代表;GPS和GLONASS在民用上也都得到了广泛的应用,这些系统的技术基础就是扩频技术。扩频的码分多址技术应用于蜂窝移动通信中时,大大降低了噪声和衰落的影响,同时还避免了复杂的频率分配和时隙划分等技术上的困难,并可以省去保护频带或时隙,极大地提高了蜂窝通信系统中小区的频率复用度,使信号频谱利用率得到提高。1990年1月,国际无线电咨询委员会(CCIR,现为ITUR)在研究未来民用陆地移动通信系统的计划报告中已明确地建议采用扩频通信技术[5]。美国已制定出了基于CDMA蜂窝技术的IS-95标准,Samsung、Motorola等公司也已相继推出了各自的CDMA移动通信商用实验网已开通运行,并取得了良好的效果。 扩频技术由于其本身具备的优良性能而得到广泛应用,到目前为止,其最主要的两个应用领域仍是军事抗干扰通信和移动通信系统,而跳频系统与直扩系统则分别是在这两个领域应用最多的扩频方式。一般而言,跳频系统主要在军事通信中对抗故意干扰,在卫星通信中也用于保密通信,而直扩系统则主要是一种民用技术。面对全世界范围内对移动通信日益增加的要求,CDMA将是无线通信中最主要的多址介入手段。在本世纪,扩频技术将得到更加广泛的应用。 从扩频技术的历史可以看出,每一次技术上的大发展都是由巨大的需求驱动的。军事通信抗干扰的驱动以及个人通信业务的驱动使得扩频技术的抗干扰性能和码分多址能力得到最大限度的挖掘。展望未来,第四代移动通信系统(4G)的驱动无疑会使扩频技术传输高速数据的能力得到更大的拓展。 直接序列扩频系统又称为直接序列调制系统或伪噪声系统(PN系统),简称为直扩系统,是目前应用较为广泛的一种扩展频谱系统。人们对直扩系统的研究最早,如美军的国防卫星通信系统(AN-VSC-28)、全球定位系统(GPS)、航天飞机通信用的跟踪和数据中继卫星系统

第5章 中断服务程序设计

第5章中断服务程序设计 中断服务程序(ISR)是嵌入式应用系统获取各种事件的基本手段,而“事件”是实时性问题的讨论基础和时间计算的起点。ISR的设计质量直接影响到系统的实时性指标和操作系统的工作效率。 只要没有关中断,中断服务程序可以中断任何任务的运行,可将中断服务程序可成比最高优先级(0级)还高的“任务”。 5.1中断优先级安排原则 中断源是系统及时获取异步事件的主要手段,其优先级安排原则如下: ●紧迫性:触发中断的事件允许耽误的时间越短,设定的中断优先级就越高。 ●关键性:触发中断的事件越关键(重要),设定的中断优先级就越高。 ●频繁性:触发中断的事件发生越频繁,设定的中断优先级就越高。 ●快捷性:ISR处理越快捷(耗时短),设定的中断优先级就越高。 中断服务程的功能应尽量简单,只要将获取的异步事件通信给关联任务,后续处理由关联任务完成。 5.2不受操作系统管理的中断服务程序 正常情况下,ISR应受操作系统的管理,因很多任务是靠ISR触发的。 但在两种情况下ISR不受操作系统管理:①没有必要;②操作系统没有对该ISR进行管理。 实时操作系统uC/OS-Ⅱ移植到ARM7体系的CPU上时,没有对FIQ进行处理,即FIQ 是不受操作系统管理的。 选用FIQ来响应实时性要求最高的高速采样操作是一个有效措施,保护现场的工作量很小(FIQ专有的8个寄存器不需要保护)。 在工程模板的系统启动文件Startup.s中,已经把汇编代码部分处理好,用户只需要用C 语言编写快速中断服务函数FIQ_Exception()即可,不需考虑保护现场和恢复现场的问题。 程序:Startup.s中队FIQ的处理 Reset ;异常向量表 LDR PC,ResetAddr ;跳转到复位入口地址 LDR PC,UndefinedAddr LDR PC,SWI_Addr ;跳转到软件中断入口地址 LDR PC,PrefetchAddr LDR PC,DataAbortAddr DCD 0xb9205f80 LDR PC,[PC,#-0xff0] ;跳转到向量中断入口地址(向量中断控制器) LDR PC,FIQ_Addr ;跳转到快速中断入口地址 ResetAddr DCD ResetInit UndefinedAddr DCD Undefined SWI_Addr DCD SoftwareInterrupt PrefetchAddr DCD PrefetchAbort Nouse DCD 0

arm中断处理流程

ARM编程特别是系统初始化代码的编写中通常需要实现中断的响应、解析跳转和返回等操作,以便支持上层应用程序的开发,而这往往是困扰初学者的一个难题。中断处理的编程实现需要深入了解ARM内核和处理器本身的中断特征,从而设计一种快速简便的中断处理机制。需要说明的是,具体的上层高级语言编写的中断服务函数不在本文的讨论范围之内。 ARM处理器异常中断处理概述 当异常中断发生时,系统执行完当前指令后,将跳转到相应的异常中断处理程序处执行。当异常中断处理程序执行完成后,程序返回到发生中断的指令的下一条指令处执行。在进入异常中断处理程序时,要保存被中断的程序的执行现场。从异常中断处理程序退出时,要恢复被中断的程序的执行现场。ARM体系中通常在存储地址的低端固化了一个32字节的硬件中断向量表,用来指定各异常中断及其处理程序的对应关系。当一个异常出现以后,ARM微处理器会执行以下几步操作: 1)保存处理器当前状态、中断屏蔽位以及各条件标志位; 2)设置当前程序状态寄存器CPSR中相应的位; 3)将寄存器lr_mode设置成返回地址; 4)将程序计数器(PC)值设置成该异常中断的中断向量地址,从而跳转到相应的异常中断处理程序处执行。 在接收到中断请求以后, ARM处理器内核会自动执行以上四步,程序计数器PC总是跳转到相应的固定地址。从异常中断处理程序中返回包括下面两个基本操作: 1)恢复被屏蔽的程序的处理器状态; 2)返回到发生异常中断的指令的下一条指令处继续执行。 当异常中断发生时,程序计数器PC所指的位置对于各种不同的异常中断是不同的,同样,返回地址对于各种不同的异常中断也是不同的。例外的是,复位异常中断处理程序不需要返回,因为整个应用系统是从复位异常中断处理程序开始执行的。 支持中断跳转的解析程序 解析程序的概念和作用 如前所述,ARM处理器响应中断的时候,总是从固定的地址开始的,而在高级语言环境下开发中断服务程序时,无法控制固定地址开始的跳转流程。为了使得上层应用程序与硬件中断跳转联系起来,需要编写一段中间的服务程序来进行连接。这样的服务程序常被称作中断解析程序。 每个异常中断对应一个4字节的空间,正好放置一条跳转指令或者向PC寄存器赋值的数据访问指令。理论上可以通过这两种指令直接使得程序跳转到对应的中断处理程序中去。但实际上由于函数地址值为未知和其它一些问题,并不这么做。这里给出一种常用的中断跳转流程:

扩频通信原理研究论文

扩频通信原理研究论文 论文关键词:扩频通信原理特点发展应用 论文摘要:扩频通信是现代通信系统中新的通信方式,它具有较强的抗干扰、抗衰落和抗多径性能,频谱利用率高。本文介绍了扩频通信的工作原理、特点、及其发展应用。 一、扩频通信的工作原理 在发端输人的信息先调制形成数字信号,然后由扩频码发生器产生的扩频码序列去调制数字信号以展宽信号的频谱,展宽后的信号再调制到射频发送出去。在接收端收到的宽带射频信号,变频至中频,然后由本地产生的与发端相同的扩频码序列去相关解扩,再经信息解调,恢复成原始信息输出。可见,一般的扩频通信系统都要进行3次调制和相应的解调。一次调制为信息调制,二次调制为扩频调制,三次调制为射频调制,以及相应的信息解调、解扩和射频解调。与一般通信系统比较,多了扩频调制和解扩部分。扩频通信应具备如下特征:(1)数字传输方式;(2)传输信号的带宽远大于被传信息带宽;(3)带宽的展宽,是利用与被传信息无关的函数(扩频函数)对被传信息的信元重新进行调制实现的;(4)接收端用相同的扩频函数进行相关解调(解扩),求解出被传信息的数据。用扩频函数(也称伪随机码)调制和对信号相关处理是扩频通信有别于其他通信的两大特点。 二、扩频通信技术的特点 扩频信号是不可预测的、伪随机的宽带信号,其带宽远大于要传输的数据(信息)带宽,同时接收机中必须有与宽带载波同步的副本。扩频系统具有以下特点。 1.抗干扰性强 扩频信号的不可预测性,使扩频系统具有很强的抗干扰能力。干扰者很难通过观察进行干扰,干扰起不了太大作用。扩频通信系统在传输过程中扩展了信号带宽,所以即使信噪比很低,甚至在有用信号功率低于干扰信号功率的情况下,仍能不受干扰、高质量地进行通信,扩展的频谱越宽,其抗干扰性越强。 2.低截获性 扩频信号的功率均匀分布在很宽的频带上,传输信号的功率密度很低,侦察

PIC单片机中断程序的设计技巧

PIC单片机中断程序的设计技巧 所有的中档系列PIC单片机,PORTB端口最高的4个引脚(RB7~RB4)在设为输入模式时,当输入电平由高到低或由低到高发生变化时,可以让单片机产生中断。这就是通常所说的引脚状态变化中断。 在设计引脚中断程序时,有三个需要特别注意的地方。一是,在清除P0RTB中断标志位RBIF之前,必须安排一条必不可少的,以PORTB端口数据寄存器PORTB为源寄存器的读操作指令。放置这一指令的目的有时并不只是为了读取有用的数据,而是为了取消状态变化的硬件信号,以便顺利清除RBIF标志位,为下一次中断做好准备。二是,由于端口PORTB 是引脚电子变化中断,即无论引脚出现上升沿还是下降沿都会产生中断请求,所以必须处理好不需要的虚假中断。三是,一般都利用PIC单片机的引脚功能来检测按键,所以必须处理好按键消抖的问題。 2 引脚中断程序设计 在主程序里先设置有关的寄存器。 ◇设置TRISB寄存器,使RB7~RB4相关的引脚处于输入状态; ◇如果需要弱上拉,通过OPTION_REG的第7位设置; ◇RBIF=O; ◇RBIE=1; ◇GIF=1。 响应状态变化后的中断服务程序。 ◇检查RBIF是否为l,为l则是引脚变化引起的中断; ◇调用延时程序,延时20~30 ms,目的是为了按键去抖; ◇判断是引脚出现上升沿还是下降沿引起的中断; ◇调用按键处理程序; ◇读PORTB口的值,取消状态变化的硬件信号; ◇清除RBIF标志。 笔者认为上面程序设计最大的问题是在中断程序里调用延时程序。大家知道,中档PIC 单片机只有8层深度的硬件堆栈,在中断里调用于程序出现极易堆栈溢出的情况。另外,PIC单片机中断程序人口只有一个,在响应中断的请求时,PIC单片机就会自动把全局中断的使能位(INTCON的第7位GIF)清除,这样其他中断就暂时不能被响应(此时,如果别的中断发出的中断请求,标志位将一直保留着),直到这个中断程序退出后才会得到响应。这就要求我们设计中断程序的时候必须尽量短,避免调用子程序,更不要在中断里进行复杂的运算。 下面给出笔者设计程序时的思路。 当引脚状态变化引起中断时,在中断子程序里首先判断引起中断的原因是不是我们需要的变化引起的中断。如果是,不要在这里延时,而是设置一个标志位,接着清除中断标志,退出中断。中断程序如下: else if((RBIE&RBlF)==1){ //如果引脚变化引起中断 if(RB4==0){ //RB4上的按钮接地 key=1;//按键标志位置位 } RBIF=0;//清除引脚中断标志位 }

相关文档