文档库 最新最全的文档下载
当前位置:文档库 › 压电结构纤维及复合材料要点

压电结构纤维及复合材料要点

压电结构纤维及复合材料要点
压电结构纤维及复合材料要点

[1]Brei D, Cannon B J. Piezoceramic hollow fiber active composites[J]. Composites Science and

Technology, 2004, 64(2):245-261.

图1 中空压电纤维

一、背景介绍

一般压电纤维复合材料中的压电纤维为实心截面,当驱动该类压电复合材料时,电极放在基体表面,电场因需要穿透非导电基体因而其达到压电纤维时产生大的损耗,因而需要高的驱动电压。另外,该类复合材料的基体必须用不导电材料,这限制了其的应用范围。中空压电纤维复合材料可以降低驱动电压,并且基体材料选择广泛,可以涵盖不导电的环氧树脂和各类导电的金属材料。本文讨论了中空圆环形截面压电纤维的制造和应用,以及纤维和基体模量比、中空纤维壁厚与半径比及纤维体积分数对此类复合材料性能、制造及可靠性问题。

Thin-wall纤维最理想,但存在严重的可靠性问题。总之,对中空压电纤维复合材料,要同时考虑压电纤维品质、制造及可靠性问题。

空心压电纤维复合材料驱动用31模式,实心压电纤维复合材料用33模式。尽管31模式纵向应变比33模式小一半,但所需驱动电压仅需33模式的1/10或更少。

传统的制备技术可以制备出壁厚在压电材料晶粒尺寸量级的中空纤维,但是长度仅有10mm或更短。混合共挤技术可以制备100mm以上的空心纤维。

目前对中空压电纤维复合材料的研究大多限于利用短纤维的径向应变(水声听音设备),本文则研究利用纵向应变。目前对中空纤维的研究主要内容如下:(1)纤维壁内的电场分布(2)电场和应变之间的关系。本文主要研究(3)纤维和基体模量比、中空纤维壁厚与半径比及纤维体积分数对此类复合材料性能、制造及可靠性影响(4)中空纤维质量对复合材料制备和性能的影响。

二、单个纤维及层板的有效性质

中空纤维中的电场:

tw E V /t =

thin-wall approximation V E(r)r ln(1)

-=--α 在这篇文献里没有提到这个公式是近似的,还用这个公式计算了各种厚度的中空纤维的电场,但在后面Lin 和Sodano 的文献中,似乎说为近似的。在一般情况,由该表达式电场内表面大外表面小,最大与最小差值随α增加而增大,这样在外表面达到极化时,内表面处材料有可能由于大的电场产生的应力而损坏。同样在驱动中空纤维时,在外表面难以达到最大工作电压。因此,α小的中空纤维是一个好的选择。

纤维有效31d :

F 31tw 31,eff tw d E d E ln(1)(1/0.5)-??ε== ?-αα-??,F 31,eff d 随着α的增加而降低,即薄壁中空纤维可以产生

高的应变。

单层有效31d :

F 31,eff f f L la min a tw 31,eff tw lam f f m f lam d Y E d E ,Y Y Y (1)Y ??νε===ν+-ν ? ???

讨论:(1)纤维密度(纤维数/能放入的最大纤维数)

代替纤维体积分数,f f (2)?ν=-αα??,通

过计算发现,thin-wall 纤维虽然d31最高,但由于体积分数的限制,不能使单层达到最高的d31;thick-wall 纤维虽d31不及thin-wall ,但由于可以达到高的体积分数,因而层板的d31较大。(2)层板d31随基体模量增加而降低。最大基体模量由单个纤维能承受的嵌入应力决定,嵌入应力由制备过层中基体与纤维的热应变差别引起(两种材料热膨胀系数不匹配)。纤维的环向、轴向和V on Mises 应力由作者另一篇研究工作给出。研究表明:硬的基体容易导致纤维发生强度破坏,而软的环氧树脂基体容许各种α和f ν而不发生强度破坏。

三、中空纤维制备与评估:

上面的研究表明, 和材料性质(模量和d31)决定了中空复合材料的应变行为,而嵌入应力条件限制了基体材料的选择。这节讨论microfabrication by coextrusion(MFCX),这种方法对各种陶瓷材料,制备晶粒尺度的任意横截面的纤维具有很高的成功率。

(1)ovality(椭圆度)=最大直径偏差/名义直径

(2)eccentriclty(偏心度)=孔的偏差/直径

以上两个参数是重要的,它们直接影响壁厚,导致壁内电场的变化

(3)straightness(直线度),由curvature(曲率)和waviness(波动)表示

(4)material property evaluation:包括所制备材料的空隙率、密度、d31、和模量

四、中空纤维制备与评估:

Thin-wall纤维强度较差因而会对复合材料可靠性带来影响。

五、中空纤维与实心纤维的比较

实心纤维驱动电压要求很高,因而工程应用不方便。空心纤维如果电极破裂丧失了电连通性,纤维就失效了,在这种情况下,实心纤维比空心的强。

[2]Beckert W, Kreher W, Braue W, Ante M. Effective properties of composites utilizing fibres

with a piezoelectric coating[J]. Journal of the European Ceramic Society, 2001, 21(10-11):1455-1458.

hybird fiber with an inactive core and a piezoelectric coating, the piezoelectric inactive core provides the mechanical support, and improve mechanical stability. An electrical potential different between an inner and an outer electrode layer gives rise to an actuating electric field. A corresponding axial deformation of the fiber is induced by the 31-coupling of the piezomaterial. core fiber: glass, SiC, steel

结果:3种方法比较,d33与bulk fiber 比较。

多几层薄的压电层(薄压电层驱动性能更好,在前面的文献中有讨论),然后加反向电压,控制起来灵活性更大(可实现双路反向控制). 同时,与厚的压电层比较,用更多层薄的压电层,电场分布误差会很小,提供的夹持力比单层的要大,降低了压电材料中的应力。硕士研究,

[3] Dai Q L, Ng K. Investigation of electromechanical properties of piezoelectric structural fiber

composites with micromechanics analysis and finite element modeling[J]. Mechanics of Materials, 2012,53:29-46.

外电极

用细观力学和有限元法(利用了双周期条件+能量方法)方法研究压电结构纤维复合材料(piezoelectric structural fiber composites),纤维纵向极化,芯材为SiC和C且不充当电极。

the monolithic piezoceramic materials such as lead-based ceramics are brittle by nature. The fragile property makes them vulnerable to accidental breakage during operations, and difficult to apply to curved surfaces and harsh environments with reduced durability.(陶瓷材料易碎)。

金属芯:platinum,the metal core can reinforce the composite and serve as electrode.但两者热膨胀性能的不匹配容易使涂层断裂(问题:热分析)。也可用导电的碳和碳化硅,但在碳和碳化硅表面的压电涂层如果太薄,使在采集轴向纤维的电场很困难,这也是本文的着眼点。

对有效性能预测,本文强调MT方法与实验结果最为接近。the aspect ratio, αof PSF is defined as the shell thick, t divided by the outer radius, r. The volume fraction of the PSF is the volume ratio of fibers with the whole laminate.

传感模式的基本方程

ij ijmn mn nij n

T

i imn mn in n

S d E

D d E

ε=σ+

=σ+κ

驱动模式的基本方程

ij ijmn mn nij n

S

i imn mn in n

C e E

D e E

σ=ε-

=ε+κ

如果3方向是极化方向,12方向是横观各向同性面,则

****

11121331

11

****

12111331

22

****

13133333

33

**

4415

23

**

314415

*

1266

**

11511

**

21511

*

3

31

00000

00000

00000

0000000

0000000

00000000

0000000

0000000

-

??

?-

?

?-

?

?-

?

=-

?

?

?

?

?

?

?

??

c c c e

c c c e

c c c e

c e

c e

c

D e k

D e k

D e e

σ

σ

σ

σ

σ

σ

11

22

33

23

31

12

1

2

***

3

313333

2

2

2

00000

????

?? ?

?? ?

?? ?

?? ?

?? ?

?? ?

?? ?

?? ?

?? ?

?? ?

?? ?

?? ?

?? ?

????

??

E

E

E

e k

ε

ε

ε

ε

ε

ε

()

***

1

661112

2

=-

c c c

本文利用驱动模式方程,由1

kq kp pq ijk imn mnjk

e d C,d e C-

==得到了传感模式方程的d33.

Mori-Tanaka approach only considers the volume fraction and excludes the inclusion shape and size effects on the composite properties. Extended rule of mixture: the inclusion shape and size

effects of each phase were considered.最初的混合率是对两相复合材料的,扩展的混合率用于研究三相复合材料,其实质就是应用两次针对两相材料的混合率。

[4] Dinzart F, Sabar H. Electroelastic behabior of piezoelectric composites with coated

reinforcements: micromechanical approach and applications[J]. International Journal of Solids and Structures, 2009, 46(20):3556-3564.

1ijk imn mnjk d e C -=

[5] Lin Y , Sodano H A. Concept and model of a piezoelectric structural fiber for multifunctional

composites[J]. Composites Science and Technology, 2008,68(7-8): 1911- 1918.

这篇文献intrduction 写得好。 this paper introduces a novel active piezoelectric structural fiber that can be laid up in a in a composite material to perform sensing and actuation, in addition to providing load bearing functionality. 建立了一维模型,结果表明,包含压电结构纤维的复合材料层板可以达到压电材料70%的耦合系数。

first,................., additionality,...................

实用单相压电材料有困难:易碎性,难以做成曲面形状。于是有了各种压电纤维复合材料PFC(包括active fiber composites(AFC)、macro-fiber composites(MFC)、1-3 composites, and hollow tube active fiber composite),这些压电复合材料的典型应用为像一个patch 粘贴在结构表面,或像一个active layers along with conventional fiber-reinforced lamina, While the PFCSs provide significant advantages over monolithic piezoceramic materials, they are still generally separate from the structural components and are not intended to provide any load bearing functionality.或者即使埋入材料内部,也不提供承受载荷的能力。

本文对压电纤维复合材料的工程应用有比较详细的介绍,但每个应用只有一个功能,这是的一个着眼点(本文为传感/驱动+承受载荷)。

a one-dimensional micromechanics model.

Prior efforts have characterized and developed accurate models for a solid piezoceramic fiber

[7], however, these models are not applicable to the active fiber developed here, because the fiber is two phase. Prior efforts did not considered the coating aspect ratio, defined as the ratio of the piezoceramic coating thickness to the outside radius of the active fiber, or the non-uniform electric field, caused by different surface area between the inner and outer electrodes.

V

E (r )r l n (1)

-=--α 这个等式假定压电层很薄,在压电层厚时是不准确的。由于按此分布压电壳内边界的电场高于外边界的电场,导致两个问题:(1)内边界处驱动应变高,限制了the magnitude of the electric field applied before depoling occurs(2)导致纤维与压电壳解除约束。

ij ijmn mn nij n

T i imn mn in n S d E D d E ε=σ+=σ+κ

如果3方向是极化方向,12方向是横观各向同性面,则

11

1213311112

111331221313333333441523314415126611511215113313133330000000000000000

0000002200000002000000000000000000000000000???? ?? ?? ?? ?? ?? ?= ? ? ? ? ? ? ????T T T s s s d s s s d s s s d s d s d s D d k D d k D d d d k εεεεεε112233233112123???? ?? ?? ?? ?? ?? ??? ??? ??? ??? ??? ??? ??? ??????

E E E σσσσσσ 只加电场时,一次压电效应

31(r)d E(r)ε=无非均匀变形引起的约束应变?

该点的应力为

P P 31(r)Y (r)Y d E(r)σ=ε=

截面上总的piezoelectric force

002r P 31P 310r t 02d Y Vt F Y d E(r)rdrd ln(1t /r )π--π=θ=-?

? f 31tw 31,eff tw P P d F ()E d E Y AY ln(1)(1/0.5)

-σε====-αα- 以上是为了求平均应变ε的一个虚拟(F 是一个虚拟的力,只要有应变,就假象是由一个力引起的)的过程。其实可以如下式得到

00002r 2r 310r t 0r t f 31tw 31,eff tw 2200(r)rdrd d E(r)rdrd d ()E d E A (1/0.5)ln(1)

[r (r t)]ππ--εθ=

θ

-ε====α--απ--???? 利用这个虚拟概念,可以类似得到压电结构纤维的multi 31,eff d

上式也可以由静不定求解得到:压电壳有一个平均应变f 31,eff tw d E ε=,由于core 的约束作用,core

有一个伸长应变f ε(假设由力FF 引起),而压电壳有一个压缩应变(p ε同样由力FF 引起),由

协调条件

f multi P P f f 31,eff tw p f P P f f P P f f P P f f

f f 31,eff tw P P f f 31,eff P P multi multi tw 31,eff tw

f f f f multi multi FFY A FF(Y A Y A )FF FF d E Y A Y A Y A Y A Y A Y A d E Y A Y A d Y v FF E d E Y A Y A Y A Y +ε==ε+ε=+==ε==== 层板的lam 31,eff d

由f 31,eff P P lam

31,eff multi d Y v d Y =将multi Y 按照混合率换成P p f f m p f Y v Y v Y (1v v )++--即可。(工作:可以选用

另一种混合率方法)

层板本构关系(在电场和机械场共同作用下),在平均意义下?

算例:BAAQUS, 压电结构纤维及复合材料,core fibers 为carbon 和silicon carbonate,模型一端施加固定边界条件。用端部的平均位移计算平均应变。

[6]Lin Y, Sodano H A. Electromechanical characterization of a active structural fiber lamina for

multifucntional composites[J]. Composites Science and Technology, 2009,69(11-12): 1825-1830.

写论文参考!

the monolithic material is brittle making it difficult to apply to curved surfaces and reducing its durability in harsh environments subject to large strains or shock loading.

压电纤维复合材料(PFCs)包括以下四种:

(1)active fiber composite(AFC):实心圆截面压电纤维嵌入环氧树脂,电场施加困难。

(2)macro fiber composite(MFC):压电纤维为矩形,通过压电镜片切割获得。好处是能提供与电极好的电接触。

Both the AFC and MFC use a separate interdigitated electrode pattern that is bonded to the surface

of the fibers which can make embedding difficult. While the electrode pattern requires significantly higher voltages to achieve full actuation, it allows the electric field to be applied along the fiber length to capitalize on the higher d33 coupling coefficient.

(3)hollow fiber composite(HFC):Cannon and Brei [10,11] proposed the hollow fiber composite (HFC) in order to overcome the drawbacks of the solid fiber composites. In the HFC the electric field is applied through the thickness of the hollow fiber; from the inner and outer surfaces, significantly reducing the impedance of the material and the actuation voltage required [12]. However, due to the hollow core and fragile nature of PZT greatly restricts its application and makes hollow fiber prone to cracking and failure under mechanical loading.

(4)active structural fiber(ASF):More recently, several research groups developed the metal core PFCs to overcome the disadvantage of the HFC by coating a metal fiber(typical platinum fiber) with PZT to form the active piezoelectric fibers [13–16]. The metal core serves as one electrode for the PZT as well as carry part of the mechanical loading. Although metal core PFC provides significant advantages, the ductility and the high coefficient of thermal expansion of the metal conductor make the piezoceramic coating prone to cracking under mechanical strain and the sintering proces s.(工作:热分析)

本文制造了C和SiC芯材(能当电极)BaTiO3压电壳压电结构纤维,压电结构纤维复合材料达到70%的纯陶瓷材料的d31,这种高的耦合响应指示压电结构纤维复合材料的d31可以比其他一些纯压电材料的高,例如PZT-5H4E (d31 =320 pC/N) was used, the structural composite lamina with an aspect ratio of 0.8 and volume fraction of 0.6 would have a bulk coupling coefficient of greater than _224 pC/N or more than four times that of pure unreinforced barium titanate (d31 =49 pC/N).

单个压电结构纤维的有效d31已经通过试验验证,本文任务是验证压电结构纤维嵌入聚合物基体的试验验证。

材料制备细节:For this effort silicon carbide fibers (Type SCS-6, 140 lm diameter, Specialty Materials, Inc. Lowell, MA, USA) were used for the core and as the electrodes in the EPD process. Commercial barium titanate (BaTiO3) nano-powder(BaTiO3, 99.95%, average particle size: 100 nm, cubic phase, InframatAdvanced Materials, Farmington, CT, USA) was used as thepiezoceramic constituent because it is stable under high temperatures,has a high coupling coefficient and unlike PZT does not react with silicon carbide. Following the application of the green piezoceramic coating, the SiC fibers were sintered in a tube furnace (Thermolyne 79400) at 1200C under a nitrogen gas atmosphere as shown。After sintering the fibers, the outer surface of the BaTiO3 layer was coated with silver paint (SPI Supplies, #5002) to form the outer electrode, schematically shown in Fig. 2c. The silver-coated fibers were heated to 600C,整个过程是芯材和压电壳在1200下烧结----然后在600度下制作银电极------然后在120度(居里温度,For bulk BaTiO3, the poling process can be done under a DC electric field (2 kV/ cm) at its curie temperature (120 C))下极化------在室温下按体积分数做环氧外层(为防止depole,温度要小于120)

试验结果对高aspect ratio有较大误差,本文分析了其中的原因。

The results demonstrate that composites fabricated form the ASF can achieve coupling levels as high as 50% of the piezoelectric constituent with volume fractions as low as 30%.

[7]Jian Liu, Jinhao Qiu, Weijie Chang, Hongli Ji, Kongjun Zhu. Metal-core piezoelectric fibers for

the detection of lamb waves. Proceedings of the ASME 2010 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, September 28 - October 1, 2010, Philadelphia, Pennsylvania, USA.

本文将金属芯压电结构纤维MPF作为超声Lamb波(应力波)的接收器(传感器),获得MPT的电压响应。AFC 和MFC使用方式是制成复合材料,而不能直接使用纤维,更进一步,由于电极被放置在基体表面,电场损失很大,因此它们作为传感器和驱动器是低效率的。

金属芯压电结构纤维的优点:直径小、重量轻、易于与host structure结合。

压电层厚度50-150微米,MPF直径范围150-400微米,长度20毫米,因此可以与结构host-structure结合,且由于有金属芯增强,可以克服压电壳的脆性。压电结构纤维可用作传感器和驱动器。

当外电极全涂时,此时称为金属芯(本文为铂)压电纤维MPF,被用于纵向模式。当外电极半涂(必须半涂吗)时,称为半涂金属芯压电纤维HMPF。被用于弯曲模式。本文MPF作为传感器,工作于3-1模式。

Consider an MPF sensor bonded on the surface of a structure and deforms with it. Since the radius of the fiber is much smaller than its length, we can neglect all the lateral stresses. Due to axial symmetry there is no shear stress in the fiber.

Under the electrical boundary conditions of an open circuit, the total charge on the electrode of an MPF sensor is zero, and

thus (零还是常量?), where the integration is performed over each electrode [23]. Because there is no free charge inside the ceramics, the same expression is valid for any cylindrical area of radius r satisfying R m

[8]M. Bayat, M.M. Aghdam. A micromechanics based analysis of hollow fiber composites using

DQEM. Composites: Part B, 2012, 43:2921-2929.

hollow fiber: a high stiffness/strength-to-weight ratio is a key advantage of composites compared to other materials.

multilayered hollow-cored inclusion.

本文研究由于利用广义平面微结构模型研究了应力、应变及有效弹性性质,以及冷却过程中产生的残余应力和空心纤维与实心纤维的能量吸收,纤维方形排列。求解利用A Least-squares based differential quadrature element method (DQEM,一种快速、简单、准确求解线性和非线性微分方程的解法)求解,结果与ANSYS进行了对比。

in which superscript C refers to the overall property of the composite.

本文的特色为将不规则求解域映射成矩形域,利用DQEM方法求解(将不规则求解域映射成矩形域,周期边界条件和应力协调条件+位移连续条件)位移型控制方程(以位移表示的平衡方程)。由于采用方形排列,有效弹性性质可由简单的方法求出。冷却过程中的热残余应力給一个-T

即可。而能量吸收则由施加应力求位移决定。

绝缘体:又称电介质,是一种阻碍电荷流动的材料,或不善于传导电流的物质称为绝缘体。在绝缘体中,价带电子被紧密的束缚在其原子周围。绝缘体和导体,没有绝对的界限。绝缘体在某些条件下可以转化为导体。这里要注意:导电的原因:无论固体还是液体,内部如果有能够自由移动的电子或者离子,那么他就可以导电。没有自由移动的电荷,在某些条件下,可以产生导电粒子,那么它也可以成为导体。

电介质:所有可被电极化的绝缘体为介电质,是一种可被电极化的绝缘体。假设将介电质置入外电场,则束缚于其原子或分子的束缚电荷不会流过介电质,只会从原本位置移动微小距离,即正电荷朝着电场方向稍微迁移位置,而负电荷朝着反方向稍微迁移位置。这会造成介电质电极化,从而在介电质内部产生反抗电场,减弱整个介电质内部的电场。假若介电质是由弱键结的分子构成,则这些分子不但会被电极化,也会改变取向,试着将自己的对称轴与电场对齐。

自发极化:在一定温度范围内、单位晶胞内正负电荷中心不重合,形成偶极矩,呈现极性。这种在无外电场作用下存在的极化现象称为自发极化。当施加外界电场时,自发极化方向沿电场方向趋于一致;当外电场倒向,而且超过材料矫顽电场值时,自发极化随电场而反向;当电场移去后,陶瓷中保留的部分极化量,即剩余极化。自发极化与电场间存在着一定的滞后关系。它是表征铁电材料性质的必要条件。铁电陶瓷、压电陶瓷,如钛酸钡晶体BaTiO3等具有自发极化。利用材料的这种性质,可制作电子陶瓷,如电容器及敏感元器件。

场中时,由于分子中的正,负电荷受到相反方向的电场力,因而正,负电荷中心将发生微小的相对位移,从而形成电偶极子,其电偶极矩将沿外电场方向排列起来。这时,沿外电场方向电介质的前后两表面也将分别出现正,负极化电荷。这是弹性的、瞬间完成的、不消耗能量的一种极化方式。

取向极化:这是一种电介质极化现象,外电场对电偶极矩的力矩作用,使它们倾向于定向排列,这称为“取向极化”,其极化程度与温度成反比(称为“居里定律”)。

铁电体:某些晶体在一定的温度范围内具有自发极化,而且其自发极化方向可以因外电场方向的反向而反向,晶体的这种性质称为铁电性,具有铁电性的晶体称为铁电体。

铁电畴:铁电体自发极化的方向不相同,但在一个小区域内,各晶胞的自发极化方向相同,这个小区域就称为铁电畴(ferroelectric domains)。两畴之间的界壁称为畴壁。若两个电畴的自发极化方向互成90°,则其畴壁叫90°畴壁。此外,还有180°畴壁等。

铁电体的极化随着电场的变化而变化,极化强度与外加电场之间呈非线性关系。如图1.1所示,在电场很弱时,极化线性地依赖于电场,此时可逆的畴壁移动占主导地位。当电场增强时,新畴成核,畴壁运动成为不可逆的,极化随电场地增加比线性快。当电场达到相应于B点的值时,晶体成为单畴,极化趋于饱和。电场进一步增强时,由于感应极化的增加,总极化仍然有所增加(BC段)。如果趋于饱和后电场减小,极化将按CBD曲线减少,以致当电场达到零时,晶体仍保留在宏观极化状态。线段OD表示的极化称为剩余极化Pr(remanent polarization)。若过C点沿着CB做一切线交y轴为E,则线段OE等于自发极化Ps(saturation polarization)。若电场反向,极化将随之降低并改变方向,直到电场等于某一值时,极化又将趋于饱和。这一过程如曲线DFG所示。OF代表的是使极化为零的电场,称为矫顽场Ec (coercivefield)。电场在正负饱和值之间循环一周时,极化与电场地关系如曲线CBDFGHC 所示,此曲线称为电滞回线(hysteresis loop)。

极化强度随外电场增加而增加。如图中OA段曲线。电场强度继续增大,最后晶体电畴

极化电场和击穿电场:极化电场大于矫顽场,由高引起的材料裂纹扩展导致的断裂。

极化后压电材料的受力或外加电场:

(1)正压电效应:沿着极化方向施加压力,使正负束缚电荷之间的距离变小,单位体积的偶极矩变小,极化强度变小,原来吸附在陶瓷片上的自由电荷有一部分被释放而出现的放电现象,当去掉外力后,。。。。。。

(2)逆压电效应:在陶瓷片上施加一个与极化方向(负电荷指向正电荷),正负电荷之间的距离加大产生伸长变形。

(3)由于陶瓷片内的极化电荷是束缚电荷而不是自由电荷,在陶瓷中产生的放电和充电现象是通过陶瓷内部极化强度的变化引起电极面上的自由电荷的释放与补充的结果。当把电压表接到陶瓷片的两个电极进行测量时是无法测出陶瓷内部的极化强度的。这是因为陶瓷片的极化强度总是以点偶极矩形式表现的,陶瓷的一端出现正的束缚电荷,另一端出现负的束缚电荷。由于束缚电荷的作用,在陶瓷片上吸附了一层来自外界的自由电荷,它起着屏蔽和抵消陶瓷片内部极化强度对外界的作用,所以用电压表不能测出陶瓷片内部的极化强度。

压电材料的边界条件:

压电材料的压电性涉及到力学和电学之间的相互作用,而压电方程就是描述晶体的力学量和电学量之间的相互关系的表达式。但是由于应用状态和测试条件的不同,压电晶片可以处在不同的电学边界条件和机械边界条件下,即压电方程的独立变量可以任意选择,所以根据机械自由和机械夹持的机械边界条件与电学短路和电学开路的电学边界条件,描述压电材料的压电效应的方程共有4类,即d型、e型、g型、h型。四类边界条件为:

(1)电学边界条件

短路:两电极间外电路的电阻比压电陶瓷片的内阻小得多,可认为外电路处于短路状态。这时电极面所累积的电荷由于短路而流走,电压保持不变(压电材料两个电极面间有电压且不变?电极面上无自由电荷?束缚电荷不是约束自由电荷吗?)。它的上标用E表示。

开路:两电极间外电路的电阻比压电陶瓷片的内阻大得多,可认为外电路处于开路状态。这时电极上的自由电荷保持不变,电位移保持不变。它的上标用D表示。

(2)机械边界条件

自由:用夹具把压电陶瓷片的中间夹住,边界上的应力为零,即片子的边界条件是机械自由的,片子可以自由变形。它的上标用T表示。

夹紧:用刚性夹具把压电陶瓷的边缘固定,边界上的应变为零,即片子的边界条件是机械夹紧的。它的上标用S表示。

四类边界条件对应四类压电方程,根据不同的边界条件选择不同的压电方程。

8888888888888888888888888888888888888888888888888888888888888888

压电结构纤维及复合材料

[1]Brei D, Cannon B J. [J]. Composites Science and Technology, 2004, 64(2):245-261. 图1 中空压电纤维 一、背景介绍 一般压电纤维复合材料中的压电纤维为实心截面,当驱动该类压电复合材料时,电极放在基体表面,电场因需要穿透非导电基体因而其达到压电纤维时产生大的损耗,因而需要高的驱动电压。另外,该类复合材料的基体必须用不导电材料,这限制了其的应用范围。中空压电纤维复合材料可以降低驱动电压,并且基体材料选择广泛,可以涵盖不导电的环氧树脂和各类导电的金属材料。本文讨论了中空圆环形截面压电纤维的制造和应用,以及纤维和基体模量比、中空纤维壁厚与半径比及纤维体积分数对此类复合材料性能、制造及可靠性问题。 Thin-wall纤维最理想,但存在严重的可靠性问题。总之,对中空压电纤维复合材料,要同时考虑压电纤维品质、制造及可靠性问题。 空心压电纤维复合材料驱动用31模式,实心压电纤维复合材料用33模式。尽管31模式纵向应变比33模式小一半,但所需驱动电压仅需33模式的1/10或更少。 传统的制备技术可以制备出壁厚在压电材料晶粒尺寸量级的中空纤维,但是长度仅有10mm或更短。混合共挤技术可以制备100mm以上的空心纤维。 目前对中空压电纤维复合材料的研究大多限于利用短纤维的径向应变(水声听音设备),

本文则研究利用纵向应变。目前对中空纤维的研究主要内容如下:(1)纤维壁内的电场分布(2)电场和应变之间的关系。本文主要研究(3)纤维和基体模量比、中空纤维壁厚与半径比及纤维体积分数对此类复合材料性能、制造及可靠性影响(4)中空纤维质量对复合材料制备和性能的影响。 二、单个纤维及层板的有效性质 中空纤维中的电场: tw E V /t = thin-wall approximation V E(r)r ln(1) -=--α 在这篇文献里没有提到这个公式是近似的,还用这个公式计算了各种厚度的中空纤维的电场,但在后面Lin 和Sodano 的文献中,似乎说为近似的。在一般情况,由该表达式电场内表面大外表面小,最大与最小差值随α增加而增大,这样在外表面达到极化时,内表面处材料有可能由于大的电场产生的应力而损坏。同样在驱动中空纤维时,在外表面难以达到最大工作电压。因此,α小的中空纤维是一个好的选择。 纤维有效31d : F 31tw 31,eff tw d E d E ln(1)(1/0.5)-??ε== ?-αα-??,F 31,eff d 随着α的增加而降低,即薄壁中空纤维可以产生 高的应变。 单层有效31d : F 31,eff f f L la min a tw 31,eff tw lam f f m f lam d Y E d E ,Y Y Y (1)Y ??νε===ν+-ν ? ??? 讨论:(1)纤维密度(纤维数/能放入的最大纤维数) 代替纤维体积分数,f f (2)?ν=-αα??,通 过计算发现,thin-wall 纤维虽然d31最高,但由于体积分数的限制,不能使单层达到最高的d31;thick-wall 纤维虽d31不及thin-wall ,但由于可以达到高的体积分数,因而层板的d31较大。(2)层板d31随基体模量增加而降低。最大基体模量由单个纤维能承受的嵌入应力决定,嵌入应力由制备过层中基体与纤维的热应变差别引起(两种材料热膨胀系数不匹配)。纤维的环向、轴向和V on Mises 应力由作者另一篇研究工作给出。研究表明:硬的基体容易导致纤维发生强度破坏,而软的环氧树脂基体容许各种α和f ν而不发生强度破坏。 三、中空纤维制备与评估: 上面的研究表明,α和材料性质(模量和d31)决定了中空复合材料的应变行为,而嵌入应

压电纤维复合材料的研究与应用

压电纤维复合材料的研究与应用 XXX 湖北工程学院湖北孝感432000 摘要:本文概述了压电纤维的制备工艺,总结了压电陶瓷纤维研究已取得的成果,阐明了各种制备方法的优缺点及其改进的办法,并对压电纤维及其复合材料的研究进行了概述以及对应用前景进行了展望。 关键词:压电陶瓷纤维;制备;应用 1引言 压电材料是在外力作用下发生变形时能产生电场,同时在电场作用下也能产生机械变形的材料。这类材料所固有的机一电耦合效应,使得压电材料广泛应用于传感和驱动领域中,但是传统压电陶瓷产品的一些缺点限制了它在实际中的应用。20世80年代,人们开始研究压电陶瓷纤维的制备技术,并将纤维与聚合物基质复合制成压电复合材料。由于添加了聚合物相,所以它既保留了原有压电材料灵敏度高、频响高的优点,又大大改善了压电陶瓷脆性大、柔软性差的缺点,而且纤维材料具有的方向性,更适合于各项异性的应力波检测。 目前,国外正致力于压电纤维复合材料技术研究,关于压电纤维制备的论文颇多,有些技术已得到了广泛的商业应用。例如,美国的研究人员正在积极开展其在飞机、超轻质量太空船和汽车等方面的应用,另外,以其为核心技术的传感器是目前进行工程结构健康监测的最先进方法,对于非均质材料及真实表面尤为适用。与国外的先进水平相比,国内对压电陶瓷纤维的研究还只是处于起步阶段。 2压电陶瓷纤维的制备方法 2.1 溶胶-凝胶法 制备陶瓷纤维传统的方法一般是将氧化物原料加热到熔融状态,熔融纺丝成形。然而,许多特种陶瓷材料熔点很高,熔体粘度很低,难以用传统方法制备,

而溶胶-凝胶法(sol -gel method)的出现解决了这一难题。溶胶—凝胶工艺的主要特点有:(1)可在较低温度下得到功能陶瓷纤维;(2 )可以制得均匀性好、纯度高的纤维;(3)可以获得一些熔融法难以制备的纤维。 Sol-gel法以无机盐或金属醇盐为原料,将前驱物溶于溶剂中形成均匀溶液,达到近似分子水平的混合;前驱物在溶剂中发生水解及醇解反应,同时进行缩聚反应,得到尺寸为纳米级的线性粒子组成的溶胶。当溶胶达到一定的粘度,在室温下纺丝成形得到凝胶粒子纤维,经干燥,烧结,晶化便可得到陶瓷纤维。 LiNbO3是一种较早用sol -gel法制备的压电陶瓷纤维材料,可用于声表面波(SAW )器件和电光器件。1989年,Hirano等Li(OC2 H5)、Nb(OC 2H5)5、H2O和C2 H5OH 配制前驱体溶液,通过选择合适的浓度、加水量,得到可拉丝的溶胶,制作了LiNbO3凝胶纤维,把凝胶纤维在400~600℃之间进行热处理,加热速率为1 ℃/min,可得到直径为10~1000μm的单相LiNbO3纤维。在500℃保温1h 热处理获得晶态LiNbO3纤维,其密度为理论密度的90%以上,室温介电常数约为10,与固相反应制得的多晶LiNbO3,材料一致,但比单晶的小。另外,LiNbO3纤维的介电损耗为0.01~0.02。 Yoko等采用溶胶—凝胶工艺制备了BaTiO3纤维,前驱体溶液由Ti(OC3 H7 ) 、Ba(OC2H5)、H2O、C2H5OH 和CH3 COOH组成,在系统加人大量的CH3 COOH以获得可拉丝溶胶。形成凝胶纤维后加热至600℃以上可获得单相钙钛矿BaTiO3纤维。 Kamiya等通过控制Pb—Ti复合醇盐的水解获得了PbTiO3纤维的溶胶。其研究结果显示,含水量少的溶胶有利于获得更好的非晶PbTiO3纤维,而含水量大的溶胶可以获得高结晶度的钙钛矿PbTiO3纤维。制备PbTiO3纤维时,需加入过量2%(质量分数)的PbO和1%(质量分数)的Mn2O3至纤维中,即可有效地避免干燥过程中纤维开裂,并且这样得到的纤维密度可达理论值的94%。 锆钛酸铅(Pb(Zr x Ti1-x )O3 )材料是最重要的铁电压电材料,其应用非常广泛。因此,采用溶胶一凝胶工艺制备PZT纤维深受重视。王录全等在溶胶一凝胶工艺基础上制备出长PZT纤维。图1是其制备纤维的装置。如图所示,湿凝胶纤维绕在可调节直径的滚筒上并可直接在滚筒上干燥,从而避免了纤维再次缠绕及干燥过程中的收缩引起的断裂。并且在氮气的保护下,他们已实现了干燥凝胶纤

碳纤维材料的性能

碳纤维材料的性能及应用 摘要:介绍了碳纤维及其增强复合材料,详细介绍了碳纤维复合材料的分类和特性,着重阐述了碳纤维及其复合材料在高新技术领域和能源、体育器材等民 用领域的应用,并对未来碳纤维复合材料的发展趋势进行了分析。 关键词:碳纤维性能应用 0引言 碳纤维复合材料具有轻质、高强度、高刚度、优良的减振性、耐疲劳和耐腐蚀等优异性能。以高性能碳纤维复合材料为典型代表的先进复合材料作为结构、功能或结构/功能一体化材料,不仅在国防战略武器建设中具有不可替代性,在绿色能源建设、节约能源技术发展和促进能源多样化过程中也将发挥极其重要的作用。若将先进碳纤维复合材料在国防领域的应用水平和规模视作国家安全的重要保证,则碳纤维复合材料在交通运输、风力发电、石油开采、电力输送等领域的应用将与有效减少温室气体排放、解决全球气候变暖等环境问题密切相关。随着对碳纤维复合材料认识的不断深化,以及制造技术水平的不断提升,碳纤维复合材料在相关领域的应用研究与装备不断取得进展,借鉴国际先进的碳纤维复合材料应用经验,牵引高性能碳纤维及其复合材料的国产化步伐,对于改变经济结构、节能减排具有重要的战略意义。 1碳纤维材料 1.1何为碳纤维材料 碳纤维是一种含碳量在9 2% 以上的新型高性能纤维材料, 具有重量轻、高强度、高模量、耐高温、耐磨、耐腐蚀、抗疲劳、导电、导热和远红外辐射等多种优异性能, 不仅是21 世纪新材料领域的高科技产品, 更是国家重要的战略性基础材料, 政治、经济和军事意义十分重大。碳纤维分为聚丙烯睛基、沥青基和粘胶基 3种, 其中90 % 为聚丙烯睛基碳纤维。聚丙烯睛基碳纤维的生产过程主要包括原丝生产和原丝碳化两部分。用碳纤维与树脂、金属、陶瓷、玻璃等基体制成的复合材料, 广泛应用于航空航天领域体育休闲领域以及汽车制造、新型建材、

碳纤维及其复合材料的发展及应用_上官倩芡

第37卷第3期上海师范大学学报(自然科学版)Vol.37,N o.3 2008年6月J ou rnal of ShanghaiNor m alUn i versity(Natural S ci en ces)2008,J un 碳纤维及其复合材料的发展及应用 上官倩芡,蔡泖华 (上海师范大学机械与电子工程学院,上海201418) 摘要:叙述了碳纤维的结构形态、分类以及在力学、物理、化学方面的性能,介绍了碳纤维增强复合材料的特性,着重阐述了碳纤维增强树脂基复合材料中基体的分类、选择和应用,指出了碳纤维及其复合材料进一步发展的趋势. 关键词:碳纤维;复合材料 中图分类号:O636文献标识码:A文章编号:1000-5137(2008)03-0275-05 碳纤维作为一种高性能纤维,具有高比强度、高比模量、耐高温、抗化学腐蚀、耐辐射、耐疲劳、抗蠕变、导电、传热和热膨胀系数小等一系列优异性能.此外,还具有纤维的柔曲性和可编性[1~3].碳纤维既可用作结构材料承载负荷,又可作为功能材料发挥作用.因此碳纤维及其复合材料近几年发展十分迅速.本文作者就碳纤维的特性、分类及其在复合材料领域的应用等内容进行介绍. 1碳纤维特性、结构及分类 碳纤维是纤维状的碳材料,由有机纤维原丝在1000e以上的高温下碳化形成,且含碳量在90%以上的高性能纤维材料.碳纤维主要具备以下特性:1密度小、质量轻,碳纤维的密度为1.5~2g/c m3,相当于钢密度的1/4、铝合金密度的1/2;o强度、弹性模量高,其强度比钢大4~5倍,弹性回复为100%;?热膨胀系数小,导热率随温度升高而下降,耐骤冷、急热,即使从几千摄氏度的高温突然降到常温也不会炸裂;?摩擦系数小,并具有润滑性;?导电性好,25e时高模量碳纤维的比电阻为775L8/c m,高强度碳纤维则为1500L8/c m;?耐高温和低温性好,在3000e非氧化气氛下不熔化、不软化,在液氮温度下依旧很柔软,也不脆化;?耐酸性好,对酸呈惰性,能耐浓盐酸、磷酸、硫酸等侵蚀[4~7].除此之外,碳纤维还具有耐油、抗辐射、抗放射、吸收有毒气体和使中子减速等特性. 碳纤维的结构取决于原丝结构和碳化工艺,但无论用哪种材料,碳纤维中碳原子平面总是沿纤维轴平行取向.用X-射线、电子衍射和电子显微镜研究发现,真实的碳纤维结构并不是理想的石墨点阵结构,而是属于乱层石墨结构[8],如图1所示.构成此结构的基元是六角形碳原子的层晶格,由层晶格组成层平面.在层平面内的碳原子以强的共价键相连,其键长为0.1421n m;在层平面之间则由弱的范德华力相连,层间距在0.3360~0.3440n m之间;层与层之间碳原子没有规则的固定位置,因而层片边缘参差不齐.处于石墨层片边缘的碳原子和层面内部结构完整的基础碳原子不同.层面内部的基础碳原子所受的引力是对称的,键能高,反应活性低;处于表面边缘处的碳原子受力不对称,具有不成对电子,活性 收稿日期:2008-01-04 基金项目:上海市教委科研基金项目(06D Z034). 作者简介:上官倩芡(1974-),女,上海师范大学机械与电子工程学院副教授.

碳纤维复合材料结构设计要点

强度与刚度 既然是结构部件,那么设计者首先要考虑的是强度和刚度。部件在外力载荷的作用下,有抵 抗变形与破坏的能力,但是这个能力又是有限度的。 如何4定部件的使用载荷,不会超出部件的能力极限,是通过材料力学计算得出。而部件的 这个能力极限,就是碳纤维复合材料结构设计者需要考虑的问题。 通过合理的搭配纤维和树脂,优化纤维排布,用最少的材料,满足设计需求,体现了复合材 料设计者精湛的技巧。不过决定复合材料强度与刚度的因素,不但与纤维和树脂的种类有关,还与碳纤维的铺层方向以及层与层之间结合搭配有关。 所以,设计者在设计碳纤维复合材料结构部件时,需要考虑三个层级结构的力学性能。 由基体和增强材料复合而成的单层材料,其力学性能决定于组分材料的力学性能、相几何(各 相材料的形状、分布、含量)和界面区的性能。 由单层材料层合而成的层合体,其力学性能决定于单层材料的力学性能和铺层几何(各单层的 厚度、铺设方向、铺层序列) 。 最顶层结构是指通常所说的工程结构或产品结构,其力学性能决定于层合体的力学性能和结 构几何。 稳定性 除了强度与刚度要求,设计者还需考虑复合材料部件的失稳,尤其是对一些细长杆结构,在 受压时,应该能够保证其原有的直线平衡状态。对于一些框架结构部件,如果铺层不均匀, 也会产生翘曲失稳,所以在制造过程中尤其注意。最好采用对称铺层,以防变形不均匀。 一般情况下,在部件没有达到极限载荷之下,不允许产生失稳现象。但是如果对于一些特殊 要求,可以产生失稳现象,那么设计过程中,要考虑失稳过程不会因此影响极限载荷。 铺层结构 铺层结构是碳纤维复合材料结构设计的关键,如何把单层结构的优异性能传递到复合材料结 构部件上,铺层结构起到承上启下的作用。关于复合材料铺层应注意以下几点: 1. 树脂是碳纤维复合材料力学性能的短板,所以尽量避免将载荷直接加到层间或者树脂之间。也就是说,0°、±45°、90°的纤维都要有,否则载荷会将部件从没有纤维排布的方向撕裂。 2. 为了防止层合板边缘开裂,尽量避免重复单一方向的铺层,设计时最多不超过5层。 3. 为了防止最外层铺层的剥离,在部件的主载荷方向,应铺放±45°纤维,而不能铺放0°和90°纤维。另外,避免最外层铺层间断或不完整。 4. 若使用非对称铺层,每层因同方向上热膨胀系数不同会出现翘曲,因此,一般要采用对称 铺层。 5. 当增加补强铺层时,每层阶梯最少要3.8- 6.4mm,附加铺层也应尽量采用对称铺层。

压电纤维复合材料的研究与应用

压电纤维复合材料的研究与应用 xxxx 湖北工程学院湖北孝感432000 摘要:本文概述了压电纤维的制备工艺,总结了压电陶瓷纤维研究已取得的成果,阐明了各种制备方法的优缺点及其改进的办法,并对压电纤维及其复合材料的研究进行了概述以及对应用前景进行了展望。 关键词:压电陶瓷纤维;制备;应用 1引言 压电材料是在外力作用下发生变形时能产生电场,同时在电场作用下也能产生机械变形的材料。这类材料所固有的机一电耦合效应,使得压电材料广泛应用于传感和驱动领域中,但是传统压电陶瓷产品的一些缺点限制了它在实际中的应用。20世80年代,人们开始研究压电陶瓷纤维的制备技术,并将纤维与聚合物基质复合制成压电复合材料。由于添加了聚合物相,所以它既保留了原有压电材料灵敏度高、频响高的优点,又大大改善了压电陶瓷脆性大、柔软性差的缺点,而且纤维材料具有的方向性,更适合于各项异性的应力波检测。 目前,国外正致力于压电纤维复合材料技术研究,关于压电纤维制备的论文颇多,有些技术已得到了广泛的商业应用。例如,美国的研究人员正在积极开展其在飞机、超轻质量太空船和汽车等方面的应用,另外,以其为核心技术的传感器是目前进行工程结构健康监测的最先进方法,对于非均质材料及真实表面尤为适用。与国外的先进水平相比,国内对压电陶瓷纤维的研究还只是处于起步阶段。2压电陶瓷纤维的制备方法 2.1 溶胶-凝胶法 制备陶瓷纤维传统的方法一般是将氧化物原料加热到熔融状态,熔融纺丝成形。然而,许多特种陶瓷材料熔点很高,熔体粘度很低,难以用传统方法制备,而溶胶-凝胶法(sol -gel method)的出现解决了这一难题。溶胶—凝胶工艺的主要特点有:(1)可在较低温度下得到功能陶瓷纤维;(2 )可以制得均匀性好、纯度高

第二章 压电复合材料有限元分析方法 (恢复)

第二章压电复合材料有限元分析方法 2.1 1—3型压电复合材料常用的研究方法 第一、理论研究,包括利用细观力学和仿真软件进行数值分析的方法。人们对1-3型压电复合材料宏观等效特征参数进行研究时,从不同角度出发采用了形式多样的模型和理论,其中夹杂理论和均匀场理论具有代表性。夹杂理论的思想是,从细观力学出发,将1-3形压电复合材料的代表性体积单元(胞体)作为夹杂处理。求解过程中,使用的最著名的两个模型为:Dilute模型和Mori-Tanaka模型。夹杂理论的优点是其解析解能较好地反映材料的真实状况,解精度较高;缺点是其解题和计算过程烦琐,有时方程只能用数值方法求解。均匀场理论的思想是基于均匀场理论和混合定律,同时借助1-3型压电复合材料的细观力学模型导出其宏观等效特征参数。其基本的研究思路是:假设组成复合材料的每一相中力场和电场均匀分布,结合材料的本构方程得到1-3型压电复合材料的等效特征参数。Smith,Auld采用此理论研究了1-3型压电柱复合材料的弹性常数、电场、密度等等效特征参数。Gordon,John采用此理论研究了机电耦合系数、耗损因子、电学品质因子等等效特征参数。Bent, Hagood和Yoshikawa等基于此理论对交叉指形电极压电元件等效特征参数进行了研究。均匀场理论优点在于物理模型简单,物理概念清晰,计算也不复杂,并具有相当的精度和可靠性;不足在于其假设妨碍了两相分界面上的协调性。有限元作为一种广泛应用于解决实际问题的数值分析方法,将其引入压电复合材料研究中具有重要的意义。John,Gordon等用有限元方法分析了1-3型压电柱复合材料中压电柱为方形柱、圆形柱、二棱柱时的力电耦合系数及其波速特性,得到了压电柱在几何界面不同的情况下的等效力电耦合系数及等效波速曲线。 第二、实验研究。Helen,Gordon等对1-3型压电复合材料的宏观等效特征参数进行了理论和实验研究,结果表明两者符合良好;LVBT等运用了1-3型压电复合材料进行了声学方面的控制取得了良好的效果;John,Bent等对压电纤维复合材料的性能进行了深入的研究,结果显示压电纤维复合材料在高电场、大外载荷环境下具有优良的传感和作动性能。参数辨识研究是试验研究中重要的一种方法,基本思路是:分析1-3型压电纤维复合材料的响应特性,从中得到其等效宏观的模态和弹性波的传播特性参数。Guraja,Walter等采用的就是这种方法,他们研究了1-3型压电纤维复合材料薄板、厚板、变截面板的响应特性,得到了其相应的声波传播速度c,频率f,机械品质因素Q等参数的表达式,为1-3型压电纤维复合材料在超声波方面的应用提供了依据。 综合对比以上的研究方法,夹杂理论得出的结果比较接近实际结果,但是计算烦琐,而且对于高体积百分比的复合材料其计算结果跟实际相差较大;均匀场理论计算较为简单,但是模糊了两相材料之间的界面作用;实验研究方法是最接近实际的一种方法,但是由于实验条件、测试技术等一系列因素的制约使其不能广泛应用十实际中。由于交叉指形电极压电复合材料的复杂性,利用上面提到的夹杂理论和均匀场理论的方法,很难得到压电元件整体模型的性能状况。而数值研究有限元法,利用先进的分析软件ANSYS进行压电复合材料性能分析,可以超越目前现有的生产工艺和测试技术水平得到比较准确的分析结果,又可以减小压电元件的设计周期,减少实验制作压电元件的材料浪费和设备损耗。 2.2 有限元分析方法概述 有限元法(又称为有限单元法或有限元素法)是利用计算机进行数值模拟分析的方法。诞生于20世纪50年代初,最初只应用于力学领域中,现在广泛应用于结构、热、流体、电磁、声学等学科的设计分析及优化,有限元计算结果已成为各类工业产品设计和性能分析的

《碳纤维复合材料》阅读练习及答案

阅读文章,回答问题。 碳纤维复合材料 ①2018年11月6日,两年一度的珠海航展上,中俄合作研制的280座远程宽体客机CR929,以1:1的展示样机首次亮相国际航展。在这款最新一代的大型飞机上,复合材料的使用比例有望..超过50%。同样,在去年5月5日首飞的C919大客机上,使用的复合材料占到飞机结构重量的12%。这里的复合材料,主要就是碳纤维复合材料。 ②碳纤维是火箭、卫星、导弹、战斗机和舰船等尖端武器装备必 不可少的战略基础材料。它不存在腐蚀生锈的问题。由于使用碳纤维材料可以大幅降低结构重量,因而可显著提高燃料效率。采用碳纤维与塑料制成的复合材料制造的卫星、火箭等宇宙飞行器,噪音小,质 量小,动力消耗少,可节约大量燃料。 ③碳纤维还是让大型民用飞机、汽车、高速列车等现代交通工具 实现“轻量化”的完美材料。航空应用中对碳纤维的需求正在不断增多,新一代大型民用客机空客A380和波音787使用了约为50%的碳纤维复合材料。这使飞机机体的结构重量减轻了20%,比同类飞机可节省20%的燃油,从而大幅降低了运行成本、减少二氧化碳排放。碳 纤维作为汽车材料,最大的优点是质量轻、强度大。它的重量仅相当 于钢材的20%到30%,硬度却是钢材的10倍以上。所以汽车制造采用碳纤维材料可以使汽车的轻量化取得突破性进展,并带来节省能源的社会效益。 ④随着航空航天、汽车轻量化、风电、轨道交通等行业领域对碳

纤维的需求爆发,碳纤维工业应用开始进入规模化生产。业内预测, 预计到2020年,全球碳纤维需求量将超过16万吨,到2025年,将超过33万吨。面对如此巨大而重要的市场,国内企业既要通过掌握 关键技术来实现碳纤维的稳定批量生产和大规模工程化应用,同时也要瞄准国产新一代碳纤维及其复合材料及早研发和布局,2016年2月15日,中国突破日本管制封锁研制出高性能碳纤维。2018年2月,中国完全自主研发出第一条百吨级T1000碳纤维生产线,这标志着我国已经牢牢站稳全球高端碳纤维市场的一席之地。 101.阅读选文第①段和第③段,回答问题。 (1)选文第①段加点词“有望”能删去?请说出理由。 (2)选文第③段画线句运用了哪些说明方法?有何作用? 102.随着科学技术的发展,请你设想一下生活中将会有哪些碳纤维 复合材料的产品。 【答案】 101.(1)不能删去,“有望”是有希望的意思,说明“在这款最新 一代的大型飞机上,复合材料的使用比例”未来有希望超过“50%”,该词体现了说明文语言的准确性和科学性。 (2)列数字、作比较,具体准确地说明了碳纤维作为汽车材料,最 大的优点是质量轻、强度大。 102.碳纤维复合材料制成的羽毛球拍、登山器械等体育休闲用品; 汽车、地铁等交通工具;以及碳纤维复合材料制成的衣服、家具等日

高性能纤维及复合材料发展趋势及产业战略研究

高性能纤维及复合材料发展趋势与十二五战略研究 在日前举办的碳纤维及先进复合材料技术研讨会上,中国科学院化学研究所首席专家徐坚就高性能纤维及复合材料的发展趋势与“十二五”期间的研究方向做了精彩报告,内容涉及高性能纤维及复合材料的涵盖范围、功能及特点、行业产值、应用趋势、以及十二五期间我国的研究思路和目标做了具体阐述。本刊特将徐坚先生的报告精华整理至下文: 高性能纤维及复合材料主要涵盖具有高强高模特性的聚丙烯腈(PAN)碳纤维、芳纶纤维、超高分子量聚乙烯(UHMWPE)纤维和其他高性能有机、无机纤维,以及由高性能纤维作为增强体所制备的具备轻质高强特性的一类新材料。高性能纤维及复合材料是保障国家安全发展、清洁发展和低碳发展的关键材料,成为解决人类面临的国防、能源、交通运输等领域重大问题的战略性材料之一。高性能纤维及复合材料技术推广应用的覆盖面在一定程度上反映一个国家国防建设、能源利用和环境保护的水平。近年来全球高性能纤维及复合材料产业蓬勃发展,整个行业的总产值已超过3000亿美元并保持每年5-8%的强劲增长,正成为支撑全球经济快速发展的战略中坚力量。 高性能纤维及复合材料具有轻质高强特点,对我国实现低碳经济、拉动消费需求、以及带动传统产业升级具有重要意义。主要包括: 能源领域,风能发电日益受到人们重视,碳/环氧复合材料是制造风机叶片的最佳材料;碳纤维复合材料替代传统钢制电缆芯,具有减重、降耗、易增容等特点,是电力输送技术的发展趋势;石油开采方面,为减轻重量和提高生产效率,碳纤维复合材料成为必需装备。 交通领域,除大型商务客机外,新一代低碳汽车也将大量采用碳纤维及芳纶纤维复合材料,碳纤维复合材料车身同比钢铁减重50%;芳纶/橡胶复合材料可使轮胎变形减少、散热性提高和滚动阻力减轻;碳纤维及芳纶复合材料在高速列车车体和内装饰等部件也成为不可或缺的关键材料。 建筑及工业领域,碳纤维复合材料已大规模应用于桥梁及高层建筑的加固。2010年我国建筑补强领域T700碳纤维布的用量达到250万平。为提高建筑的防火安全性和节能经济性,采用高效阻燃和轻质隔热复合材料建造外墙保温层、隔音吊顶及隔断墙等技术正在国内兴起。 十二五的总体思路:依据《国家中长期科学和技术发展规划纲要(2006-2020)》和《国务院关于加快培育和发展战略性新兴产业的决定》,紧密结合国家安全和社会经济发展的目标,突破高性能纤维及复合材料重大基础科学问题和关键技术问题,实施高性能纤维及复合材料的技术集成与产业示范;坚持统筹兼顾,突出重点;面向工程,加强创新;寓军于民,军民结合;以市场为导向、以企业为主体;以人为本,着力打造创新人才团队的发展原则,建立高性能纤维及复合材料的完整产业链,满足国民经济发展和国家安全建设对高性能纤维及复合材料的迫切需求。

碳纤维增强复合材料概述

碳纤维增强复合材料概述 摘要:本文对碳纤维增强复合材料进行了介绍,详细介绍了其优点和应用。并对碳纤维复合材料存在的问题提出建议。 关键字:碳纤维,复合材料,应用 Abstract: In this paper, the carbon fiber reinforced composite materials are introduced, its advantages and application was introduced in detail. And puts forward Suggestions on the problems existing in the carbon fiber composite materials. Key words: carbon fiber, composite materials, applications 1.碳纤维增强复合材料介绍 复合材料是将两种或两种以上不同品质的材料通过专门的成型工艺和制造方法复合而成的一种高性能新材料,按使用要求可分为结构复合材料和功能复合材料,到目前为止,主要的发展方向是结构复合材料,但现在也正在发展集结构和功能一体化的复合材料。通常将组成复合材料的材料或原材料称之为组分材料(constituent materials),它们可以是金属陶瓷或高聚物材料。对结构复合材料而言,组分材料包括基体和增强体,基体是复合材料中的连续相,其作用是将增强体固结在一起并在增强体之间传递载荷;增强体是复合材料中承载的主体,包括纤维、颗粒、晶须或片状物等的增强体,其中纤维可分为连续纤维、长纤维和短切纤维,按纤维材料又可分为金属纤维、陶瓷纤维和聚合物纤维,而目前用得最多的和最重要的是碳纤维[1]。 碳纤维是一种直径极细的连续细丝材料,直径范围在6~8 μm 内,是近几十年发展起来的一种新型材料。目前用在复合材料中的碳纤维主要有两大类:聚丙烯腈基碳纤维和沥青基碳纤维,分别用聚丙烯腈原丝(称之为前驱体)、沥青原丝通过专门而又复杂的碳化工艺制备而得。通过碳化工艺,使纤维中的氢、

高性能纤维及复合材料

高性能纤维及复合材料 新材料全球交易网 (新材料全球交易网提供)高性能纤维及复合材料属于高分子复合材料,它是由各种高性能纤维作为增强体置于基体材料复合而成。其中高性能纤维是指有高的拉伸强度和压缩强度、耐磨擦、高的耐破坏力、低比重(g/m3) 等优良物性的纤维材料,它是近年来纤维高分子材料领域中发展迅速的一类特种纤维。 高分子复合材料与传统材料相比,具有更高的比强度、耐化学品和耐热冲击性,以及更大的设计灵活性。按照合成的原料不同,高性能纤维主要分为碳纤维、芳纶纤维、特殊玻璃纤维、超高分子聚乙烯纤维等,其中碳纤维、芳纶纤维、超高分子量聚乙烯纤维是当今世界三大高性能纤维。 高性能纤维的发展是一个国家综合实力的体现,是建设现代化强国的重要物资基础。高性能纤维及复合材料是发展国防军工、航空航天、新能源及高科技产业的重要基础原材料,同时在建筑、通信、机械、环保、海洋开发、体育休闲等国民经济领域具有广泛的用途。 中国高性能纤维及复合材料自动铺带机工程化研制取得进展 人工、半自动人工铺放与自动铺放对比(资料图) 先进复合材料因比模量、比强度高,抗疲劳、耐腐蚀、可设计和工艺性好,成为飞机结构重要发展方向之一。轻质、高强、性能优异的高性能纤维及复合材料成为理想的结构用材,并逐渐从小型、简单、次承力结构向大型、复杂、主承力结构过渡。国外军机上复合材料用量普遍占结构重量的25%~50%;在民用领域,波音公司787飞机的复合材料用量达到50%,而A350XWB复合材料用量达到了创纪录的52%。 用于高性能纤维及复合材料结构制造的先进专用工艺装备在国外迅速发展,特别是基于预浸料的复合材料自动铺放设备,包括自动铺带机和铺丝机,已在国外最先进的战机和民机制造中得到广泛应用。这些先进铺放装备具有人工/半自动人

碳纤维及其复合材料的发展和应用(精)

·开发与创新· Development and Applications of Carbon Fiber and Its Composites GAO Bo ,XU Zi-Li (Wuhan Textile University ,Wuhan Hubei 430073,China Abstract:This paper introduces performance and features of carbon fiber,briefly overviews the history,including both foreign and domestic.And analyses the properties and applications of carbon fiber composite material,emphasizes the related performance that carbon fiber adds to the metal matrix composites and points out its research prospects.Key words:carbon fiber ;composite ;metal matrix 0引言 碳纤维是含碳量高于90%的无机高分子纤维,是由有机母体纤维(聚丙烯睛、粘胶丝或沥青等采用高温分解法在1000~3000℃高温的惰性气体下碳化制成的。它是一种力学性能优异的新材料,比重不到钢的1/4,能像铜那样导电,比不锈钢还耐腐蚀,而其复合材料抗拉强度一般都在3500Mpa 以上,是钢的7~9倍,抗拉弹性模量为23000~43000Mpa ,也高于钢。碳纤维按其原料可分为三类:聚丙烯腈基(PAN 碳纤维、石油沥青基碳纤维和人造丝碳纤维三类。其中聚丙烯腈基碳纤维用途最广,需求也最大[1]。 1碳纤维的发展史 1.1国外碳纤维的发展历史 20世纪50年代美国开始研究粘胶基碳纤维,1959 年生产出了粘胶基纤维Thormel-25,这是最早的碳纤维产品。同一年,日本发明了用聚丙烯腈基(PAN 原丝

碳纤维复合材料

碳纤维复合材料 碳纤维增强复合材料(Carbon Fibre-reinforced Polymer, 简称CFRP)是以碳纤维或碳纤维织物为增强体,以树脂、陶瓷、金属、水泥、碳质或橡胶等为基体所形成的复合材料,简称碳纤维复合材料。 碳复合材料的特性主要表现在力学性能、热物理性能和热烧蚀性能三个方面。 (1)密度低(1.7g/cm3左右)在承受高温的结构中,它是最轻的材料;高温的强度好,在2200oC时可保留室温强度;有较高的断裂韧性,抗疲劳性和抗蠕变性;而且拉伸强度和弹性模量高于一般的碳素材料,纤维取向明显影响材料的强度,在受力时其应力-应变曲线呈现"假塑性效应"即在施加载荷初期呈线性关系,后来变成双线性关系,卸载后再加载,曲线仍为线性并可达到原来的载荷水平。 (2)热膨胀系数小,比热容高,能储存大量的热能,导热率低,抗热冲击和热摩擦的性能优异。 (3)耐热烧蚀的性能好,热烧蚀性能是在热流作用下,由于热化学和机械过程中引起的固体材料表面损失的现象,通过表层材料的烧蚀带走大量的热量,可阻止热流入材料内部, C-C材料是一种升华-辐射型材料。 复合原理它以碳纤维或碳纤维织物为增强体,以碳或石墨化的树脂作为基体。 复合以后的这种材料在高温下的强度好,高温形态稳定,升华温度高,烧蚀凹陷性,平行于增强方向具有高强度和高刚性,能抗裂纹传播,可减震,抗辐射。 碳纤维增强尼龙的特色 碳纤维具有质轻、拉伸强度高、耐磨损、耐腐蚀、抗蠕变、导电、传热等特色,与玻璃纤维比较,模量高3?5倍,因而是一种取得高刚性和高强度尼龙资料的优秀增强资料。碳纤维复合资料可分为长(接连)纤维增强和短纤维增强两大类。纤维长度可从300~400m 到几个毫米不等。曩昔10年中,大家在改善不一样品种的碳纤维复合资料加工办法和功能方面投入了许多的研讨。从预浸树脂到模塑法加工,从短纤维掺混塑料注射加工到层压成型,在碳纤维复合资料及制品制造方面积累了许多成功的经历。当前普遍认为,长(接连)纤维有高强、高韧方面的优越性,短切纤维有加工性好的特色。因而,长碳纤维复合资料在加工上完善成型技术、短碳纤维复合资料进一步进步力学功能是碳纤维复合资料开展的方向。 依据碳纤维长度、外表处理方式及用量的不一样,还能够制备归纳功能优秀、导电功能各异的导电资料,如抗静电资料、电磁屏蔽资料、面状发热体资料、电极资料等。碳纤维增

树脂性能对比以及玻璃纤维介绍

树脂性能介绍以及玻璃纤维简介 不饱和聚酯树脂 不饱和聚酯是不饱和二元羧酸(或酸酐)或它们和饱和二元羧酸(或酸酐)组成的混合酸和多元醇缩聚而成的,具有酯键和不饱和双键的线型高分子化合物。通常,聚酯化缩聚反应是在190~220℃进行,直至达到预期的酸值(或粘度)。在聚酯化缩反应结束后,趁热加入一定量的乙烯基单体,配成粘稠的液体,这样的聚合物溶液称之为不饱和聚酯树脂。 物理性质 1、相对密度在1.11~1.20左右,固化时体积收缩率较大 2、耐热性。绝大多数不饱和聚酯树脂的热变形温度都在50~60℃,一些耐热性好的树脂则可达120℃ 3、力学性能。不饱和聚酯树脂具有较高的拉伸、弯曲、压缩等强度 耐化学腐蚀性能。不饱和聚酯树脂耐水、稀酸、稀碱的性能较好, 4、耐有机溶剂的性能差,同时,树脂的耐化学腐蚀性能随其化学结构和几何开关的不同,可以有很大的差异。 5、介电性能。不饱和聚酸树脂的介电性能良好。 化学性质 不饱和聚酯是具有多功能团的线型高分子化合物,在其骨架主链上具有聚酯链键和不饱和双键,而在大分子链两端各带有羧基和羟基。 乙烯基树脂 乙烯基树脂又称为环氧丙烯酸树脂,是60年代发展起来的一类新型树脂,其特点是聚合物中具有端基不饱和双键。 乙烯基树脂具有较好的综合性能:①由于不饱和双键位于聚合物分子链的端部,双键非常活泼,固化时不受空间障碍的影响,可在有机过氧化物引发下,通过相邻分子链间进行交联固化,也可和单体苯乙烯其聚固化;②树脂链中的R基团可以屏蔽酯键,提高酯键的耐化学性能和耐水解稳定性;③乙烯基树脂中,每单位相对分子质量中的酯键比普通不饱和聚酯中少35%~50%左右,这样就提高了该树脂在酸、碱溶液中的水解稳定性; ④树脂链上的仲羟基和玻璃纤维或其它纤维的浸润性和粘结性从而提高复合材料的强 度;⑤环氧树脂主链,它可以赋和乙烯基树脂韧性,分子主链中的醚键可使树脂具有优异的耐酸性。 环氧树脂 环氧树脂是泛指分子中含有两个或两个以上环氧基团的有机高分子化合物,除个别外,它们的相对分子质量都不高。环氧树脂的分子结构是以分子链中含有活泼的环 氧基团为其特征,环氧基团可以位于分子链的末端、中间或成环状结构。由于分子 结构中含有活泼的环氧基团,使它们可和多种类型的固化剂发生交联反应而形成不 溶、不熔的具有三向网状结构的高聚物。 环氧树脂的性能和特性 1、形式多样。各种树脂、固化剂、改性剂体系几乎可以适应各种使用对形式提出的要求,其范围可以从极低的粘度到高熔点固体。 2、固化方便。选用各种不同的固化剂,环氧树脂体系几乎可以在0~180℃温度范围内固化。 3、粘附力强。环氧树脂分子链中固有的极性羟基和醚键的存在,使其对各种物质具有很高的粘附力。环氧树脂固化时的收缩性低,产生的内应力小,这也有助于提高粘附强度。 4、收缩性低。环氧树脂和所用的固化剂的反应是通过直接加成反应或树脂分子中环氧基的

纤维复合材料的热膨胀系数(1)

纤维复合材料的热膨胀系数(1) 复合材料学报 ACTA MATERIAE COMPOSITAE SINICA 文章编号:1000-3851(2002) 03-0124-03 第19卷第3期 Vol. 19 No. 3 6月 2002年 2002 J une 纤维复合材料的热膨胀系数 王培吉, 范素华 (山东建材学院物理系, 济南250022) 摘要: 提出了一种利用压电光声技术测量材料热膨胀系数的实验方法, 并测试了单向复合材料C/C 、C/Al 的横向、纵向的热膨胀系数。根据已有的理论计算方法与实验结果对该方法的测试结果进行验证, 证明了该检测方法的可靠性, 进而又测量了C /C 、C /Al 材料在任一方向上的热膨胀系数。这种方法克服了理论计算过程复杂以及常规手段无法测量任一方向上热膨胀系数的缺陷。关键词: 热膨胀系数; 压电光声技术; 复合材料中图分类号: TB332; O482. 2 文献标识码:A THERMAL EXPANS ION COEFFICIENT OF FIBER COMPOS ITES WANG Pei-ji, FA N Su-hua (Dept . of Physics , Shandong Institute of Building Materia l , J ina n 250022, China ) Abstract: The thermal expansion coefficients of fiber composites are studied in this pa per. A method of mea suring the therma l expansion coefficient by piezoelectric photoa coustic technique was proposed . An intensity-modulated Ar la ser beam wa s used as the incident light. The beam was focused on an a bout 1μm dia meter spot and illumina ted collinearly the sa mple surface . Using the technique , piezo-electric photoacoustic signals a s a function of different frequencies were experimentally measured. The therma l expansion coefficients can be obtained by fitting the experimenta l data . On the other hand , the therma l expansion coefficients of one-wa y composite C/C a nd C/A l in the tra nsverse, longitudinal directions were mea sured . The mea sured results a re reliable by compa ring with other ca lcula tion methods a nd experimental results. Thermal expa nsion coefficients in a

高性能纤维包括有机和无机高性能纤维两大类

高性能纤维 【摘要】本文主要介绍了几种高性能纤维的特性及应用与发展,认为高性能纤维的开发与应用前景十分广阔,加速高性能纤维工业化进程具有重大意义,对整个社会将带来很大的经济效益。 关键词:高性能纤维,分类,应用 高性能纤维 (High-Performance Fibers)是从20世纪60年代开始研发并推广的纤维材料,它的出现使传统纺织工业产生了巨大变革。所谓高性能纤维是指有高的拉伸强度和压缩强度、耐磨擦、高的耐破坏力、低比重(g/m3)等优良物性的纤维材料,它是近年来纤维高分子材料领域中发展迅速的一类特种纤维。高性能纤维可用于防弹服、蹦床布等特种织物的加工及纤维复合材料中的加固材料,其发展涉及许多不同的领域。 (一)高性能纤维的分类 高性能纤维包括有机和无机高性能纤维两大类。目前高性能纤维的代表品种主要有:有机纤维的对位芳纶(聚对苯二甲酰对苯二胺,也叫芳纶1414)、超高分子量聚乙烯、聚苯并双嗫唑纤维(PBO);无机的碳纤维和高性能玻璃纤维等。本文主要分析和比较了玻璃纤维、碳纤维、超高强聚乙烯纤维、芳香族聚酰胺纤维、聚对苯撑苯并双恶唑(PBO)纤维、M5纤维等高性能纤维的特性以及它们的应用状况。 一、玻璃纤维 玻璃纤维是复合材料中最主要的增强材料,它由氧化硅与氯化铝等金属氧化物组成的无机盐类混合物经熔融而成,冷却固化可制得多种玻璃产品,熔融的玻璃经过喷丝小孔,拉制成玻璃长纤维,起始于30年代,用玻璃纤维增强塑料,当时称为玻璃钢的复合材料,最早出现于40年代,并在航空工业上得到应用。经过近七十年的发展,现在的玻璃纤维工业已经具有众多类型和牌号的玻璃纤维产品。 玻璃纤维的抗张强度较高,其直径越细强度也就越高,但很细的玻璃纤维纺丝难度极大,随之生产成本上升,所以目前高强度的玻璃纤维产量还比较低。今年来玻璃纤维增强复合材料得到很大的发展,世界总产量达到200多万吨,我国玻璃纤维复合材料的生产能力已达到20万吨左右。 一般玻璃纤维可用于以下三个只要领域,即绝缘、过滤和复合增强。增强材料目前已用于航天航空和产业用品,以取代笨重的金属部件。玻璃纤维也可用于船艇,浴缸和淋浴装置,风轮机刀片,加固管道,汽车和器件组件,印刷电路板,防虫纱门,产业用织物(包括房子覆盖物和屋顶盖板),密封垫片和贮油槽,过滤及绝缘器材。由于玻璃纤维强力高、耐热性好、耐化学腐蚀,而价格相对便宜,所以作为纤维增强材料将会得到更大的发展。 二、碳纤维 碳纤维是以聚丙烯腈纤维、粘胶纤维或沥青纤维为原丝,通过加热除去碳以外的其他一切元素制得的一种高强度、高模量纤维,它有很高的化学稳定性和耐高温性能,是高性能增强复合材料中的优良结构材料。 根据炭化温度的不同,碳纤维分为以下三种类型: 1.普通型(A型)碳纤维普通型(A型)碳纤维是指在900~1200。C下炭化得到的碳纤维。这种碳纤维强度和弹性模量都较低,一般强度小于107.7cN/tex,模量小于13462cN/tex。 2.高强度型(Ⅱ型或C型)碳纤维高强度型(1I型或C型)碳纤维是指在13001700。C下炭化得到的碳纤维。这种纤维强度很高,可达138.4~166.1cN/tex,模量约为13842~16610cN/tex。 3.高模量型(I型或B型)碳纤维高模量型(I型或B型)碳纤维又称石墨纤维,它是指在炭化后再经2500。C以上高温石墨化处理得到的碳纤维。这类碳纤维具有较高的强度,约为

相关文档
相关文档 最新文档