文档库 最新最全的文档下载
当前位置:文档库 › 变电所主变压器台数和容量及主接线措施的选择

变电所主变压器台数和容量及主接线措施的选择

变电所主变压器台数和容量及主接线措施的选择
变电所主变压器台数和容量及主接线措施的选择

三、变电所主变压器及主接线方案的选择

3.1变电所主变压器台数的选择

变压器台数应根据负荷特点和经济运行进行选择。当符合下列条件之一时,宜装设两台及以上变压器:有大量一级或二级负荷;季节性负荷变化较大;集中负荷较大。结合本厂的情况,考虑到二级重要负荷的供电安全可靠,故选择两台主变压器。

3.2变电所主变压器容量选择。

每台变压器的容量

N T S ?应同时满足以下两个条件:

1) 任一台变压器单独运行时,宜满足:30(0.6~0.7)N T S S ?=?

2) 任一台变压器单独运行时,应满足:

30(111)

N T S S ?+≥,即满足全部一、二级负

荷需求。 代入数据可得:

N T S ?=<0.6~0.7)×1169.03=<701.42~818.32)kV A ?。

又考虑到本厂的气象资料<年平均气温为20C ),所选变压器的实际容量:

(10.08)920N T NT S S KVA

?=-?=实也满足使用要求,同时又考虑到未来5~10年的

负荷发展,初步取

N T S ?=1000kV A ?。考虑到安全性和可靠性的问题,确定变压

器为SC3系列箱型干式变压器。型号:SC3-1000/10 ,其主要技术指标如下表所示:

<附:参考尺寸

电气主接线的概念

发电厂、变电所的一次接线是由直接用来生产、汇聚、变换、传输和分配电能的一次设备的一次设备构成的,通常又称为电气主接线。主接线代表了发电厂<变电所)电气部分的主体结构,是电力系统网络结构的重要组成部分。它对电气设备选择、配电装置布置、继电保护与自动装置的配置起着决定性的作用,也将直接影响系统运行的可靠性、灵活性、经济性。因此,主接线必须综合考虑各方面因素,经技术经济比较后方可确定出正确、合理的设计方案。3.4电气主接线设计需要考虑的问题

在进行变电站电气接线设计时,需要重点考虑以下一些问题:<1)需要考虑变电所在电力系统中的位置,变电所在电力系统中的地位和作用是决定电气主接线的主要因素。变电所是枢纽变电所、地区变电所、终端变电所、企业变电所、还是分支变电所,由于它们在电力系统中的地位和作用不同,对其电气主接线的可靠性、灵活性和经济性的要求了也不同。<2)要考虑近远期的发展规模,变电所电气主接线的设计,应根据5到10年电力发展规划进行。根据负荷的大小、分布、增长速度、根据地区网络情况和潮流分布,分析各种可能的运行方式,来确定电气主接线的形式以及连接电源灵数和出线回数。<3)考虑负荷的重要性分级和出线回数多少对电气主接线的影响,对一级负荷,必需有两个独立电源供电,且当一个电源失去后,应保证全部一级负荷不间断供电,且当一个电源失去后,应保证大部分二级负荷供电。<4)考虑主变台数对电气主接线的影响,变电所主变的台数对电气主接线的选择将产生直接的影响,传输容量不同,对主接线的可靠性,灵敏性的要求也不同。<5)考虑备用容量的有无和大小对电气主接线的影响,发、送、变的备用容量是为了保证可靠的供电,适应负荷突增、设备检修、故障停运情况下的应急要求。电气主接线的设计要根据备用容量的有无有所不同,例如,当断路器或母线检修时,是否允许线路、变压器停运;当线路故障时允许切除线路、变压器的数量等,都直接影响着电气主接线的形式。

3.5主接线方案的选择

3.5.1 电气主接线设计的基本要求

电气主接线应满足以下基本要求:

a具有一定的灵活性

主接线在力求简单、明了、操作方便的同时,也要求有一定的灵活性,以适应系统不同运行方式的要求。

1> 调度时,应可以灵活的投入和切除发电机、变压器和线路,调配电源和负荷,满足系统在事故运行方式、检修运行方式以及特殊运行方式下的系统调度要求。

2> 检修时,可以方便的停运断路器、母线及其继电保护设备,进行安全检修而不致影响电力网的运行和对用户的用电。

3> 扩建时,可以容易的从初期接线过渡到最终接线。在不影响连续供电或停电时间最短的情况下,投入新装机组、变压器或线路而不互相干扰,并且对一次和二次部分的改建工作量最小。

b操作应尽可能简单、方便

主接线应简单清晰、操作方便,尽可能使操作步骤简单,便于运行人员掌握。复杂的接线不仅不便于操作,还往往会造成运行人员的误操作而发生事故。但接线过于简单,可能又不能满足运行方式的需要,而且也会给运行造成不便或造成不必要的停电。

c可靠性

供电可靠性是电力生产和分配的首要任务,保证供电可靠性是电气主接线最基本的要求。分析和研究主接线可靠性通常应从以下几方面综合考虑:

<1>变电站在电力系统中的地位和作用

变电站都是电力系统的重要组成部分,其可靠性应与系统相适应。例如:对一个中小型变电站的主接线就毋须要求过高的可靠性,也就没有必要采取太复杂的接线形式;而对于一个大型发电厂或超高压变电站,由于它们在电力系统中的地位很重要,供电容量大、范围广,发生事故可能使系统稳定运行遭破坏,甚至瓦解,造成巨大损失。因此,其主接线应采取供电可靠性高的接线形式。

<2>变电站的运行方式及负荷性质

电能的特点是:发电、变电、输电和用电同时完成。而负荷的性质按其重要性又有Ⅰ类、Ⅱ类和Ⅲ类之分。因此,根据发电厂的运行方式和负荷的要求,进行具体分析,以满足必要的供电可靠性。

<3)断路器检修时是否会影响对用户的供电。

<4)设备和线路故障或检修时,停电线路的多少和停电时间的长短,以及能否保证对重要用户的供电。

d 经济

主接线在保证安全可靠、操作灵活方便的基础上,还应使投资和年运行费用小,占地面积最少,使其尽地发挥经济效益。

一般应当从以下几方面考虑:

1>投资小:主接线应简单清晰,以节约开关电器数量,降低投资;要适当采用限制断路电流的措施,以便选用价廉的电器;二次控制与保护方式不应过于复杂,以利于运行和节约二次设备的投资。

2>占地面积少:主接线要为配电装置布置创造节约土地的条件,尽可能使占地面积减少。

3>电能损耗少:在发电厂或变电站中,正常运行时,电能损耗主要来自变压器,应经济合理地选择变压器的型式、容量和台数,尽量避免两次变压而增加电能损耗。

e 扩建的可能性

由于近年来,我国的经济建设高速发展,各地区的电力负荷的需求近年来增加的很快,尤其是江苏省沿江地区,电力需求增长很快。而本课题要设计的变电站正好处于该地区,因此,在选择主接线时,要充分考虑到具有扩建的可能性,并且预留出合适的扩建空间。

3.5.2电气主接线的基本形式

主接线的总体分类: a 单母线接线

母线起汇集和分配电能的作用。每一条进出线回路都组成一个接线单元,每个接线单元都与母线相连,可分为: 1>接线方法及工作要求,见图1。 ⑴主母线的作用 ⑵开关电器的配置

线路有反馈电可能或为架空配电线应装设QS ⑶操作程序“先通后断”原则 合:QF QS QS L B →→;

分:B L QS QS QF →→。

2>特点

⑴优点:简单、经济。

①接线简单<设备少)、清晰、明了;

②布置、安装简单,配电装置建造费用低;

③断路器与隔离开关间易实现可靠的防误闭锁,操作安全、方便,母线故障的几率低;

④易扩建和采用成套式配电装置。 ⑵缺点:不够灵活可靠。

①主母线、母隔故障或检修,全厂停电; ②任一回路断路器检修,该回路停电。

图1单母线

b 双母线接线 1、不分段的双母线

1)接线方法及运行方式见图2。 2>特点:

L4

⑴可轮流检修母线而不影响正常供电

⑵检修任一母线侧隔离开关时,只影响该回路供电

⑶工作母线发生故障后,所有回路短时停电并能迅速恢复供电

⑷可利用母联断路器代替引出线断路器工作

⑸便于扩建

⑹由于双母线接线的设备较多,配电装置复杂,运行中需要用隔离开关切换电路,容易引起误操作;同时投资和占地面积也较大。

6~10kV配电装置出线回路数目为6回及以上时,可采用单母线分段接线。而双母线接线一般用于引出线和电源较多,输送和穿越功率较大,要求可靠性和灵活性较高的场合。110kV终端变电站的10 kV部分一般采用单母线分段,互

为备用。

由课题所给条件进行综合分析:

对图1和图1所示的方案Ⅰ、Ⅱ综合比较,见表1

表1主接线方案比较

经过综合比较方案Ⅰ在经济性上比方案Ⅱ好,且调度和灵活性也可以保证供电的可靠性。所以选用方案Ⅰ。

七、变电所二次回路方案选择及继电保护的整定

7.1二次回路方案选择

7.1.1二次回路电源选择

二次回路操作电源有直流电源,交流电源之分。

蓄电池组供电的直流操作电源带有腐蚀性,并且有爆炸危险;由整流装置供电的直流操作电源安全性高,但是经济性差。

考虑到交流操作电源可使二次回路大大简化,投资大大减少,且工作可靠,维护方便。这里采用交流操作电源。

7.1.2高压断路器的控制和信号回路

高压断路器的控制回路取决于操作机构的形式和操作电源的类别。结合上面设备的选择和电源选择,采用弹簧操作机构的断路器控制和信号回路。

7.1.3电测量仪表与绝缘监视装置

这里根据GBJ63-1990的规范要求选用合适的电测量仪表并配用相应绝缘监视装置。

a)10KV电源进线上:电能计量柜装设有功电能表和无功电能表;为了解负荷

电流,装设电流表一只。

b)变电所每段母线上:装设电压表测量电压并装设绝缘检测装置。

c)电力变压器高压侧:装设电流表和有功电能表各一只。

d)380V的电源进线和变压器低压侧:各装一只电流表。

e)低压动力线路:装设电流表一只。

7.1.4电测量仪表与绝缘监视装置

在二次回路中安装自动重合闸装置

7.2继电保护的整定

继电保护要求具有选择性,速动性,可靠性及灵敏性。

由于本厂的高压线路不很长,容量不很大,因此继电保护装置比较简单。对线路的相间短路保护,主要采用带时限的过电流保护和瞬时动作的电流速断保护;对线路的单相接地保护采用绝缘监视装置,装设在变电所高压母线上,动作于信号。

继电保护装置的接线方式采用两相两继电器式接线;继电保护装置的操作方式采用交流操作电源供电中的“去分流跳闸”操作方式<接线简单,灵敏可靠);带时限过电流保护采用反时限过电流保护装置。型号都采用GL-25/10 。其优点是:继电器数量大为减少,而且可同时实现电流速断保护,可采用交流操作,运行简单经济,投资大大降低。

此次设计对变压器装设过电流保护、速断保护装置;在低压侧采用相关断路器实现三段保护。

7.2.1变压器继电保护

变电所内装有两台10/0.4kV1000kV A

?的变压器。低压母线侧三相短路电

流为

(3)28.213

k

I kA

=,高压侧继电保护用电流互感器的变比为200/5A,继电器

采用GL-25/10型,接成两相两继电器方式。下面整定该继电器的动作电流,动

作时限和速断电流倍数。

a>过电流保护动作电流的整定:

1.3,0.8,rel re K K ==1w K =,200/540i K ==

max 1224100010)230.95L N T I I kV A kV A ??=?=??= 故其动作电流:

1.31

230.959.380.840op I A A

?=

?=?

动作电流整定为9A 。

b>过电流保护动作时限的整定

由于此变电所为终端变电所,因此其过电流保护的10倍动作电流的动作时限整定为0.5s 。

c>电流速断保护速断电流倍数整定

1.5,rel K =max 28.2130.40/101128.5k I kA KV kV A ?=?=,故其速断电流为:

1.51

1128.542.3240qb I A A ?=

?=

因此速断电流倍数整定为:

42.32

4.79qb n =

=。

变压器容量计算

变压器: 变压器(Transformer)是利用电磁感应的原理来改变交流电压的装置,主要构件是初级线圈、次级线圈和铁芯(磁芯)。主要功能有:电压变换、电流变换、阻抗变换、隔离、稳压(磁饱和变压器)等。 变压器按用途可以分为:配电变压器、电力变压器、全密封变压器、组合式变压器、干式变压器、油浸式变压器、单相变压器、电炉变压器、整流变压器、电抗器、抗干扰变压器、防雷变压器、箱式变电器试验变压器、转角变压器、大电流变压器、励磁变压器等。 容量: 常指一个物体的容积的大小,容量的公制单位是升。容量也指物体或者空间所能够容纳的单位物体的数量。 变压器额定容量: 变压器额定容量是指主分接下视在功率的惯用值。在变压器铭牌上规定的容量就是额定容量,它是指分接开关位于主分接,是额定满载电压、额定电流与相应的相系数的乘积。对三相变压器而言,额定总容量容量等于=3根号额定线电压×线电流,额定容量一般以kVA 或MVA表示。额定容量是在规定的整个正常使用寿命期间,如30年,所能连续输出最大容量。而实际输出容量为有负载时的电压、额定电流与相应系数的乘积。 概念: 额定容量是指主分接下视在功率的惯用值。在变压器铭牌上规定

的容量就是额定容量,它是指分接开关位于主分接,是额定空载电压、额定电流与相应的相系数的乘积。对三相变压器而言,额定容量等于=根号3×额定相电压×相电流,额定容量一般以kVA或MVA表示。 计算: 额定容量是在规定的整个正常使用寿命期间,如30年,所能连续输出最大容量。而实际输出容量为有负载时的电压(感性负载时,负载时电压小于额定空载电压)、额定电流与相应系数的乘积。

变电站电气主接线设计及主变压器的选择

变电站电气主接线设计及主变压器的选择 为了保证变电站的稳定运行,就需要对相应设备进行更正改革。目前,计算机智能化技术对电力工作的影响较大,大部分电压变更以智能操作为主,这种自动化的电力变更技术在最大程度上降低了电力工作的人工成本。因此,为了保证更高效的完成电力运输工作,相关技术人员就需要以可靠性、适应性、可操控性等为主要目标,以智能系统为辅助工具,设计出适合现阶段电力发展的主接线。 标签:变电站;主接线设计;主变压器选择 引言 目前,电力系统已经成为生产生活中的重要支撑,其中电气主接线是以电源和出线为主体,是构成电力系统的重要环节,由各种电力设备和连接线组成。因此,重视电力系统电气主接线基本要求和关键因素,才能够使电力系统更好地为生产生活服务,才能让变电站的电力系统发挥更大的作用。电气主接线与电力系统、电站规模、枢纽布置、地形条件、动能参数以及电站运行方式等因素密切相关,而且对变电站电气设备布置、选择、继电保护和控制方式有较大影响。变电站电气主接线的合理设计与否,关系变电站的长期安全、可靠、经济运行。继电保护与控制方式有密切联系,是变电站供电设计的重要环节之一。本文以中小型变电站电气主接线设计为例,根据变电站电气主接线的类型、基本要求以及实际情况,对中小型变电站中电气主接线进行方案设计选择,最后从设计的经济方面和技术方面提出中小型变电站中不同电压等级的电气主接线设计方案。 1变电站电气一次主接线的设计步骤 1)明确主接线设计要求以及详细情况。在对220kV变电站进行一次主接线的设计过程中,最开始要做的就是熟悉了解变电站的具体情况,随后根据变电站电气一次主接线的实际需求入手,秉承“灵活、可靠、经济”的原则,结合实地考察的资料来开展一次主接线设计,制定出优良的主接线方案。2)方案的筛选与确定。在设计过程中,需要结合变电站的实际情况来筛选出最科学、最合适的方案。这是因为对数据资料进行分析后,会在设计过程中呈现不同的方案,在这些方案中往往会存在些许不足,有的还会与变电站的实际运行不相符,所以要进行方案的筛选与确定。3)高压电器设备的选择。针对电气一次主接线的设计方案进行电压、电流的分析,使其能充分满足系统运行的需求,同时将对变压器的损坏程度降到最低。对220kV变电站来讲,其运行需要连接很多的电器设备,一次主接线设计方案的目的是保证电器设备的稳定运行,要在方案确定后,根据设计方案来选择合适的高压电器设备。不论是变电站一次主接线设计,还是高压电器设备的选择,都需要充分考虑变电站的实际情况,三者之间要相互配合。 2设计主接线的合理方式 2.1110千伏的主接线

如何选择变压器:容量计算方法

电力变压器是供电系统中的关键设备,其主要功能是升压或降压以利于电能的合理输送、分配和使用,对变电所主接线的形式及其可靠与经济有着重要影响。所以,正确合理地选择变压器的类型、台数和容量,是主接线设计中一个主要问题。 如何选择变压器? 选用配电变压器时,如果把容量选择过大,就会形成“大马拉小车”的现象。不仅增加了设备投资,而且还会使变压器长期处于空载状态,使无功损失增加。 如果变压器容量选择过小,将会使变压器长期处与过负荷状态。易烧毁变压器。依据“小容量,密布点”的原则,配电变压器应尽量位于负荷中心,供电半径不超过0.5千米。 配电变压器的负载率在0.5~0.6之间效率最高,此时变压器的容量称为经济容量。如果负载比较稳定,连续生产的情况可按经济容量选择变压器容量。 对于仅向排灌等动力负载供电的专用变压器,一般可按异步电动机铭牌功率的1.2倍选用变压器的容量。 一般电动机的启动电流是额定电流的4~7倍,变压器应能承受住这种冲击,直接启动的电动机中最大的一台的容量,一般不应超过变压器容量的30%左右。 应当指出的是:排灌专用变压器一般不应接入其他负荷,以便在非排灌期及时停运,减少电能损失。 对于供电照明、农副业产品加工等综合用电变压器容量的选择,要考虑用电设备的同时功率,可按实际可能出现的最大负荷的1.25倍选用变压器的容量。 根据农村电网用户分散、负荷密度小、负荷季节性和间隙性强等特点,可采用调容量变压器。调容量变压器是一种可以根据负荷大小进行无负荷调整容量的变压器,它适宜于负荷季节性变化明显的地点使用。 对于变电所或用电负荷较大的工矿企业,一般采用母子变压器供电方式,其中一台(母变压器)按最大负荷配置,另一台(子变压器)按低负荷状态选择,就可以大大提高配电变压器利用率,降低配电变压器的空载损耗。 针对农村中某些配变一年中除了少量高峰用电负荷外,长时间处于低负荷运行状态实际情况,对有条件的用户,也可采用母子变或变压器并列运行的供电方式。在负荷变化较大时,根据电能损耗最低的原则,投入不同容量的变压器。 变压器的容量是个功率单位(视在功率),用AV(伏安)或KVA(千伏安)表示。 它是交流电压和交流电流有效值的乘积,计算公式S=UI。变压器额定容量的大小会在其的铭牌上标明。

主变压器的选择

变电站的主变压器选择 一、环境条件 环境包括温、湿度,海拔等大环境,也包括变压器所接入点的电网环境。 1、正常使用环境 DL/T5222-2005规定,电器正常使用的环境条件为:周围空气温度不高于40℃,海拔不超过1000m。 GB1094.1-2013进一步规定变压器冷却设备入口处的空气温度:任何时候不超过40℃(水冷却变压器为20℃),最热月平均不超过30℃,年平均不超过20℃,户外变压器不低于-25℃,户内变压器不低于-5℃。 2、环境对负荷的影响 当变压器工作处空气温度高于40℃,但不高于60℃时,允许降低负荷长期使用,但空气温度每降低1K,减少额定电流负荷1.8%;空气温度每降低1K,增加额定负荷的0.5%,但最大过负荷不超过额定电流负荷的20%。 3、环境对温升的影响 GB1094.1-2013规定绝缘系统温度为105℃的固体绝缘,且绝缘液体为矿物油或燃点不大于300℃的合成液体(冷却方式第一个字母为O)的变压器的温升限值见表1: 表1变压器的温升限值 部位温升限值(K) 顶层绝缘液体60 绕组平均(用电阻法测量): ——ON或OF冷却方式——OD冷却方式65 70 绕组热点78 上述限值对牛皮纸和改性纸均适用。 特殊运行条件下推荐的温升限值的修正值见表2: 表2温升限值的修正值 环境温度(℃) 温升限值修正值(K)年平均月平均最高 152535+5 2030400 253545-5 304050-10 354555-15 此表中温升限值为相对应于表1的值,可用插值法求得。 海拔超过1000米时,对于自冷式变压器(冷却方式后两位字母为AN)每增加400米,温升限值减少1K,对于风冷式变压器(冷却方式后两位字母为AF),每增加250米,温升限值减少1K。 海拔高度低于1000米时,可做逆修正。 4、特殊使用条件 根据DL/T5222,下述环境条件为特殊使用条件,设计时应采取防护措施,否则应与制造厂协商。 1)有害的烟或蒸汽,灰尘过多或带有腐蚀性,易爆的灰尘或气体的混合物、蒸汽、盐雾、过潮或滴水等;

变压器的选择

第三章变压器的选择 3.1 主变压器台数的确定 变压器设计规范中一、二级负荷的变电所中宜装设两台主变压器,当技术经济比较合理时,可装设两台以上的主变压器,如变电所中可由中、低压侧电力网取得足够容量的备用电源时,可装设一台主变压器。装有两台及两台以上主变压器的变电所,当断开一台时,其余变压器的容量不应小于60%的全部负荷并应保证用户的一、二级负荷。已知系统情况为本站经2回110kv线路与系统相连,分别用于35kv和10kv向本地用户供电。在该待设计变电所供电的负荷中,同时存在有一、二级负荷。故在本设计中选择两台主变压器。 3.2 主变压器型号和容量的确定: 1.主变容量一般按变电所建成后5~10年的规划负荷来进行选择,并适当考虑远期10~20年的负荷发展。对于城郊变电所,主变压器容量应与城市规划相结合。 2.根据变电所所带负荷的性质和电网结构来确定主变的容量。对于有重要负荷的变电所,应考虑当一台主变压器停运时,其余主变压器的容量一般应满足60%。考虑变压器有1.3倍事故过负荷能力,则0.6*1.3=78%,即退出一台时,可以满足78%的最大负荷。本站主要负荷占60%,在短路时(2小时)带全部主要负荷和一半左右Ⅰ类负荷。在两小时内进行调度,使主要负荷减至正常水平。 主变压器的容量为: S n=0.6P max/ cos(2-1) =0.6×(10+3.6)/0.85 =9.6MV A =9600KV A 3.相数选择 变压器有单相变压器组和三相变压器组。在330kv及以下的发电厂和变电站中,一般选择三相变压器。单相变压器组由三个单相的变压器组成,造价高、占地多、运行费用高。只有受变压器的制造和运输条件的限制时,才考虑采用单相变压器组,因此在本次设计中采用三相变压器组。 4.绕组数选择:在具有三种电压等级的变电所中,如果通过主变各绕组的功 率达到该 变压器容量的15%以上,或在低压侧虽没有负荷,但是在变电所内需要装无功补偿设备时,主变压器宜选用三绕组变压器。

变压器容量的选择与计算

变压器容量的选择与计算 电力变压器是供电系统中的关键设备,其主要功能是升压或降压以利于电能的合理输送、分配和使用,对变电所主接线的形式及其可靠与经济有着重要影响。所以,正确合理地选择变压器的类型、台数和容量,是主接线设计中一个主要问题。 一、台数选择 变压器的台数一般根据负荷等级、用电容量和经济运行等条件综合考虑确定。当符合下列条件之一时,宜装设两台及以上变压器: 1.有大量一级或二级负荷在变压器出现故障或检修时,多台变压器可保证一、二级负荷的供电可靠性。当仅有少量二级负荷时,也可装设一台变压器,但变电所低压侧必须有足够容量的联络电源作为备用。 2.季节性负荷变化较大根据实际负荷的大小,相应投入变压器的台数,可做到经济运行、节约电能。 3.集中负荷容量较大虽为三级负荷,但一台变压器供电容量不够,这时也应装设两台及以上变压器。 当备用电源容量受到限制时,宜将重要负荷集中并且与非重要负荷分别由不同的变压器供电,以方便备用电源的切换。 二、容量选择 变压器容量的选择,要根据它所带设备的计算负荷,还有所带负荷的种类和特点来确定。首先要准确求计算负荷,计算负荷是供电设备计算的基本依据。确定计算负荷目前最常用的一种方法是需要系数法,按需要系数法确定三相用电设备组计算负荷的基本公式为:

有功计算负荷(kw ) c m d e P P K P == 无功计算负荷(kvar ) tan c c Q P ?= 视在计算负荷(kvA ) cos c c P S ?= 计算电流(A ) c I = 式中 N U ——用电设备所在电网的额定电压(kv ); d K ——需要系数; Pe ——设备额定功率; K Σq ——无功功率同期系数; K Σp ——有功功率同期系数; tan φ设备功率因数角的正切值。 例如:某380V 线路上,接有水泵电动机5台,共200kW ,另有通风机5台共55kW ,确定线路上总的计算负荷的步骤为 (1)水泵电动机组需要系数d K =0.7~0.8(取d K =0.8),cos 0.8?=,tan 0.75?=,因此 (2)通风机组需要系数d K =0.7~0.8(取d K =0.8),cos 0.8?=,tan 0.75?=,因此 考虑各组用电设备的同时系数,取有功负荷的为0.95P K =∑,无功负荷的为 0.97q K =∑,总计算负荷为

怎么计算变压器的容量

怎么计算变压器的容量, 变压器是用来变换交流电压、电流而传输交流电能的一种静止的电器设备,电力变压器是发电厂和变电所的主要设备之一。变压器的作用是多方面的不仅能升高电压把电能送到用电地区,还能把电压降低为各级使用电压,以满足用电的需要。我们都知道变压器在不同的环境下,它的用途也有所不同。今天就来给大家来讲讲关于变压器容量的计算方式,看看是怎样计算的。 1.常规方法:根据《电力工程设计手册》,变压器容量应根据计算负荷选择,对平稳负荷 供电的单台变压器,负荷率一般取85%左右。即:β=S/Se 式中:S———计算负荷容量(kV A);Se———变压器容量(kV A);β———负荷率(通常取80%~90%)。 2.计算负载的每相最大功率:将A相、B相、C相每相负载功率独立相加,如A相负载总功率10KW,B相负载总功率9KW,C相负载总功率11KW,取最大值11KW。(注:单相每台设备的功率按照铭牌上面的最大值计算,三相设备功率除以3,等于这台设备的每相功率。)例如:C相负载总功率 = (电脑300W X 10台)+(空调2KW X 4台)= 11KW 3..计算三相总功率:11KW X 3相 = 33KW(变压器三相总功率) 三相总功率 / 0.8,这是最重要的步骤,目前市场上销售的变压器90%以上功率因素只有0.8,所以需要除以0.8的功率因素。 33KW / 0.8 = 41.25KW(变压器总功率) 41.25KW / 0.85 = 48.529KW(需要购买的变压器功率) ,那么在购买时选择50KV A的变压器就可以了。 注意问题:首先变压器的额定容量,应该是变压器在规定的使用条件下,能够保证变压器正常运行的最大载荷视在功率;然后这个视在功率就是变压器的输出功率,也是变压器能带最大负载的视在功率; 并且变压器额定运行时,变压器的输出视在功率等于额定容量;变压器额定运行时,变压器的输入视在功率大于额定容量。 在变压器铭牌上规定的容量就是额定容量,它是指分接开关位于主分接,是额定空载电压、额定电流与相应的相系数的乘积。对三相变压器而言,额定容量等于=√3×额定空载相电压×额定相电流,额定容量一般以kV A或MV A表示。额定容量是在规定的整个正常使用寿命期间,如30年,所能连续输出最大容量。而实际输出容量为有负载时的电压(感性负载时,负载时电压小于额定空载电压)、额定电流与相应系数的乘积。 变压器容量的选择对综合投资效益有很大影响。变压器容量选得过大,出现"大马拉小车"现象,不仅一次性投资大,空载损耗也大。变压器容量选得过小,变压器负载损耗增大,经济上不合理,技术上也不可行。 变压器的最佳负载率(即效率最高时的负载率),不是在额定状态下,而是在40%~70%之间,负载率过高,损耗明显增大;另一方面,由于变压器容量裕度小,负荷稍有增加,便需更换大容量箱变,频繁增容势必会增加投资,影响供电。 选择变压器容量,要以现有的负荷为依据,适当考虑负荷发展,选择变压器容量可以按照5年电力发展计划确定。

变电所主变压器台数和容量及主接线方案的选择资料讲解

三、变电所主变压器及主接线方案的选择 3.1变电所主变压器台数的选择 变压器台数应根据负荷特点和经济运行进行选择。当符合下列条件之一时, 宜装设两台及以上变压器:有大量一级或二级负荷;季节性负荷变化较大;集中负荷较大。结合本厂的情况,考虑到二级重要负荷的供电安全可靠,故选择两台主变压器。 3.2变电所主变压器容量选择。 每台变压器的容量N T S ?应同时满足以下两个条件: 1) 任一台变压器单独运行时,宜满足:30(0.6~0.7)N T S S ?=? 2) 任一台变压器单独运行时,应满足:30(111)N T S S ?+≥,即满足全部一、二级负 荷需求。 代入数据可得:N T S ?=(0.6~0.7)×1169.03=(701.42~818.32)kV A ?。 又考虑到本厂的气象资料(年平均气温为20C o ),所选变压器的实际容量:(10.08)920N T NT S S KVA ?=-?=实也满足使用要求,同时又考虑到未来5~10年的负荷发展,初步取N T S ?=1000kV A ? 。考虑到安全性和可靠性的问题,确定变压器为SC3系列箱型干式变压器。型号:SC3-1000/10 ,其主要技术指标如下表所示: (附:参考尺寸(mm ):长:1760宽:1025高:1655 重量(kg ):3410) 3.3电气主接线的概念

发电厂、变电所的一次接线是由直接用来生产、汇聚、变换、传输和分配电能的一次设备的一次设备构成的,通常又称为电气主接线。主接线代表了发电厂(变电所)电气部分的主体结构,是电力系统网络结构的重要组成部分。它对电气设备选择、配电装置布置、继电保护与自动装置的配置起着决定性的作用,也将直接影响系统运行的可靠性、灵活性、经济性。因此,主接线必须综合考虑各方面因素,经技术经济比较后方可确定出正确、合理的设计方案。 3.4电气主接线设计需要考虑的问题 在进行变电站电气接线设计时,需要重点考虑以下一些问题:(1)需要考虑变电所在电力系统中的位置,变电所在电力系统中的地位和作用是决定电气主接线的主要因素。变电所是枢纽变电所、地区变电所、终端变电所、企业变电所、还是分支变电所,由于它们在电力系统中的地位和作用不同,对其电气主接线的可靠性、灵活性和经济性的要求了也不同。(2)要考虑近远期的发展规模,变电所电气主接线的设计,应根据5到10年电力发展规划进行。根据负荷的大小、分布、增长速度、根据地区网络情况和潮流分布,分析各种可能的运行方式,来确定电气主接线的形式以及连接电源灵数和出线回数。(3)考虑负荷的重要性分级和出线回数多少对电气主接线的影响,对一级负荷,必需有两个独立电源供电,且当一个电源失去后,应保证全部一级负荷不间断供电,且当一个电源失去后,应保证大部分二级负荷供电。(4)考虑主变台数对电气主接线的影响,变电所主变的台数对电气主接线的选择将产生直接的影响,传输容量不同,对主接线的可靠性,灵敏性的要求也不同。(5)考虑备用容量的有无和大小对电气主接线的影响,发、送、变的备用容量是为了保证可靠的供电,适应负荷突增、设备检修、故障停运情况下的应急要求。电气主接线的设计要根据备用容量的有无有所不同,例如,当断路器或母线检修时,是否允许线路、变压器停运;当线路故障时允许切除线路、变压器的数量等,都直接影响着电气主接线的形式。 3.5主接线方案的选择 3.5.1 电气主接线设计的基本要求 电气主接线应满足以下基本要求: a具有一定的灵活性 主接线在力求简单、明了、操作方便的同时,也要求有一定的灵活性,以适

主变压器容量的选择

主变压器容量的选择 2.1 主变压器的选择 主变压器是主接线的中心环节,其台数、容量和型式的初步选择是构成各种 主接线的基础,并对发电厂和变电所的技术经济性有很大影响。 2.1.1 主变容台数的选择 (1)对大城市郊区的一次变,在中、低压侧构成环网情况下,装两台主变为宜。 (2)对地区性孤立的一次变或大型的工业专用变电所,设计时应考虑装三台的可能性。 (3)对规划只装两台主变的变电所,其主变基础宜大于变压器容量的1-2级设计,以便负荷发展时更换主变。 变压器的容量、台数直接影响到变电站的电气主接线形式和配电装置的结构。它的确定除了依据传递容量基本原始资料外,还要根据电力系统5—10 年的远景 发展计划,输送功率的大小、馈线回路数、电压等级以及接入电力系统中的紧密 程度等因素,进行综合分析与合理的选择。 (4)在有一级,二级负荷的变电站中,应该装设两台主变电压器。当技术经济比较合理时主变压器的台数也可以多于两台。如果变电站可由中、低压侧电力网中取得足够能量的备用电源时,可以装设一台主变压器。 (5)装设两台及其以上主变压器的变电站中,当断开一台时,其余主变压器的容量应保证用户一级负荷和部分二级负荷(一般不应小于主变压器容量的60%)。具有三种电压等级的变电站中,如果通过主变压器各侧绕组的功率均达到主变压器容量的15%时,主变电压器宜采用三绕组变压器。 2.1.2 主变容量选择 根据“ 35?110KV变电所设计规范”主要变压器的台数和容量,应根据地区 供电条件、负荷性质、用电容量和运行方式等条件综合考虑确定。在有一、二级负荷变电所中宜装设两台主变压器,当技术经济比较合理时,可装设两台以上主变压器。装有两台及以上主变压器的变电所,当断开一台时,其余主变压器的容量不应小于60%的全部负荷,并应保证用户的一、二级负荷。具有三种电压的变电所,如通过主变压器各侧线圈的功率均达到该变压器的15%以上,主要变 压器宜采用三线圈变压器。 由于我国电力不足、缺电严重、电网电压波动较大。变压器的有载调压是改善电压质量、减少电压波动的有效手段。对电力系统,一般要求110KV及以下变电所至少采用一级有载调压变压器,因此城网变电所采用有载调压变压器的较多。 2.1.3 主变容量选择原则 1)主变容量选择一般应按变电所建成后5-10年的规划负荷选择,并适当

变压器的选择介绍

变压器选型计算(主变、厂变、集电变、启动/备用变等) 风电场电气主接线(方案B) 电气设备选型计算(2班4组) 目录 1.前言 (2) 2.变压器选择原则 (3) 3.变压器选型计算 (3) (1)主变压器 (3) (2)集电变压器 (5) (3)场用变压器 (5) (4)启/备变压器 (6)

4.心得体会 (8) 5.参考资料 (9)

一.前言 本学期在石阳春老师的带领下我们学习了《风电场电气系统》课程,主要讲述风电场电气部分的系统构成和主要设备,包括与风电场电气相关的各主要内容。主要内容为风电场电气系统的基本构成、主接线设计,风电场主要电气一次设备的结构、原理、型式参数及电气一次设备的选取,风电场电气二次系统、风电场的防雷和接地,风电场中的电力电子技术应用等。课程设计是对学生所学课程内容掌握情况的一次自我验证,有着极其重要的意义。通过课程设计能提高学生对所学知识的综合应用能力,能全面检查并掌握所学内容。通过本课程的课程设计,使学生巩固风电场电气工程的基础理论知识和基本计算方法,了解电力工业的内在关系和电气系统设计原理,熟悉电力行业规范和标准,具备应用理论知识分析和解决实际问题的能力和工程意识,为将来从事工程设计、设备安装、系统调试、维护保养等工作打下良好的基础。本次课程设计2班4组的主要任务是完成方案电气设备选型计算,并与2班1组配合,对所设计的方案进行经济性分析计算;完成方案A的电气设备选型。我在小组中负变压器的选型和相关计算。

二.变压器选择原则 风电场中的变压器包括主变压器、集电变压器和场用变压器。 风电场各种变压器容量的确定方法如下: (1)集电变压器 集电变压器的选择,可以按照常规电厂中单元接线的机端变压器的选择方法进行。即:按发电机额定容量扣除本机组的自用负荷后,留10%的裕度确定 (2)升压站的主变压器 对于升压站中的主变压器,则参照常规发电厂有发电机电压母线的主变压器进行选择: ①主变容量的选择应满足风电场对于能量输送的要求,即主变压器应能够将低压母线上的最大剩余功率全部输送入电力系统。 ②有两台或多台主变并列运行时,当其中容量最大的一台因故退出运行时,其余主变在允许的正常过负荷范围内,应能输送母线最大剩余功率。 (3)场用变压器 风电场场用变压器的选择,容量按估算的风电场内部负荷并留一定的裕度确定。 变压器的台数与电压等级、接线形式、传输容量、与系统的联系紧密程度等因素有密切关系: ①与系统有强联系的大型、特大型风电场,在一种电压等级下,升压站中的主变应不少于2台。 ②与系统联系较弱的中、小型风电场和低压侧电压为6-10kV的变电所,可只装1台主变压器。 三.变压器选型计算 1.主变压器 1)风电场全场总装机容量为: Pn=69×1.5MW=103.5MW 2)主变压器台数的选择: 本方案采用单母线分段设计,应有两台主变压器同时工作,考虑变压器检修,应设一台备用变压器,所以风电场中应装设三台主变压器。 3)主变压器容量的选择: =Pn/0.8=129375 kVA 总容量 Sn 总 每台容量 Sn=0.5×Sn =64687.5 kVA 总

主变压器容量的选择讲解学习

主变压器容量的选择 2.1主变压器的选择 主变压器是主接线的中心环节,其台数、容量和型式的初步选择是构成各种主接线的基础,并对发电厂和变电所的技术经济性有很大影响。 2.1.1主变容台数的选择 (1)对大城市郊区的一次变,在中、低压侧构成环网情况下,装两台主变为宜。 (2)对地区性孤立的一次变或大型的工业专用变电所,设计时应考虑装三台的可能性。 (3)对规划只装两台主变的变电所,其主变基础宜大于变压器容量的1-2级设计,以便负荷发展时更换主变。 变压器的容量、台数直接影响到变电站的电气主接线形式和配电装置的结构。它的确定除了依据传递容量基本原始资料外,还要根据电力系统5—10年的远景发展计划,输送功率的大小、馈线回路数、电压等级以及接入电力系统中的紧密程度等因素,进行综合分析与合理的选择。 (4)在有一级,二级负荷的变电站中,应该装设两台主变电压器。当技术经济比较合理时主变压器的台数也可以多于两台。如果变电站可由中、低压侧电力 网中取得足够能量的备用电源时,可以装设一台主变压器。 (5)装设两台及其以上主变压器的变电站中,当断开一台时,其余主变压器的容量应保证用户一级负荷和部分二级负荷(一般不应小于主变压器容量的60%)。具有三种电压等级的变电站中,如果通过主变压器各侧绕组的功率均达到主变压器容量的15%时,主变电压器宜采用三绕组变压器。 2.1.2主变容量选择 根据“35~110KV变电所设计规范”主要变压器的台数和容量,应根据地区供电条件、负荷性质、用电容量和运行方式等条件综合考虑确定。在有一、二级

负荷变电所中宜装设两台主变压器,当技术经济比较合理时,可装设两台以上主变压器。装有两台及以上主变压器的变电所,当断开一台时,其余主变压器的容量不应小于60%的全部负荷,并应保证用户的一、二级负荷。具有三种电压的变电所,如通过主变压器各侧线圈的功率均达到该变压器的15%以上,主要变压器宜采用三线圈变压器。 由于我国电力不足、缺电严重、电网电压波动较大。变压器的有载调压是改善电压质量、减少电压波动的有效手段。对电力系统,一般要求110KV 及以下变电所至少采用一级有载调压变压器,因此城网变电所采用有载调压变压器的较多。 2.1.3 主变容量选择原则 (1)主变容量选择一般应按变电所建成后5-10年的规划负荷选择,并适当考虑到远期几年发展,对城郊变电所,主变容量应与城市规划相结合。 (2)根据变电所带负荷性质和电网结构来确定主变容量,对有重要负荷的变电站应考虑一台主变压器停运时,其余主变压器容量在计及过负荷能力后的允许时间内,应保证用户的一、二级负荷;对一般性变电站,当一台主变停运时,其余主变压器应能保证全部负荷的60%。 (3)同级电压的单台降压变压器容量的级别不宜太多,应从全网出发,推行系列化,标准化。(主要考虑备用品,备件及维修方便) 2.1.4主变容量和台数选择计算 (1)35KV 中压侧: 其出线回路数为6回,85.0=t K ,结合“1. 2变电站的负荷分析”35kv 负荷情况分析表1-1知: t k P P P P S kv %)51(cos 水泥厂二 水泥厂一郊二35++++=?郊一 =85.005.185 .08.48.44.82.7??+++ =27.048MVA (2)10KV 低压侧: 由于其出线回路数共12回,故可取Kt=0.85,结合10kv 负荷情况分析可知:

施工临时供电变压器容量计算方法一

施工临时供电变压器容量计算方法一(估算) 参见《袖珍建筑工程造价计算手册》 变压器容量计算公式: P =K0(K1∑P1/ (cos?×η)+K2∑P2+K3∑P3+K4∑P4) P 施工用电变压器总容量(KVA) ∑P1电动机额定功率(KW)∑P2电焊机(对焊机)额定容量(KVA)∑P3室内照明(包括空调)(KW) ∑P4 室外照明(KW)(K0取值范围为1.05~1.1,取1.05) K1、K2、K3、 K4为需要系数,其中: K1:电动机:3~10台取0.7,11~30台取0.6,30台以上取0.5。K2:电焊机:3~10台取0.6,10台以上取0.5。 K3:室内照明:0.8 K4:室外照明:1.0。cos?:电动机的平均功率因素,取0.75 η:各台电动机平均效率,取0.86 照明用电量可按动力用电总量的10%计算。有效供电半径一般在500m以内。 施工用电量及变压器容量计算书实例(估算之二,网摘) 一.编制依据 《施工现场临时用电安全技术规范》JGJ46-2005 《工程建设标准强制性条文》《建筑工程施工现场供电安全规范》GB50194--93《建筑施工现场安全规范检查标准》JGJ59-99 《电力工程电缆设计规范》GB50217《简明施工计算手册》第三版(江正荣、朱国梁编著) 二.施工现场用电初步统计 1)计算公式

工地临时供电包括施工及照明用电两个方面,参照《简明施工计算手册》第三版(江正荣、朱国梁编著)计算公式(17-17)如下:P =η(K1∑P1/ cos?+K2∑P2+K3∑P3+K4∑P4其中 η─ 用电不均衡系数,取值1.1;P─ 计算用电量(kW),即供电设备总需要容量; ΣP1 ── 全部电动机额定用电量之和;ΣP2 ── 电焊机额定用电量之和; ΣP3 ──室内照明设备额定用电量之和; ΣP4 ──室外照明设备额定用电量之和;K1 ── 全部动力用电设备同时使用系数,取0.6; K2 ── 电焊机同时使用系数,取0.6;K3 ── 室内照明设备同时使用系数,取0.8; K4 ── 室外照明设备同时使用系数,取1.0;cosφ ── 用电设备功率因数,取0.75。 2)施工现场用电量统计表(略)经过计算得到ΣP1 = 208.5 KW ΣP2 = 170.2 KW ΣP3 = 10 KWΣP4 = 24 KW 3)用电量计算P = 1.1×(0.6×208.5/0.75+0.6×170.2+0.8×10+1×24) = 331.012 KW 三.变压器容量计算 变压器容量参照《简明施工计算手册》第三版(江正荣、朱国梁编著)计算公式(17-19)如下: P变= 1.05×P=1.05×331.012 = 347.56 KW 则现场提供的变压器SL7-400/10满足要求。 建筑工地用电负荷计算及变压器容量计算与选择(之三教材版) (2009-8-13

怎么计算变压器的容量

怎么计算变压器的容量,电气试验工快收藏了吧! 变压器是用来变换交流电压、电流而传输交流电能的一种静止的电器设备,电力变压器是发电厂和变电所的主要设备之一。变压器的作用是多方面的不仅能升高电压把电能送到用电地区,还能把电压降低为各级使用电压,以满足用电的需要。 我们都知道变压器在不同的环境下,它的用途也有所不同。今天就来给大家来讲讲关于变压器容量的计算方式,看看是怎样计算的。 1.常规方法:根据《电力工程设计手册》,变压器容量应根据计算负荷选择,对平稳负荷供电的单台变压器,负荷率一般取85%左右。即:β=S/Se 式中:S———计算负荷容量(kVA);Se———变压器容量(kVA);β———负荷率(通常取80%~90%)。 2.计算负载的每相最大功率:将A相、B相、C相每相负载功率独立相加,如A相负载总功率10KW,B相负载总功率9KW,C相负载总功率11KW,取最大值11KW。(注:单相每台设备的功率按照铭牌上面的最大值计算,三相设备功率除以3,等于这台设备的每相功率。)例如:C相负载总功率 = (电脑300W X 10台)+(空调2KW X 4台)= 11KW

3.计算三相总功率:11KW X 3相 = 33KW(变压器三相总功率) 三相总功率 / 0.8,这是最重要的步骤,目前市场上销售的变压器90%以上功率因素只有0.8,所以需要除以0.8的功率因素。 33KW / 0.8 = 41.25KW(变压器总功率) 41.25KW / 0.85 = 48.529KW(需要购买的变压器功率) ,那么在购买时选择50KVA的变压器就可以了。 注意问题:首先变压器的额定容量,应该是变压器在规定的使用条件下,能够保证 变压器正常运行的最大载荷视在功率;然后这个视在功率就是变压器的输出功率,也是变压器能带最大负载的视在功率; 并且变压器额定运行时,变压器的输出视在功率等于额定容量;变压器额定运行时,变压器的输入视在功率大于额定容量。 在变压器铭牌上规定的容量就是额定容量,它是指分接开关位于主分接,是额定空载电压、额定电流与相应的相系数的乘积。对三相变压器而言,额定容量等于=√3×额定空载相电压×额定相电流,额定容量一般以kVA或MVA表示。额定容量是在规定的整个正常使用寿命期间,如30年,所能连续输出最大容量。而实际输出容量为有负载时的电压(感性负载时,负载时电压小于额定空载电压)、额定电流与相应系数的乘积。 额定容量是在规定的整个正常使用寿命期间,如30年,所能连续输出最大容量。而实际输出容量为有负载时的电压(感性负载时,负载时电压小于额定空载电压)、额定电流与相应系数的乘积。 变压器容量的选择对综合投资效益有很大影响。变压器容量选得过大,出现"大马拉小车"现象,不仅一次性投资大,空载损耗也大。变压器容量选得过小,变压器负载损耗增大,经济上不合理,技术上也不可行。

设备功率计算变压器容量

根据设备功率计算变压器容量(一) 一)根据你提供的设备清单如下: 电焊机25台,功率分别为:*8;8KVA*6;16KVA*5;30KVA*2;180KVA*2;200KVA*2;ε=50% 电焊机,Kx=, 二)你厂所需500KVA的变压器理由计算如下: KVA即千伏安,表示电焊机的容量, ε=50%,表示电焊机的额定暂载率是50%,在进行负荷计算的时候,电焊机应该统一换算到100%来计算。 Kx=,表示电焊机的需用系数是。需用系数是综合了同时系数、负荷系数、设备效率、线路效率之后得到的一个系数。各种设备不尽相同。 P js表示计算负荷的有功功率。是综合了各类因素后,得到的设备计算功率。 Q js表示计算负荷的无功功率。有功功率乘以功率因数角度的正切值,等于无功功率。也就是你上面的Q js=P js*tgΦ。 cosΦ表示功率因数。功率因数越高,系统的无功功率越低。不同的设备,功率因数也不尽相同。在你的计算式中,取了电焊机的功率因数为。如果是我计算的话,我就取~,呵呵!因为我觉得电焊机的功率因数是没有的。 另外,在你的计算中,没有对焊接设备进行容量转换。我上面说了,电焊机应该统一将暂载率换算到100%来计算。换算公式为:P e=P N*((额定暂载率除以100%暂载率)开根号) P e是换算后的功率,P N是额定功率 额定功率=额定容量*功率因数 因此,你的共计25台焊机的额定容量应该是S=*8+8KVA*6+16KVA*5+30KVA*2+180KVA*2+200KVA*2=972KVA 则额定功率为972KVA*=(我这里计算是取的功率因数为,没有按你的计算) 那么换算功率为*(50%/100%)开根号=*根号=*= 然后将需用系数Kx=代入,则计算负荷P js=K x*P e=*= 到这里,又出现了一个问题。因为大家都知道,电焊机属于单相负载(不论接一零一火220V或者接两根火线380V,都成为单相负载),因此计算负荷有个单相到三相转换的过程。转换方法就是,如果接的是220V,也就是接入相电压时,等效功率要乘以3,如果接的是380V,也就是接入线电压时,等效功率要乘以根号3。因为不知道你的电焊机哪些接220,哪些接380,所以我也无法为你计算。如果不知道,可以统一乘以根号3。因为大容量电焊机对总的负荷影响大,而大容量电焊机都是接380V的。所以你可以全部乘以根号3。那么: P js=*= 则无功功率为Q js=P js*tgΦ=(KVar就是千乏,无功功率的单位) 则系统总容量为S=(有功功率的平方+无功功率的平方)开根号= 总计算电流为I= 那么你们需要一台500KVA的变压器才能使这些电焊机正常工作。

变电站主变压器与所用变的选择

目录 1 绪论 (2) 2 变电站主变压器及所用变的选择 (4) 2.1 主变压器的选择 (4) 2.1.1 主变压器台数的选择 (4) 2.1.2 主变压器容量的选择 (5) 2.1.3主变相数及接线组别的选择 (5) 2.1.4结论 (6) 3 电气主接线的设计 (6) 3.1主接线的设计原则和要求 (6) 3.2本所主接线的设计 (7) 3.2.1 设计步骤 (7) 3.2.2 初步方案设计 (7) 3.2.3.本变电所主接线方案的确定 (8) 3.2.4选择结果 (9) 4 短路电流的计算 (10) 4.1短路电流 (10) 4.1.1短路电流计算的目的 (10) 4.1.2短路电流计算的一般规定 (10) 5 母线的选择与校验 (15) 5.1母线的选择 (15) 5.2母线热稳定校验 (16) 5.3母线动稳定性 (16)

6 断路器的选择与校验 (17) 6.1初选断路器型号 (17) 6.2确定短路计算点及相应短路电流 (18) 6.3校验开断能力 (18) 6.4校验动稳定 (18) 6.5校验热稳定 (18) 7 隔离开关的选择 (19) 8 绝缘子的选择与校验 (19) 结束语 (20) 参考文献 (21) 附录 (21) 1绪论 变电所是电力系统的重要组成部分,它直接影响整个电力系统的安全与经济运行,是联系发电厂和用户的中间环节,起着变换和分配电能的作用。现在,我国电力工业已经进入了大机组、大电厂、大电网、超高压、自动化、信息化发展的新时期。随着我国经济的蓬勃发展,电网的规模越来越大,电压越来越高,电网调度、安全可靠供电要求以及经济运行和管理水平都形成了一种新的格局。利用微机实施监控取代常规的控制保护方式,实现变电所的综合自动化,进而施行无人值班,已成为各级电力部门的共识。在我国城乡电

电力变压器容量的计算方法

电力变压器容量的计算方法 变压器容量选择的计算,按照常规的计算方法:是小区住宅用户的设计总容量,就是一户一户的容量的总和,又因为住宅用电是单相,我们需要将这个数转换成三相四线用电,那么,相电流跟线电流的关系就是根号3的问题,也就是就这个单相功率的总和除于1.732,变换为三相四线的功率。 比如现在有一个小区,200户住宅,每户6-8KW用电量,一户一户的总和是1400÷1.732 ≈ 808KW,这个数是小区所有电器同时使用时的最大功率。但是,实际使用时,这种情况是不会发生的。那么,就产生了一个叫同时用电率,一般选择70-80%,这是根据小区的用户结构特征所决定的。一般来说,变压器的经济运行值为75%。那么,我们可以将这二个值抵消,就按照这个功率求变压器的容量。所以,这个变压器的容量就是合计的总功率1400÷1.732≈808KW。根据居民用电的情况,功率因数一般在0.85-0.9,视在功率Sp = P÷0.85 = 808/0.85 ≈951KV A 。 还可以这么计算,先把总功率1400分成三条线的使用功率,就是单相功率,1400÷3=467KW;然后,把这个单相用电转换成三相用电,即467×1.732 ≈ 808KW, 再除于功率因数0.85也≈ 951KV A。 按照这个数据套变压器的标准容量,建议选择二台变压器;总容量为945KVA,一台630KV A的,另一台315KV A的,在实际施工过程中还可以分批投入使用。如果考虑到今后的发展,也可以选择二台500KV A的变压器,或者直接选择一台1000KV A的变压器。 10KV/0.4KV的电压,1KV A变压器容量,额定输入输出电流如何计算: 我们知道变压器的功率KV A是表示视在功率,计算三相交流电流时无需再计算功率因数,因此,Sp=√3×U×I ,那么,I低=Sp/√3/0.4=1/0.6928≈1.4434 也就是说1KV A变压器容量的额定输出电流为1.4434KA,根据变压器的有效率,和能耗比的不同而选择大概范围。高压10KV输入到变压器的满载时的额定电流大约为;I 高=Sp/√3/10=1/17.32≈0.057737 也就是说1KV A容量的变压器高压额定输入电流为0.05774KA。

110KV35KV10KV电气主接线设计及变压器容量的选择1

毕业设计 课题名称:110、35、10kV变电所电气部分设计设计时间:2009年12月 系部:电子信息工程系 班级:************** 姓名:******** 指导老师:********

目录 第一章电气主接线设计及变压器容量的选择 第1.1节主变台数和容量的选择 (1) 第1.2节主变压器形式的选择 (1) 第1.3节主接线方案的技术比较 (2) 第1.4节站用变压器选择 (6) 第1.5节 10KV电缆出线电抗器的选择 (6) 第二章短路电流计算书 第2.1节短路电流计算的目的 (7) 第2.2节短路电流计算的一般规定 (7) 第2.3节短路电流计算步骤 (8) 第2.4节变压器及电抗的参数选择 (9) 第三章电气设备选型及校验 第3.1节变电站网络化解 (15) 第3.2节断路器的选择及校验 (20) 第3.3节隔离开关的选择及校验 (23) 第3.4节熔断器的选择及校验 (24) 第3.5节电流互感器的选择及校验 (29) 第3.6节电压互感器的选择及校验 (29) 第3.7节避雷器的选择及校验 (31) 第3.8节母线和电缆 (33) 设备选择表 (38) 参考文献 (39)

摘要 随着工业时代的不断发展,人们对电力供应的要求越来越高,特别是供电的稳固性、可靠性和持续性。然而电网的稳固性、可靠性和持续性往往取决于变电站的合理设计和配置。一个典型的变电站要求变电设备运行可靠、操作灵活、经济合理、扩建方便。出于这几方面的考虑,本论文设计了一个降压变电站线路;出低压侧电压为10kv,有八回出线,其中有六回是双回路供电。同时对于变电站内的主设备进行合理的选型。本设计选择选择两台SFSZL-31500/110主变压器,其他设备如站用变,断路器,隔离开关,电流互感器,高压熔断器,电压互感器,无功补偿装置和继电保护装置等等也按照具体要求进行选型、设计和配置,力求做到运行可靠,操作简单、方便,经济合理,具有扩建的可能性和改变运行方式时的灵活性。使其更加贴合实际,更具现实意义。关键字:变电站设计

相关文档
相关文档 最新文档