文档库 最新最全的文档下载
当前位置:文档库 › 非制冷红外成像技术及其应用

非制冷红外成像技术及其应用

非制冷红外成像技术及其应用
非制冷红外成像技术及其应用

非制冷红外成像技术及其应用

蔡毅

昆明物理研究所,云南,昆明,650223

摘要:红外成像技术与微光图像增强技术是夜视技术的主要组成部分。非制冷红外成像技术包括量子型和热探测型成像技术两种,都是红外热成像技术的最新成就之一。在本文中,比较了这两种技术的特点,讨论了非制冷红外成像技术的优点、发展趋势和应用。

关键词:非制冷,红外成像,应用

Uncooled Infrared Imaging Technology and It’s Application

CAI Yi

Kunming Insitute of Physics, Kunming, Yunnan, P.R.China, 650223

Abstract: Night vision technology includes low-light-level image intensifier technology and infrared image technology. Uncooled infrared imaging technology is one of the newest achievements of infrared thermal imaging technology. Characterizations of the low-light-level image intensifier and Uncooled infrared imaging technologies are compared, then advantage, development and application of Uncooled infrared imaging technology is discussed in the paper.

Keywords: Infrared Imaging,Uncooled Infrared Imaging,Application

1.红外成像技术与微光图像增强技术的比较

用于夜间观察的微光和热成像装置一般由信号接收、转换、处理和显示等四大部分组成。实现夜间观察不同的技术路线,必然要在这四大部件上反映出来。

夜间观察的基本矛盾是光强不足。解决问题的办法有:1)尽可能多的得到光能量,例如使用大口径望远镜,就可以有限的改善人眼在黄昏和明亮的夜晚的观察能力;微光和热成像装置也使用大口径的望远镜,如有的地面用热像仪口径达到245毫米;2)设法对光信号进行放大,不同的技术基础形成不同的技术路线;如应用真空光电子技术形成了一系列的微光成像器件,而以红外物理、半导体、微电子、真空、制冷、精密光学机械等技术则形成了一系列的热成像仪(TI)。3)在红外光谱波段观察目标的红外图像,克服光强不足的困难。如在微光技术中,将光电阴极的光谱响应延伸到近红外区,可以获取目标表面反射的近红外光,得到更多的光能量,改善微光成像器件的成像质量。而直接获取目标自身发射的热辐射信息,在长波红外区观察目标的热图像,则实现了真正意义上的夜视。

在微光图像增强器(L3I)中,用光电阴极将微弱的可见光和近红外光图像转换成相应的电子密度图像,其光阴极是连续和均匀的一个薄膜。在红外成像仪(IRI)中,用若干个分离探测元组成的探测器列阵将红外光转换成电信号。

微光成像器件的信号处理有五大特点:1)信号并行处理,2)信号在空域处理,3)信号是电子数量,4)信号是模拟量,5)信号原位处理。在半导体、微电子技术还不发达时,电真空技术的这些特点占尽优势,成为夜视技术的主流。

非制冷焦平面组件(UFPA)的信号处理有五大特点:1)信号串行处理,2)信号在时域处理,3)信号是电脉冲电平值,4)信号是数字量,5)信号分离处理,便于进行复杂的图像处理

163

获得更多的信息。半导体、探测器材料、微电子、微电机等技术的进步,使非制冷红外成像技术有了广阔的应用前景。

L3I图像显示有四个特点:1)CRT显示,2)直接显示,3)屏幕面积有限,有几~几十cm2,4)只能单屏幕显示。

非制冷红外成像仪(UIRI)的图像显示有四个特点:1)显示器件种类多,有CRT,LED,液晶,等离子体等,应用灵活,2)图像可直接、间接、混合显示,对系统的适应性好,3)屏幕面积可大可小,从几cm2~几十m2,4)可多屏幕显示,5)可在屏幕中加入其它信息。

2.非制冷红外成像技术分类

红外成像、热成像、红外热成像是概念很接近、但又有区别的名词。红外成像的概念最广,包括长波、中波、短波红外成像,包括被动、主动成像。热成像是指在利用景物自身辐射的长波和中波红外光的被动成像。最早,红外热成像是指在红外波段的热成像,与热成像有相同的意义。现在,可以将其广义的理解为红外和热成像。

UIRI应尽可能多的接受目标在指定波段的红外辐射能量。室温景物的红外辐射在8~14μm 的长波红外区最多(大约比中波红外多50倍),因此,用180元以内的探测元经过光机扫描,就可以获得画质优良的热图像。3~5μm的中波红外能量虽比长波红外的少,但在凝视型焦平面探测器技术发展起来后,可以通过增加积分时提高入射光的利用率,所以一样可以获得画质优良的室温景物的热图像。同样,为充分利用入射能量,采用热探测的UFPA都工作在长波红外。

尽管室温景物在1~2.5μm的短波红外辐射可忽略不计,但实际上,景物也反射环境的夜天光、大气辉光等短波红外辐射,接收这些短波红外辐射也能实现红外成像。微光夜视技术的发展趋势就是如何更有效的利用夜天光、大气辉光等1.3~2.5μm之间的短波红外辐射。由于有多种半导体材料可用于研制短波红外非制冷焦平面组件(SWIR-UFPA),因此,该领域的发展成为近年来红外成像技术的一个亮点。SWIR-UFPA也能用于高温目标的成像。

根据成像原理和使用的探测器材料技术,将非制冷红外成像技术分类如表1。

表1 非制冷红外成像技术分类表

代技术特征

第一代热释电摄像管热释电靶/真空电子束扫描

第二代

微测辐射热计UFPA 电子学扫描

热释电UFPA 电子学扫描

热电偶UFPA 电子学扫描

短波红外UFPA 电子学扫描

其中,研制微测辐射热计UFPA的材料主要有VO X(氧化钒)、α:Si(非晶硅)两种,研制热释电UFPA的材料主要有PZT(锆钛酸铅)、BST(钛酸锶钡)、PST(钽钪酸铅)三种。研制量子型UFPA的主要有InGaAs(铟镓砷)、HgCdTe(碲镉汞)、Ge(锗)等。

3.非制冷红外成像技术的现状

3.1技术优点

UIRI技术主要有七大优点:1)性能良好(Good performance——G),2)可靠性高(High reliability——H),3)成本低(Low cost——L),4)功耗小(Low power consumption——L),5)寿命长(Long life——L),6)重量轻(Light weight——L),7)体积小(Small volume——S),既GHL4S。

3.2技术水平

现在已有商品有热释电和微测辐射热计UFPA两种,表2列出代表当今世界UFPA的水平的热释电和微测辐射热计UFPA的典型性能参数。

164

表2 热释电和微测辐射热计UFPA的性能参数表

热释电UFPA微测辐射热计UFPA

探测器材料 BST VO Xα:Si

工作波段(μm) 8~14 8~14 8~14

列阵规模 328×245 328×245 320×240

像元中心距(μm) 48.5×48.550×50 45×45

F/# 1 1 1

50 39 80(在25Hz)

NETD(mK)

吸收率 0.99 0.8 0.8

填充因子 1.0 0.7 0.8 绝热率(W/K) 2×10 - 62×10 – 7 2×10 – 7

TEC功耗(W)无 8 8.5(最大)

3.3市场情况

20世纪90年代中期,Raytheon Texas Ins.和Raytheo Amber两家公司开发的UTI就有商品上市。在1998年,Texas Ins.使用热释电UFPA的UTI——ISM的价格为$12000,Amber使用微测辐射热计UFPA的UTI——Sentinel的价格为$65000。美国波音公司已研制成功大小与一号电池相当、重量仅90克、功耗小于600毫瓦的UTI。估计在最近的将来,UTI就会跌破$2000的价位。

根据美国一份专业分析报告预测:2000年,美国市场UTI销售额为$1.75亿,与制冷型热像仪(CTI)相当。2002年,UTI销售额将达到$3.22亿,超过CTI。在近年内,UTI年均增长率约为65%。

UTI价格便宜,要销售 1.75亿美元,其产量必然很大,应在万台以上。以1996年为例,Texas Ins.达到每周生产150毫米的BST材料1000片,每片能做320×240 UPFA 42个。估计目前美国市场销售的UTI在30000台左右。

法国1997年研制成功非晶硅微测辐射热计UFPA后,一直致力于产业化。得益中国市场的拉动,法国专门成立了ULIS公司进行产业化生产。2004年,其UFPA年产量在约7000个,其中欧洲的订货数量约5000个。

在2003年之前,中国是ULIS公司的最大客户,已从ULIS公司累计定购320×240 UFPA约4000个。2003年,国内销售的UTI超过1000台,平均价格在¥20万元左右。

3.4非制冷红外焦平面组件的新发展——SWIR-UFPA

现在研制SWIR-UFPA主要有InGaAs和HgCdTe两种材料。探测元是一个PN结,利用红外光的量子效应工作。表3比较了热探测和光量子UFPA的特点。两种UFPA在应用领域是互相补充。

表3 热探测和光量子UFPA的特点比较

热探测UFPA 光量子UFPA

工作波段8~14μm 0.9~2.5μm

信号来源景物自身热辐射景物反射背景光

工作原理热效应量子效应

图像特点热图像类似可见光图像

光学镜头与锗材料为基础传统光学材料

与电视的兼容性不兼容兼容

昼夜工作是是

对天气的适应性优于可见光略优于可见光

165

温度稳定器仅热释电UFPA不需要不需要

在InP(磷化铟)衬底上外延InGaAs主要用于研制0.9~1.7μm短波红外探测器,目前,InGaAs 的SWIR-UFPA有128×128、320×240 等规模的商品。用HgCdTe研制的SWIR-UFPA已取得重大进展,已研制出规模达到2048×2048的样品。表4列出InGaAs和HgCdTe SWIR-UFPA的典型性能参数。从目前的状况看,最高性能的探测器是用MOCVD生长的In0.53Ga0.47As/InP在1.68μm处达到的,因此对夜天光的利用率比HgCdTe的约低30%,但由于技术成熟,制造成本低,因此今后InGaAs的SWIR-UFPA主要用于低端产品。HgCdTe的波长可以扩展到2.5μm,可以最充分的利用夜天光,但因HgCdTe的制造成本较高,所以HgCdTe的SWIR-UFPA主要用于高端产品。

表4 InGaAs和HgCdTe SWIR-UFPA的典型性能参数

InGaAs HgCdTe

工作波段(μm) 0.9~1.70.9~2.5

峰值波长(μm) 1.68~2.4

列阵规模 128×128 2048×2048

像元中心距(μm)—— 18×18

平均探测率(Jones)8×1013——

盲元率 0.995 0.999

3.5非制冷红外成像技术的应用领域

可以为UIRI技术在军事和商业上的应用开出一个长长的清单。

军用:夜视,侦察搜索,监视,热瞄具,夜间导航和驾驶,精确制导,无人机热成像系统,机器人视觉。

工业:电力,交通,水污染探测,节能,石油化工,工艺质量控制,非接触温度测量,预防性维修,风切变探测。

医学:癌症的早期诊断,手术监测,截肢位置的选择,防寒服装的检测,伤口监视,静脉堵塞的早期诊断。

农业和林业:农作物估产,病虫害探测和预报,森林、草原防火,

准军事:消防、海关缉私、保安、搜索与救援。

4.非制冷红外成像技术的发展趋势

4.1多元化

有探测器材料、结构、规格、工作波段多元化的含义。随材料科学的发展,有越来越多的材料可用于研制UFPA,如有PZT、BST、PST等热释电材料、钛薄膜、多晶硅、VO X和石英、超巨磁阻材料等等。微电机技术(MEMS)的发展,使得人们可以制备出各种精巧的结构实现热辐射探测,如单层、双层和微桥的电容、电阻器件、蛇形结构、热电堆、微振荡器、微调谐器等等。在规格上,有100×100、256×128、384×288、320×240等等。

4.2通用组件化

UIRI结构简单,将UFPA、调制器和微扫描器、电子学等组件做成通用模块,根据应用需要,用其构造出UIRI的核心,根据需要再配上要求的光学系统、壳体、显示器等,就可满足特定的应用。采用通用组件概念后,有利于扩大应用和降低成本。如与TV、激光结合,形成红外、可见光、激光“三光合一”的系统,对各种不同的应用有更好的适应性。

4.3低成本化

UIRI的价格与性能同等重要,只有价格与市场购买力相适应时,才会打开UIRI应用的广大市场。减小探测器的规模(例如采用160×120)、进行规模生产、通用组件化等方法,都是降低UIRI的有效措施。

166

4.4大面阵化

获得与电视图像画质相当的红外图像,始终是UFPA发展的内在动力之一。在320×240、384×288 UFPA研制成功后,现在的目标是:640×480和768×576 UFPA,正向1024×1024以上规模的UFPA发展。实现大面阵后,才可以更好的满足市场对整机视场、温度分辨力和空间分辨力的要求。

4.5 短波红外成像仪将是微光夜视仪的有力竞争对手

与CTI相比,L3I有体积小、重量轻、成本较低、容易维护等优点,而今天的UIRI也同样具有了这些优点,甚至有过之而无不及。目前,L3I主要有以下五个方面的应用:

武器瞄准具:轻武器夜瞄具

观察仪器:搜索侦察,微光望远镜,微光潜望镜,微光电视

车载夜视仪:坦克和装甲车辆用潜望镜和火炮瞄具

夜间驾驶:夜间驾驶仪,头盔夜视仪,夜视眼镜

夜间作业:夜视眼镜,头盔夜视仪

从发展趋势看,除特殊应用领域外,UIRI都是L3I的有力竞争对手。从1996年开始,美军就在用非制冷热瞄具取代AN/PVS-4和AN/TVS-5等微光瞄准具。在夜间驾驶方面,UTI已打破了L3I 一统天下的局面,已大批量装备步兵战车,甚至有的装在汽车上。

总之,UIRI技术的在军事和民用领域都有巨大的应用前景,将成为应用面最广的红外成像技术。

参考文献

[1]O.P.Nijhawan, Thermal Imaging Technology: The Indian Scene, SPIE V ol. 3898, 1999, p.97-103。

[2]向世明,倪国强,《光电子成像器件原理》,国防工业出版社,北京,1999。

[3]P.W.Kruse,D.D.Skatrud,《Uncooled Infrared Imaging Arrays and Systems》,Acdemic Press,San Diego,1997。

[4]R.A.Lubke, et al, Military applications for uncooled infrared: airborne sensors at alliant techsystems, SPIE V ol. 3379,

1998, p.371-379。

[5]R.A.Rotolante, Why the IR detector market is in flux, Laser Focus World, Oct. 1999, p.65-67。

[6]R.Owen, et al, Producibility advances in hybrid uncooled infrared devices-II, SPIE V ol. 2746, 1996, p.101-112。

[7]R.Kennedy McEwen, Eueopean Uncooled Thermal Imaging Technology, SPIE V ol. 3061, 1997, p.179-190。

[8]T.Breen, et al., SPIE V ol. 3436, 1998, p.530-540。

[9]IEEE Tran. ED. 43-11, 1996, p.1844-1849。

[10]K.C.Liddiard et al, SPIE V ol. 2225, 1994, p.62-71。

[11]顾梅梅,“超巨磁阻测辐射热计”,硕士学位论文,昆明理工大学,2000年。

[12]张有义等,《国外光电机构产品手册》,兵器工业红外技术专业情报网,1983年。

[13]潘万聪等,《国外军用微光夜视器材手册》,兵器工业出版社,北京,1991年。

[14] L.J.Kozlowski等,HgCdTe、InGaAs和量子阱GaAs/AlGaAs凝视红外焦平面列阵的性能,红外,V ol.11,1999,

p.1-8

[15] C.A.Cabelli,et al.,Latest Results of HgCdTe 2048×2048 and Silicon Focal Plane Arrays,SPIE V ol. 4028,2000,

p.331-342

167

非制冷红外焦平面热成像测温系统

非制冷红外焦平面热成像测温系统 红外技术四个主要部分: 1.红外辐射的性质,其中有受热物体所发射的辐射在光谱、强度和方向的分布;辐射在媒质中的传播特性--反射、折射、衍射和散射;热电效应和光电效应等。 2.红外元件、部件的研制,包括辐射源、微型制冷器、红外窗口材料和滤光电等。 3.把各种红外元、部件构成系统的光学、电子学和精密机械。 4.红外技术在军事上和国民经济中的应用。由此可见,红外技术的研究涉及的范围相当广泛,既有目标的红外辐射特性,背景特性,又有红外元、部件及系统;既有材料问题,又有应用问题。 而在红外热成像技术研究领域中,红外探测器是核心,探测器的技术水平决定了热成像技术的技术水平。基于光电效应的光子探测器和基于热电效应的热电探测器一直是红外热成像技术的两大支柱。为获得高性能必须在低温(典型的是液氮温度77K)下工作。正是由于需要制冷以及成本等原因,使光电探测器类热成像技术在民用领域仍难形成很大的市场。而热电探测器类热成像技术由于灵敏度和响应速度方面的限制,只有采用热电摄像管的热成像系统(即热电视)获得一些应用,而且一般用于要求较低的民用领域。 但90年代以后,非致冷红外焦平面技术的突破和实用化,使其与致冷红外热像技术相比所具有的低成本,低功耗,长寿命,小型化和可靠性等优势得到很好发挥,成为当前红外热成像技术中最引人注目的突破之一,在军用和民用领域的应用前景将“使传感器领域发生变革”。 非致冷红外焦平面技术属于热电探测器类热成像技术。 其焦平面阵列由热探测器,如测辐射热计、热释电探测器、热电堆等,与硅多路传输器,如CCD、MOSf:EF、C协05读出电路等,通常用锢柱互连而成。 测辐射热计的工作原理是被热绝缘的金属薄膜(典型的是入膜)或半异体薄膜(典型的是氧化钒VOZ或非晶硅a一Si薄膜或多晶硅)在吸收红外辐射时会引起其电阻值的变化实现光电变换。此类探测器可全部采用Si集成电路工艺制作,与51信号处理电路之间可形成单片式结构,不需要低温制冷装置,不需要特殊材料,不需要斩波,制作工艺也成熟。以它为核心制成的红外热成像系统成像清晰度高、重量轻、功耗低、易便携,适于野外工作场所。 热释电探测器的工作原理是由具有良好热释电特性的铁电材料,如错酸铅(PZT)陶瓷、PbTIO,陶瓷、PbTIO:,薄膜和LITao,晶体制成的热探测器与51多路传输器互连而成。其中,LITaO,特性格外好,它不仅有大的热释电系数(p二2.3x1osC/cm),还有小的介电常数(£,=54)和高的居里温度(兀二618’’C)。以它为核心制成的红外热像系统灵敏度较高,且适合于红外成像。 本系统结合红外测温技术和非致冷焦平面热成像技术原理,开发并完成了一套非致冷红外焦平面热成像测温系统。 系统建立了非致冷红外焦平面热成像系统测温计算的数学模型;对计算中可能产生的各种误差进行了分析和计算;对系统成像的非均匀性进行了分析和校正;提出了精确测量发射率的新算法;结合热成像的原理对红外热图像的特征进行了分析,对红外热像进行了新型直方图均衡和伪彩色增强等处理。 在降低了成本的同时,保证了精度。 基于辐射源的方法较为常用,其中包括两点校正法,多点校正法,非线性拟合校正法,和低次插值校正法等,基于他们各自的特点,此论文中选用了精度相对比较高的一种:非线性拟合校正法。这种校正方法考虑了光敏单元的非线性响应,使得其校正效果比传统的两点校正算法具有更大的动态范围和更高的精度,同时,每个光敏单元的校正只需要3次乘法和2次

红外热成像技术应用与发展

红外热成像摄象机在智能视频监控中的应用与发展 一、引言 1672年,牛顿使用分光棱镜把太阳光(白光)分解为红、橙、黄、绿、青、蓝、紫等各色单色光,证实了太阳光(白光)是由各种颜色的光复合而成。1800年,英国物理学家 F. W. 赫胥尔从热的观点来研究各种色光时,偶然发现放在光带红光外的一支温度计,比其他色光温度的指示数值高。经过反复试验,这个所谓热量最多的高温区,总是位于光带最边缘处红光的外面。于是他宣布:太阳发出的辐射中除可见光线外,还有一种人眼看不见的“热线”,这种看不见的“热线”位于红色光外侧,叫做红外线。这种红外线,又称红外辐射,是指波长为0.78~1000μm的电磁波。其中波长为0.78 ~1.5μm 的部分称为近红外,波长为1.5 ~10μm的部分称为中红外,波长为10~1000μm的部分称为远红外线。而波长为2.0 ~1000μm的部分,也称为热红外线。 红外线辐射是自然界存在的一种最为广泛的电磁波辐射,它在电磁波连续频谱中的位置是处于无线电波与可见光之间的区域。这种红外线辐射是,基于任何物体在常规环境下都会产生自身的分子和原子无规则的运动,并不停地辐射出热红外能量。分子和原子的运动愈剧烈,辐射的能量愈大;反之,辐射的能量愈小。 在自然界中,一切物体都会辐射红外线,因此利用探测器测定目标本身和背景之间的红外线差,可以得到不同的红外图像,称为热图像。同一目标的热图像和可见光图像不同,它不是人眼所能看到的可见光图像,而是目标表面温度分布的图像。或者可以说,它是人眼不能直接看到目标的表面温度分布,而是变成人眼可以看到的代表目标表面温度分布的热图像。运用这一方法,便能实现对目标进行远距离热状态图像成像和测温,并可进行智能分析判断。 众所周知,海湾战争已成为展示高科技武器使用先进技术的平台。在这些新科技中,红外热成像技术就是其中最为闪亮的高科技技术之一。红外热成像技术(Infrared thermal imaging technology)是利用各种探测器来接收物体发出的红外辐射,再进行光电信息处理,最后以数字、信号、图像等方式显示出来,并加以利用的探知、观察和研究各种物体的一门综合性技术。它涉及光学系统设计、器件物理、材料制备、微机械加工、信号处理与显示、封装与组装等一系列专门技术。该技术除主要应用在黑夜或浓厚幕云雾中探测对方的目标,探测伪装

非制冷红外技术及应用

非制冷红外技术及应用 蓝海光学招募:镜头装配主管,镜头销售人员光学人生,你的精彩人生!一、红外热成像技术简介自然界所有温度在绝对零度(-273℃)以上的物体都会发出红外辐射,红外图像传感器则将探测到的红外辐射转变为人眼可见的图像信息。红外成像技术涵盖了红外光学、材料科学、电子学、机械工程技术、集成电路技术、图像处理算法等诸多技术,红外成像装置的核心为红外焦平面探测器。 二、非制冷红外技术概述2.1 非制冷红外技术原理非制冷红外探测器利用红外辐射的热效应,由红外吸收材料将红外辐射能转换成热能,引起敏感元件温度上升。敏感元件的某个物理参数随之发生变化,再通过所设计的某种转换机制转换为电信号或可见光信号,以实现对物体的探测。 非制冷红外焦平面探测器分类2.2 非制冷红外探测器的关 键技术 热释电型红外辐射使材料温度改变,引起材料的自发极化强度变化,在垂直于自发极化方向的两个晶面出现感应电荷。通过测量感应电荷量或电压的大小来探测辐射的强弱。热释电红外探测器与其他探测器不同,它只有在温度升降的过程中才有信号输出,所以利用热释电探测器时红外辐射必须经过调制。探测材料:硫酸三甘肽、钽酸锂、钽铌酸钾、钛(铁

电)酸铅、钛酸锶铅、钽钪酸铅、钛酸钡热电堆由逸出功不同的两种导体材料所组成的闭合回路,当两接触点处的温度不同时,由于温度梯度使得材料内部的载流子向温度低的一端移动,在温度低的一端形成电荷积累,回路中就会产生热电势。(塞贝克效应Seebeck)而这种结构称之为热电偶。一系列的热电偶串联称为热电堆。因而,可以通过测量热电堆两端的电压变化,探测红外辐射的强弱。二极管型利用半导体PN结具有良好的温度特性。与其他类型的非制冷红外探测器不同,这种红外探测器的温度探测单元为单晶或多晶PN结,与CMOS工艺完全兼容,易于单片集成,非常适合大批量生产。热敏电阻型(微测辐射热计)利用热敏电阻的阻值随温度变化来探测辐射的强弱。一般探测器采用悬臂梁结构,光敏元吸收红外热辐射,由读出电路测量热敏材料电阻变化而引起的电流变化,通过读出电路对电信号采集分析并读出。探测器一般采用真空封装以保证绝热性好。探测材料:氧化钒、非晶硅、钛、钇钡铜氧等氧化钒VOx的TCR 一般为2%~3%,特殊方法制备的单晶态VO2和V2O5可达4%。VOx具有电阻温度系数大,噪声小的特点,被广泛用作非制冷式红外焦平面传感器的热敏材料。全球的非制冷红外热像仪市场中,使用VOx非制冷红外探测器的占80%以上。氧化钒VOx的制备方法:溅射法、溶胶-凝胶法、脉冲激光沉积法、蒸发法。读出电路IC技术ROIC对微弱的红

红外成像技术在医学中的应用技术及应用

能力拓展训练任务书 学生姓名:青蛙哥专业班级:电子科学与技术0803班指导教师:封小钰工作单位:信息工程学院 题目:红外成像技术在医学中的应用技术及应用 初始条件: 具有扎实的电子科学与技术专业基本理论和系统的专业知识;具备初步的文献查阅和专题调研技能;一定的中英文文献阅读与综合能力。 要求完成的主要任务: 1.在电子科学与技术专业体系范围内确定选题,题目自拟。 2.查阅与选题相关的文献资料,通过对文献资料的阅读分析与综合,写出调研报告; 要求报告内容的可读性强,撰写格式规范,图标的使用正确,参考文献的引用恰当; 字数不少于6000字,参考文献不少于10篇,其中外文文献不少于2篇。 时间安排: 1.2011年7月8日分班集中,能力拓展训练任务;讲解训练具体实施计划、报告格式的要求与答疑事项。 2.2011年7月11日至2011年7月15日完成选题的确定、资料查阅、能力拓展训练报告的撰写。 3. 2011年7月16日提交能力拓展训练报告书,进行验收和答辩。 指导教师签名:年月日 系主任(或责任教师)签名:年月日

目录 1 引言...................................................... 错误!未指定书签。2红外热成像技术............................................ 错误!未指定书签。 2.1 光纤通信技术的定义.................................. 错误!未指定书签。 2.2红外热成像技术的应用原理............................. 错误!未指定书签。3红外技术在医学领域应用的历史,现状,和前景................ 错误!未指定书签。4红外技术在医学上的应用.................................... 错误!未指定书签。 4.1红外技术在医学检测上的应用........................... 错误!未指定书签。 4.1.1乳腺瘤的早期诊断............................... 错误!未指定书签。 4.1.2血管疾病的诊断................................. 错误!未指定书签。 4.1.3皮肤损伤病症的诊断............................. 错误!未指定书签。 4.2 红外技术在医疗监护上的应用.......................... 错误!未指定书签。 4.3其他................................................. 错误!未指定书签。 5 结束语.................................................... 错误!未指定书签。参考文献.................................................... 错误!未指定书签。

非制冷红外热像仪完整版

非制冷红外热像仪完整 版 IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】

红外成像阵列与系统 —非制冷红外热像仪简述 2013年11月8日 非制冷红外热像仪简述 摘要:非制冷红外热像仪是目前主流的夜视观察仪器之一,因其较高的可靠性在军事领域的低端应用、民用等方面有广阔的前景。它通过被测物体向外界发出的辐射能量来得到物体对应的温度。本文主要就非制冷红外热像仪的测温原理、发展状况、系统设计及其性能参数做简单的分析及介绍。比较了两种不同情况下的测温公式的优劣并且做出了相关推导,简单介绍了基于FPGA的非制冷红外热像仪的电路系统和通用型非制冷红外热像仪的性能参数及其一般测定方法。对以后的红外热成像系统的学习起到了一定帮助。 关键字:非制冷红外热像仪;测温原理;发展状况;系统设计;性能参数 The brief description of uncooled infrared thermal imager Yu Chun-kai, Wang Hui-ting, Qi Xiao-yun, Xu Jian Abstract: Currently, uncooled infrared thermal imager is one kind of mainstream devices on night vision. Because of its high reliability, uncooled infrared thermal imager has a broad prospect of application in military and civil field. It gains temperature of the detected object by the infrared radiation the object emits. This paper simply analyses and introduces temperature measuring principle, development status, system design and performance parameter on uncooled infrared thermal imager. We compared two different temperature measuring formulae in their respective situations and did the relevant derivation. We also introduced the circuit system which based on FPGA in uncooled infrared thermal imager and the performance parameter of general uncooled infrared thermal imager. This paper provides us much promotion about the future study of infrared thermal imaging system.

红外成像技术的发展及应用

红外成像技术的发展及应用 热成像仪是从对红外线敏感的光敏元件上发展而来,但是光敏元件只能判断有没有红外线,无法呈现出图像。在第二次世界大战中交战各国对热成像仪的军事用途表现出了兴趣,对其进行了零星的研究和小规模应用,1943年美国就与RNO合作生产了一款代号M12的机型,其功能和外观已经能看出热成像仪的雏形,这应该算是最找的一款热成像仪,算是热成像仪的鼻祖。 1952年,一款非常重要的材料研-锑化铟被开发出来,这种新的半导体材料促进了红外线热成像仪的进一步发展。不久之后,德州仪器和RNO公司联合开发出了具有实用价值的前视红外线(Forward looking infrared)热成像仪。这一系统采用的是单原件感光,利用机械装置控制镜片转动,将光线反射到感光元件上。 随着碲镉汞材料制造工艺的成熟,在军事领域大规模采用热成像仪成为了可能。60年代之后出现了由60或更多的感光元件组成的线性整列,美国的RNO公司将热成像仪的应用拓展至民用领域发展。然而由于最初采用的是非制冷感光元件,制冷部件加上机械扫描机构使得整个系统非常庞大。 等到CCD技术成熟之后,焦平面阵列式热成像仪取代了机械扫描式热成像仪。至80年代半导体制冷技术取代了液氮、压缩机制冷之后开始出现了便携、手持的热成像仪。90年代之后,RNO公司又开发

出了基于非晶硅的非制冷红外焦平面阵列,进一步降低了热成像仪的生产成本。 红外线,又称红外辐射,是指波长为0.78~1000微米的电磁波。其中波长为2~1000微米的部分称为热红外线。 目标的热图像和目标的可见光图像不同,它不是人眼所能看到的可见光图像,而是表面温度分布图像。红外热成像使人眼不能直接看到表面温度分布,变成可以看到的代表目标表面温度分布的热图像。所有温度在绝对零度(-273)℃以上的物体,都会不停地发出热红外线。红外线(或热辐射)是自然界中存在最为广泛的辐射,它还具有两个重要的特性:(1)物体的热辐射能量的大小,直接和物体表面的温度相关。热辐射的这个特点使人们可以利用它来对物体进行无需接触的温度测量和热状态分析,从而为工业生产,节约能源,保护环境等方面提供了一个重要的检测手段和诊断工具。(2) 大气、烟云等吸收可见光和近红外线,但是对3~5微米和8~14微米的热红外线却是透明的。因此,这两个波段被称为热红外线的“大气窗口”。利用这两个窗口,使人们在完全无光的夜晚,或是在烟云密布的战场,清晰地观察到前方的情况。由于这个特点,热红外成像技术在军事上提供了先进的夜视装备,并为飞机、舰艇和坦克装上了全天候前视系统。这些系统在现代战争中发挥了非常重要的作用。 全球红外热像仪市场发展具有广阔的前景并呈现良好的发展趋势。红外热像仪是一种用来探测目标物体的红外辐射,并通过光电转换、电信号处理等手段,将目标物体的温度分布图像转换成视频图像

非制冷红外热像仪版

红外成像阵列与系统 —非制冷红外热像仪简述

2013年11月8日 非制冷红外热像仪简述 摘要:非制冷红外热像仪是目前主流的夜视观察仪器之一,因其较高的可靠性在军事领域的低端应用、民用等方面有广阔的前景。它通过被测物体向外界发出的辐射能量来得到物体对应的温度。本文主要就非制冷红外热像仪的测温原理、发展状况、系统设计及其性能参数做简单的分析及介绍。比较了两种不同情况下的测温公式的优劣并且做出了相关推导,简单介绍了基于FPGA的非制冷红外热像仪的电路系统和通用型非制冷红外热像仪的性能参数及其一般测定方法。对以后的红外热成像系统的学习起到了一定帮助。 关键字:非制冷红外热像仪;测温原理;发展状况;系统设计;性能参数

The brief description of uncooled infrared thermal imager Yu Chun-kai, Wang Hui-ting, Qi Xiao-yun, Xu Jian Abstract: Currently, uncooled infrared thermal imager is one kind of mainstream devices on night vision. Because of its high reliability, uncooled infrared thermal imager has a broad prospect of application in military and civil field. It gains temperature of the detected object by the infrared radiation the object emits. This paper simply analyses and introduces temperature measuring principle, development status, system design and performance parameter on uncooled infrared thermal imager. We compared two different temperature measuring formulae in their respective situations and did the relevant derivation. We also introduced the circuit system which based on FPGA in uncooled infrared thermal imager and the performance parameter of general uncooled infrared thermal imager. This paper provides us much promotion about the future study of infrared thermal imaging system. Key words:uncooled infrared thermal imager; temperature measuring principle; development status; system design; performance parameter

制冷式与非制冷式红外热像仪 菲力尔FLIR

科学/研发应用红外热像仪堪称功能强大的无创性工具。借助一款此类红外热像仪,你可以在设计阶段及早发现问题,以便在发展成更为严重且维修代价高昂的故障之前,将其记录在案并予以纠正。 应用于研发环境的红外热像仪 红外热像仪会接收无法被人眼所察觉热辐射,并将其转化为描绘某个目标物或场景中热量变化的图像。所有温度高于绝对零度的物体均会放射热能,热能由某些波段的电磁波谱辐射出来,而且辐射量会随着温度的上升而增加。FLIR 红外热像仪可用于实时捕获和记录热分布和热变化,有助于工程师和研究人员看清并精确测量设备、产品和工艺过程中的发热方式、热耗散、热泄漏以及其他温度因素。其中部分红外热像仪可区分细微至0.02?C 的温 度变化。它们均搭载了先进的探测技术和高级数学算法,以实现高性能,以及在-80?C 至+3000?C 之间精确测温。研发用红外热像仪系列整合了极高的成像性能和精确的测温功能,并配备强大的分析报告工具和软件,从而造就其成为范围广泛的研究、热试验和产品验证应用的理想之选。制冷式和非制冷式红外热像仪 研发/科学应用的红外热像仪系统拥有大量选择。因此,我们经常听到这样的问题:“我应该使用制冷式还是非制冷式红外热像仪系统? 哪种系统更具有成本效益?”事实上,如今市场上售有两种类型的红外热像仪系统:制冷式和非制冷式系统。这两种类型的系统的组件成本大相径庭,因而决定选择哪种系统则变得极 为重要。 多年来,科学家、研究人员和研发专家热衷于将红外热像仪运用于广泛的应用领域中,包括工业研发、学术研究、无损检测(NDT)和材料检测,以及国防与航空航天等。但是,并非所有打造的红外热像仪均具有同等的品质功能,或者可用于一些专门的应用。譬如,如要获得精确的测量值,则需要配备高速定格动画功能的先进红外热像仪。 制冷式与非制冷式红外热像仪 配备制冷式探测器的红外热像仪可在快速移动活动中产生清晰的热图像。 FLIR A6700sc 是一款配备制冷锑化铟 (InSb) 探测器的紧凑型红外热像仪,价格极为经济实惠。 FLIR T650sc 非制冷式研发用红外热像仪具有较高的分辨率。高分辨率的图像可获得精确结果和可靠的测温 精确度。 世界第六感

俄罗斯非制冷微测辐射热计红外热成像系统的发展状况

〈综述与评论〉 俄罗斯非制冷微测辐射热计红外热成像系统的发展状况 吴 铮,陆剑鸣,白丕绩,田 萦 (昆明物理研究所,云南昆明 650223) 摘要:简单介绍了俄罗斯在非制冷微测辐射热计红外热成像系统领域的基本状况,“旋风”中央科学技术研究所完全能代表俄罗斯在该领域的发展水平,详细介绍了该研究所开发的多款非制冷微测辐射热计红外热成像系统,最后分析了俄罗斯在非制冷微测辐射热计红外热成像系统领域的发展特点。 关键词:俄罗斯;“旋风”中央科学技术研究所;微测辐射热计;非制冷红外热成像系统 中图分类号:TN216 文献标识码:A 文章编号:1001-8891(2011)08-0443-07 Development Status of Uncooled Thermal Imaging System Based on Microbolometers in Russia WU Zheng,LU Jian-ming,BAI Pi-ji,TIAN Ying (Kunming Institute of Physics, Kunming 650223, China) Abstract:Basic status of uncooled thermal imaging system based on microbolometers in Russia is introduced simply. The Cyclone Central Institute of Science and technology represents the Russia’s developmental level in the field. A variety of uncooled infrared thermal imaging systems based on microbolometers developed by the institute are introduced. At last, the features of Russia developments in the field are analyzed. Key words:Russia,cyclone Central Institute of Science and technology,microbolometer,uncooled infrared thermal imaging system 引言 与制冷型红外热成像系统相比,非制冷红外热成像系统的主要优点是:无需制冷,功耗小,系统更轻便,造价更低廉等。非制冷红外热成像系统在军事和民用领域广为使用,具有极为广阔的市场前景。目前世界各国除了大力发展制冷式红外热成像系统外,也在不遗余力地发展非制冷红外热成像系统。 非制冷红外热成像系统一般采用微测辐射热计红外焦平面探测器和热释电红外焦平面探测器两种类型,它们各有优缺点,从目前世界上非制冷红外热成像系统的发展和装备状况来看,两者的装备量都很大,各自的应用前景都很广阔[1,2]。 与采用热释电红外焦平面探测器的非制冷红外热成像系统相比较,微测辐射热计红外热成像系统的优势在于不需要机械调制器就能工作(而热释电红外焦平面探测器则需要调制器),从而使整个系统功耗较低;此外,在突破了与硅平面工艺的兼容性后,微测辐射热计焦平面探测器具有极高的性价比;同时,微测辐射热计在8~12μm波段里具有较高的灵敏度,这对开发多通道系统来说具有极大的潜力。 采用大规模探测阵列的非制冷凝视型微测辐射热计红外热成像系统于上个世纪90年代开始研制开发,目前已经达到了工业量产化水平阶段。目前微测辐射热计红外焦平面探测器一般采用氧化钒(VO x)或多晶硅、非晶硅两种材料[3]。 作为世界军事强国之一的俄罗斯,除了大力发展各种制冷式红外热成像系统外,也在不断发展包括微测辐射热计焦平面在内的非制冷红外热成像系统,并取得了显著成效。 1 俄罗斯非制冷微测辐射热计红外热成像系 统的基本状况 按照前苏联的专业分工,在俄罗斯的非制冷红外

非制冷红外热像仪的Petzval型物镜的研制与分析[1]

非制冷红外热像仪的P etzv al型物镜的研制与分析33 张云翠1,233,孙 强1,卢振武1 (1.长春光学精密机械与物理研究所,吉林长春130033;2.中国科学院研究生院,北京100039) 摘要:研制了应用在长波红外热成像中的Petzval型物镜,工作波段为8~12μm,F数为1,焦距为90mm,视场为12.6°,空间分辨率为0.5mrad,透镜材料均为G e。使用折/衍混合器件作为色差校正器件代替1片负透镜,光学器件的重量从0.50kg减轻到0.38kg,衍射面采用金刚石车削技术进行加工。利用Video光学调制传递函数仪对系统性能进行了检测,检测值的下降不超过设计值的3%。分析了衍射器件的衍射效率对调制传递函数的影响。 关键词:红外;热成像;衍射器件;非制冷探测器 中图分类号:O436 文献标识码:A 文章编号:100520086(2007)0320270203 M anu factu re and A nalyse of P etzv al Objective Lens of U ncooled I nfrared Im aging Sys2 tem ZHANG Yun2cui1,233,SUN Qiang1,LU Zhen2wu1 (1.Changchun Institute of Optics,Fine Mechanics and Physics,CAS,Changchun130033,China;2.G raduate School of CAS,Beijing100039,China) Abstract:This paper introduces the design of an infrared thermal imaging Petzval objective lens.The focal length of the opti2 cal system is90mm,the F2number is1,the field of view is12.6°,and the material of the total two lenses is G ermanium.A diffractive/refractive lens is used instead of a negative lens to eliminate chromatic aberration,and it is fabricated by diam ond turning technology,which makes the weight of optical elements of this system decrease from0.5kg to0.38kg.The design and detection of MTF is given and the conclusion is educed that the tested MTF reduces no more than3%compared with the design quantity.The influence of diffraction efficiency with wavelength on the MTF is analyzed. K ey w ords:infrared optics;thermal imaging;diffractive optical element;uncooled detector 1 引 言 采用非制冷长波红外探测器阵列的热像仪相对制冷型仪器具有价格低、重量轻、功耗小和结构紧凑等优势,具有广泛的市场[1~4]。 非制冷热像仪光学系统为快光学系统,一般采用正负正3片透镜即可满足要求。近年,采用金刚石车削技术加工连续位相的衍射器件已应用在减少透镜数量的技术中[5~8]。采用衍射器件,只需2片透镜就能够达到与3片透镜相同的成像质量,而且能够提供额外的自由度校正色差。在过去的几年里, W ood等对衍射器件在红外光学系统的应用进行了色差校正、热差校正等的研究,考虑了加工公差对成像质量的影响,但是没有分析衍射效率下降的影响。本文重点研究了应用衍射器件的长波红外成像Petzval型物镜的设计,给出了光学传递函数的检测结果,讨论了衍射效率对成像质量的影响。2 系统设计 系统性能参数为:工作波段为8~12μm,F数为1,焦距为90mm,视场为12.6°,空间分辨率为0.5mrad,透镜材料均为G e。初步确定系统由2片透镜组成,光焦度均为正,其中大部分光焦度由第1片透镜承担,第2片透镜将物体经过第1片透镜成的像重新成像在非制冷探测器的像面上。利用ZEMAX 进行光学系统设计,首先确定系统的初始结构,需要满足以下两个方程。 1)光焦度分配方程 ∑n 1 h iΦi=Φ(1)式中:Φj为器件的光焦度;h i为近轴光线在透镜上的入射高度;Φ为系统的光焦度。 2)消色差方程 光电子?激光 第18卷第3期 2007年3月 J ournal of Optoelect ronics?L aser Vol.18No.3 Mar.2007 3 收稿日期:2006204226 修订日期:2006207204  3 基金项目:国家自然科学基金资助项目(60507003);云南省省院省校科技合作计划资助项目(2004yx30);应用光学国家重点实验室开发基金资助项目(DA04Q03)  33E2m ail:zhangyuncui2@https://www.wendangku.net/doc/8518892787.html,

非制冷红外成像技术与市场趋势-2016年

《非制冷红外成像技术与市场趋势-2016版》 Uncooled Infrared Imaging Technology & Market Trends 2016 购买该报告请联系: 麦姆斯咨询王懿 电子邮箱:wangyi#https://www.wendangku.net/doc/8518892787.html,(#换成@) 麦姆斯咨询:在动态的红外成像市场中,厂商、技术和产品越来越多,因此竞争愈发激烈。2016~2021年,预计非制冷红外成像仪出货量的复合年增长率为15.8%。 受益于新应用拓展和价格下降,非制冷红外热像仪市场不断扩大 目前,红外业务主要由商业市场驱动,并将继续扩大市场规模。展望未来五年,商业市场出货量的复合年增长率为16.8%,到2021年将占整个红外市场规模的92%份额。商业市场主要有三大领域:热像仪(预计2021年出货量将达52.1万台)、汽车(预计2021年出货量将达28.4万台)、监控(预计2021年出货量将达24.8万台)。 2015年,热成像仍然是最主要的商业市场(包括营收和出货量两方面)。自2013年起,Fluke 和FLIR已经推出了几款低价新品,刺激了市场营收增长。超低端红外市场的产品价格下降明显,视觉温度计(visual thermometers)售价仅几百美元,例如FLIR TG130售价为200美元。热像仪的出货量将从2015年的21.2万台增至2021年的52.1万台,复合年增长率为16%。低端热成像仪的市场需求也促使低分辨率红外技术的发展和应用,如热释电、热电堆和热电偶。 2015年,由于价格下滑和供应商越来越多,监控市场的出货量增长了32%。一直以来,热成像摄像机主要应用于重要的高端监控和政府基础设施。然而,随着价格不断下降,新的市政和商业应用正在涌现,包括交通状况、停车场、发电站和光伏电站等。 2015年,汽车市场的出货量增长率15%,但是相比2014年的增速(30%)下降了不少。2015年整个汽车市场的出货量(包括OEM和后装市场)不到10万台,营收为6100万美元,也显示了较强的价格侵蚀现象。由于价格原因,长波红外(LWIR)夜视系统目前还仅限于高档汽车。预计2017年欧洲的中档汽车将配备奥托立夫的长波红外产品。从长期来看,好几家一级供应商都对长波红外技术很有兴趣,主要应用是自动驾驶汽车。但是,其它一些汽车制造商会考虑长波红外技术的性价比,认为目前的价格仍然太高,并且也不是自动驾驶汽车的必备技术。 Yole报告将完整地介绍长波红外成像仪的市场现状和预测,以及主要应用及发展动向。

红外成像技术原理及其应用

红外热成像技术,也是一个有非常广阔前途的高科技技术,其大量的应用将会引起许多行业变革性的改变。 一、什么是红外热成像? 光线是大家熟悉的。光线是什么?光线就是可见光,是人眼能够感受的电磁波。可见光的波长为:0.38 ~0.78 微米。比0.38 微米短的电磁波和比0.78 微米长的电磁波,人眼都无法感受。比0.38 微米短的电磁波位于可见光光谱紫色以外,称为紫外线,比0.78 微米长的电磁波位于可见光光谱红色以外,称为红外线。红外线,又称红外辐射,是指波长为0.78 ~1000微米的电磁波。其中波长为0.78 ~2.0 微米的部分称为近红外,波长为2.0 ~1000 微米的部分称为热红外线。 照相机成像得到照片,电视摄像机成像得到电视图像,都是可见光成像。自然界中,一切物体都辐射红外线,因此利用探测仪测定目标的本身和背景之间的红外线差并可以得到不同的红外图像,热红外线形成的图像称为热图。 目标的热图像和目标的可见光图像不同,它不是人眼所能看到的目标可见光图像,而是目标表面温度分布图像,换一句话说,红外热成像使人眼不能直接看到目标的表面温度分布,变成人眼可以看到的代表目标表面温度分布的热图像。 二、红外热成像的特点是什么? 有位著名的美国红外学者指出:“人类的发展可分为三个阶段。第一个阶段是人类通过制造工具,扩展体力活动的能力,第二阶段通过提高判断能力,寻求更清晰和更广泛的理解与判断事物的标准,而人类近年来致力的增强获得输入信息的能力,扩大感觉范围或增填新的感官,使我们的大脑能接受更多的信息,正是人类发展的第三阶段。在这个阶段中,红外技术的发展已经把人类的感官由五种增加到六种”。这一席话,我认为恰如其分的道出了红外热成像技术在当代的重要性。因为,我们周围的物体只有当它们的温度高达1000 ℃以上时,才能够发出可见光。相比之下,我们周围所有温度在绝对零度(-273 ℃)以上的物体,都会不停地发出热红外线。例如,我们可以计算出,一个正常的人所发出的热红外线能量,大约为100 瓦。所以,热红外线(或称热辐射)是自然界中存在最为广泛的辐射。热辐射除存在的普遍性之外,还有另外两个重要的特性。 1.大气、烟云等吸收可见光和近红外线,但是对3 ~5 微米和8 ~14 微米的热红外线却是透明的。因此,这两个波段被称为热红外线的“大气窗口”。利用这两个窗口,可以使人们在完全无光的夜晚,或是在烟云密布的战场,清晰地观察到前方的情况。正是由于这个特点,红外热成像技术在军事上提供了先进的夜视装备,并为飞机、舰艇和坦克装上了全天候前视系统。这些系统在海湾战争中发挥了非常重要的作用。 2.物体的热辐射能量的大小,直接和物体表面的温度相关。热辐射的这个特点使人们可以利用它来对物体进行无接触温度测量和热状态分析,从而为工业生产,节约能源,保护环境等等方面提供了一个重要的检测手段和诊断工具。 红外热成像仪器 根据所有物体都在不停发射红外线的特点,各国竞相开发出各种红外热成像仪器。美国德克萨斯仪器公司(TI)在1964年首次研制成功第一代的热红外成像装置,叫红外前视系统(FLIR),这类装置利用光学元件运动机械,对目标的热辐射进行图像分解扫描,然后应用光电探测器进行光—电转换,最后形 成热图象视频信号,并在荧屏上显示,红外前视系统至今仍是军用飞机、舰船和坦克上的重要装置。 六十年代中期瑞典AGA 公司和瑞典国家电力局,在红外前视装置的基础上,开发了具有温度测量功能的热红外成像装置。这种第二代红外成像装置,通常称为热像仪。七十年代法国汤姆荪公司研制出不需致冷的红外热电视产品。 九十年代出现致冷型和非致冷型的焦平面红外热成像仪,这是一种最新一代的红外热成像仪,可以进行大规模的工业化生产,把红外热成像的应用提高到一个新的阶段。 七十年代中国有关单位已经开始对红外热成像技术进行研究,到八十年代初,中国在长波红外元件的研制和生产技术上有了一定的进展。到了八十年代末和九十年代初,中国已经研制成功了实时红外成像样

非制冷红外热像仪融资投资立项项目可行性研究报告(中撰咨询)

非制冷红外热像仪立项投资融资项目可行性研究报告 (典型案例〃仅供参考) 广州中撰企业投资咨询有限公司 地址:中国〃广州

目录 第一章非制冷红外热像仪项目概论 (1) 一、非制冷红外热像仪项目名称及承办单位 (1) 二、非制冷红外热像仪项目可行性研究报告委托编制单位 (1) 三、可行性研究的目的 (1) 四、可行性研究报告编制依据原则和范围 (2) (一)项目可行性报告编制依据 (2) (二)可行性研究报告编制原则 (2) (三)可行性研究报告编制范围 (4) 五、研究的主要过程 (5) 六、非制冷红外热像仪产品方案及建设规模 (6) 七、非制冷红外热像仪项目总投资估算 (6) 八、工艺技术装备方案的选择 (6) 九、项目实施进度建议 (6) 十、研究结论 (6) 十一、非制冷红外热像仪项目主要经济技术指标 (8) 项目主要经济技术指标一览表 (9) 第二章非制冷红外热像仪产品说明 (15) 第三章非制冷红外热像仪项目市场分析预测 (15) 第四章项目选址科学性分析 (15) 一、厂址的选择原则 (15) 二、厂址选择方案 (16) 四、选址用地权属性质类别及占地面积 (16) 五、项目用地利用指标 (17) 项目占地及建筑工程投资一览表 (17) 六、项目选址综合评价 (18)

第五章项目建设内容与建设规模 (19) 一、建设内容 (19) (一)土建工程 (19) (二)设备购臵 (20) 二、建设规模 (20) 第六章原辅材料供应及基本生产条件 (20) 一、原辅材料供应条件 (20) (一)主要原辅材料供应 (20) (二)原辅材料来源 (21) 原辅材料及能源供应情况一览表 (21) 二、基本生产条件 (22) 第七章工程技术方案 (23) 一、工艺技术方案的选用原则 (23) 二、工艺技术方案 (24) (一)工艺技术来源及特点 (24) (二)技术保障措施 (24) (三)产品生产工艺流程 (25) 非制冷红外热像仪生产工艺流程示意简图 (25) 三、设备的选择 (25) (一)设备配臵原则 (25) (二)设备配臵方案 (26) 主要设备投资明细表 (27) 第八章环境保护 (27) 一、环境保护设计依据 (28) 二、污染物的来源 (29) (一)非制冷红外热像仪项目建设期污染源 (30) (二)非制冷红外热像仪项目运营期污染源 (30)

非制冷红外成像技术及其应用

非制冷红外成像技术及其应用 蔡毅 昆明物理研究所,云南,昆明,650223 摘要:红外成像技术与微光图像增强技术是夜视技术的主要组成部分。非制冷红外成像技术包括量子型和热探测型成像技术两种,都是红外热成像技术的最新成就之一。在本文中,比较了这两种技术的特点,讨论了非制冷红外成像技术的优点、发展趋势和应用。 关键词:非制冷,红外成像,应用 Uncooled Infrared Imaging Technology and It’s Application CAI Yi Kunming Insitute of Physics, Kunming, Yunnan, P.R.China, 650223 Abstract: Night vision technology includes low-light-level image intensifier technology and infrared image technology. Uncooled infrared imaging technology is one of the newest achievements of infrared thermal imaging technology. Characterizations of the low-light-level image intensifier and Uncooled infrared imaging technologies are compared, then advantage, development and application of Uncooled infrared imaging technology is discussed in the paper. Keywords: Infrared Imaging,Uncooled Infrared Imaging,Application 1.红外成像技术与微光图像增强技术的比较 用于夜间观察的微光和热成像装置一般由信号接收、转换、处理和显示等四大部分组成。实现夜间观察不同的技术路线,必然要在这四大部件上反映出来。 夜间观察的基本矛盾是光强不足。解决问题的办法有:1)尽可能多的得到光能量,例如使用大口径望远镜,就可以有限的改善人眼在黄昏和明亮的夜晚的观察能力;微光和热成像装置也使用大口径的望远镜,如有的地面用热像仪口径达到245毫米;2)设法对光信号进行放大,不同的技术基础形成不同的技术路线;如应用真空光电子技术形成了一系列的微光成像器件,而以红外物理、半导体、微电子、真空、制冷、精密光学机械等技术则形成了一系列的热成像仪(TI)。3)在红外光谱波段观察目标的红外图像,克服光强不足的困难。如在微光技术中,将光电阴极的光谱响应延伸到近红外区,可以获取目标表面反射的近红外光,得到更多的光能量,改善微光成像器件的成像质量。而直接获取目标自身发射的热辐射信息,在长波红外区观察目标的热图像,则实现了真正意义上的夜视。 在微光图像增强器(L3I)中,用光电阴极将微弱的可见光和近红外光图像转换成相应的电子密度图像,其光阴极是连续和均匀的一个薄膜。在红外成像仪(IRI)中,用若干个分离探测元组成的探测器列阵将红外光转换成电信号。 微光成像器件的信号处理有五大特点:1)信号并行处理,2)信号在空域处理,3)信号是电子数量,4)信号是模拟量,5)信号原位处理。在半导体、微电子技术还不发达时,电真空技术的这些特点占尽优势,成为夜视技术的主流。 非制冷焦平面组件(UFPA)的信号处理有五大特点:1)信号串行处理,2)信号在时域处理,3)信号是电脉冲电平值,4)信号是数字量,5)信号分离处理,便于进行复杂的图像处理 163

相关文档
相关文档 最新文档